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Abstract. Monitoring snow avalanche activity is essential for operational avalanche forecasting and the successful imple-

mentation of mitigation measures to ensure safety in mountain regions. To facilitate and automate the monitoring process,

avalanche detection systems equipped with seismic sensors can provide a cost-effective solution. Still, automatically distin-

guishing avalanche signals from other sources in seismic data remains challenging. This is mainly due to the complexity of

seismic signals generated by avalanches, the complex signal transmission through the ground, the relatively rare occurrence of5

avalanches, and the presence of multiple sources in seismic data. Therefore
::
To

::::
study

::::
and

:::::::
interpret

:::
the

::::::
variety

::
of
:::::

these
::::::
signals,

we compiled a dataset of seismograms recorded with an array of five seismometers installed in an avalanche study site above

Davos, Switzerland. For the winter seasons of 2020-2021 and 2021-2022, this dataset comprised 84 avalanches and 828 noise

(unrelated to avalanches) events. An approach to automate the detection of avalanches in seismic data is by applying machine

learning methods. So far, research in this area has mainly focused on extracting domain-specific signal attributes as input10

features for statistical models. In contrast, we propose a novel application of representation learning from seismograms us-

ing autoencoder models to automatically extract features from 10-second seismic signals of snow avalanches. On top of that,

we applied random forest classifiers to evaluate whether these features facilitate the detection of avalanches. Concretely, we

trained one random forest classifier each on a set of expert-engineered seismic attributes (baseline), temporal autoencoder fea-

tures and spectral autoencoder features. The classifiers achieved an avalanche recall of 0.67 (±0.00) (baseline), 0.71 (±0.02)15

(temporal autoencoder) and 0.70 (±0.01) (spectral autoencoder) and macro average f1-scores of 0.78 (±0.00) (baseline), 0.70

(±0.01) (temporal autoencoder) and 0.77 (±0.01) (spectral autoencoder). The developed approach could be potentially used

as an operational, near real-time avalanche detection system. Yet, the relatively high number of false alarms still needs further

implementation of the current automated seismic classification algorithms for effective avalanche detection.

1 Introduction20

Every winter, snow-covered mountainous regions worldwide are exposed to the destructive potential of snow avalanches, caus-

ing fatalities and damage to infrastructure. On average in Switzerland, 25 avalanche fatalities occur every winter (Techel et al.,

2016). The catastrophic winter of 1999 resulted in infrastructural damage costing several hundred million Swiss francs (Bründl

et al., 2004). Such periods underscored the need for ongoing investments in avalanche prevention measures and providing
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accurate avalanche forecasts. Avalanche forecasting is mainly driven by analysing weather measurements and forecasts in25

combination with snowpack and avalanche observations (Schweizer et al., 2020). Detailed information on the location and

timing of avalanche occurrences is indispensable for validating avalanche forecasts (van Herwijnen et al., 2016; Bühler et al.,

2022), effectively implementing mitigation measures (McClung and Schaerer, 2006; van Herwijnen et al., 2018), hazard map-

ping (Bühler et al., 2022) and the development of statistical approaches to predict natural avalanche release (Sielenou et al.,

2021; Hendrick et al., 2023; Mayer et al., 2023). However, avalanche activity data are still mainly obtained through human30

field observations. Consequently, the poor visibility conditions during snow storms, when avalanche activity is particularly

high (Schweizer et al., 2020), lead to incomplete and uncertain avalanche observations. Hence, there is a growing demand for

automated avalanche detection systems that provide reliable and continuous data on avalanche activity.

Since avalanches are extended moving sources of seismic energy, seismic monitoring systems can be used to detect natural

avalanches in large areas within a radius of several kilometres (Hammer et al., 2017; Pérez-Guillén et al., 2019; Heck et al.,35

2019), regardless of the weather and visibility conditions. Seismic avalanche detection systems have been employed for several

decades to monitor and characterise avalanches (Suriñach et al., 2001; Biescas et al., 2003; van Herwijnen and Schweizer,

2011), assess the source location (Lacroix et al., 2012; Pérez-Guillén et al., 2019; Heck et al., 2018b) and infer flow properties

(Vilajosana et al., 2007; Lacroix et al., 2012; Pérez-Guillén et al., 2016). Avalanches generate spindle-shaped, high-frequency

signals similar to other types of mass movements (Suriñach et al., 2005), such as landslides, debris flows, and lahars. These40

patterns have frequently been used to detect and identify avalanche signals. Although seismic detection systems would provide

a cost-effective and large-scale alternative to other systems, such as radars, they have not yet reached the same level of reliability

regarding the automatic detection of avalanches (Schimmel et al., 2017). This limitation is partly due to the complex signal

transmission from the source (i.e., the avalanche) to the receiver and multiple sources of environmental noise (e.g., earthquakes,

aeroplanes, etc.).45

As a solution, conventional machine learning methods have been studied and developed over the past decade to automat-

ically classify seismic signals generated by different types of mass movements based on Hidden Markov Models (Hammer

et al., 2013; Dammeier et al., 2016), fuzzy logic (Hibert et al., 2014) and random forest algorithms (Provost et al., 2017). For

avalanches, the first attempt to automatically distinguish them from other sources based on seismic features extracted in the

time-frequency domain and combined with fuzzy logic was conducted by Leprettre et al. (1996). Afterwards, Bessason et al.50

(2007) developed a nearest-neighbour approach that successfully detected 65% of previously confirmed avalanche events.

Later, Rubin et al. (2012) divided a seismic data stream into 5 s time windows and extracted 10 spectral features by applying

a fast Fourier transform. They tested several machine-learning classifiers using these input features, such as random forest

algorithms, support vector machines, and artificial neural networks. Among them, their decision stump classifier reached the

highest precision of 0.13, indicating many false alarms, on manually identified avalanches. At the same time, they reported a55

recall of 0.90 and an accuracy of 0.93. More recently, Hammer et al. (2017) and Heck et al. (2018a) applied hidden Markov

models (HMMs) to learn class characteristic patterns based on extracted spectral features for automatic avalanche classifi-

cation. Extending on this approach, Heck et al. (2018b) trained an HMM-based method to detect avalanches in continuous
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seismic data. So far, these approaches relied on a careful and time-consuming selection of features derived from processing

signals in the time and frequency domain.60

In recent years, the emergence of deep learning algorithms and the extensive growth of collected data have opened up new

perspectives for efficient and automated data processing. A fascinating subfield of deep learning is representation learning, pro-

viding an alternative to the more traditional process of hand-crafting data representations based on specific domain knowledge

(Bengio et al., 2013; Längkvist et al., 2014). These models can process complex datasets and infer representations in a rea-

sonable time by reducing the dimensionality of data (Hinton and Salakhutdinov, 2006) and rapidly synthesise data processes,65

providing valuable and complementary insights. However, these novel deep learning approaches have not yet been explored

for seismic avalanche signals, although they have been applied successfully in related domains (Seydoux et al., 2020; Mousavi

and Beroza, 2022). For instance, Mousavi et al. (2019) trained feature extractors to cluster seismic signals of an earthquake

catalogue and showed comparable precision to supervised methods. In contrast, Kong et al. (2021) evaluated similar methods

for seismic event discrimination and phase picking. These studies have proven that unsupervised feature extractors can keep70

up with state-of-the-art models, mitigating the time-consuming and expensive data labelling.

In this study, we, therefore, leveraged the potential of unsupervised representation learning methods by applying the au-

toencoder model introduced by Rumelhart et al. (1986) for the first time to seismic avalanche signals to automatically extract

discriminative features. Moreover, we benchmarked these novel features against our baseline, a set of expert-engineered seis-

mic attributes, by evaluating them on an avalanche classification task using random forest models. With this approach, we75

aim to advance and automate avalanche detection using seismic monitoring systems. For this, we first compiled a catalogue

of 84 avalanches and 828 unrelated noise events recorded with an array of five seismic sensors at a study site above Davos

(Sect. 2), Switzerland, throughout the winter seasons of 2020-2021 and 2021-2022. In Sect. 3, we described the foundation of

the training dataset, which is built upon manually picking event onset and end, using each sensor separately and applying a

windowing algorithm of 10 s with 50% overlap. We then extracted features from these 10 s seismic time windows and trained80

classifiers based on these features. In the feature extraction process, we implemented a baseline method (Sect. 4.1), which is

a set of engineered seismic attributes. Moreover, we developed two methods based on autoencoders (Sect. 4.2), which learned

to automatically extract features from the signal’s time and frequency domain respectively. Using these three sets of input

features, we optimised and trained one random forest classifier per set, to automatically distinguish the avalanche signals from

other seismic events (Sect. 4.3). Further, we defined two post-processing techniques on the single-sensor predictions to reach85

sensor array-based predictions through multiple-sensor aggregation, and event-based predictions (Sect. 4.3.3). In Sect. 5 we

analysed and compared the performance of the models in a single-sensor, array-based and event-based setting. Finally, in Sect.

6 and 7 we discuss the main results and the potential of applying these methods to avalanche activity monitoring, automatic

dataset labelling and early warning in the future and present conclusions.
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Figure 1. Left: Map and location of the Dischma study site. The instrumentation consisted of a seismo-acoustic sensor array (blue dots),

three cameras and a Doppler radar. The approximate area where avalanches could be detected is shown for the seismo-acoustic sensor array

(blue ellipse) and the radar (red cone). Moreover, the red-shaded area highlights the same avalanche path as in the photo on the right. Right:

Photo taken by an automatic camera at the study site, showing the georeferenced path of a dry-snow avalanche released on 2 February 2022

at 02:31.

2 Study site and instrumentation90

The avalanche study site ’Dischma’ is located at the end of the Dischma Valley, a tributary valley above Davos, Switzerland

(Fig. 1). A continuously operating detection system integrating multiple sensor types monitors avalanches flowing down the

surrounding slopes. The system was deployed on a flat meadow at about 2000 m a.s.l. (Eastern Swiss Alps; 46.72°N, 9.92°E).

The surrounding mountains form a basin of steep slopes reaching up to 3000 m a.s.l. Since the winter season of 2020-2021,

usually from November to May, we installed a seismo-acoustic sensor array of five co-located seismic and infrasound sensors95

arranged in a star-like pattern. This spatial configuration allows for the localisation of avalanches (Heck et al., 2018b). The

seismic sensors were buried into the ground at a depth of approximately 50 cm and subsequently covered by snow during winter.

A single measuring unit consists of a one-component seismometer Lennartz LE-1D/V (eigenfrequency of 1 Hz and sensitivity

of 800Vm−1 s) and an infrasound sensor Item-prs (frequency response of 0.2-100 Hz and sensitivity of 400mVPa−1). The

only exception was the central measuring unit applying a three-component seismometer LE-3Dlite (eigenfrequency of 1 Hz and100

sensitivity of 800Vm−1 s), of which we, however, only used the vertical component in this study. The sensors were connected

to the same digitizer (Centaur digitizer from Nanometrics), recording continuously with a sampling frequency of 200 Hz. The

seismo-acoustic sensor array monitors avalanches released within a radius of approximately 3 km (blue ellipse in Fig. 1).

Additionally, the site was equipped with a Doppler radar and three automatic cameras to obtain independent validation

dataprovided that weather conditions allowed it, including accurate release times and information on the type and size of the105

avalanches
:::::::::
avalanches,

:::::::
provided

::::::::
favorable

:::::::
weather

:::::::::
conditions. The radar emits electromagnetic waves that are reflected by the
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avalanche flow, providing the location and velocity of the moving avalanche (Meier et al., 2016). Figure 1 shows the location of

the radar, which monitors several avalanche paths exposed to the west-southwest, covering an approximate area of 4 km2 (red

delineated area). With this radar, avalanches could be detected up to a maximum distance of approximately 2 km. The cameras

automatically photographed all surrounding slopes every 30 minutes (Fig. 1)
:
,
:::::
which

:::
we

::::::::
manually

::::::::
inspected

:::
to

::::::
identify

:::::
days110

::::
with

::::::::
avalanche

::::::
activity

::::
and

:::::
verify

::::::::
avalanche

::::::
events

::
of

:::
the

::::::::
detection

:::::::
systems.

In summary, the combination of detection systems installed at the study site allowed us to assess the limitations and advan-

tages of each system individually, as well as their combined effectiveness for avalanche detection and characterisation. In this

study, we focused exclusively on automatically detecting avalanches using seismic data. In contrast, we used the Doppler radar,

cameras and acoustic systems to validate the detected avalanche events qualitatively.115

3 Data

From the continuous recordings of the seismic detection system (Sect. 2), we compiled an event catalogue for the winter

seasons 2020-2021 and 2021-2022. Foremost, we collected avalanche signals detected by the radar and cameras. Additionally,

we manually picked seismic events within periods of known avalanche activity (Sect 3.1), ensuring to include avalanches that

were not detectable by these other systems. Next, three experts labelled the events to compile a binary classification dataset120

(Sect. 3.2). Lastly, we prepared the signals of the event catalogue for model development (Sect. 3.3).

3.1 Event picking and signal processing

To define avalanche events, we selected signals based on the release times provided by the radar and automatic cameras. In

addition, we picked potential avalanche events and other sources from the continuous seismic recordings that had been missed

by the radar and cameras. Typically, the amplitude of seismic signals generated by avalanches gradually emerges (see Fig. 2)125

since the avalanche approaches the location of the seismic sensors at our study site (Fig. 1) and seismic energy radiates due

to snow entertainment and erosion processes within the flowing avalanche (Pérez-Guillén et al., 2016). Therefore, automated

picking methods often miss the starting phase of avalanches and sometimes entire events. To prevent this, we visually inspected

the continuous seismic recordings and identified signals that exhibited a high signal-to-noise ratio, i.e. were not in the order

of magnitude of the background noise. For efficiency, we limited our search to periods with known avalanche activity, such as130

avalanche cycles during snow storms, days when avalanches had already been detected by the radar and periods with observed

avalanche deposits in the cameras.

For ease of picking the signals in those periods, we transformed the raw seismic signals to ground velocity (
::::
units

::
of

:::
the

::::
raw

:::::::::
recordings,

:::
i.e.

::::::
counts,

::
to

:
meters per second

::::::
(ground

::::::
motion). Additionally, the signals were linearly detrended, tapered with a

Hanning window and filtered with a 4th-order Butterworth band-pass filter between 1 and 10 Hz. We found this to be the most135

energetic frequency band of the avalanche signals recorded at our study site (Fig. 2), considering the typical relative distance

between the avalanche and our receivers. To finally compile a clean event catalogue, we manually defined the onset and end
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times of the identified signals by visually inspecting the seismic signal, the envelope signal and the spectrogram. In total, we

picked 912 events lasting between 5 and 515 s, which we labelled in the next step.

3.2 Event labelling140

Having picked potential events, three experts assigned signals into two classes, avalanche and non-avalanche events:

Avalanches: Avalanche events were first identified using the radar and camera data (Fig. 1) by matching seismic signals to

avalanches detected by the radar or on images. A second step to collect avalanches missed by these systems was to

visually classify signals based on the characteristic seismic signature of avalanches (e.g. non-impulsive onsets, spindle-

shaped signals and triangular-shaped spectrograms; left column in Fig. 2) as proposed by van Herwijnen and Schweizer145

(2011). Additionally, the output of wave parameters derived from sensor array processing of the seismic and infrasound

data was considered, i.e. backazimuth angles and apparent velocity (Marchetti et al., 2015; Heck et al., 2018b).

Noise (non-avalanche events): Earthquakes were the most frequent source of environmental noise at our study site. They

were identified by visual inspection of the signals (typical emergent onsets and usually identifiable arrival of the different

phases; middle column in Fig. 2) and comparison of our seismo-acoustic recordings with two nearby seismic stations150

from the Swiss national network (Clinton et al., 2011). In addition, online earthquake catalogues were consulted to match

our recordings with catalogued events (SED, 2023; EMS, 2023). The remaining portion of seismic events was generated

by different sources, including aeroplanes (right column in Fig. 2), helicopters, explosions in nearby skiing resorts,

weather events (e.g. wind), people or animals walking close to the sensors, and many more unknown event sources. We

summarised this collection of unrelated events as a “noise” class. In particular, weak signals generated by non-verified155

small avalanches might also fall into this heterogeneous class. Moreover, this definition of the noise class barely included

low signal-to-noise ratio (SNR) background noise.

The three experts independently assigned subjective probabilities using either 0 (non-avalanche), 0.5 (potential avalanche)

or 1 (certain avalanche). Note that the average rate of agreement in expert probabilities on the avalanche signals between

the three experts was 58%. This hints at the inevitable expert bias, the inherent subjectivity and the complexity of the task.160

Finally, a signal was labelled positive if the sum of the three expert probabilities was at least 2. In this manner, we compiled

an event catalogue with 84 avalanches (31 verified with the radar or camera images) and 828 unrelated noise events from the

2020-2021 and 2021-2022 winter seasons. For completeness but not subject to the binary classification presented in this study,

the same labelling process was used for earthquakes, with which we found 183 earthquakes in the noise class. The seismic

sensors recorded maximum absolute amplitudes ranging from 3.3× 10−8 to 4.7× 10−5 ms−1 for avalanches, 1.3× 10−8 to165

9.7× 10−6 ms−1 for earthquakes and 1.4× 10−9 to 5.1× 10−5 ms−1 for noise signals. Signal durations ranged from 13 to

113 s, 7 to 263 s and 5 to 515 s in each class, respectively. Notably, the noise class’s amplitude range includes the avalanche

class’s amplitude range, highlighting its heterogeneity.
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Figure 2. Waveform and spectrogram of the avalanche in Fig. 1 (left), an earthquake (middle) and an aeroplane (right). The dashed orange

vertical lines indicate the manually defined event onsets and ends. The pink vertical lines in the avalanche waveform indicate a 10 s seismic

snippet extracted by the windowing algorithm. This specific signal window is highlighted later also in Fig. 4 and 10.

3.3 Signal windowing, normalisation and dataset splitting

Aiming to enlarge the number of samples and develop a model pipeline for real-time detection, we further processed the signals170

of the event catalogue. Therefore, we used each seismic sensor’s records independently, yielding five times more samples for

model training. Second, we applied a 10 s moving window with 50% overlap to all signals. This moving window algorithm

resulted in again more data samples to train and ensured fixed-sized inputs for the models. Earlier studies (Lacroix et al., 2012;

Hammer et al., 2017; Pérez-Guillén et al., 2019) have found the minimum duration of avalanches to be roughly ten seconds.

Beyond, this strategy is also beneficial in a potential (near) real-time detection system, where 10 s windows are continuously175

parsed. Lastly, a crucial part when developing neural networks is input data normalisation (Sola and Sevilla, 1997). By applying

the windowing algorithm, we obtained subsequences of time series. Since waveform characteristics of an upcoming event are

not known in advance during inference, we normalised each window separately by its maximum absolute amplitude instead

of using the maximum absolute amplitude of the entire event to avoid look-ahead normalisation (Rakthanmanon et al., 2012;

Lima and Souza, 2023). With this, the labelled dataset comprised 3’580 avalanche and 37’110 noise (non-avalanche) windows,180

which included 11’575 earthquake windows. Finally, we defined four independent data folds to develop the models and select

the optimal architectures and their hyper-parameters (see Fig. 3). Three folds, comprising 70% of the data samples, were used

for model training and optimisation via 3-fold cross-validation. The test set (top bar in Fig. 3), containing 30% of the data, was

set aside to assess the model performance on an independent inference set. We separated the folds by specific dates to prevent

any correlation and temporal data leakage between the folds. We chose the dates such that the class distributions across the185

folds were approximately balanced (Fig. 3). Additionally, we ensured that the independent test set included both dry and wet
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avalanches. This dataset was the foundation of model development and allowed for systematic comparison of the models in

different settings.

0 20 40 60 80 100
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Figure 3. Class distributions and date ranges in the train and test folds. The annotations at the end of the bars show the total number of 10 s

seismic windows in each fold. The annotations in blue depict the percentage of avalanche windows.

4 Model development

For the later classification, we first extracted features from the 10 s signal windows (Fig. 4). Feature extraction generally de-190

scribes the compression of a signal to a lower dimensional embedding to retrieve the signal’s most distinctive information. The

embedded information (the features) is usually used in an upstream classification or regression task. Following this framework,

we explored three methods to extract information from seismic signals either as learned feature vectors or domain-specific

engineered features, which are then classified as avalanche or noise. Concretely, we implemented a baseline based on a con-

ventional expert-supervised feature engineering approach (Sect. 4.1) and developed two fully unsupervised autoencoders to195

extract features from temporal and spectral input data, respectively (Sect. 4.2). We then optimised three separate random forest

models on top of the preceding feature extraction methods predicting avalanche and noise probabilities (Sect. 4.3).

4.1 Baseline features

Since representation learning methods are a novel approach in seismic avalanche detection, we sought a baseline against which

to benchmark them. Earlier studies on time series classification in general (Ismail Fawaz et al., 2019; Barandas et al., 2020) and200

on seismic detection of different types of mass movements (Rubin et al., 2012; Provost et al., 2017; Lin et al., 2020; Wenner

et al., 2021; Chmiel et al., 2021) developed classification models using traditional feature engineering strategies. Therefore,

in the baseline model, we followed a similar approach to Provost et al. (2017), which classified seismic events generated by

landslides and extracted a set of 71 expert-engineered seismic attributes. Specifically, we used a subset of 22 waveform, 17
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Figure 4. Overview of the three methods to infer avalanche probabilities. The blue elements depict the feature extraction. During inference,

the decoder of the autoencoders is discarded, and only the encoder is used to extract features. The orange parts show the classification

using random forest models. The predictions are shown in pink for the given seismic window (the same as in the top left of Fig. 2). Left:

The temporal autoencoder (TAE) feature classification; middle: The baseline classification using engineered seismic attributes; right: The

spectral autoencoder (SAE) feature classification.

spectral and 18 spectrogram attributes (see Table B1, B2 and B3 for more details). We extracted these from the frequency-205

filtered (1 to 10 Hz) 10 s seismic signals for all sensors separately. Additionally, we did not include network or polarity-related

attributes since we aimed at developing models for a single-sensor setting and our study site was equipped with one-component

sensors.
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4.2 Autoencoder features

The autoencoder concept was first introduced by Rumelhart et al. (1986) and has since been adapted for various applications210

(Xugang et al., 2013; Mousavi et al., 2019; Gu et al., 2021). The architecture consists of an encoder and a decoder. The encoder

compresses the input signal to a lower-dimensional embedding, i.e. the latent (feature) vectors. The decoder decompresses

these feature vectors to the original input dimension. Overall, the autoencoder is trained by learning to reconstruct the input

signals. Thus, by design, the encoder feature vectors are optimised to preserve the most distinctive information characterising

a given input signal so that the decoder can reconstruct it. During inference, given that the autoencoder’s purpose is to extract215

features for a classification process on top, the decoder can be discarded. The classifiers, which are trained separately, use

solely the feature vectors.

4.2.1 Architecture

Figure 5. Illustration of the temporal autoencoder architecture. The encoder comprises one-dimensional convolutional layers (kernels in

blue) with leaky ReLU activation and batch normalisation followed by a long short-term memory cell (LSTM, pink). The decoder uses one-

dimensional transposed convolutions to decompress the extracted encoder features (highlighted in orange) and reconstruct the input signal.

In the temporal autoencoder (TAE) we considered the seismic time series data, hence the name. It was developed for seismic

waveform signals of 10 s, normalised by their maximum absolute amplitude. When dealing with time series data, common220

choices of computational units are one-dimensional convolutions (Kiranyaz et al., 2021) and recurrent units such as the long

short-term memory cells (LSTM; (Hochreiter and Schmidhuber, 1997)). Thus, we implemented the encoder as a sequence of 3

convolutional layers and one LSTM cell layer learning temporal dynamics. The best model based on the optimisation procedure

(Sect. 4.2.4 and Table E2) was composed of convolutions with kernel size 20 (or 0.1 s) and stride 10. This implementation of

stride reduces the initial input length of 2000 samples (200 Hz × 10 s) to 200, 20, and 2 within each encoder layer. Similarly,225

the tuning procedure suggested 32 filters in the first convolutional layer, which we then doubled in each consecutive layer. In

the last encoder layer, the LSTM cell summarises the output of the convolutions, i.e. two 128-dimensional vectors, to a feature

vector of 32 dimensions (32 features). The decoder sequentially repeats this latent vector twice and applies three transposed
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convolutions with kernel size 20 and stride 10 to decompress the sequence back to its original length, i.e. 2000. Starting at 128

filters, we halved them in each decoder layer to reach 32 channels. To reduce this number to the number of input channels, i.e.230

1, we applied a convolutional layer with kernel size 3 and stride 1 in the decoder output layer.

In addition, we used batch normalisation (BN) (Ioffe and Szegedy, 2015) in all encoder and decoder layers, except for the

decoder output layer, to stabilise and accelerate training. As
::
an

:
activation function, we used the leaky rectified linear unit

(leaky ReLU; (Xu et al., 2015)), which outperformed the tangent hyperbolic function (Tanh) during model optimisation. The

only exception is again the output layer, where we replaced the leaky ReLU with the Tanh function to output values in the235

same range as the normalised input signals, which is [−1,1]. In summary, Fig. 5 gives a simplified overview of this architecture

comprising 514’337 learnable parameters (226’848 in the encoder). This architecture is relatively small in the number of

trainable parameters and, therefore, well adapted to the size of our dataset.

Figure 6. Illustration of the spectral autoencoder architecture. The encoder and decoder are a sequence of compressing and decompressing

fully connected linear layers (dashed blue lines). Each layer uses the hyperbolic tangent (Tanh) activation function and layer normalisation.

The extracted features are shown in orange.

The second autoencoder implementation operates in the spectral domain, hence named spectral autoencoder (SAE). We

used the fast Fourier transform (FFT) to convert the filtered 10 s seismic signals into the frequency domain. Thus, the input240

data to this model contained the amplitude spectrum normalised using the min-max normalisation. In contrast to the temporal

autoencoder, we replaced the aforementioned computational units, i.e. convolutions and LSTM cells, with fully connected

layers. Through hyper-parameter optimisation (Sect. 4.2.4 and Table E4), we designed the encoder and decoder to comprise

three fully connected linear layers each. The hidden dimensions in the encoder evolved from 200 to 139, 78 and 16 (feature

dimension). The decoder was a mirrored version of the encoder. Based on parameter tuning we used the Tanh function as245

non-linearity in all layers (Table E4). Moreover, we applied layer normalisation (LN) in each layer with the exception of the

output layer. Figure 6 illustrates a simplified version of this architecture summing up to 81’330 learnable weights (40’589 in

the encoder). As for the TAE, this architecture is even smaller and thus also well adapted to the size of the dataset.
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4.2.2 Training regime

A training step in neural network optimisation starts with sampling a batch of predefined size from the dataset. For sampling,250

given that our dataset was severely imbalanced (Fig. 3), we used the so-called weighted random sampler, as implemented in

PyTorch (Paszke et al., 2019). This sampling method oversamples the minority (avalanche) class and thus prevents the model

from biasing towards the majority (noise) class. The sampling process relies on user-defined class weights, which allows the

user to control the expected number of minority class (avalanche) samples within each batch. Therefore, we assigned the

following relative weight to each sample of the avalanche class (wav), while we assigned the noise samples a weight of one255

(wno = 1). Internally, the sampling method rescales and interprets these weights as probabilities.

wav =
Nno

Nav

Pav

1−Pav
(1)

Pav is the user-defined expected portion of avalanches per batch, e.g. 0.5 for evenly balanced batches. The batch is then passed

through the entire network (forward pass) to produce the output (prediction). The output is compared to the target and the

mean squared error (MSE) reconstruction loss is computed (see Equation C1). The network weights are then optimised by260

computing the gradients of the loss function and propagating them back through the network (back-propagation) using the

Adam optimizer (Kingma and Ba, 2014) with a specified learning rate. After, the next batch is passed to the network repeatedly

until all batches in the dataset have been seen once, which defines an epoch. The entire process is then again repeated for a

certain number of epochs. Figure E1 in the appendix illustrates the training and validation progress per training epoch for the

temporal (TAE) and spectral autoencoder (SAE).265

Following our hyper-parameter tuning strategy, we found the temporal autoencoder training optimal with an expected portion

of avalanches per batch of Pav = 0.6, a learning rate of 1e−4 and a batch size of 128 (Table E3). The model was trained for

120 epochs, i.e. iterations through the entire dataset, with early stopping when the class-separation metrics (Sect. 4.2.3) started

decreasing. Additionally, we applied data augmentation by randomly shifting the 10 s signals by 0 to 1 seconds to either the

right or left to reduce overfitting in the avalanche class and for better generalisation (Zhu et al., 2020). Similarly, in the spectral270

autoencoder training, we used an expected portion of Pav = 0.5 avalanches per batch, a learning rate of 1e−4 and a batch size

of 128 (Table E5). Moreover, we found five training epochs to be optimal.

4.2.3 Validation

In addition to the training regime (Sect. 4.2.2), we defined a validation routine for comparing different autoencoder architectures

and settings in the model optimisation (Sect. 4.2.4). By definition, the autoencoder performance can be measured with its275

reconstruction loss. However, given a decent reconstruction, we aimed to find the best input features for the later classification.

Hence, we evaluated the autoencoders based on the avalanche and noise class separation within the latent (feature) space. We

calculated the silhouette score (Rousseeuw, 1987) and the Calinski-Harabasz index (Caliński and Harabasz, 1974) based on

the feature embedding location and their given expert labels (see Appendix C3). We selected the best autoencoder by searching

for the highest-ranking combination of silhouette score, Calinski-Harabasz index and the mean squared error loss.280
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4.2.4 Model selection

Developing neural networks involves tuning network hyper-parameters, such as the number of layers, kernel sizes of convo-

lutions or hidden dimensions. Therefore, we used the three train
:::::::
training folds in Fig. 3 to run 3-fold cross-validation. Using

three folds reduces the impact of data variability and yields more reliable performance estimates. Next, we defined a grid

of hyper-parameter combinations (Table D1) and iteratively trained the resulting model configurations on two and evaluated285

them on the left-out fold. We selected the model showing the best average performance over all three folds according to the

predefined validation metrics (Sect. 4.2.3). Besides the internal network parameters, we applied the same procedure to tune the

parameters of the training regime (Sect. 4.2.2). Concretely, we searched for the optimal number of expected avalanche samples

in each batch (Pav in Equation 1), the learning rate and the batch size. Details of this process can be found in the Appendix E.

4.3 Feature classification290

Foremost, this work aims to detect avalanches in seismic recordings. Therefore, the previous extraction of distinctive features

was only an intermediate step. To classify these features, we developed three random forest classifiers - one per feature ex-

traction method. We tuned them for the baseline, the temporal and the spectral autoencoder features separately to infer class

probabilities (see Fig 4).

4.3.1 Random forest model295

The random forest model is a widely used algorithm for classification in general and for seismic event detection in particular

(Provost et al., 2017; Li et al., 2018; Chmiel et al., 2021), as it is favourable when dealing with high-dimensional features

and heterogeneous (e.g. engineered features) input data. The algorithm was introduced by Breiman (2001) and belongs to the

class of ensemble methods. During training, several decision trees (estimators) are grown. Each tree is grown on a different

bootstrap sample of the original dataset, i.e. a random draw with replacement. Instead of using the entire set of features in the300

original dataset, a random subset is assigned to each node in the tree individually. The split (branch) is based on a single feature

from this random subset, which is optimal under a specified splitting criterion, such as the Gini information criterion (Breiman,

2017) when dealing with categorical (classification) splitting problems.

4.3.2 Cross-validation

In search of the best hyper-parameters of this tree-growing algorithm, e.g. the maximal number of estimators (trees), we used a305

randomised grid search with 3-fold cross-validation. This method evaluates hyper-parameter combinations by iteratively fitting

the random forest model to two of the three train
::::::
training

:
folds (Fig. 3) and validating it on the left-out fold. As a scoring

function, we chose the avalanche class f1-score to weigh
::::::
weight the avalanche precision and recall uniformly and averaged this

score across the three folds. This optimisation process was applied with the three feature sets individually, i.e. the baseline and

autoencoder features, to find the random forests presented in Table D1.310
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4.3.3 Inference and post-processing

During inference, a (test) feature vector is first passed separately to each decision tree in the random forest. Each tree applies its

learned sequence of decision rules and classifies the feature vector as either avalanche or noise. Then, each tree’s classification

is aggregated by computing the mean. For instance, assuming 90 out of 100 trees classified a given feature vector as an

avalanche, this sample was assigned an avalanche probability of 0.9, estimated as the fraction of votes within the forest. This315

process, known as ensembling, is why the random forest algorithm is considered an ensemble method. The only parameter to

define was a probability threshold above which, we classified the sample as an avalanche. We used the default threshold of 0.5,

which means a sample was classified as an avalanche if at least half of the trees agreed on this classification. Hence, for a single

10 s seismic signal, the random forest models provided both a binary classification (avalanche or noise) and the probability for

each class.320

Then, in the first post-processing step, we leveraged the array of five seismic sensors deployed at our study site and aggre-

gated the per-sensor model output probabilities, computing a multi-sensor avalanche probability for each 10 s window. The

array-based avalanche probability was calculated as the mean of the individual probabilities from each sensor. In the second

post-processing step, we revisited the offline avalanche activity monitoring or dataset labelling objective by evaluating the

classifiers on entire events rather than single 10 s windows. Therefore, we considered an event an avalanche if at least two325

(overlapping) consecutive windows (i.e. 2 ∗ 10s− 0.5 ∗ 10s= 15s of an event) had been positively predicted. Given that the

shortest avalanche in the dataset was 13 s, we considered this boundary feasible. The reason for not aggregating the probabili-

ties over the event length or similar was that in a continuous application, such as avalanche activity monitoring or labelling of

an unannotated dataset, the event length is unknown.

With this post-processing, we could evaluate the performance of the random forest classifiers based on single-sensor, sensor330

array-based and event-based detections.

5 Results

After model development completion, we evaluated the baseline, the temporal autoencoder (TAE) and the spectral autoencoder

(SAE) on the unseen test fold (top bar in Fig. 3). To assess the models’ stability, we trained and tested them using 20 different

random seeds, i.e. powers of two starting with 20. Therefore, we calculated the mean and standard deviation of all metrics,335

while for specific result analysis, e.g. Fig. 10, we used the random seed for which a the model showed the highest avalanche

f1-score (25 for the baseline, 216 for both autoencoders).
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Figure 7. Test set latent space visualisation of the most important features according to the impurity-based feature importance (value in

parenthesis) of the random forest models for the baseline (left), the TAE features (middle) and the SAE features (right). In the left plot,

DISTQ3Q1 is the mean distance between the 3rd and the 1st quartile of all FFTs as a function of time, ES[2] and ES[3] is the energy in the

frequency band [5, 7] Hz and [6, 9] Hz respectively (features 57, 35 and 36 in Table B3 and B2). The axis labels starting with the letter ’F’ in

the middle and right plot represent a specific autoencoder feature carrying no explicit physical meaning.

5.1 Single-sensor predictions

As a first step, we evaluated the detection performance of each model’s single-sensor predictions on the 10 s seismic sig-

nals. The true positive rates (or avalanche recall) were similar across the models (Fig. 8), i.e. between 67.3%(±1.4%) and340

69.8%(±1.8%), indicating that approximately 30% of all avalanche windows were missed. Nevertheless, the avalanche re-

call was highest for the TAE features classification. Regarding the true negative rates (or specificities), i.e. the probability

that an actual noise event will be predicted as noise, we noted that the TAE features classification showed the lowest rate of

83.0%(±1.0%) and, therefore also showed the lowest avalanche precision of 0.33(±0.01), compared to 0.52(±0.00) for the

baseline and 0.44(±0.01) for the SAE (Table 1). Thus, we expect this model to produce comparably more false alarms (false345

positives) at a rate of 17.0%(±1.0%). Overall, the macro-average f1-score reached values of 0.76(±0.00), 0.67(±0.01) and

0.73(±0.00) for the baseline, the TAE features and the SAE feature classification respectively (Table 1).

Additionally, since the feature extraction and its information content are core concepts of this study, we visualised part of the

latent spaces in Fig. 7. As earthquakes account for a significant proportion of the noise class (31%) and labels were available

anyway, we showed them separately. This visualisation provided some insights into the organisation of the latent spaces. For350

instance, all models spatially separated avalanche and earthquake samples.
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Figure 8. Confusion matrices of the binary classification results for the three feature sets on the held-out test fold data, including all five

sensors. The rows indicate the true (expert) labels, while the columns provide the predicted labels of the random forest classifiers. The colours

code the percentage values.

Table 1. Classification metrics on the (unseen) test fold data comprising 1335 avalanche and 11135 noise samples for the three feature sets.

Due to the strong class imbalance, the weighted averages of the metrics are not shown.

Model Class Precision Recall F1

Baseline

Avalanche 0.52 ± 0.00 0.67 ± 0.00 0.58 ± 0.00

Noise 0.96 ± 0.00 0.92 ± 0.00 0.94 ± 0.00

Macro Avg 0.74 ± 0.00 0.80 ± 0.00 0.76 ± 0.00

Accuracy 0.90 ± 0.00

TAE

Avalanche 0.33 ± 0.01 0.70 ± 0.02 0.45 ± 0.01

Noise 0.96 ± 0.00 0.83 ± 0.01 0.89 ± 0.01

Macro Avg 0.64 ± 0.01 0.77 ± 0.01 0.67 ± 0.01

Accuracy 0.82 ± 0.01

SAE

Avalanche 0.44 ± 0.01 0.67 ± 0.01 0.54 ± 0.01

Noise 0.96 ± 0.00 0.90 ± 0.00 0.93 ± 0.00

Macro Avg 0.70 ± 0.00 0.79 ± 0.01 0.73 ± 0.00

Accuracy 0.87 ± 0.00
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5.2 Sensor array-based predictions

In addition to the predictions on the individual 10 s windows, we aggregated the single-sensor predictions over the five sensors

in the seismic array by averaging the single-sensor output probabilities, resulting in improved model performance (Fig. 9).

The macro-average f1-scores increased by 2.6% (baseline), 4.5% (TAE) and 5.5% (SAE). This improvement particularly355

originated from lower false positive rates, while the rate of missed avalanche windows remained at about 30% in all models.

After aggregation, the baseline and the SAE feature classification yielded similar performance in the classification metrics

(see Table 2). The TAE feature classification, however, still showed approximately double the number of false alarms, i.e. 308

(14.0% ± 0.8%), compared to the other models despite this improvement. The sensor array-based aggregation further enabled

us to investigate how predictions evolve over an entire seismic signal (Fig. 10). For the avalanche shown in Fig. 1 and Fig. 2360

(left), the models were uncertain in the starting phase, when the avalanche amplitudes slowly emerged from the background

noise signal. However, as the signal became more energetic, the avalanche probability increased for all models. Overall, this

post-processing strategy reduced the number of false alarms and slightly improved the avalanche recall.

Figure 9. Results on the held-out test fold data after applying a probabilistic aggregation of the single-sensor 10 s predictions over the five

sensors of the sensor array. The rows indicate the true (expert) labels, while the columns provide the predicted labels of the random forest

classifiers. The colours code the percentage values.
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Table 2. Classification metrics on the (unseen) test fold data comprising 267 avalanche and 2202 noise samples after probabilistic aggregation

over the five sensors. Due to the strong class imbalance and bias towards the noise class, the weighted averages of the metrics are not shown.

Model Class Precision Recall F1

Baseline

Avalanche 0.56 ± 0.01 0.67 ± 0.00 0.61 ± 0.00

Noise 0.96 ± 0.00 0.93 ± 0.00 0.95 ± 0.00

Macro Avg 0.76 ± 0.00 0.80 ± 0.00 0.78 ± 0.00

Accuracy 0.91 ± 0.00

TAE

Avalanche 0.38 ± 0.01 0.71 ± 0.02 0.49 ± 0.01

Noise 0.96 ± 0.00 0.86 ± 0.01 0.91 ± 0.00

Macro Avg 0.67 ± 0.01 0.78 ± 0.01 0.70 ± 0.01

Accuracy 0.84 ± 0.01

SAE

Avalanche 0.52 ± 0.01 0.70 ± 0.01 0.60 ± 0.01

Noise 0.96 ± 0.00 0.92 ± 0.00 0.94 ± 0.00

Macro Avg 0.74 ± 0.01 0.81 ± 0.01 0.77 ± 0.01

Accuracy 0.90 ± 0.00
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Figure 10. Waveform and spectrogram generated by the avalanche in Fig. 1 and the array-based output probabilities for each model over the

entire avalanche signal (bottom). The signals have been filtered from 1 to 10 Hz corresponding to the input frequency band of the models. In

pink, the same 10 s seismic window as in Fig. 2 (left) and Fig. 4 is shown and the according probabilities are highlighted (lower plot). The

probabilities are computed as the average of the single-sensor probabilities predicted every 5 seconds (10 s windows with 50% of overlap).

The manually defined event onset and end are highlighted in dashed grey lines (upper plot), and the classification threshold 0.5 is in orange

(lower plot).

5.3 Event-based predictions

Besides the single-sensor and array-based predictions (Sect. 5.1 and 5.2), we investigated the predictions on an event basis to365

close the gap to avalanche activity assessment and provide a broader outlook. For this, we assigned an event to the avalanche

class if two consecutive 10 s windows (50% overlap) of the sensor array-based predictions were detected as avalanche signals.

This post-processing led to the results in Figure E2 and Table E6 in the Appendix E2. Although the overall performance

of the three models decreased by about 5% (see Table E6), the true positive rates (avalanche recall) increased significantly

to 81.4%(±1.1%) (baseline), 84.8%(±2.6%) (TAE) and 89.3%(±4.3%) (SAE). Hence, by applying this step, the spectral370

autoencoder could successfully detect 89.3%(±4.3%) of all avalanches in the test fold.

6 Discussion

So far, we compared the performance of the baseline, an expert-engineered seismic attribute classification, and the autoencoder

feature classifications based on a dataset containing 10 s seismic signals in a single-sensor, sensor array-based and event-based
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setting. In the single-sensor setting, the models missed approximately 30% of all avalanche windows and produced false alerts375

at rates between 7.6%(±0.1%) and 17.0%(±1.0%). With the sensor array-based aggregation, we observed a reduction in false

alarms and a slight improvement in avalanche recall. In the event-based setting, we compromised an improvement in avalanche

recall with an increase in false alarms. Moreover, we noticed that the automatically learned features, specifically the ones

from the spectral autoencoder, performed comparably to the baseline. Hence, the results showed that spectral input information

seemed favourable. In the following, we contextualise the results by investigating the detection errors and their possible origins.380

Therefore, we summarise the model development (Sect. 6.1) and focus on the false predictions of the models to find potential

limitations (Sect. 6.2 and 6.3). Finally, we argue about the applicability of these models (Sect. 6.4) and compare the results to

previous work (Sect. 6.5).

6.1 Model performance and limitations

Figure 11. Sensor array-based output probabilities of the random forest models for their respective input features plotted against expert

avalanche scores. The blue dashed line indicates the threshold applied to the expert scores to assign avalanche class labels.

The quality and size of the dataset strongly influence deep learning models. The relatively small size constrained us to design385

autoencoder architectures with few trainable parameters. In addition, we used each sensor independently to compensate for

dataset size, as each sensor can be considered a different view of the same event. However, this came at the cost of introducing

correlation among dataset samples as the sensors were installed nearby (Fig. 1) and thus recorded very similar signals, yet not

necessarily adding much new and enriching information to the dataset. Given that the dataset will increase in the upcoming

winters, we will consider incorporating the five sensors as distinct channels in a convolutional and/or recurrent model in future390

studies. With this, the sensor array-based aggregation and fusion would be implicitly implemented into the model.

Another aspect to consider was our approach to normalise each 10 s seismic window independently. Normalising input

data has proven crucial when training neural networks (Sola and Sevilla, 1997). The temporal autoencoder, in particular,

therefore lost information on absolute and relative amplitudes. Yet, both autoencoders could still capture signal characteristics
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and remarkably showed similar patterns when looking at continuous predictions and comparing with the baseline (see Fig.395

10). Alternatively, a normalisation over the entire signal before applying the windowing algorithm could be envisioned to

preserve information on relative amplitudes. However, this normalisation is not applicable during an online inference, as it

would require looking ahead at the amplitudes of the incoming waveforms. Therefore, it is not practical for (near) real-time

signal classification. Alternatively, normalising by a characteristic value of the training dataset is unfavourable considering the

heterogeneity of the data and a future implementation at another study site with potentially completely different characteristics.400

Also, note that normalising by class characteristics of the training data would violate the unsupervised learning regime.

Further, the separation of the feature extraction and classification process was driven by the dataset at hand and the success

of representation learning in various applications (Bengio et al., 2013; Längkvist et al., 2014). Considering the data, the un-

supervised feature extraction was not constrained by class labels (only the model selection and hyper-parameter tuning of the

classifiers were), an advantage when dealing with non-ground-truth labels (two-thirds of the avalanches were neither verified405

by the radar nor the cameras). The applied expert labelling to the non-verified events was subject to an unknown degree of

subjectivity and belief. We found the average agreement rate of the avalanche expert probabilities to be 58%, meaning two

experts agreed on 58% of the avalanches. In addition, having decided upon a hard threshold to convert expert scores to class

labels further blurred the boundaries between the avalanche and noise class, potentially including minor avalanches in the

noise class (false negatives). Apart from the event label uncertainty, we considered the subjectivity of manually defining event410

onset and end and the uncertainty of adopting the event labels to the 10 s snippets after applying the windowing algorithm.

Due to the attenuation of avalanche signals with the distance to the sensors and the low initial energy of avalanches, some 10 s

windows containing primarily background noise within an avalanche event were inevitably mislabelled (false positives). This

particularly applies to a signal’s starting and ending sections (see the upper plot in Fig. 10).

In summary, all of the above led to the conclusion to explicitly separate the feature extraction from the classification and415

implement an unsupervised learning approach, which is more robust to uncertainty and noise in the labels and could leverage

more unlabelled data. In contrast, a fully supervised neural network might suffer from the relatively low number of labels and

bias, tending to overfit these expert labels rather than learn avalanche characteristic patterns in seismic signals. Moreover, the

developed autoencoder approaches offered better comparability with the baseline model, i.e. feature engineering.

This separation then allowed us to analyse a lower-dimensional embedding of the dataset by inspecting the feature space420

distributions (Fig. 7). As labels for earthquakes were available, we visualised them separately. Moreover, earthquake and

avalanche signals can be similar in the time domain (Heck et al., 2018b), thus we wanted to investigate them in the feature

domain. Overall, the three event types, i.e. avalanches, earthquakes and rest, varied in the encoding locations, yet also showed

considerable overlap. Interestingly though, the avalanche and earthquake signals were well separated (blue and orange in Fig.

7). The rest (grey) resembled a connecting cloud between avalanche and earthquake signals. The reason for this might be two-425

fold; first, the heterogeneity of these noise events by potentially comprising minor avalanches and low magnitude earthquakes

(false negatives), and second, the strong attenuation in some sections of avalanche signals resulting in low amplitude avalanche

windows. The former noise class heterogeneity originated from comprising different sources in comparable amplitude ranges,

21



e.g., earthquakes, aeroplanes or strong wind. However, these various sources are definitive to be expected and need to be

considered in a real-time detection system.430

Despite actually having earthquake labels, we opted for a binary classification. In an early stage, we trained models with

three classes (earthquake separately), without seeing an increase in overall model performance. This came as no surprise when

looking at the clear separation of the earthquake from the avalanche samples in latent space. Moreover, training a model to

also classify earthquakes was out of scope as these can be detected with other methods. Thus, we did not consider earthquakes

a separate class in the classification. However, considering the avalanche class, investigations could also be conducted by435

differentiating between type and size in future implementations. Since the primary goal of this study was to develop and

compare models to detect avalanches regardless of their type or size, we trained the models considering all the recorded

avalanches. Therefore, we ensured that various avalanche types were included in the train and test set by separating them based

on appropriate dates (Sect. 3.3). According to radar and image data, most avalanches detected at our study site ranged between

sizes 2 and 3, based on the European avalanche size classification (EAWS, 2021). Given that seismic patterns of avalanches440

are influenced by the avalanche type (Pérez-Guillén et al., 2016), an alternative approach could be to develop two independent

models to detect dry-snow and wet-snow avalanches separately. However, the current dataset was too small to further categorise

the avalanche events by size and type, and accurate ground-truth data was often also missing. Instead, we focused on the given

and analysed the misclassification of the current models.

Finally, to obtain an intuition and analyse how the supervised random forest classifiers related to the expert scores, we445

plotted the expert scores of potential avalanche signals against the model’s output probabilities (Fig. 11). Overall, the output

probabilities positively increased with the expert scores. As expected, we also noted the highest uncertainty at the selected

threshold (dotted blue line in Fig. 11). When comparing the feature sets, the classification with the baseline features yielded

more apparent steps over expert scores and more distinctive probabilities for the highest and lowest expert scores. A measure

to mitigate having to deal with such noisy labels in future works might be to include verified avalanches solely and discard the450

non-verified ones for training the models. However, the unsupervised autoencoders are entirely independent of any labels or

class information. Thus, by considering only verified avalanches, we would not reduce class ambiguity from the autoencoder’s

perspective, but the dataset size and with it, valuable information might be lost.

6.2 Missed avalanche windows

As avalanches were this work’s main objective, we first analysed the missed avalanche windows, i.e. the false negatives (FNs).455

Looking again at Fig. 11, we accredited the relatively high number of outliers (FNs) in the expert score of 3, i.e. verified

avalanches, to the nature of mass movement signals. Concretely, avalanche signals slowly emerge from the background noise

due to source-receiver distance and the low generation of energy in the initial and very end stages of avalanche motion, resulting

in the typical spindle-shape signal with a relatively low signal-to-noise ratio at the beginning and end of the signal (Suriñach

et al., 2001; van Herwijnen and Schweizer, 2011; Pérez-Guillén et al., 2016). We suspect the models had difficulties correctly460

classifying these parts of an avalanche signal producing FN predictions. Further, the manual definition of event onset and end

was rather generous in including the entire avalanche signal with parts characterised by very low amplitudes and potentially
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also some background noise was included. For instance, Fig. 12 shows a comparison of the time series of sensor array-based

predictions for each model with the misclassified onset of an avalanche event in the left plot, while in the right, the end portion

was characterised by a very low signal-to-noise ratio and hence misclassified. In Fig. 12 (left), the first few time windows465

from 10 s to approx. 35 s are arguably rather noisy, as suggested by the model probabilities. Tough
:::::::
Though as the signal

strength increases, model probabilities also increase. Concretely, if we considered the first five predictions or time windows,

this sample accounts for 5 (non) FNs in the results in Fig. 9 and 25 (5 sensors ∗ 5 windows) in Fig. 8 per model. The sensor

array-based prediction aggregation did not reduce these missed ‘avalanche’ windows (Fig. 9) since all the sensors predicted

low probabilities of being an avalanche. Thus, we were left with approximately 30% FNs in all three models.470

Figure 12. Waveform and spectrogram generated by avalanches triggered on 2 February 2022 at 18:14 (left) and 7 February 2022 at 04:07

(right). The signals have been filtered from 1 to 10 Hz corresponding to the input frequency band of the models. At the bottom, a comparison

of the sensor array-based probabilities of each model over the entire length of the avalanche signal is shown. The manually defined event

onset and end are highlighted in dashed grey lines (upper plot), and the classification threshold 0.5 is in orange (lower plot).

6.3 False alarms

The second type of error, i.e. false positives (FPs) or false alarms, showed greater variation in numbers across the three models.

With 7.6%(±0.1%) (Fig. 8), the baseline produced the least amount of false positives. Predicting with the TAE features resulted

in roughly twice as many false positives, with the SAE feature prediction in between. However, we observed a significant

improvement in these errors when aggregating over the sensor array (Fig. 9). This suggested that the five recordings of some475
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noise events showed substantial variations across the sensor array, which we filtered by this averaging. As the noise class is

highly dominant (11135 windows) and, for instance, 10% FPs result in approximately 1000 FP samples (compared to 1335

avalanche samples), the avalanche precision of all three models is relatively low with 0.52(±0.00) (baseline), 0.33(±0.01)

(TAE) and 0.44(±0.01) (SAE) (Table. 1). We therefore analysed the origins of FPs to find potential tendencies or failure cases

(Fig. 13). Most FPs, i.e. 77% (baseline), 66% (TAE) and 72% (SAE), were generated by windows either carrying a non-zero480

avalanche score or belonging to an earthquake. Interestingly, the highest portion of false positives fell to windows with an

avalanche score of 0.5, i.e. ’one’ expert thought it might be an avalanche. This could indicate that minor-size avalanches, or

larger avalanches that flowed at the detection limits of the system, were not well recognised by the experts yet by the models.

Considering the earthquakes, the test fold comprised a total of 3880 earthquake windows, of which only 132 (Seismic), 214

(TAE) and 146 (SAE) were misclassified as avalanches, i.e. 3.4%, 5.5% and 3.8%. This underscored the earlier observation485

of good separation between avalanches and earthquakes in the latent spaces. The remaining approx. 30% FPs in all models

originated from unknown sources.

First, our results thus showed that using an array of sensors helped to reduce the number of false avalanche detections by

averaging the single-sensor predictions. This can be viewed as model ensembling and is generally known to improve results

(Mohammed and Kora, 2023). Second, including frequency domain features tended to show fewer FPs. Third, an interesting490

and positive finding was that the models rarely confused earthquakes for avalanches (on average 4.2% of all earthquake win-

dows). Moreover, the models generated false alerts to a similar extent to previous studies in avalanche detection (Bessason

et al., 2007; Rubin et al., 2012; Hammer et al., 2017; Heck et al., 2018a). In pursuit of reducing the number of false alerts, one

might consider including other types of recordings, e.g. infrasound data (Mayer et al., 2020). In addition, considering longer

seismic windows in future implementations might help reduce the number of false alerts. However, this would require more495

avalanche data to start with and to train models.
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Figure 13. Analysis of origins for false positives as a percentage of the total amount of false positives per model.
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6.4 Applicability to early warning and monitoring systems

In a potential early-warning operation, a practical model must detect all key parts of the signal, particularly the onset, to identify

avalanche movement in its early stages and trigger an appropriate alert. The current classifiers, which often failed to capture

these avalanche onsets, may not yet be suitable for this purpose. To improve early-warning models, future studies should focus500

on examining avalanche onsets in more detail and developing specialised models that target these specific signal windows. For

avalanche activity monitoring, false negatives at the start or end of each event are not very problematic. As long as the most

energetic part of the signal is well detected, the overall avalanche activity can still be accurately recorded. However, when

assessing overall avalanche activity, missed detections can be problematic. Therefore, we further post-processed the sensor

array-based predictions (Fig. 9) to formulate event-based predictions (Sect. 5.3) and give a broader outlook. In theory, this505

should eliminate the FNs in the tails of the actual signal and provide us with event-based detectors. For instance, in Fig. 12,

the models then would detect avalanches with this post-processing. And indeed, in Fig. E2, we observed a drastic reduction in

missed avalanches for the three models, which achieved a high true positive rate of 81.4%(±1.1%) (baseline), 84.8%(±2.6%)

(TAE) and 89.3%(±4.3%) (SAE).

In conclusion, we observed that the models struggled to detect the starting and ending of an event (Fig. 12). We argued that510

this behaviour was reasonable and, in part, desirable as these parts of an event often resemble background noise. However,

in most cases, the entire (unique) event was detected (Fig. E2). Thus, the models could be implemented in an avalanche

activity assessment process or to annotate large datasets in the future by being aware of their limitations and the fact that

they tend to produce too many avalanche detections. Another compelling prerequisite for avalanche activity monitoring in

future studies is the transferability to other study sites. We would expect variations in the detection performance to arise from515

different configurations in the study site setup, sensor location and configuration, and the characteristics of the terrain and the

avalanches. Therefore, also implementing specialised data augmentation techniques to increase the variety and number of the

avalanche recordings, e.g. seismic data augmentation techniques (Zhu et al., 2020) or generative models (Wang et al., 2021),

might help to make the classifiers more robust to changing environments and setups.

6.5 Comparison to previous studies520

To conclude, we put our results in a broader context by comparing them with previous studies. Provost et al. (2017) used a

random forest model based on 71 engineered seismic attributes to classify landslides. They reported stunning true positive

rates of 94%, 93% and 94% for the rockfall, quake and earthquake class and a true negative rate of 92% for the noise class.

Therefore, we adopted their feature extraction approach as our baseline model, though our dataset differed significantly. They

used non-windowed signals from an evenly distributed dataset comprising 418 rockfalls, 239 quakes, 407 earthquakes, and 395525

noise events. Moreover, they included polarity and network attributes in the features, which for the classification turned out

to be most important. However, with 92% true negative rate, their model is comparably prone to producing FPs (false alerts)

as the models in this study were. For avalanche detection, several studies also presented the approach of feature engineering

and subsequent classification (Bessason et al., 2007; Rubin et al., 2012; Hammer et al., 2017; Heck et al., 2018a). Rubin et al.
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(2012) used 10 engineered features in the frequency domain and tested 12 classification models, of which the decision stump530

classifier showed the highest overall accuracy of 0.93. However, the model showed a poor precision of 0.13, producing many

more false alerts compared to our classifiers. Heck et al. (2018a) used the same avalanche catalogue of 283 avalanches, of

which 25 were confirmed and the rest were labelled by three experts. They implemented engineered temporal and spectral

features and used an HMM as a classifier. Similar to most previous studies, they also noted high values of FPs. Moreover, they

observed improvements when aggregating single-sensor to sensor array-based predictions as we did in this study. In conclusion,535

based on the results of this and previous studies, we expect that an avalanche predictor based on solely seismic data will always

produce false alarms, as it remains a difficult task to identify low-energy avalanche signals. Therefore, installing a secondary

seismic detection system near the avalanche path would be advantageous in mitigating false alarms. However, given the terrain

characteristics at our study site (Fig. 1), where avalanches can occur along multiple paths, a single additional detection system

may not be sufficient to detect all events. Alternatively, integrating a complementary detection system like an infrasound system540

could be beneficial but less cost-effective.

7 Conclusions

We proposed two autoencoder-based feature extractors and retrieved a set of standard engineered seismic attributes (Provost

et al., 2017) to train three random forest classifiers for avalanche detection. We compiled and annotated a dataset from seismic

avalanche data recorded during two winter seasons in Davos, Switzerland. While in earlier studies, seismic data classification545

mostly followed the approach of engineering well-defined signal attributes to train classifiers, the proposed autoencoder models

bridged the gap to a purely learned (automatic) pipeline.

Overall, the classifiers achieved macro-average f1-scores ranging from 0.70(±0.01) to 0.78(±0.00) with avalanche recall

values ranging from 0.67(±0.00) to 0.71(±0.02). Moreover, the results clearly suggested that including features from the

frequency domain improves model performance. Further, as we observed that the models often misclassified the onset and550

end of avalanche signals but not the most energetic signal parts, we proposed a straightforward post-processing step. By

imposing that at least two consecutive prediction windows, i.e. 15 s, must be positive for an entire event to be positive, we

drastically reduced the missed avalanches (false negatives). This criterion significantly improved the avalanche recall, ranging

from 0.81(±0.01) to 0.89(±0.04). Lastly, contrary to previous expectations, earthquakes were rarely mistaken for avalanches

at our study site.555

Revisiting the primary objective of advancing and automating avalanche detection through seismic monitoring systems, we

believe that both the baseline implementation and the novel autoencoder-based approaches for avalanche data analysis bear

strong potential for future implementations. We demonstrated that autoencoders can learn characteristic avalanche features

from merely 84 seismic avalanche signals and are performing equally on an avalanche detection task as expert-engineered

features, which have been studied and applied for over a decade, optimised and fine-tuned through various studies. Therefore,560

we argue that as seismic datasets grow, i.e. with more (diverse) avalanche signals available for learning, unsupervised represen-

tation learning methods could potentially surpass the conventional feature engineering approach in the future. In conclusion,
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the proposed methods represent a step towards enhancing the throughput of avalanche detection systems and the automatic and

continuous documentation of events. Acquiring avalanche detections from such systems across different locations spanning

wider areas has the potential to improve and validate avalanche warning services. This, however, necessitates future work on565

investigating the scalability and transferability of such methods to new environments.
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Appendix A: Dataset

Table A1. Detailed view on the applied splits of the dataset. For each fold, the table shows the number of respective events. The folds were

picked consecutive in time, with a minor exception in the test fold, which included the 2nd of February from fold 3. This balanced the number

of events in the folds more evenly.

Fold Date Avalanches Earthquakes Noise

1
13.01.2021

- 28.01.2021
17 39 196

2
29.01.2021

- 24.05.2021
16 39 100

3

10.01.2022

- 04.02.2022

(excl. 02.02.2022)

18 39 138

4

06.02.2022

- 17.05.2022

(incl. 02.02.2022)

33 66 211

Appendix B: Seismic attributes

The implemented engineered feature extraction followed the work of Provost et al. (2017) and Turner et al. (2021). In contrast,

by using bandpass-filtered signals (1-10 Hz), we modified the attributes correspondingly. Also, we discarded network and570

polarity-related attributes as we developed models for a single-sensor setting, and our study site only used one-component

sensors. In summary, we extracted 22 waveform attributes (Table B1), 17 spectral (Table B2) and 18 spectrogram attributes

(Table B3).
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Table B1. Waveform attributes extracted from the 10 s seismic signals.

Number Description

1− 2
Ratio of the mean and median

over the maximum of the normalised envelop signal

3 Ratio between ascending and descending time

4 Kurtosis of the raw signal

5 Kurtosis of the envelope

6 Skewness of the raw signal

7 Skewness of the envelope

8 Number of peaks in the autocorrelation function

9
Energy in the first third part

of the autocorrelation function

10
Energy in the remaining part

of the autocorrelation function

11 Ratio of 10 and 9

12− 16
Energy of the signal filtered in

[1,3], [3,6], [5,7], [6,9] and [8,10]Hz

17− 21
Kurtosis of the signal in

[1,3], [3,6], [5,7], [6,9] and [8,10]Hz

22
RMS between the decreasing part of the signal

and I(t) = Ymax − Ymax

tf−tmax
t
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Table B2. Spectral attributes extracted from the 10 s seismic signals.

Number Description

23− 24 Mean and Max of the FFT

25 Frequency at the maximum

26− 27 Central frequency of the 1st quartile and 2nd quartile

28− 29 Median and Variance of the normalised FFT

30 Number of peaks

31 Number of peaks in the autocorrelation function

32 Mean value for the peaks

33− 37 Energy in [1,3], [3,6], [5,7], [6,9] and [8,10]Hz

38 Spectral centroid

39 Gyration radius

40 Spectral centroid width
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Table B3. Spectrogram attributes extracted from the 10 s seismic signals.

Number Description

41
Kurtosis of the maximum of

all fast Fourier transforms (FFTs) over time

42 Kurtosis of the maximum of all FFTs as a function of time

43 Mean ratio between the maximum and the mean of all FFTs

44 Mean ratio between the maximum and the median of all FFTs

45− 47
Number of peaks in the curve showing the temporal evolution

of the FFTs maximum (45), mean (46) and median (47)

48 Ratio between 45 and 46

49 Ratio between 46 and 47

50
Number of peaks in the curve of the temporal evolution

of the FFTs central frequency

51
Number of peaks in the curve of the temporal evolution

of the FFTs maximum frequency

52 Ratio between 50 and 51

53
Mean distance between the curves of the temporal evolution

of the FFTs maximum frequency and mean frequency

54
Mean distance between the curves of the temporal evolution

of the FFTs maximum frequency and median frequency

55
Mean distance between the 1st quartile and the median

of all FFTs as a function of time

56
Mean distance between the 3rd quartile and

the median of all FFTs as a function of time

57
Mean distance between the 3rd quartile and

the 1st quartile of all FFTs as a function of time
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Appendix C: Metrics

We used the reconstruction, classification and clustering metrics defined here to evaluate the autoencoders and the classifiers.575

C1 Reconstruction metrics

Since autoencoders aim at reconstructing a given input signal y, they are trained using a reconstruction loss. In this study, we

implemented the mean squared error loss (MSE), which is defined for a batch of size B as follows.

MSE(y, ŷ) =
1

B

B−1∑
i=0

(yi − ŷi)
2 (C1)

ŷ is the autoencoder’s predicted output, i.e., the reconstruction.580

C2 Classification metrics

Various metrics exist to evaluate binary classification problems. All are tailored to specific objectives. For instance, the precision

is chosen when false alerts, i.e. false positives, are critical, the recall is sensitive to missed events, i.e. false negatives, and the

f1-score combines both to form the harmonic mean as follows:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(C2)585

The macro average summarises the per-class results within a single value. This value is an unweighted mean over the given

classes and ensures that the values are not biased towards the majority class.

Macro−F1 =
1

K
∗

K∑
k=0

F1k , whereK = 2 (C3)

C3 Clustering metrics

A natural metric choice when evaluating autoencoders is the reconstruction loss, e.g. the mean squared error, on which we590

trained the autoencoders in this work. In pursuit of good autoencoder features for later classification, however, we aimed to

optimise the latent space representation. Since a good reconstruction does not necessarily imply a sufficient separation in latent

space, we explored clustering metrics to compare the latent space distribution of different models with the given (expert) labels.

We, therefore, implemented the silhouette score (Rousseeuw, 1987) and the Calinski–Harabasz index (Caliński and Harabasz,

1974). These scores are usually used to evaluate clustering algorithms that predict classes, e.g. k-means. The silhouette score595

computes the mean intra-cluster and inter-cluster distances per sample. For instance, given a sample, it calculates the distance

to the cluster it is part of (a) and the distance to the nearest cluster it is not part of (b) and forms the sample score:

Si =
b− a

max(a,b)
(C4)
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After taking the mean over all samples, the silhouette score ranges from -1 (worst) to 1 (best). The Calinski–Harabasz index, or

variance ratio criterion, on the other hand, is the ratio of between- and within-cluster dispersion. The between-cluster dispersion600

is defined as the weighted sum of squared Euclidean distances of the cluster centroids and the overall centroid (higher better).

The within-cluster dispersion is given as the sum of the squared Euclidean distance of the samples and their respective cluster

centre (lower better). Thus, a good clustering algorithm is supposed to yield a high Calinski–Harabasz score.

Appendix D: Random forest optimisation

Table D1. Selected random forest models

Parameter Baseline TAE SAE

Number of Estimators 512 512 512

Maximum Depth 8 8 8

Maximum Number

of Features
log2 sqrt sqrt

Maximum Number

of Samples
0.1 0.2 0.2

Class Weight Balanced

Criterion Gini

Bootstrap True

33



Appendix E: Autoencoder optimisation605

Table E1. Selected autoencoders

Parameter TAE SAE

Number of Weights 514’337 81’330

Feature Dimension 32 16

Hidden Dimension [200, 20, 2] [139, 78, 16]

Filters [32, 64, 128] -

Number of Layers 3 3

Kernel Size 20 -

Stride 10 -

Expected Avalanche

Portion in Batch
0.6 0.5

Learning Rate 1e−4 1e−4

Batch Size 128 128

To select the autoencoder hyper-parameters, we opted first to optimise model intrinsic parameters, such as hidden dimensions

or the number of layers, instead of training strategy parameters. This separation reduced the computation time.

The temporal autoencoder architecture optimisation proved to be more sensitive and critical. First, we optimised the kernel

size, stride, number of filters, feature dimension and activation function. We observed that the kernel size and stride combina-

tions of (20, 10) and (8, 4) showed the best clustering metrics. Moreover, concerning the non-linear activation, the leaky ReLU610

outperformed the Tanh function in most tests. Since the overall performance was not satisfying, we tested the weighted random

sampler (Sect. 4.2.2 with 50% expected avalanches in each batch. This addition to the training strategy showed a considerable

improvement for most models with kernel size 20 and stride 10. Although using a kernel size of 8 and stride of 4 tended to show

better clustering metrics, the reconstruction of the signals was comparably poor. Based on these observations, we implemented

a kernel size of 20 and stride of 10. Also, we found the feature dimension 32 better suited than 64 or 16. Lastly, we selected615

32, 64, and 128 filters within each encoder layer. See Table E2 for a summary of the best 10 models of this process and Table

E1 for the selected autoencoders. Having defined the intrinsic parameters, we tested different training strategies. In particular,

we optimised the learning rate, the batch size and the expected portion of avalanches per batch. This test led to values of 1e−4,

128 and 0.6 for the temporal autoencoder (Table E3). Finally, we found that augmenting the data by randomly shifting input

samples by 0 to 1 s to the left or right improved robustness.620
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Table E2. Summary of the TAE hyper-parameter optimisation. Only the models for which all three metrics are ranked in the top 20 are

shown. The best metrics and the selected model are highlighted in bold.

Weights
Filters in

first Layer

Feature

Dimension

Kernel

Size
Stride

Expected

Avalanche

Portion

Augmentation
Silhouette

Score

Calinski–Harabasz

Index
MSE

109865 8 64 8 4 default False 0.191 849.959 0.078

109865 8 64 8 4 0.5 False 0.024 357.494 0.073

109865 8 64 8 4 0.5 True 0.018 345.684 0.076

156945 16 32 20 10 0.5 False 0.033 374.174 0.06

156945 16 32 20 10 0.5 True 0.011 567.276 0.055

514337 32 32 20 10 default True -0.072 368.876 0.054

514337 32 32 20 10 0.5 False 0.061 333.174 0.061

514337 32 32 20 10 0.5 True 0.041 613.917 0.054

625185 32 64 20 10 0.5 False -0.095 292.78 0.063

625185 32 64 20 10 0.5 True -0.105 307.477 0.064
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Table E3. Summary of the TAE learning rate and batch size optimisation. The best metrics and the selected model are highlighted in bold.

batch lr
Silhouette

Score

Calinski–Harabasz

Index
MSE

16 1e-05 -0.093 259.029 0.057

32 1e-05 -0.123 191.291 0.058

16 0.0001 0.019 435.901 0.053

32 0.0001 -0.006 460.183 0.055

64 0.0001 0.013 525.536 0.054

128 0.0001 0.051 696.984 0.054

16 0.001 0.039 352.668 0.051

32 0.001 0.011 373.105 0.053

64 0.001 0.034 381.183 0.052

128 0.001 0.007 347.923 0.052

While optimising the spectral autoencoder, we found faster convergence. We started by testing combinations of the number

of layers with hidden dimensions, feature dimensions and activation functions. Table E4 shows the results for the best eight

models. We foremost noted that 16 features were optimal for this task. Moreover, we observed that the Tanh activation function

was favourable in comparable architectures. Finally, we selected the model highlighted in bold since it showed a good compro-

mise between the number of weights in the network and performance. Following the same training strategy as for the temporal625

autoencoder, we optimised the learning rate, the batch size and the expected portion of avalanches per batch. In contrast to the

temporal autoencoder, we used an expected portion of 0.5 avalanches within a batch, a learning rate of 1e−4 and a batch size

of 128 (Table E5).
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Table E4. Summary of the SAE hyper-parameter optimisation. Only the models for which all three metrics are ranked in the top 10 are

shown. A “default” hidden dimension indicates that the dimensions in the layers of the encoder linearly decrease from the input dimension

(200) to the feature dimension. The best clustering metrics and the selected model are highlighted in bold.

Weights Layers
Feature

Dimension

Activation

Function

Hidden

Dimensions

Silhouette

Score

Calinski–Harabasz

Index
MSE

47552 2 16 Tanh default 0.227 1205.952 0.014

47552 2 16 leaky ReLU default 0.218 1088.234 0.012

70880 2 64 Tanh default 0.198 999.475 0.014

81330 3 16 Tanh default 0.224 1237.579 0.013

81330 3 16 leaky ReLU default 0.217 1015.357 0.012

112432 4 16 Tanh default 0.238 1111.027 0.013

112432 4 16 leaky ReLU default 0.223 1013.013 0.012

146120 5 16 leaky ReLU default 0.223 968.953 0.012

Table E5. Summary of the SAE learning rate and batch size optimisation. Only the top ten models are shown. The best clustering metrics

and the selected model are highlighted in bold.

batch lr
Silhouette

Score

Calinski–Harabasz

Index
MSE

16 1e-05 0.216 1295.275 0.015

32 1e-05 0.225 1337.226 0.015

128 1e-05 0.219 1339.248 0.015

16 0.0001 0.25 1062.001 0.009

32 0.0001 0.24 1131.993 0.009

64 0.0001 0.241 1283.843 0.013

128 0.0001 0.245 1391.865 0.014

16 0.001 0.268 872.865 0.009

32 0.001 0.272 831.938 0.009

64 0.001 0.261 852.354 0.009
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E1 Learning curves
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Figure E1. Learning curves of the TAE (left) and SAE (right). The blue line shows the mean squared error (MSE) loss on the training set,

while the orange line shows the loss progression on the held-out test set (Fold 4 in Fig. 3).

E2 Event-based prediction results630

Figure E2. Confusion matrices of the results for the three feature sets aggregated on event level. The rows indicate the true (expert) labels,

while the columns provide the predicted labels of the random forest classifiers. The colours code the percentage numbers.
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Table E6. Classification metrics on the (unseen) test fold data comprising 33 avalanche and 275 noise samples after the aggregation over

entire events of the sensor array-based predictions. Due to the strong class imbalance and bias towards the noise class, the weighted averages

of the metrics are not shown.

Model Class Precision Recall F1

Baseline

Avalanche 0.42 ± 0.01 0.81 ± 0.01 0.56 ± 0.01

Noise 0.97 ± 0.00 0.87 ± 0.01 0.92 ± 0.00

Macro Avg 0.70 ± 0.01 0.84 ± 0.01 0.74 ± 0.01

Accuracy 0.86 ± 0.01

TAE

Avalanche 0.27 ± 0.01 0.85 ± 0.03 0.41 ± 0.01

Noise 0.98 ± 0.00 0.72 ± 0.01 0.83 ± 0.01

Macro Avg 0.63 ± 0.01 0.79 ± 0.02 0.62 ± 0.01

Accuracy 0.74 ± 0.01

SAE

Avalanche 0.39 ± 0.01 0.89 ± 0.04 0.54 ± 0.02

Noise 0.98 ± 0.01 0.83 ± 0.01 0.90 ± 0.01

Macro Avg 0.68 ± 0.01 0.86 ± 0.02 0.72 ± 0.01

Accuracy 0.84 ± 0.01

Code and data availability. The code to reproduce the results and test the models is available on Zenodo (DOI: 10.5281/zenodo.15001358).

It is predominately written in Python using the PyTorch library (Paszke et al., 2019) for the autoencoder design, the random forest implemen-

tation of the Scikit-learn library (Pedregosa et al., 2011), the Pandas library (Wes McKinney, 2010) for handling the data and more standard

Python libraries such as NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020). Additionally, the event catalogue with the raw seismic

waveforms is found on Zenodo (DOI: 10.5281/zenodo.14892926).635
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