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Abstract. Monitoring snow avalanche activity is essential for operational avalanche forecasting and the successful implementa-
tion of mitigation measures to ensure safety in mountain regions. To facilitate and automate the monitoring process, avalanche
detection systems equipped with seismic sensors can provide a cost-effective solution. Still, automatically differentiating
distinguishing avalanche signals from other sources in seismic data remains challenging:-. This is mainly due to the complexity
of seismic signals generated by avalanches, the complex signal transmission through the ground, the relatively rare occurrence

of avalanches, and the presence of multiple sources in the-centinaous-seismic data. One-Therefore, we compiled a dataset of

seismograms recorded with an array of five seismometers installed in an avalanche study site above Davos, Switzerland. For
the winter seasons of 2020-2021 and 2021-2022, this dataset comprised 84 avalanches and 828 noise (unrelated to avalanches)
events. An approach to automate avalanche-deteetion—the detection of avalanches in seismic data is by applying machine
learning methods. So far, research in this area has mainly focused on extracting standard-domain-specific signal attributes i

ins-as input features for statistical models. In this-studycontrast, we propose a novel applica-

tion of deep-learning-autoencode 6 om Ad-tnstpervised on-of-featares—fro i ord

Thesenew-features-are-thenfed-into-classifiersfor diseriminating representation learning from seismograms using autoencoder
models to automatically extract features from 10-second seismic signals of snow avalanches. Fo-this—end,—wetrained-three

that, we applied random forest classifiers to evaluate whether these features facilitate the detection of avalanches. Concretel
we trained one random forest classifier each on a set of expert-engineered seismic attributes (baseline), temporal autoencoder
features and spectral autoencoder features. The classifiers achieved an avalanche fi-seere-of-0-61(seismie—attributes); 049
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recall of 0.67 (£0.00) (baseline), 0.71 (£0.02) (temporal autoencoder) and 0:66-0.70 (£0.01) (spectral autoencoder) and
m-macro average fl1-scores of 0.78

0:94-0.77 (£0.01) (spectral autoencoder). The developed approach could be potentially used as an operational, near-real-time

near real-time avalanche detection system. Yet, the relatively high number of false alarms still needs further implementation of

the current automated seismic classification algorithms te-be-used-as-unique-methods-to-detect-avatanches-effectively—

for effective avalanche detection.

1 Introduction

Every winter, snow-covered mountainous regions worldwide are exposed to the destructive potential of snow avalanches, caus-
ing fatalities and damage to infrastructure. On average in Switzerland, 25 avalanche fatalities occur every winter (Techel et al.,
2016). The catastrophic winter of 1999 resulted in infrastructural damage costing several hundred million Swiss francs (Briindl
et al., 2004). Such periods underscored the need for ongoing investments in avalanche prevention measures and providing ac-
curate avalanche forecasts. Avalanche forecasting is mainly driven by analysing weather measurements and forecasts in combi-
nation with snowpack and avalanche observations (Schweizer et al., 2020). Detailed information on the location and timing of

avalanche occurrences is indispensable for validating avalanche forecasts

van Herwijnen et al., 2016; Biihler et al., 2022), effectively implementing mitigation measures (e-g-MeClung-and-Schaerer; 2006;-vanHe

McClung and Schaerer, 2006; van Herwijnen et al., 2018), hazard mapping (e-g-Bithler-et-al52022)(Biihler et al., 2022) and

the development of statistical approaches to predict natural avalanche release (Sielenou et al., 2021; Hendrick et al., 2023;

Mayer et al., 2023). However, avalanche activity data are still mainly obtained through human field observations;—whieh

are-especialty-incomplete-and-uneertain—in—. Consequently, the poor visibility conditions during sterms-snow storms, when
uncertain avalanche observations. Hence, the-there is a growing demand for automated avalanche detection systems that pro-
vide reliable and continuous avalanche-activity-data-israpidly-growingdata on avalanche activity.

Since avalanches are extended moving sources of seismic energy, seismic monitoring systems can be used to detect natural
avalanches in large areas within a radius of several kilometres (Hammer et al., 2017; Pérez-Guillén et al., 2019; Heck et al.,
2019), regardless of the weather and visibility conditions. Seismic avalanche detection systems have been employed for several
decades to monitor and characterise avalanches (Surifiach et al., 2001; Biescas et al., 2003; van Herwijnen and Schweizer,
2011), assess the source location (Lacroix et al., 2012; Pérez-Guillén et al., 2019; Heck et al., 2018b) and infer flow properties
(Vilajosana et al., 2007; Lacroix et al., 2012; Pérez-Guillén et al., 2016). Avalanches generate spindle-shaped, high-frequency
signals similar to other types of mass movements (Surifiach et al., 2005), such as landslides, debris flows, and lahars. These

patterns have frequently been used to

identify avalanche signals. Although seismic detection systems would provide a cost-effective and large-scale alternative to

s;detect and
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other systems, such as radars, they have not yet reached the same level of reliability compared-te-othersystems;such-asradars;
when-it-comes-to-regarding the automatic detection of avalanches (Schimmel et al., 2017). This limitation is partly due to the

complex signal transmission from the source (i.e., the avalanche) to the receiver and multiple sources of environmental noise

(e.g., earthquakes, aeroplanes, etc.).

The—As a solution, conventional machine learning methods have been studied and developed over the past decade to
automatically classify seismic signals generated by different types of mass movements based on Hidden Markov Models

Hammer et al., 2013; Dammeier et al., 2016), fuzzy logic (Hibert et al., 2014) and random forest algorithms (Provost et al., 2017)

. For avalanches, the first attempt to automatically distinguish avalanehes-them from other sources based on seismic features
observed-extracted in the time-frequency domain and combined with fuzzy logic was conducted by Leprettre et al. (1996).
Afterwards, Bessason et al. (2007) developed a nearest-neighbour approach that successfully detected 65% of previously con-
firmed avalanche events. Later, Rubin et al. (2012) divided a seismic data stream into 5 s time windows and extracted 10 spectral
features by applying a FastFourier Fransform-(FFF)—Several-fast Fourier transform. They tested several machine-learning clas-
sifiers were-tested-using these input features, such as random forest algorithms, support vector machines, and artificial neural
networks. The-Among them, their decision stump classifier reached the highest precision of +3-2%-0.13, indicating many false
alarms, on manually identified avalanches;-while-, At the same time, they reported a recall of 89-5%-0.90 and an accuracy of
93-0%0.93. More recently, Hammer et al. (2017) and Heck et al. (2018a) applied hidden Markov models (HMMs) to learn class
characteristic patterns based on extracted spectral features for automatic avalanche classification. Extending on this approach,

Heck et al. (2018b) trained an HMM-based method to detect avalanches in continuous seismic data. So far, these approaches
relied on a careful and time-consuming selection of features derived from processing signals in the time and frequency domain.

In recent years, the emergence of deep learning algorithms and the extensive growth of collected data and-the-emergenee
of-machinetearning—algorithms—have opened up new perspectives for efficient and automated data processing. Machine
tearning-modelsean-handie-complex-datasets-A fascinating subfield of deep learning is representation learning, providing
an alternative to the more traditional process of hand-crafting data representations based on specific domain knowledge
(Bengio et al,, 2013; Langkvist et al., 2014). These models can process complex datasets and infer representations in a rea-
sonable time W&Mg@g@and rapidly synthesise data processes,

providing valuable and complementary insightsis
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Howeyver, these novel deep learning approaches
have not yet been explored for seismic avalanche signals, although they have been applied successfully in related domains

Seydoux et al., 2020; Mousavi and Beroza, 2022). For instance, Mousavi et al. (2019) trained feature extractors to cluster seis-
mic signals of an earthquake catalogue and showed comparable precision to supervised methods. Keng-et-al+2021H-evaluated

different-atntoencoder-architeetures-In contrast, Kong et al. (2021) evaluated similar methods for seismic event discrimination

and phase picking. These studies have proven that unsupervised feature extractors can keep up with state-of-the-art models,
mitigating the time-consuming and expensive data labelling.

In this study, wee
m@WMWWW
the autoencoder model introduced by Rumelhart et al. (1986) for the first time to seismic avalanche signals to automatically
extract discriminative features. Moreover, we benchmarked these novel features against our baseline, a set of expert-engineered
seismic attributes, by evaluating them on an avalanche classification task using random forest models. With this approach, we
aim to advance and automate avalanche detection using seismic monitoring systems. For this, we first compiled a catalogue
of seismic-events recorded-atour 84 avalanches and 828 unrelated noise events recorded with an array of five seismic sensors
at a study site above Davos (Sect. 2), Switzerland, throughout the winter seasons of 2020-2021 and 2021-2022. In Sect. 3,
we described the foundation of this-the training dataset, which is ene-of-the-mesteritical-parts-of-any-machinelearning-model

development-Similar-to-previous-studies;we-built upon manually picking event onset and end, using each sensor separately and
applying a windowing algorithm of 10s with 50% overlap. We then extracted features from these 10 s seismic time windows

and trained classifiers based on these features. In the feature extraction process, we implemented a baseline method (Sect. 22;
weﬂmp}ememedWe)—ne\M 1), which is a set of engineered seismic attributes. Moreover, we developed two methods based

on autoencoders

different(Sect. 4.2), which learned to automatically extract features from the signal’s time and frequency domain respectively.
Using these three sets of input features, we trained-three-random-forest-elassifiers-optimised and trained one random forest

classifier per set, to automatically distinguish the avalanche signals from other seismic events (Sect. 4.3). We-analyzed-and

Further, we defined two post-processing techniques on the single-sensor predictions to reach sensor array-based predictions
W&memwmpmd the per-
formance of the models in a_single-sensor,
array-based and event-based setting Finally, in Sect. 6 and 7 we discuss the main results and the potential of applying these
methods to avalanche activity monitoring, automatic dataset labelling and early warning in the future and present conclusions.
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Figure 1. RightLeft: Map and location of the Dischma study site. The instrumentation consisted of a seismo-acoustic sensor array (blue
dots), three cameras and a Doppler radarfred-triangle). The approximate area where avalanches ear—could be detected is shown for the
seismo-acoustic sensor array (blue ellipse) and the radar (red cone). Moreover, an-the red-shaded area highlights the same avalanche path
is-highlighted-with-as in the red-shaded-areaphoto on the right. EeftRight: Photo taken by an automatic camera at the Pisehma-study site,
showing the georeferenced path of a dry-snow avalanche released on 2 February 2022 at 02:31.

2 Study Sitesite and instrumentation

The stady-site-avalanche study site ’Dischma’ is located at the end of the Dischma Valley, a tributary valley above Davos,
Switzerland (Fig. 1). Theseismie-A_continuously operating detection system integrating multiple sensor_types monitors
avalanches flowing down the surrounding slopes. The system was deployed on a flat meadow at about 2000 m a.s.l. (East-
ern Swiss Alps; 46.72°N, 9.92°E). The surrounding mountains form a basin of steep slopes reaching up to 3000 m a.s.l. Since
the winter season of 2020-2021, appreximately—usually from November to May, we installed a seismo-acoustic sensor ar-
ray of five co-located seismic and infrasound sensors arranged in a star-like pattern. This spatial configuration allows for the
localisation of avalanches (Heck et al., 2018b). The seismic sensors were buried into the ground at a depth of approximately
50 cm and subsequently covered by snow during winter. A single measuring unit consists of a one-component seismometer
Lennartz LE-1D/V (eigenfrequency of 1 Hz and sensitivity of 800 Vm~!s) and an infrasound sensor Item-prs (frequency re-
sponse of 0.2-100 Hz and sensitivity of 400 mV Pa™"). The central-seismie-sensor-consisted-of-only exception was the central
measuring unit applying a three-component seismometer LE-3Dlite (eigenfrequency of 1 Hz and sensitivity of 800 Vm™1s), of
which we, however, only used the vertical component in this study. The sensors were connected to the same digitizer (Centaur

digitizer from Nanometrics), recording continuously with a sampling frequency of 200 Hz. The seismo-acoustic sensor array

monitors avalanches released from-all-slepes-within a radius of approximately 3 km (blue ellipse in Fig. 1).
Additionally, the site is-was equipped with a Doppler radar and three automatic cameras to obtain independent validation

data provided that weather conditions allowed it, including accurate release times and information on the type and size of the
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avalanches. The radar emits electromagnetic waves that are reflected by the avalanche flow, providing the location and velocity
of the moving avalanche (Meier et al., 2016). Figure 1 shows the location of the radar, which monitors several avalanche
paths exposed to the west-southwest, covering an approximate area of 4km? (red delineated areainFig—H—In-this-ease;
avatanches-ean-). With this radar, avalanches could be detected up to a maximum distance of approximately 2 km. The cameras
automatically photograph-every photographed all surrounding slopes every 30 minutes attthe surrounding stopes-minutes (Fig.
D).

In summary, the combination of detection systems installed at the study site allowed us to assess the limitations and
advantages of each system individually, as well as their combined effectiveness for avalanche detection and characterisation. In
this study, we focused exclusively on automatically detecting avalanches using seismic data. In contrast, we used the Doppler
radar, cameras and acoustic systems to validate the detected avalanche events qualitatively.

3 Data

We-compiled-a-catalogue-of seismie-eventsfrom-From the continuous recordings of the seismic detection system (Sect. 2), we
compiled an event catalogue for the winter seasons 2020-2021 and 2021-2022. €eneretely,-we-mantatly-picked-Foremost, we
WMM@W@WM within periods
(Sect 3.1), ensuring to include avalanches that were not
detectable by these other systems. Next, three experts labelled the events -with-which-we-compiled-a-two-class-elassification
dataset—to compile a binary classification dataset (Sect. 3.2). Lastly, we prepared the signals of the event catalogue for model

of known avalanche activity <

3.1 Event picking and signal processing

requirement To define avalanche events, we selected signals based on the release times provided by the radar and automatic
cameras. In addition, we picked events-potential avalanche events and other sources from the continuous recerdingsseismic

recordings that had been missed by the radar and cameras. Typically, the amplitude of seismic signals generated by avalanches
gradually inereases-emerges (see Fig. 2) since the avalanche approaches the location of the seismic sensors at our study site

(Fig. 1) and }&fge%setsnﬂwtefgydﬁﬁpaﬂeﬁmmdue to snow entertainment and erosion processes within
the flowing avalanche (Pérez-Guillén et al., 2016).

have-alow-signal-to-noise-ratio(Fig—2a)Therefore, automated picking methods often miss the starting phase of avalanches and
sometimes entire events. To prevent this, we visually inspected the continuous seismic recordings and identified signals that

exhibited a high signal-to-noise ratio, i.e. were not in the order of magnitude of the background noise. We-For efficiency, we
limited our search to periods with known avalanche activityfor-effieieney-This-ineluded-, such as avalanche cycles during snow
storms, days when avalanches were-had already been detected by the radar and periods with observed avalanche deposits in

the cameras.
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Before-For ease of picking the signals in those periods, we transformed the raw seismic signals from-the-five-sensors-to
ground velocity (meters per second). Additionally, the signals were linearly detrended, tapered with a Hanning window and
filtered with a 4th-order Butterworth band-pass filter between 1 and 10 Hz. We found this to be the most energetic frequency

band of the avalanche signals recorded at our study site (Fig. 2), considering the typical relative distance between the avalanche

and our receivers. Finally,we-manually-euttheidentifiedsignalste-To finally compile a clean event catalogue-To-manually-piek
the-start-, we manually defined the onset and end times ;-we-visaaly-inspeeted-of the identified signals by visually inspectin

the seismic signal, the envelope signal and the spectrogram. In summarytotal, we picked 912 non-background-neisesignals
events lasting between 5 and 515 s, which we tabeled-labelled in the next step.

3.2 Labelling-of-eventsEvent labellin;

For-the-annotation-andabelling-of- Having picked potential events, three experts assigned signals into two classes, avalanches
avalanche and non-avalanche events:

Avalanches: Avalanche events were first identified using the radar and camera data (Fig. 1) —We-did-this-by matching seismic
signals to the-avalanches-observed-in-theradar-data—avalanches detected by the radar or on images. A second step to
collect avalanches missed by these systems was to visually classify signals based on the characteristic seismic signature
of avalanches (e.g. non-impulsive onsets, spindle-shaped signals and triangular-shaped spectrograms; left column in
Fig. 2a) as proposed by van Herwijnen and Schweizer (2011). Additionally, the output of wave parameters derived from
sensor array processing of the seismic and infrasound data was considered, i.e. backazimuth angles and apparent velocity

(Marchetti et al., 2015; Heck et al., 2018b).

Noise (non-avalanche events): Earthquakes were the most frequent source of environmental noise at our study site. They
were identified by visual inspection of the signals (typical emergent onsets and usually identifiable arrival of the dif-
ferent phases; middle column in Fig. 2b) and comparison of our seismo-acoustic recordings with two nearby seismic
stations from the Swiss National-Network(e.g—Chinton-et-al-264Hnational network (Clinton et al., 2011). In addition,
online earthquake catalogues were consulted to match our recordings with catalogued events (SED, 2023; EMS, 2023).
The remaining portion of seismic events was generated by different sources, including aeroplanes (right column in Fig.
2e¢), helicopters, explosions in nearby skiing resorts, weather events (e.g. wind), people or animals walking close to the
sensors, and many more unknown event sources. We summarized-summarised this collection of unrelated events as a
“noise” class. In particular, weak signals generated by non-verified small avalanches might also fall into this heteroge-
neous noise-elass—Notablyclass. Moreover, this definition of the noise class barely included low SNR-signal-to-noise
ratio (SNR) background noise.

To-label-avalanche-events;:-The three experts independently assigned subjective probabilities using either 0 (unidentified
avatanchenon-avalanche), 0.5 (potential avalanche) or 1 (certain avalanche). A—signal-was—tabelted-positiveit—the sum—of
the-three-expert-scores-exceeded—1-5-Note that the average rate of agreement in avalancheseore-expert probabilities on the
avalanche signals between the three experts was 58%. This hints at the inevitable expert bias, the inherent subjectivity and the
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Figure 2. Reeordings-Waveform and spectrogram of the avalanche in Fig. 1 (left), an earthquake (middle) and an airptaneaeroplane (right).
The dashed orange vertical lines indicate the mantal-cuts-of-the-manually defined event eatalogueonsets and ends. The pink vertical lines

in the avalanche waveform indicate a 10 s seismic snippet extracted by the windowing algorithm. This specific signal window is highlighted
later also in Fig. 4 and 10.

complexity of the task. Finally, a signal was labelled positive if the sum of the three expert probabilities was at least 2. In this

210 manner, we compiled an event catalogue with 84 avalanches (31 verified with the radar or camera images) and 828 unrelated
noise events from the 2020-2021 and 2021-2022 winter seasons. For completeness but not subject to the binary classification
presented in this study, the same labelling process was used for earthquakes, with which we found 183 earthquakes in the noise
class. The seismic sensors recorded maximum absolute amplitudes ranging from 3.3 x 108 t0 4.7x10~° ms~! for avalanches,

1.3x1078 40 9.7 x 10~ ms~! for earthquakes and 1.4 x 1072 to 5.1 x 105 ms ™" for noise signals. Signal duration-durations
215 ranged from 13 to 1135, 7 to 263 s and 5 to 515 in each class, respectively. Noteworthy;-the-amplitude-range-of-the-noise
Notably, the noise class’s amplitude range includes the

avalanche class’s amplitude range, highlighting its heterogeneity.

3.3 Signal windowing, normalisation and dataset splitting

Before training the modelsAiming to enlarge the number of samples and develop a model pipeline for real-time detection, we
220 further processed the event-data-in-the-catalogue—First-we-treated-the-records-of-signals of the event catalogue. Therefore,
we used each seismic sensorindependently-yielding-a-five-fold-enlargement’s records independently, yielding five times more
samples for model training. Second, we applied a 10s windowing-moving window with 50% overlap to all signals. This
windowing resutted-inr-moving window algorithm resulted in again more data samples to train -as-the-modelsonlyrecetved-a-and
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have found the minimum duration of avalanches to be roughly ten seconds. Beyond, this strategy is also beneficial in a poten-
tial (near) real-time detection system, where 10s windows are continuously parsed. Lastly, a crucial part when developin

neural networks is input data normalisation (Sola and Sevilla, 1997). By applying the windowing algorithm, we obtained

subsequences of time series. Since waveform characteristics of an upcoming event are not known in advance during inference
we normalised each window separately by its maximum absolute amplitude instead of using the maximum absolute amplitude

of the entire event to avoid look-ahead normalisation (Rakthanmanon et al., 2012; Lima and Souza, 2023). With this, the la-
belled data-set-dataset comprised 3’580 avalanche and 377110 noise (non-avalanche) windows, which inetude-included 11°575

earthquake windows.

Lastly.-to-learn-the-model-Finally, we defined four independent data folds to_develop the models and select the best
architeetures—and-optimal architectures and their hyper-parameters ;—we-defined-four-independent-datatoldsie—threetrain
foldsforeross-vatidation-and-a-test fold-for-assessing the-error(see Fig. 3). Three folds, comprising 70% of the data samples,

. 3), containing 30% of the

were used for model training and optimisation via 3-fold cross-validation. The test set (top bar in Fi

data, was set aside to assess the model performance on an independent inference set. We separated the folds by specific dates to

notinduce-any-correlationbetween-the folds-and-redueeprevent any correlation and temporal data leakage between the folds.
We chose the dates such that the class distributions across the folds are-even-were approximately balanced (Fig. 3). Thefirst

and-the-last-both-wet-and-dry. This dataset was the foundation of model development and allowed for systematic comparison

of the models in different settings.

Noise B Avalanche

Eﬁﬁ} 06.02. - 17.05.2022  10.7 %. 12470
Train | 10.01. - 04.02.2022 9.6 % . 9030
Fold 3

Train | 29.01. - 24.05.2021 7.6 % . 7995
Fold 2

Train | 13.01. - 28.01.2021 6.8 % . 11195
Fold 1

0 20 40 60 80 100

Percentages [%]

Figure 3. Class distributions and date ranges in the train and test folds. The annotations en-tep-at the end of the bars depiet-show the total
number of 10 s seismic windows in each fold. The annotations in blue depict the percentage of avalanche windows.



4 Model development

Seismic Window Frequency Spectrum

0.5 1

Normalized
Amplitudes
o

|
=
L

T T T T T T 0.0 — T T T :
42 44 46 48 50 52 0 5 10 15 20
Time [s] Frequency [Hz]

l T l

Encoder
of SAE

Encoder
of TAE

! ! !

Baseline

Feature
Extraction

!

Avalanche: 91.9%
Noise: 8.1%
Avalanche: 81.0% Avalanche: 95.7%
Noise: 19.0% Noise: 4.3%

Figure 4. Overview of the three different-approachesfor-methods to infer avalanche efassificationprobabilities. The blue elements depict the

feature extraction. During inference, shite-the decoder of the autoencoders is discarded, and only the encoder is used to extract features.
(btuethe same as in the top left of Fig. 2). Left: The temporal autoencoder features(TAE) feature classification; middle: The hand-engineered
baseline classification using engineered seismic attributes; bettormright: The spectral autoencoder features(SAE) feature classification.
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4.1 Feature extraction

For the later classification, we first extracted features from the 10s signal windows (Fig. 4). Feature extraction generally
describes the compression of a signal to a lower dimensional embedding while-retrieving/preserving-to retrieve the signal’s

255 most distinctive information. The embedded information (the features) is usually inputinte-used in an upstream classification

or regression task. Following this general-approach;we-explore-framework, we explored three methods to extract information
from seismic signals either as lower-dimensional-learned feature vectors or domain-specific engineered features, which are

then classified as avalanche or noise. Concretely, we implemented a baseline based on a conventional expert-supervised feature
engineering approach (Sect. 4.1) and developed two fully unsupervised autoencoders to extract features from temporal and
260  spectral input data, respectively (Sect. 4.2). We then optimised three separate random forest models on top of the preceding
feature extraction methods predicting avalanche and noise probabilities (Sect. 4.3).
Iﬁ a ﬁﬂxt 'it{empf, fe |6Wiﬁg a

4.1 Baseline features

Since representation learning methods are a novel approach in seismic avalanche detection, we sought a baseline against which

265 to benchmark them. Earlier studies on time series classification in general (Ismail Fawaz et al., 2019; Barandas et al., 2020)

and on seismic detection of different types of mass movements (Rubin et al., 2012; Provost et al., 2017; Lin et al., 2020; Wenner et al., 202

developed classification models using traditional feature engineering strategies. Therefore, in the baseline model, we followed
a similar approach to Provost et al. (2017), which classified seismic events generated by landslides --we-and extracted a set of 57

270

275  respeetively (Seet-?7)—The autoencoderarchitecture, which Specifically, we used a subset of 22 waveform, 17 spectral and 18
spectrogram attributes (see Table B1, B2 and B3 for more details). We extracted these from the frequency-filtered (1 to 10 Hz)
10 seismic signals for all sensors separately. Additionally, we did not include network or polarity-related attributes since we
aimed at developing models for a single-sensor setting and our study site was equipped with one-component sensors.

4.2 Autoencoder features

280 The autoencoder concept was first introduced in-Rumethart-et-al(1986)-by Rumelhart et al. (1986) and has since been adapted
for various applications (Xugang et al., 2013; Mousavi et al., 2019; Gu et al., 2021). A-vanilla-autoenceder-The architecture

consists of an encoder and a decoder:-. The encoder compresses the input signal to a lower-dimensional embedding, the-latent

spaeei.e. the latent (feature) vectors. The decoder transformsfeature-veetorsfrom-thislatent-space-decompresses these feature

11



vectors to the original input dimension. An-Overall, the autoencoder is trained by learning to reconstruct the input signalsfrem

285 thelower-dimensional-latent-space-whichrequires-the Jatter-to-store-the-mestrelevantinformation-characterising-each-pieceo

the-stgnal-By-. Thus, by design, the encoder feature vectors are eptimized-to-carry-optimised to preserve the most distinctive
information ef-characterising a given input signal ;-steh-so that the decoder can reconstruct it. During inference, the-decoder-is

290

oeram—a by ab b

iven that the autoencoder’s purpose is to +6-Hz)

attributes—extract features for a classification process on top, the decoder can be discarded. The classifiers, which are trained
separately, use solely the feature vectors.

295 4.2.1 Autoenconders

300

305

4.2.1  Architecture

In the firstautoencoderi-e-thetemporal autoencoder (TAE) -we considered the seismic time series data, hence the name. It was
developed for seismic waveform signals of 10 snermalized-by-their-abseolute-maximum-, normalised by their maximum absolute

310 amplitude. When dealing with time series data, common choices of computational units are one-dimensional convolutions

Kiranyaz et al., 2021) and recurrent units such as the long short-term memory (STM)-eellscells (LSTM; (Hochreiter and Schmidhuber, 1

). Thus, we implemented the encoder as a sequence of 3 eonvolution-convolutional layers and one LSTM cell layer learning
temporal dynamics. The best model from-the-eross-validation-proeedure-(based on the optimisation procedure (Sect. 4.2.3 and

Table E2) was composed of convolutions with kernel size 20 (or 0.1 s) and stride 10. This implementation of stride reduces

12
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Figure 5. Illustration of the arehiteeture-of-the-temporal autoencoder architecture. The encoder comprises one-dimensional convolutional

layers (kernels in blue) with leaky RelLU activation and batch normalisation followed by a long short-term memory cell (LSTM, pink). The
decoder uses one-dimensional transposed convolutions to decompress the extracted encoder features (highlighted in orange) and reconstruct
the input signal.

the initial input length of 2000 samples (200 Hz x 105s) to 200, 20, and 2 within each encoder layer. Similarly, we-seleeted
the tuning procedure suggested 32 filters in the first convolutional layerand-doubled-the-number-, which we then doubled in
each consecutive layer. In the last encoder layer, the LSTM cell summarizes-summarises the output of the convolutions, i.e.
two 128-dimensional vectors, to a feature vector of 32 dimensions (32 features). The decoder sequentially repeats this latent
vector twice and applies 3-three transposed convolutions with kernel size 20 and stride 10 to decompress the sequence back
to its original length—, i.e. 2000. Starting at 128 filters, we halved them in each decoder layer to reach 32 channels. To reduce
this number baek-to the number of input channels, i.e. 1, we applied a convolutional layer with kernel size 3 ;-and stride 1 is
applied-in the decoder output layer.

In addition, we used batch normalization-normalisation (BN) (Ioffe and Szegedy, 2015) in all encoder and decoder layers,
except for the decoder output layerto-stabilize, to stabilise and accelerate training. As an-activation function, we use-used the

leaky rectified linear unit (leaky ReLU; (Xu et al., 2015)), which outperformed the tangent hyperbolic function (Tanh) durin

model optimisation. The only exception is again the output layer, where we reptacereplaced the leaky ReLU with the tangent
hyperbelie-(Tanh-)-Tanh function to output values in the same range as the normalized-input-signalsin—i+Hnormalised input
signals, which is [—1,1]. In summary, Fig. 5 gives a simplified overview of this architecture comprising 514’337 learnable
parameters (226’848 in the encoder). Note-that-this-This architecture is relatively small in the number of trainable parameters 5
henee-and, therefore, well adapted to the size of our dataset.

The second autoencoder implementation operates in the spectral domain, heneeforth-referred-to-as-the-hence named spec-
tral autoencoder (SAE). We used the fast Fourier transform (FFT) to convert the filtered 10s seismic signals into the fre-
quency domain. Thus, the input data to this model eentains-contained the amplitude spectrum normalised using the min-max

normalizationnormalisation. In contrast to the temporal autoencoder, we replaced the aforementioned computational units, i.e.
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Figure 6. Illustration of the spectral autoencoder architecture. The encoder and decoder are a sequence of compressing and decompressing
fully connected linear layers (dashed blue lines). Each layer uses the speetral-autoeneederhyperbolic tangent (Tanh) activation function and
layer normalisation. The extracted features are shown in orange.

convolutions and LSTM cells, with fully connected layers. Through hyper-parameter eptimizationoptimisation (Sect. 4.2.3 and
Table E4), we designed the encoder and decoder to eempose-3-comprise three fully connected linear layers each. The hidden
dimensions in the encoder evolve-evolved from 200 to 139, 78 and 16 (feature dimension). The decoder is-was a mirrored
version of the encoder. We-Based on parameter tuning we used the Tanh function as the-non-linearity ef-cheiee-in all layers
(Table E4). Moreover, we apply-layernormalization-applied layer normalisation (LN) in each layer with the same-exception of
the output layer. Figure 6 illustrates a simplified version of this architecture summing up to 81’330 learnable weights (40’589
in the encoder). As for the TAE, this architecture is smatt-and-even smaller and thus also well adapted to our-dataset—the size

of the dataset.

4.3 Auteencoder-training

4.2.1 Training regime

A training step in neural network eptimization-optimisation starts with sampling a batch of predefined size from the dataset.
For sampling, given that the-data-set-is-our dataset was severely imbalanced (Fig. 3), we implemented-the-used the so-called

weighted random sampler(, as implemented in Paszke-et-al-(2019);see-Appendix—22)-which-samples-data-points-aceording
i i i PyTorch (Paszke et al., 2019). This

sampling method oversamples the minority (avalanche) class and thus prevents the model from biasing towards the majorit
noise) class. The sampling process relies on user-defined class weights, which allows the user to control the expected number
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of minority class (avalanche) samples within each batch. Therefore, we assigned the following relative weight to each sample
of the avalanche class (w,,,), while we assigned the noise samples a weight of one (w,,, = 1). Internally, the sampling method
rescales and interprets these weights as probabilities.
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o Now 1= Pay

ey

Py is the user-defined expected portion of avalanches per batch, e.g. 0.5 for evenly balanced batches. The batch is then
passed through the entire network (forward pass) to produce the output (prediction). The output is compared to the tar-
get and the reconstructiontoss{(Mean-SquaredError —MSE)-is-computedmean squared error (MSE) reconstruction loss is
computed (see Equation C1). The network weights are then eptimized-optimised by computing the gradients of the loss func-
tion and WWMMM&LM& propagatlon&geﬂfhm—\f\lﬁhiﬁfhiﬁwﬁmg
). using the
W@mm le&mmgfafﬁw&wrﬂﬁhﬁéaﬂmp&mﬁef
Kingma-and Ba, 2014)—After fotlowing next batch is passed to the network repeatedly until all batches in the dataset have
been seen once, which defines an epoch. The entire process is then again repeated for a certain number of epochs. Figure E in

the appendix illustrates the training and validation progress per training epoch for the temporal (TAE) and spectral autoencoder
SAE).

Following our hyper-parameter optimization-tuning strategy, we found the temporal autoencoder training optimal with an
expected portion of avalanches per batch of 8:6P,, = 0.6, a learning rate of 1e~* and a batch size of 128 (Table E3). The

model was trained for 120 epochs, i.e. iterations through the entire dataset, with early stopping when the class-separation
metrics (Sect. 4.2.2) started decreasing. Additionally, we applied data augmentation by randomly shifting the 10s window
signals by 0 to 1 seconds to either the right or left --to reduce overfitting in the avalanche class and for better generalization
generalisation (Zhu et al., 2020). Similarly, in the spectral autoencoder training, we used an expected portion of 8-5-avalanches
P,, = 0.5 avalanches per batch, a learning rate of le~* and a batch size of 128 and-found-5-(Table ES). Moreover, we found

five training epochs to be optimal.
422 Validation

In addition to the training regime (Sect. 4.2.1), we defined a validation routine for comparing different autoencoder architectures

and settings in the model optimisation (Sect. 4.2.3). By definition, the autoencoder performance can be measured with its

reconstruction loss. However, given a decent reconstruction, we aimed to find the best input features for the later classification.
Hence, we evaluated the autoencoders based on the avalanche and noise class separation within the latent (feature) space. We
calculated the silhouette score (Rousseeuw. 1987) and the Calinski-Harabasz index (Caliriski and Harabasz, 1974) based on
the feature embedding location and their given expert labels (see Appendix C3). We selected the best autoencoder by searching
for the highest-ranking combination of silhouette score, Calinski-Harabasz index and the mean squared error loss.
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423 Model selection

385  Developing neural networks involves tuning network hyper-parameters, such as the number of layers. kernel sizes of convolutions
or hidden dimensions. Therefore, we used the three train folds in Fig. 3 to run 3-fold cross-validation. Using three folds reduces
the impact of data variability and yields more reliable performance estimates. Next, we defined a grid of hyper-parameter
combinations (Table D1) and iteratively trained the resulting model configurations on two and evaluated them on the left-out
fold. We selected the model showing the best average performance over all three folds according to the predefined validation

390 metrics (Sect. 4.2.2). Besides the internal network parameters, we applied the same procedure to tune the parameters of the

training regime (Sect. 4.2.1). Concretely, we searched for the optimal number of expected avalanche samples in each batch

P,,, in Equation 1), the learning rate and the batch size. Details of this process can be found in the Appendix E.

4.3 Feature classification

395

400

405

previous extraction of distinctive
features was only an intermediate step. To classify these features, we developed three random forest classifiers for-each-feature
set— one per feature extraction method. We tuned them for the baseline, the temporal and the spectral autoencoder features
410  separately to infer class probabilities (see Fig 4).

4.3.1 Random forest model

The random forest model is a widely used algorithm for classification in general and for seismic event detection {e-g—i-et-al52018; Provest

in particular (Provost et al., 2017; Li et al., 2018; Chmiel et al., 2021), as it is favourable when dealing with high-dimensional
features and heterogeneous (seismie-attributese.g. engineered features) input dataand-itprovides-outputprobabilities-estimates:
415
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Therandom-forest, The algorithm was introduced by Breiman (2001) and belongs to the class of ensemble methods. During
training, several decision trees (estimators) are grown. Each tree is grown on a different bootstrap sample of the original
dataset, i.e. a random draw with replacement. Instead of using the entire set of features {eelumns)-in the original dataset, a
random subset is assigned to each node in the tree individually. The split (branch) is based on a single feature from this random
subset, which is optimal under a specified splitting criterion, such as the Gini information criterion (Breiman, 2017) when

dealing with categorical (classification) splitting problems.

4.3.2  Cross-validation

In search of the best hyper-parameters of this tree-growing algorithm, e.g. the maximal number of estimators (trees), we used
a randomized-randomised grid search with 3-fold cross-validation. This method evaluates hyper-parameter combinations by
iteratively fitting the random forest model to two of the three train folds and-testing-(Fig. 3) and validating it on the left-out
fold. As a scoring function, we chose the avalanche class fl-score to weigh the avalanche precision and recall uniformly -
Finallywe-averaged-the-performanee-and averaged this score across the three folds. This eptimization-optimisation process
was applied with the three feature sets individually, i.e. the seismic-attributes-and-the-baseline and autoencoder features, to find

the random forests presented in Table D1.

4.0.1 Inference and post-processin

During inference, a (test) feature vector is first passed separately to each decision tree in the random forest. Each tree applies its
learned sequence of decision rules and classifies the feature vector as either avalanche or noise. Then, each tree’s classification
is_aggregated by computing the mean. For instance, assuming 90 out of 100 trees classified a given feature vector as an
avalanche, this sample was assigned an avalanche probability of 0.9, estimated as the fraction of votes within the forest. This
process, known as ensembling, is why the random forest algorithm is considered an ensemble method. The only parameter to
define was a probability threshold above which, we classified the sample as an avalanche. We used the default threshold of 0.5,
which means a sample was classified as an avalanche if at least half of the trees agreed on this classification. Hence, for a single
10 s-seismie-si s seismic signal, the random forest models provided both a binary classification
(avalanche or noise) and the probability for each class.

Then, in the first post-processing step, we leveraged the array of five seismic sensors deployed at our study site and aggre-
gated the predietionsby-averaging the-per-sensor model output probabilities, computing a multi-sensor avalanche probability
for each 10's window-window. The array-based avalanche probability was calculated as the mean of the individual probabilities
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from each sensor. In the second post-processing step, we revisited the offline avalanche activity monitoring or dataset labellin
objective by evaluating the classifiers on entire events rather than single 10 s windows. Therefore, we considered an event an

0.5 % 10s = 15s of an event) had been positivel

avalanche if at least two (overlapping) consecutive windows (i.e. 2 x 10s —

predicted. Given that the shortest avalanche in the dataset was 13 s, we considered this boundary feasible. The reason for not
aggregating the probabilities over the seismi ined-nsi i tett i
length or similar was that in a continuous application, such as avalanche activity monitoring or labelling of an unannotated
dataset, the event length is unknown.

With this post-processing, we could evaluate the performance of the random forest classifiers based on single-sensor, sensor
array-based and event-based detections.

5 Results

After model development completion, we evaluated the baseline, the temporal autoencoder (TAE) and the spectral autoencoder

SAE) on the unseen test fold (top bar in Fig. 3). To assess the models’ stability, we trained and tested them using 20 different

random seeds, i.e. powers of two starting with 2°. Therefore, we calculated the mean and standard deviation of all metrics

while for specific result analysis, e.g. Fig. 10, we used the random seed for which a the model showed the highest avalanche

fl-score (2° for the baseline, 2'6 for both autoencoders).
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Figure 7. Test set latent space visualisation of the most important features according to the impurity-based feature importance (value in
arenthesis) of the random forest models for the baseline (left), the TAE features (middle) and the SAE features (right). In the left plot,
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5.1 Single-sensor predictions

As a first step, we evaluated the detection performance of each model’s single-sensor predictions on the 10s signals-at-our

5.2 Singlesensorpredietions

seismic signals. The true positive rates (or avalanche recall) were similar across the models (Fig. 8), i.e. between 67-3%and
F2%67.3% (£1.4%) and 69.8% (+£1.8%), indicating that approximately 30% of all avalanche windows were missed. Nev-

ertheless, the avalanche recall was slightly-higherfor-the-autoenceder-highest for the TAE features classification. Regarding
the true negative rates (or specificities), i.e. the probability that an actual noise event will be predicted as noise, we noted that

the TAE features classification showed the lowest rate of 82:6%-and83.0% (+£1.0%) and, therefore also showed the lowest
avalanche precision of 8-330.33 (£0.01), compared to 8-51-for-theseismic-attributes-and-0-45-for-the-speetral-autoencoder
features-0.52 (£0.00) for the baseline and 0.44 (£0.01) for the SAE (Table 1). Thus, we expect this model to produce com-
parably more false alarms (false positives) at a rate of 17.0% (£1.0%). Overall, the macro-average f1-score reached values of
0-76;0-67-and-0-74for-the-seismic-attributes0. 76 (£0.00), 0.67 (£0.01) and 0.73 (£0.00) for the baseline, the TAE features
and the SAE featuresfeature classification respectively (Table 1).

Additionally, since the feature extraction and its information content are core concepts of this study, we visualized-the
visualised part of the latent spaces in Fig. 7. As earthquakes are-account for a significant proportion of the noise class (31%) and
labels were available ;-we-show-anyway, we showed them separately. This vistatization-visualisation provided some insights
into the erganization—of the-autoencoder tatent space—organisation of the latent spaces. For instance, all models spatially.
separated avalanche and earthquake samples.
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Figure 8. Confusion matrices of the binary classification results for the three feature sets on the held-out test fold data, including all five
sensors. The rows indicate the true (expert) labels, while the columns provide the predicted labels of the random forest classifiers. The colours

code the percentage numbersyalues.

Table 1. Classification metrics on the (unseen) test fold data comprising 1335 avalanche and 11135 noise samples for the three feature sets.

Due to the strong class imbalance, the weighted averages of the metrics are not shown.

Model Class Precision Recall F1 Suppert-
Avalanche  0:5+0.52 £ 0.00 0.67 £ 0.00 0.58 43354 0.00
Noise 0.96 £ 0.00 0.92 + 0.00 0.94 +435+£ 0.00
Baseline
Macro Avg 0.74 £ 0.00 0.80 £ 0.00 0.76 +2476-+ 0.00
Accuracy 0.90 £ 0.00

Avalanche 033 +001  06740704+002 04543354001

TAE Noise 0.96 & 0.00 0.83 £0.01 0.89 +H435+ 0.01

Macro Avg 0.64 & 0.01 0.77 £ 0.01 0.67 42476+ 0.01
Accuracy 6:8+0.82 £ 0.01
Avalanche 045044 4+ 001  6:70-0.67 & 0.01 0.54 43354+ 0.01

SAE Noise 0.96 £ 0.00 0.90 £ 0.00 0.93 ++435-+ 0.00_

Macro Avg 0.70 & 0.00 0:80-0.79 £ 0.01  074-42476-0.73 £ 0.00_
Accuracy 0.87 £ 0.00
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5.2 Array-based-Sensor array-based predictions

In addition to the predictions on the individual 10s windows, we aggregated the window-single-sensor predictions over
the 5-five sensors in the seismic array by averaging the per-sensor-single-sensor output probabilities, resulting in improved
model performance (Fig. 9). The macro-average fi-seore-inereased-by2-6%(seismic-attributes);4-5%f1-scores increased by
2.6% (baseline), 4.5% (TAE) and 5:4%-5.5% (SAE). After-ensembling-the-seismie-attribute-This improvement particularly

originated from lower false positive rates, while the rate of missed avalanche windows remained at about 30% in all models.
After aggregation, the baseline and the SAE feature classification yielded similar performance in the classification metrics

(see Table 2). Pespite-this-improvement-the_The TAE feature classification, however, still showed approximately double the
number of false alarms, i.e. %HH%W)’ compared to the other models —Fhe-despite this improvement.
The sensor array-based aggregation further enabled us to investigate how predictions evolve over an entire seismic signal
evolve-across-the-array-(Fig. 10). For the avalanche shown in Fig. 1 and 2Fig. 2 (left), the models are-comparably-unsure-were

uncertain in the starting phase, e—whenit-emergesfrombackground-noisewhen the avalanche amplitudes slowly emerged
from the background noise signal. However, as the signal beeomes-became more energetic, the avalanche probability inereases

increased for all models. Overall, this post-processing strategy reduced the number of false alarms and slightly improved the
avalanche recall,
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Figure 9. Results on the held-out test set-fold data after applying a probabilistic aggregation of the single-sensor 10s predictions over the
5-ive sensors of the sensor array. The rows indicate the true (expert) labels, while the columns provide the predicted labels of the random

forest classifiers. The colours code the percentage aumbersvalues.
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Table 2. Classification metrics on the (unseen) test fold data set-comprising 267 avalanche and 2202 noise samples after probabilistic

aggregation over the 5-five sensors. Due to the strong class imbalance and bias towards the noise class, the weighted averages of the metrics

are not shown.

Model Class Precision Recall F1 Suppert-
Avalanche 0.56 £ 0.01 0:68-0.67 & 0.00 0.61 267+ 0.00
Noise 0.96 £ 0.00 0.93 £ 0.00 0.95 2202+ 0.00
Baseline
Macro Avg 0.76 £ 0.00 0:8+-0.80 4= 0.00 0.78 2469+ 0.00
Accuracy 0.91 £0.00
Avalanche  09:37-0.38 4 0.01 0.71 £0.02 0.49 2674 0.01
g | Noise 0962000 0850862001 69022020914000.
Macro Avg 0.67 £ 0.01 0.78 £ 0.01 0.70 2469+ 0.01
Accuracy 0.84 £ 0.01
Avalanche ©6:53-0.52+0.01 6-4-0.70 £ 0.01 0.60 2674 0.01
SAE Noise 0.96 + 0.00 0.92 £ 0.00 0.94 22024+ 0.00
Macro Avg  6:75-0.74 £ 0.01  082:0.81 + 0.01 0.77 24694 0.01
Accuracy 0.90 £ 0.00
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Figure 10. Waveform and spectrogram generated by the avalanche in Fig. 1 and the array-based output probabilities for each model over the
entire avalanche signal (bottom). The signals have been filtered from 1 to 10 Hz corresponding to the input frequency band of the models. In

ink, the same 10 s seismic window as in Fig.

robabilities are computed as the average of the single-sensor probabilities predicted every 5 seconds (10 s windows with 50% of overlap).
The manually defined event onset and end are highlighted in dashed grey lines (upper plot), and the classification threshold 0.5 is in orange
(lower plo).

Besides the-sinel

5.3 Event-based predictions

Besides the single-sensor and array-based predictions (Sect. 5.1 and 5.2), we investigated the predictions on the-eventlevel
an event basis to close the gap to avalanche activity assessment and provide a broader outlook. Fhisfor—we-aggregated-the

the—shertest-avalanche—in-the-dataset-is—13-s;this-beundary—was—feasiblewindows (50% overlap) of the sensor array-based
redictions were detected as avalanche signals. This post-processing led to the results in Appendix—22—Figure E2-shews

~Figure E2 and Table E6 in the



510

515

520

525

530

535

540

Appendix E2. Although the overall performance of the three models decreased by about 5% (see Table E6), the true positive
rates (avalanche recall) increased significantly to 81.4% (£1.1%) (baseline), 84.8% (£2.6%) (TAE) and 5:4%-89.3% (£4.3%

(SAE).

6 Discussion

So far, we compared the performance of a-human-engineered-the baseline, an expert-engineered seismic attribute classifica-
tlon&ppfeaeltr and the autoencoder feature elassificationresults—classifications based on a dataset containing 10 s seismic sig-
i i i in a single-sensor, sensor array-based and

event-based setting. In the single-sensor setting, the models missed approximately 30% of all avalanche windows and produced
false alerts at rates between 7.6% (£0.1%) and 17.0% (+£1.0%). With the sensor array-based aggregation, we observed a

stgnifieantreduction in false alarms and a slight improvement in recall-for-the-avalanche-elass—Furthermereavalanche recall. In

the event-based setting, we compromised an improvement in avalanche recall with an increase in false alarms. Moreover, we
noticed that the automatically learned features, and-specifically the ones from the spectral autoencoder, performed better-than

nals en

the-seismie-attributescomparably to the baseline. Hence, the results showed that spectral input information seemed favourable.
In the following, we contextualise the results by investigating the detection errors and their possible origins. Therefore, we
summarize-summarise the model development (Sect. 6.1) and dived-into-focus on the false predictions of the models to find
potential limitations and-reasens—(Sect. 6.2 and 6.3). Finally, we -argue about the applicability of these models
(Sect. 6.4) and compare the results to previous werks-work (Sect. 6.5).

6.1 Model performance and limitations

Machine-learning-models-are-strongly-influenced-by-the-The quality and size of the dataset strongly influence deep learnin
models. The relatively small size constrained us to design autoencoder architectures with rather—few—trainable-weightsfew

trainable parameters. In addition, we used each sensor independently to compensate for dataset size, as each sensor can be
considered as-a different view of the eventssame event. However, this came at the cost of introducing correlation among dataset
samples as the sensors were installed nearby (Fig. 1) and thus recorded very similar signals, yet not necessarily adding much
new and enriching information to the dataset. Given that the dataset will increase in the next-yearsupcoming winters, we will
consider incorporating the 5-five sensors as distinct channels in a convolutional and/or recurrent model in future studies. With

this, the sensor array-based aggregation and fusion would be implicitly implemented into the model.
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Figure 11. Array-based-Sensor array-based output probabilities of the random forest models for their respective input features with-plotted

against expert avalanche scores. The blue dashed line indicates the threshold applied to the expert scores to assign avalanche class labels.

Another aspect to bear-in-mind-was-the-input-normalization-—Normalizing-consider was our approach to normalise each 10 s
seismic window independently. Normalising input data has proven crucial when training neural networks (Sola and Sevilla,
1997). The temporal autoencoder, in particular, therefore teses-lost information on absolute and relative amplitudes. Yet,
both autoencoders could still capture signal characteristics and remarkably shew-showed similar patterns when looking at
continuous predictions and comparing with the baseline (see Fig. 10). Alternatively, a normalization-normalisation over the
entire signal before windowing-applying the windowing algorithm could be envisioned to preserve information on relative
amplitudes. However, this is-not-normalisation is not applicable during an online inference, as it would require looking ahead
at the amplitudes of the incoming waveforms. Therefore, it is not practical for (near) real-time signal proeessing—classification.
Alternatively, normalising by a characteristic value of the training dataset is unfavourable considering the heterogeneity of
normalising by class characteristics of the training data would violate the unsupervised learning regime.

Further—the-dataset-drove—the—decision—to—separate—the-Further, the separation of the feature extraction and classifica-
tion —Fhe-process was driven by the dataset at hand and the success of representation learning in various applications
(Bengio et al., 2013; Lingkvist et al., 2014). Considering the data, the unsupervised feature extraction is—not-constrained-to
a-tabelled-dataset-was not constrained by class labels (only the model selection and hyperparameter-tuning-arehyper-parameter
tuning of the classifiers were), an advantage when dealing with non-ground-truth labels (two-thirds of the avalanches were net
vertfied-neither verified by the radar nor the cameras). The performance-of-the-elassifier-is-then-decoupled-from-thefeature
extraction—This-applied expert labelling to the non-verified events was subject to an unknown degree of subjectivity and
belief. We found the average agreement rate of the avalanche expert probabilities to be 537, meaning two experts agreed
on 58% of the avalanches. In addition, having decided upon a hard threshold to convert expert scores to class labels further
blurred the boundaries between the avalanche and noise class, potentially including minor avalanches in the noise class (false
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negatives). Apart from the event label uncertainty, we considered the subjectivity of manually defining event onset and end and
the uncertainty of adopting the event labels to the 10 s snippets after applying the windowing algorithm. Due to the attenuation
of avalanche signals with the distance to the sensors and the low initial energy of avalanches, some 10s windows containin

lies

rimarily background noise within an avalanche event were inevitably mislabelled (false positives). This particularly a

to a signal’s starting and ending sections (see the upper plot in Fig. 10).

In summary, all of the above led to the conclusion to explicitly separate the feature extraction from the classification and
implement an unsupervised learning approach, which is more robust to uncertainty and noise in the labels and could leverage
more unlabelled data, In contrast, a fully supervised neural network might suffer from the relatively low number of labels and
bias, tending to overfit these expert labels rather than learn avalanche characteristic patterns in seismic signals. Moreover, the

developed autoencoder approaches offered better comparability with the baseline model, i.e. feature engineering.
This separation then allowed us to aratyze-analyse a lower-dimensional embedding of the dataset by inspecting the feature

space distributions (Fig. 7). HereAs labels for earthquakes were available, we visualised the-earthquake-elass-separately-as-them
separately. Moreover, earthquake and avalanche signals can be similar in the time domain (Heck et al., 2018b), which-we;thus

+thus we wanted to investigate them in the feature domain. We-alse-had-tabelsfor-earthquakes-simplifying-the-visualization-

with-ether-metheds—Overall, the three event types, i.e. avalanches, earthquakes and rest, varied in the encoding locations,

yet also showed considerable overlap. Interestingly though, the avalanche and earthquake signals were well separated (blue
and orange in Fig. 7). The rest (grey) resembled a connecting cloud between avalanche and earthquake signals. The reason
for this might be two-fold; first, the heterogeneity of these noise events by potentially comprising minor avalanches and low
magnitude earthquakes (false negatives), and second, the strong attenuation in some sections of avalanche signals resulting
in low amplitude avalanche windows. The heterogeneity-within-the-noise-class-originated-from-inchading-former noise class
heterogeneity originated from comprising different sources in comparable amplitude ranges, e.g., earthquakes, aeroplanes or

strong wind. However, the-differenttypes-of seismic-sources-of comparable-amplitaderange-these various sources are definitive

to be expected and need to be considered in a real-time detection system.

Despite actually having earthquake labels, we opted for a

binary classification. In an early stage, we trained models with three classes (earthquake separately), without seeing an increase

in overall model performance. This came as no surprise when looking at the clear separation of the expertscores-of-potential

o STUA A —On

s—earthquake from the avalanche samples in latent space. Moreover.
training a model to also classify earthquakes was out of scope as these can be detected with other methods. Thus, we did not
consider earthquakes a separate class in the classification. However, considering the avalanche class, investigations could also
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be conducted by differentiating between type and size in future implementations. Since the primary goal of this study was to
develop and compare models to detect avalanches regardless of their type or size, we trained the models considering all the
recorded avalanches. Therefore, we ensured that various avalanche types were included in the train and test set by separating
them based on appropriate dates (Sect. 3.3). According to radar and image data, most avalanches detected at our study site
ranged between sizes 2 and 3, based on the European avalanche size classification (EAWS, 2021). Given that seismic patterns
of avalanches are influenced by the avalanche type (Pérez-Guillén et al., 2016), an alternative approach could be to develop
two independent models to detect dry-snow and wet-snow avalanches separately. However, the current dataset was too small
to further categorise the avalanche events by size and type, and accurate ground-truth data was often also missing, Instead, we
focused on the given and analysed the misclassification of the current models.

Finally, to obtain an intuition and analyse how the supervised random forest classifiers related to the expert scores, we plotted

the expert scores of potential avalanche signals against the model’s output probabilities (Fig. 11). Overall, the output probabili-
ties of therandom-forest-models-positively increased with the expert scores. As expected, we also noted the highest uncertainty

at the selected threshold (dotted blue line in Fig. 11). When comparing the feature sets, the classification with the seismie
attributes—yielded-elearer-baseline features yielded more apparent steps over expert scores and more distinctive probabilities
for the highest and lowest expert scores. A measure to mitigate having to deal with such noisy labels in future works might be

to selely-include verified avalanches solely and discard the non-verified ones for training the autoenceders—Anothernoticeable

ionmodels. However, the unsupervised
autoencoders are entirely independent of any labels or class information. Thus, by considering only verified avalanches, we
would not reduce class ambiguity from the autoencoder’s perspective, but the dataset size and with it, valuable information
might be lost.

6.2 Missed avalanche windows

vAs avalanches were this work’s main objective, we
first analysed the missed avalanche windows, i.e. the false negatives (FNs)and-f: t i : —thi
. Looking again at Fig. 11, we accredited the euthersrelatively high number of outliers (FNs) in the expert score of 3-6;

e—FNs3, i.e. verified avalanches, to the nature of avalanche-mass movement signals. Concretely, avalanche signals slowly

emerge from the background noise due to source-receiver distance and the low generation of energy in the initial and very
end stages of avalanche motion, resulting in the typical spindle-shape signal with a relatively low signal-to-noise ratio at the
beginning and end of the signal (Surifiach et al., 2001; van Herwijnen and Schweizer, 2011; Pérez-Guillén et al., 2016). We
suspect that-the models had difficulties correctly classifying these parts of an avalanche signal -producing FN predictions.

Further, the manual eutting-definition of event onset and end was rather generous in including the entire avalanche signal with

parts characterised by very low amplitudes -

exclude-that-and potentially also some background noise was included. For instance, Fig. 12 a)-shows a comparison of the time
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series of sensor array-based averaged-predictions for each model with the misclassified onset of an avalanche event in the left
plot, while in Fig—2-b)the right, the end portion was characterised by a very low signal-to-noise ratio and hence misclassified.
In Fig. 12 a(left), the first few time windows from 10s to approx. 35s are arguably rather neisenoisy, as suggested by the
model probabilities. Tough as the signal strength increases, model probabilities also increase. Concretely, if we considered the
first five predictions or time windowsas-neise, this sample accounts for 5 (non) FNs in the results in Fig. 9 and appreximately
25 (5 sensors * 5 windows) in Fig. 8 per model. The sensor array-based prediction aggregation did not reduce these missed
‘avalanche’ windows (Fig. 9) since all the sensors predicted low probabilities of being an avalanche. Thus, we were left with
approximately ene-third-ef-30% FNs in all three models. Ix

28



660

665

le—7 Avalanche on 02.02.2022 at 18:14 le—6 Avalanche on 07.02.2022 at 04:07

_ 1.0
0
g 0.51
3 0.0 1
2
= -0.51
1S
< —-1.01
20
z 15
>
2
< 10
3
g
fre 5
208 B » “-e- - i
= Baseline / F-e:0- 9 P | Baseline
a ’ 0.8 A .\ -
s 0.69 -o TAE / K ° LI A -o- TAE
o -o- SAE ,’ 74 0.6 \ 4 ‘:\‘ -e- SAE
S 0.4 2-a i ' 4
2 A NN 0.4 i
g /,/’ \ Fd ‘\‘
s 0.21 A 8 \ 0.2 1 “t .
<004 LA = i . : — 00l : : o880 470-0"03 :
0 10 20 30 40 50 60 70 80 0 20 40 60 80 100 120
Time [s] Time [s]

Figure 12. Signals-Waveform and spectrogram generated by avalanches triggered on 2 February 2022 at 18:14 (top-left) and 7 February
2022 at 04:07 (top-right)and- The signals have been filtered from 1 to 10 Hz corresponding to the input frequency band of the models. At
the bottom, a comparison of the sensor array-based averaged-probabilities by-of each model over the entire length of the avalanche signals

6.3 False alarms

The second type of error, i.e. false positives (FPs) or false avalanche-alarms, showed greater variation in numbers across the
three models. With 7-8%-the-seisntic-attributes-produeced-the-smalestpertion-7.6% (£0.1%) (Fig. 8), the baseline produced the
least amount of false positives. Predicting with the TAE features resulted in roughly three-times-twice as many false positives,
with the SAE feature prediction in between. However, we observed a more-significant improvement in these errors when
aggregating over the sensor array (Fig. 9). This suggested that the S-recordings-of-a-speeific-event-particularty-noise-events—
ean-show-strong-five recordings of some noise events showed substantial variations across the sensor array, which we filtered
by this averaging. As the noise class is extremely-dominant-highly dominant (11135 windows) and, for instance, 10% FPs
result in approximately 1000 FP samples (compared to 1335 avalanche samples), the avalanche precision of all three models is

relatively low with 0-51{(Seismie-Attributes);0-33-0.52 (£0.00) (baseline), 0.33 (£0.01) (TAE) and 6-45-0.44 (4+0.01) (SAE)

We-therefore—analyzed—(Table. 1). We therefore analysed the origins of FPs to find potential tendencies or failure cases
(Fig. 13). Most FPs, i.e. 76%(seismic-attributes);-65%-77% (baseline), 66% (TAE) and 74%-72% (SAE), were generated by
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windows either carrying a non-zero avalanche score or belonging to an earthquake. Interestingly, the highest portion of false
positives fatlsfell to windows with an avalanche score of 0.5, i.e. *one’ expert thinks-thought it might be an avalanche. This
might-could indicate that minor-size avalanches, or larger avalanches that flowed at the detection limits of the system, are-net
wellrecognized-were not well recognised by the experts yet by the models. Considering the earthquakes, the test fold eomprises
comprised a total of 3880 earthquake windows, of which only +35-132 (Seismic), 260-214 (TAE) and +58-146 (SAE) are-were
misclassified as avalanches, i.e. 3-5%;52%-43%=-3.4%, 5.5% and 3.8%. This underscored the earlier observation of good

separation between avalanches and earthquakes in the latent spaces. The remaining approx. 30% FPs in all models originated
from unknown sources.

OverallFirst, our results thus showed that using an array of sensors helped to reduce the number of false avalanche detections
by averaging the predictions-of-the-senserssingle-sensor predictions. This can be viewed as model ensembling and is generally
known to improve results (Mohammed and Kora, 2023). Second, including features—from-thefrequency-domain—frequency

domain features tended to show fewer FPs. Third, an interesting and positive finding was that the models rarely confused earth-
quakes for avalanches (on average 4:3%—4.2% of all earthquake windows). FinalzMoreover, the models generate-generated
false alerts to a similar extent to previous studies in avalanche detection {e-g—Bessas — : i ~ :
—Thus;-they-might-(Bessason et al., 2007; Rubin et al., 2012; Hammer et al., 2017; Heck et al., 2018a). In pursuit of reducin,

the number of false alerts, one might consider including other types of recordings, e.g. infrasound data (Mayer et al., 2020

. In addition, considering longer seismic windows in future implementations might help reduce the number of false alerts.

Howeyver, this would require more avalanche data to start with and to train models.
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Figure 13. Analysis of origins for false positives as a percentage of the total amount of false positives per model.

6.4 Applicability to early warning and monitoring systems

30




690

695

700

705

710

715

720

In a potential early-warning operation, a practical model must detect all key parts of the signal, particularly the onset, to identify.
avalanche movement in its early stages and trigger an appropriate alert. The current classifiers, which often failed to capture
these avalanche onsets, may not yet be stited-for-an-suitable for this purpose. To improve early-warning apphication—Hewever;
the-modets-models, future studies should focus on examining avalanche onsets in more detail and developing specialised
models that target these specific signal windows. For avalanche activity monitoring, false negatives at the start or end of each
event are not very problematic. As long as the most energetic part of the signal is well detected, the overall avalanche activity.
can still be accurately recorded. However, when assessing overall avalanche activity, missed detections can be problematic.
Therefore, we further post-processed the sensor array-based predictions (Fig. 9) to formulate event-based predictions (Sect.
3.3) and give a broader outlook. In theory, this should eliminate the FNs in the tails of the actual signal and provide us with
event-based detectors. For instance, in Fig. 12, the models then would detect avalanches with this post-processing. And indeed,
in Fig. E2, we observed a drastic reduction in missed avalanches for the three models, which achieved a high true positive rate
of 81.4% (£1.1%) (baseline), 84.8% (£2.6%) (TAE) and 89.3% (£4.3%) (SAE).

In conclusion, we observed that the models struggled to detect the starting and ending of an event (Fig. 12). We argued that
this behaviour was reasonable and, in part, desirable as these parts of an event often resemble background noise. However, in

most cases, the entire (unique) event was detected (Fig. E2). Thus, the models could be implemented in an avalanche activity
assessment process or to tabelunverified-events-annotate large datasets in the future by being aware of the-limitations-and-their

Wmthat they tend to produce too many avalanche detections. mﬁufsm%ef—fee}uemg%he—rmbe%e#ﬁlse

spee'r&}ii‘eérAnother compelling prerequisite for avalanche activity monitoring in future studies is the transferability to other
study sites. We would expect variations in the detection performance to arise from different configurations in the study site
setup, sensor location and configuration, and the characteristics of the terrain and the avalanches. Therefore, also implementin

specialised data augmentation techniques to increase the variety and number of the avalanche recordings, e.g. seismic data

augmentation techniques (Zhu et al., 2020) or generative models (Wang et al., 2021), might help to make the classifiers more

robust to changing environments and setups.

6.5 Comparison to previous studies

To conclude, we put our results in a broader context by comparing them with previous studies. Provost et al. (2017) used a
random forest model based on the-71 engineered seismic attributes to classify landslides. They reported stunning true positive
rates of 94%, 93% and 94% for the rockfall, quake and earthquake class and a true negative rate of 92% for the noise class.

The-setting;-however;is-diffieult-to-compare;-as-they-Therefore, we adopted their feature extraction approach as our baseline
model, though our dataset differed significantly. They used non-windowed signals from an evenly distributed dataset compris-

ing 418 rockfalls, 239 quakes, 407 earthquakes, and 395 noise events. Alsothese-eventtypes-typicallygeneratesignals-with

a-highersignal-to-neiseratio-than-avalanches—Moreover, they included polarity and network attributes in the features, which
for the classification turned out to be most important. NeverthelessHowever, with 92% true negativesnegative rate, their model
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is comparably prone to producing false-alerts-FPs (false alerts) as the models in this study are—Adse;for-were. For avalanche
detection, several studies also presented the approach of engineeringfeatures-feature engineering and subsequent classification
Bessason et al., 2007; Rubin et al., 2012; Hamme

725 . Rubin et al. (2012) used 10 engineered features in the frequency domain and tested 12 classification models, of which the

decision stump classifier showed the highest overall accuracy of 93%0.93. However, the model showed a poor precision of

13-2%-henee;-0.13, producing many more false alerts -
on-camera-images-or manuatly picked-eventscompared to our classifiers. Heck et al. (2018a) used the same avalanche catalogue
of 283 avalanches, of which 25 were confirmed and the rest were labelled by three experts. They implemented engineered tem-
730 poral and spectral features and used an HMM as a classifier. Similar to most previous studies, they also noted high values of
FPs. Moreover, they observed improvements when aggregating single-senser-te-single-sensor to sensor array-based predictions
as we did in this study. In conclusion, based on the results of this and previous studies, we expect that an avalanche predictor
based on solely seismic data will always produce false alarms, as it remains a difficult task to identify low-energy avalanche
signals. Therefore, installing a secondary seismic detection system in-the-proximity-of-the-near the avalanche path would be
735 advantageous in mitigating false alarms. However, given the terrain characteristics at our study site (Fig. 1), where avalanches

can occur along multiple paths, a single additional detection system may not be sufficient to detect all events. Alternatively,
integrating a complementary detection system ;—sueh-as-like an infrasound system s—eoeuld-alse-could be beneficial but less

cost-effective.

740

7 Conclusions

We proposed two uns

attributes-setautoencoder-based feature extractors and retrieved a set of standard engineered seismic attributes (Provost et al., 2017
to train three random forest classifiers for avalanche detection. The-dataset-was-eompiled-We compiled and annotated a dataset

750 from seismic avalanche data recorded during two winter seasons in Davos, Switzerland. While in earlier studies, seismic data

classification mostly followed the approach of extracting-engineering well-defined signal attributes to train classifiers, the

proposed deeplearning-medels-bridge-autoencoder models bridged the gap to a purely learned (automatic) pipeline.
Overall, the classifiers achieved macro-average fl-scores ranging from 0:70-t0-0-78-0.70(£0.01) to 0.78(£0.00) with

avalanche recall values ranging from 0-68-te—0-71-—Our—results—elearlyshow—0.67 (£0.00) to 0.71(£0.02). Moreover, the
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results clearly suggested that including features from the frequency domain improves model performance. As-the-Further, as
we observed that the models often misclassified the onset and end of avalanche signals were-often-miselassified-as-noise;due
totow-signal-to-notserattos;-but not the most energetic signal parts, we proposed a simple-straightforward post-processing
stepto-reduce-the-missed-avalanchesby-. By imposing that at least two consecutive prediction windows, i.e. 15 s, are-pesitive
must be positive for an entire event to be positive, we drastically reduced the missed avalanches (false negatives). This criterion

significantly improves-improved the avalanche recall, ranging from 6:82-6-6:940.81 (£0.01) to 0.89 (£0.04). Lastly, contrary
to previous expectations, earthquakes are-were rarely mistaken for avalanches at our study site.

Revisiting eu

-the primary objective of advancing
and automating avalanche detection through seismic monitoring systems, we believe that both the baseline implementation
and the novel autoencoder-based approaches for avalanche data analysis bear strong potential for future implementations. We
demonstrated that autoencoders can learn characteristic avalanche features from merely 84 seismic avalanche signals and are
performing equally on an avalanche detection task as expert-engineered features, which have been studied and applied for &
decade-and-optimized-and-tuned-throughoutover a decade, optimised and fine-tuned through various studies. The-unsupervised

eTherefore, we argue that as seismic datasets
grow, i.e. with more (diverse) avalanche signals available for learning. unsupervised representation learning methods could
potentially surpass the conventional feature engineering approach in the future. In conclusion, the proposed methods represent
a step towards enhancing the throughput of avalanche detection systems and the automatic and continuous documentation of
events. Acquiring avalanche detections from such systems across different locations spanning wider areas has the potential to
improve and validate avalanche warning services. This, however, necessitates future work on investigating the scalability and
transferability of such methods to new environments.

Code and data availability. The code to reproduce the results and test the models is available on Zenodo (DOI: 10.5281/zenodo.15001358).
It is predominately written in Python using the PyTorch library (Paszke et al., 2019) for the autoencoder design, the random forest implemen-
tation of the Scikit-learn library (Pedregosa et al., 2011), the Pandas library (Wes McKinney, 2010) for handling the data and more standard
Python libraries such as NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020). Additionally, the event catalogue with the raw seismic
waveforms is found on Zenodo (DOI: 10.5281/zenodo.14892926).
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Appendix A: Dataset

Table Al. Detailed view on the applied splits of the dataset. For each fold, the table shows the number of respective events. The folds were

icked consecutive in time, with a minor exception in the test fold, which included the 2nd of February from fold 3. This balanced the number
of events in the folds more evenly.

Fold | Date Avalanches | Earthquakes | Noise
13.01.2021

1 17 39 196
-28.01.2021
29.01.2021

2 16 39 100
- 24.05.2021
10.01.2022

3 - 04.02.2022 18 39 138

(excl. 02.02.2022)

06.02.2022
4 - 17.05.2022 33 66 211
(incl. 02.02.2022)

Appendix B: Seismic attributes

790 The implemented engineered feature extraction feHews-followed the work of Provost et al. (2017) and Turner et al. (2021). In

contrastto-these;-by-defining-ourfrequeney-band-to-, by using bandpass-filtered signals (1-10 Hz), we modified the attributes
correspondingly. Also, we discarded network e%gpglﬁpolanty -related attributes as we developed individual-modelspersensor;

models for a single-sensor setting, and our study site onl
used one-component sensors. In summary, we extracted 22 waveform attributes (Table B1), 17 spectral (Table B2) and 18

795 spectrogram attributes (Table B3).
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Table B1. Waveform attributes extracted from the 10 s seismic signals.

Number ‘ Description
19 Ratio of the mean and median
over the maximum of the normalised envelop signal
3 ‘ Ratio between ascending and descending time
4 ‘ Kurtosis of the raw signal
5 ‘ Kaurtosis of the envelope
6 ‘ Skewness of the raw signal
7 ‘ Skewness of the envelope
8 ‘ Number of peaks in the autocorrelation function
9 Energy in the first third part
of the autocorrelation function
10 Energy in the remaining part
of the autocorrelation function
11| Ratioof 10and9
19— 16 Energy of the signal filtered in
[1,3], [3,6], [5,7], [6,9] and [8,10] Hz
17— 91 Kurtosis of the signal in
[1,3], [3,6], [5,7], [6,9] and [8,10] Hz
2 RMS between the decreasing part of the signal
_ Ymaz
and I(t) = Yiao — et
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Table B2. Spectral attributes extracted from the 10 s seismic signals. The Nyquistfrequeney-(NyF)-is100Hz+-e-half-of the samplingrate-

Number ‘ Description
23 —24 ‘ Mean and Max of the FFT
25 ‘ Frequency at the maximum
26 — 27 ‘ Central frequency of the 1st quartile and 2nd quartile
28 —29 ‘ Median and Variance of the rermatized-normalised FFT
30 ‘ Number of peaks
31 ‘ Number of peaks in the autocorrelation function
32 ‘ Mean value for the peaks
33—36-33 — 37 ‘ Energy in [1,3], [3,6], [5,7], [6,9] and [8,10] Hz
3738 ‘ Spectral centroid
3839 ‘ Gyration radius
3940 ‘ Spectral centroid width
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Table B3. Spectrogram attributes extracted from the 10 s seismic signals.

%W\Mm

Kurtosis of the maximum of

41
all fast Fourier transforms (FFTs) over time
42 ‘ Kurtosis of the maximum of all FFTs as a function of time
43 ‘ Mean ratio between the maximum and the mean of all FFTs
44—4644 ‘ Mean ratio between the maximum and the median of all FFTs
. Number of peaks in the curve showing the temporal evolution
47-45 — 47 | Ratio-between44-and-45-
of the FFTs maximum (45), mean (46) and median (47)
48 ‘ Ratio between 44-45 and 46
49 | Ratio between 46 and 47
50 Number of peaks in the curve of the temporal evolution
of the FFTs central frequency
51 Number of peaks in the curve of the temporal evolution
of the FFTs maximum frequency
52 Ratio between 50 and 51
5253 Mean distance between the curves of the temporal evolution
of the FFTs maximum frequency and mean frequency
54 Mean distance between the curves of the temporal evolution
of the FFTs maximum frequency and median frequency
55 Mean distance between the 1st quartile and the median
of all FFTs as a function of time
56 Mean distance between the 3rd quartile and
the median of all FFTs as a function of time
57 Mean distance between the 3rd quartile and

Appendix C: Metrics

the 1st quartile of all FFTs as a function of time
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used-the-elassification—and-clustering-metries-defined-here—We used the reconstruction, classification and clustering metrics
defined here to evaluate the autoencoders and the classifiers.

C1  Reconstruction metrics

Since autoencoders aim at reconstructing a given input signal v, they are trained using a reconstruction loss. In this study, we
implemented the mean squared error loss (MSE), which is defined for a batch of size B as follows.

ss]

A | Bl o
MSE(y,9) = = > (y: — ) (@)
=0

y is the autoencoder’s predicted output, i.e., the reconstruction.

C2 Classification metrics

Various metrics exist to evaluate binary classification problemsand-are-all-. All are tailored to specific objectives. For instance,
the precision is chosen when false alerts, i.e. false positives, are critical, the recall is sensitive to missed events, i.e. false

negatives, and the f1-score combines both to form the harmonic mean ef-both-as follows:

1o Precision * Recall

2
* Precision + Recall (C2)

The macro average summarizes-summarises the per-class results within a single value. This value is an unweighted mean

over the given classes and ensures that the values are not biased towards the mostfrequent-elass+e—neisemajority class.

K
1
Macro—Fl:E*’;)Flk,whereK:2 (C3)

C3 Clustering metrics

A natural metric choice when evaluating different-attoencoders—is—a-autoencoders is the reconstruction loss, e.g. the mean
squared erroren-which-, on which we trained the autoencoders in this workwere-trained. In pursuit of good autoencoder features
for later classification, however, we aimed to optimize-optimise the latent space representation. Since a good reconstruction
does not necessarily imply a sufficient separation in latent space, we explored clustering metrics to compare the latent space
distribution of different models with the given (expert) labels. We, therefore, implemented the silhouette score (Rousseeuw,
1987) and the Calinski-Harabasz index (Calinski and Harabasz, 1974). These scores are usually used to evaluate clustering
algorithms that predict classes, e.g. k-means. The silhouette score computes the mean intra-cluster and inter-cluster distances

per sample. For instance, given a sample, it calculates the distance to the cluster it is part of (a) and the distance to the nearest
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cluster it is not part of (b) and forms the sample score:

b—a

) -

After taking the mean over all samples, the silhouette score ranges from -1 (worst) to 1 (best). The Calinski—-Harabasz index, or
variance ratio criterion, on the other hand, is the ratio of between- and within-cluster dispersion. The between-cluster dispersion
is defined as the weighted sum of squared Euclidean distances of the cluster centroids and the overall centroid (higher ;-better);
and-the-better). The within-cluster dispersion is given as the sum of the squared Euclidean distance of the samples and their

respective cluster centre (lower better). Thus, a good clustering algorithm is supposed to yield a high Calinski—-Harabasz score.

Appendix D: Weighted-random-samplerRandom forest optimisation

av no’J-

Wno = 1
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Table D1. Selected RandomFerestMeodetsrandom forest models

Parameter ‘ Baseline TAE SAE
Number of Estimators ‘ 512 512 512
Maximum Depth ‘ 8 8 8
Maximum Number log2 sqrt sart
of Features
Maximum Number 01 02 0
of Samples
Class Weight ‘ Balanced
Criterion ‘ Gini
Bootstrap ‘ True
Appendix E: Autoencoder optimizationoptimisation
Table El1. Selected Autoeneodersautoencoders
Parameter TAE SAE
Number of Weights 514°337 81’330
Feature Dimension 32 16

Hidden Dimension

[200, 20,2] [139,78, 16]

Filters [32, 64, 128] -
Number of Layers 3 3
Kernel Size 20 -
Stride 10 -
Expected Avalanche 0.6 0.5
Portion in Batch

Learning Rate ‘ le le=*
Batch Size s 128
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To select the autoencoder hyper-parameters, we opted to-first-optimize-first to optimise model intrinsic parameters, e-g=-such
as hidden dimensions or the number of layers, instead of training strategy parameters. This separation reduced the computation
time.

The temporal autoencoder architecture optimization-optimisation proved to be more sensitive and critical. First, we optimized
optimised the kernel size, stride, number of filters, feature dimension and activation function. We observed that the kernel size
and stride combinations of (20, 10) and (8, 4) showed the best clustering metrics. Moreover, concerning the non-linear activa-
tion, the leaky ReLU outperformed the Tanh function in most tests. Since the overall performance was not entirely-satisfying,
we tested the weighted random sampler (Sect. 22-4.2.1 with 50% expected avalanches in each batch. This addition to the train-
ing strategy showed a considerable improvement for most models with kernel size 20 and stride 10. Although using a kernel
size of 8 and stride of 4 tended to show better clustering metrics, the reconstruction of the signals was comparably poor. Based
on these observations, we implemented a kernel size of 20 and stride of 10. Also, we found the feature dimension 32 better
suited than 64 or 16. Lastly, we selected the-number-of-filters-as-32, 64, and 128 within-the-encoderfilters within each encoder
layer. See Table E2 for a summary of the best 10 models of this process and Table E1 for the selected autoencoders. Having
defined the intrinsic parameters, we tested different training strategies. In particular, we eptimized-optimised the learning rate,
the batch size and the expected portion of avalanches ta-a-per batch. This test led to values of le~*, 128 and 0.6 for the temporal
autoencoder (Table E3). Finally, we found that augmenting the data by randomly shifting input samples by O to 1s to the left

or right helpsimproved robustness.
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Table E2. The-Fable-summarizes-Summary of the TAE hyper-parameter optimizationoptimisation. -shews-enty-Only the models for which
all three metrics are ranked in the top 26-20 are shown. The best metrics are-hightighted-inbeld;-and the selected model architeetureis-are

highlighted in erangebold.

Weighs Filtersin | Feawre | Kemel | fj:: Z:Ci Avgmentation | Siouett  Calinski-Harabasz
first Layer | Dimension | Size borcion Score Index
09865 | 8 | e+ | &8 | 4 | defaurt |  Fase | 0191 849.959 0.07¢
w9ses | 8 | e+ | 8 | 4 | 05 | Fase | 0024 357.494 0.07:
9ges |8 | e+ | 8 | 4 | o5 | Tue | o018 345.684 0.07¢
16045 | 16 | 32 | 20 | 10| 05 | Fase | 0033 374.174 0.06
156945 | 16 | 32 | 20 | 10| o5 | Tmwe | oon 567.276 0.05*
514337 | 32 | 32 | 20 | 10 | defaure | Tme | 0072 368.876 0.05¢
514337 | 32 | 32 | 20 | 10| 05 | Rmse | o006l 333.174 0.061
514337514337 | 3232 | 3232 | 2020 | 4010 | 0505 | FrueTrue | 0.041 613.917 0.05¢
625185 | 32 | e+ | 20 | 10| o5 | e | -0095 292.78 0.06:
625185 | 32 | e+ | 20 | 10| o5 | Tme | -0105 307.477 0.064
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Table E3. Summary of the TAE learning rate and batch size optimisation. The best metrics and the selected model are highlighted in bold.

batch " Silhouette  Calinski—Harabasz SE
Score Index
16 | 1e05 | -0.093 259.029 0.057
32 | 1e0s | 0.2 191291 0.058
16 | 00001 | 0019 435901 0.053
32 | 00001 | -0.006 460.183 0.055
64 | 00001 | 0013 525.536 0.054
128 | 00001 | 0051 696.984 0.054
16| 0001 | 0039 352668 0051
32 | 000 | o011 373105 0053
64 | 0001 | 0034 381183 0052
128 | 0001 | 0007 347923 0.052

While optimising the spectral autoencoder, we found faster convergence. We started by testing combinations of the number
of layers with hidden dimensions, feature dimensions and activation functions. The-Table E4 shows the results for the best
S-modelsareshown-in—Table-E4eight models. We foremost noted that 16 features were optimal for this task. Moreover, we
observed that the Tanh activation function was favourable in comparable architectures. Finally, we selected the model high-
lighted in erange-bold since it showed a good compromise between the number of weights ef-in the network and performance.
Following the same training strategy as for the temporal autoencoder, we eptimized-optimised the learning rate, the batch size
and the expected portion of avalanches ir-a-per batch. In contrast to the temporal autoencoder, we used an expected portion of

0.5 avalanches within a batch, a learning rate of le—* and a batch size of 128 (Table E5).
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Table E4. Fhe-Fable-summarizes-Summary of the SAE hyper-parameter eptimizationoptimisation. f-shoews-enty-Only the models for which
all three metrics are ranked in the top +6--10 are shown. A “default” hidden dimension ef-6-6-indicates that the dimensions in the layers of
the encoder linearly decrease from the input dimension (200) to the feature dimension. The best clustering metrics are-highlighted-in-beld;
and the selected model arehiteeture-is-are highlighted in erangebold.

. Feature Activation Hidden Silhouette  Calinski—Harabasz
Weights Layers MSE
Dimension Function Dimensions Score Index
4152 | 2 | 16 | Tah | ebdefaurr | 0227 1205.952 0.014
41552 | 2 | 16 | leakyReLU | 0:0default | 0218 1088.234 0.012
7080 | 2 | 64 | Tah | oodefaurr | 0198 999.475 0.014
8133081330 | 33 | 1616 | TanhTanh | 0.0default | 0224 1237.579 0.013
81330 | 3 | 16 | leakyReLU | 0:0default | 0217 1015.357 0.012
12432 | 4 | 16 | Tah | o0defauit | 0238 1111.027 0.013
12432 | 4 | 16 | leakyReLU | 0:0default | 0223 1013.013 0.012
146120 | 5 | 16 | leakyReLU | 0:0default | 0223 968.953 0.012
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Table E5. Summary of the SAE learning rate and batch size optimisation. Only the top ten models are shown. The best clustering metrics
and the selected model are highlighted in bold.

Silhouette  Calinski—Harabasz
batch Ir SE

Score Index
16 | 1e0s | 0216 1295275 0015
32 | 1e0s | 0225 1337226 0015
128 | 1e0s | 0219 1339248 0015
16| 00001 | 025 1062001 0.009
32 | o000 | 024 1131993 0009
64| 00001 | 0241 1283843 0013
128 | 0.0001 | 0245 1391865 0014
16| 0001 | 0268 872865 0009
32 | oo | 0212 831938 0009
64 | 0001 | 0261 852354 0009
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870 E1 Learning curves
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Figure E1. Learning curves of the TAE (left) and SAE (right). The blue line shows the mean squared error (MSE) loss on the training set,

while the orange line shows the loss progression on the held-out test set (Fold 4 in Fig. 3).

E2 Event-based prediction results
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Figure E2. Confusion matrices of the results for the three feature sets aggregated on an-event basislevel. The rows indicate the true (expert)

labels, while the columns provide the predicted labels of the random forest classifiers. The colours code the percentage numbers.
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Table E6. Classification metrics on the (unseen) test fold data setcomprising 33 avalanche and 275 noise samples after the aggregation over

entire events of the sensor array-based predictions. Due to the strong class imbalance and bias towards the noise class, the weighted averages

of the metrics are not shown.

Model Class Precision Recall F1 Suppert-
Avalanche 0.42 £ 0.01 0:82-0.81 £0.01  6:5533-0.56 £ 0.01
Noise 098097 £ 0.00 6:860.87 + 0.01 0.92 2754 0.00
Baseline S St i
Macro Avg 0.70 £ 0.01 0.84 £ 0.01 0:73-308-0.74 £ 0.01
Accuracy 0.86 £ 0.01
Avalanche 0.27 £ 0.01 0-88-0.85 4 0.03 0.41 33+ 0.01
Noise 0.98 £ 0.00 0.72 £ 0.01 0.83 2754+ 0.01
TAE i S i
Macro Avg 0.63 £ 0.01 0:8-0.79 £ 0.02 0.62 368+ 0.01
Accuracy 6-730.74 £ 0.01_
Avalanche 64+0.39 +0.01 6:5+0.89 £0.04 65633054 £ 0.02
SAE Noise 0:99-098 £0.01 684083 £0.01 6:5+2750.90 £ 0.01
Macro Avg  6-70.68 £ 0.01  6:870.86 £ 0.02 0:733080.72 + 0.01
Accuracy 6-85-0.84 £ 0.01_
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