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Abstract. Monitoring snow avalanche activity is essential for operational avalanche forecasting and the successful implementa-

tion of mitigation measures to ensure safety in mountain regions. To facilitate and automate the monitoring process, avalanche

detection systems equipped with seismic sensors can provide a cost-effective solution. Still, automatically differentiating

:::::::::::
distinguishing

:
avalanche signals from other sources in seismic data remains challenging, .

::::
This

::
is

:
mainly due to the complexity

of seismic signals generated by avalanches, the complex signal transmission through the ground, the relatively rare occurrence5

of avalanches, and the presence of multiple sources in the continuous seismic data. One
::::::::
Therefore,

:::
we

::::::::
compiled

:
a
::::::
dataset

:::
of

::::::::::
seismograms

::::::::
recorded

::::
with

:::
an

::::
array

:::
of

:::
five

::::::::::::
seismometers

:::::::
installed

::
in

:::
an

::::::::
avalanche

:::::
study

:::
site

::::::
above

::::::
Davos,

::::::::::
Switzerland.

::::
For

::
the

::::::
winter

:::::::
seasons

::
of

:::::::::
2020-2021

:::
and

::::::::::
2021-2022,

:::
this

::::::
dataset

:::::::::
comprised

:::
84

:::::::::
avalanches

:::
and

::::
828

::::
noise

:::::::::
(unrelated

::
to

::::::::::
avalanches)

::::::
events.

:::
An

:
approach to automate avalanche detection

::
the

::::::::
detection

:::
of

:::::::::
avalanches

:::
in

::::::
seismic

:::::
data is by applying machine

learning methods. So far, research in this area has mainly focused on extracting standard domain-specific signal attributes in10

the time and frequency domains as input features for statistical models. In this study
::::::
contrast, we propose a novel applica-

tion of deep learning autoencoder models for the automatic and unsupervised extraction of features from seismic recordings.

These new features are then fed into classifiers for discriminating
::::::::::::
representation

:::::::
learning

::::
from

:::::::::::
seismograms

:::::
using

::::::::::
autoencoder

::::::
models

::
to

::::::::::::
automatically

::::::
extract

:::::::
features

::::
from

:::::::::
10-second

:::::::
seismic

::::::
signals

:::
of snow avalanches. To this end, we trained three

Random forest classifiers based on different feature extraction approaches. The first set of 32 features was automatically15

extracted from the time-series signals by an autoencoder consisting of convolutional layers and a recurrent long short-term

memory unit. The second autoencoder applies a series of fully connected layers to extract 16 features from the spectrum of the

signals. As a benchmark, a third random forest was trained with typical waveform, spectral and spectrogram attributes used

to discriminate seismic events. We extracted all these features from 10-second windows of the seismograms recorded with

an array of five seismometers installed in an avalanche test site located above Davos, Switzerland. The database used to train20

and test the models contained 84 avalanches and 828 noise (unrelated to avalanches)events recorded during the winter seasons

of 2020-2021 and 2021-2022. Finally, we assessed the performance of each classifier, compared the results, and proposed

different aggregation methods to improve the predictive performance of the developed seismic detection algorithms
::
On

::::
top

::
of

:::
that,

:::
we

:::::::
applied

::::::
random

::::::
forest

::::::::
classifiers

::
to

:::::::
evaluate

:::::::
whether

:::::
these

:::::::
features

:::::::
facilitate

:::
the

::::::::
detection

::
of

::::::::::
avalanches.

::::::::::
Concretely,

::
we

::::::
trained

::::
one

:::::::
random

:::::
forest

:::::::
classifier

::::
each

:::
on

:
a
:::
set

::
of

:::::::::::::::
expert-engineered

:::::::
seismic

::::::::
attributes

:::::::::
(baseline),

:::::::
temporal

:::::::::::
autoencoder25

::::::
features

::::
and

:::::::
spectral

::::::::::
autoencoder

:::::::
features. The classifiers achieved an avalanche f1-score of 0.61 (seismic attributes), 0.49
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::::
recall

:::
of

::::
0.67

:::::::
(±0.00)

::::::::::
(baseline),

::::
0.71

:::::::
(±0.02)

:
(temporal autoencoder) and 0.60

::::
0.70

:::::::
(±0.01)

:
(spectral autoencoder) and

avalanche recall of 0.68, 0.71 and 0.71, respectively. Overall, the macro f1-score ranged from
:::::
macro

:::::::
average

::::::::
f1-scores

::
of

::::
0.78

:::::::
(±0.00)

:::::::::
(baseline), 0.70

::::::
(±0.01)

:
(temporal autoencoder) to 0.78 (seismic attributes). After applying a post-processing step

to event-based predictions, the avalanche recall of the three models significantly increased, reaching values between 0.82 and30

0.91.
::::
0.77

:::::::
(±0.01)

::::::::
(spectral

:::::::::::
autoencoder). The developed approach could be potentially used as an operational, near-real-time

:::
near

::::::::
real-time

:
avalanche detection system. Yet, the relatively high number of false alarms still needs further implementation of

the current automated seismic classification algorithms to be used as unique methods to detect avalanches effectively.

::
for

::::::::
effective

::::::::
avalanche

::::::::
detection.

:

1 Introduction35

Every winter, snow-covered mountainous regions worldwide are exposed to the destructive potential of snow avalanches, caus-

ing fatalities and damage to infrastructure. On average in Switzerland, 25 avalanche fatalities occur every winter (Techel et al.,

2016). The catastrophic winter of 1999 resulted in infrastructural damage costing several hundred million Swiss francs (Bründl

et al., 2004). Such periods underscored the need for ongoing investments in avalanche prevention measures and providing ac-

curate avalanche forecasts. Avalanche forecasting is mainly driven by analysing weather measurements and forecasts in combi-40

nation with snowpack and avalanche observations (Schweizer et al., 2020). Detailed information on the location and timing of

avalanche occurrences is indispensable for validating avalanche forecasts (e.g. van Herwijnen et al., 2016; Bühler et al., 2022)

::::::::::::::::::::::::::::::::::::::
(van Herwijnen et al., 2016; Bühler et al., 2022), effectively implementing mitigation measures (e.g. McClung and Schaerer, 2006; van Herwijnen et al., 2018)

:::::::::::::::::::::::::::::::::::::::::::::::
(McClung and Schaerer, 2006; van Herwijnen et al., 2018), hazard mapping (e.g. Bühler et al., 2022)

:::::::::::::::::
(Bühler et al., 2022) and

the development of statistical approaches to predict natural avalanche release (Sielenou et al., 2021; Hendrick et al., 2023;45

Mayer et al., 2023). However, avalanche activity data are still mainly obtained through human field observations, which

are especially incomplete and uncertain in
:
.
::::::::::::
Consequently,

:::
the

:
poor visibility conditions during storms

::::
snow

:::::::
storms, when

avalanche activity is usually high (Schweizer et al., 2020)
::::::::::
particularly

::::
high

::::::::::::::::::::
(Schweizer et al., 2020),

::::
lead

::
to
::::::::::

incomplete
::::
and

:::::::
uncertain

:::::::::
avalanche

:::::::::::
observations. Hence, the

::::
there

::
is

:
a
:::::::
growing

:
demand for automated avalanche detection systems that pro-

vide reliable and continuous avalanche activity data is rapidly growing
::::
data

::
on

:::::::::
avalanche

::::::
activity.50

Since avalanches are extended moving sources of seismic energy, seismic monitoring systems can be used to detect natural

avalanches in large areas within a radius of several kilometres (Hammer et al., 2017; Pérez-Guillén et al., 2019; Heck et al.,

2019), regardless of the weather and visibility conditions. Seismic avalanche detection systems have been employed for several

decades to monitor and characterise avalanches (Suriñach et al., 2001; Biescas et al., 2003; van Herwijnen and Schweizer,

2011), assess the source location (Lacroix et al., 2012; Pérez-Guillén et al., 2019; Heck et al., 2018b) and infer flow properties55

(Vilajosana et al., 2007; Lacroix et al., 2012; Pérez-Guillén et al., 2016). Avalanches generate spindle-shaped, high-frequency

signals similar to other types of mass movements (Suriñach et al., 2005),
:::::
such

::
as

:::::::::
landslides,

::::::
debris

:::::
flows,

:::
and

::::::
lahars. These

patterns have frequently been used to discriminate avalanche signalsfrom other seismic sources. Nevertheless,
:::::
detect

::::
and

::::::
identify

:::::::::
avalanche

::::::
signals.

:::::::::
Although seismic detection systems

:::::
would

:::::::
provide

:
a
::::::::::::
cost-effective

:::
and

:::::::::
large-scale

::::::::::
alternative

::
to
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::::
other

:::::::
systems,

:::::
such

::
as

::::::
radars,

:::
they

:
have not yet reached the same level of reliability compared to other systems, such as radars,60

when it comes to
::::::::
regarding the automatic detection of avalanches (Schimmel et al., 2017). This limitation is partly due to the

complex signal transmission from the source (i.e., the avalanche) to the receiver and multiple sources of environmental noise

(e.g., earthquakes, aeroplanes, etc.).

The
::
As

::
a
::::::::
solution,

:::::::::::
conventional

:::::::
machine

::::::::
learning

::::::::
methods

::::
have

:::::
been

::::::
studied

::::
and

:::::::::
developed

::::
over

::::
the

::::
past

::::::
decade

:::
to

:::::::::::
automatically

:::::::
classify

:::::::
seismic

::::::
signals

::::::::
generated

:::
by

::::::::
different

:::::
types

::
of

:::::
mass

::::::::::
movements

:::::
based

:::
on

:::::::
Hidden

:::::::
Markov

:::::::
Models65

:::::::::::::::::::::::::::::::::::::
(Hammer et al., 2013; Dammeier et al., 2016),

:::::
fuzzy

::::
logic

:::::::::::::::::
(Hibert et al., 2014)

:::
and

::::::
random

:::::
forest

:::::::::
algorithms

:::::::::::::::::
(Provost et al., 2017)

:
.
:::
For

::::::::::
avalanches,

:::
the first attempt to automatically distinguish avalanches

::::
them from other sources based on seismic features

observed
:::::::
extracted

:
in the time-frequency domain and combined with fuzzy logic was conducted by Leprettre et al. (1996).

Afterwards, Bessason et al. (2007) developed a nearest-neighbour approach that successfully detected 65% of previously con-

firmed avalanche events. Later, Rubin et al. (2012) divided a seismic data stream into 5 s time windows and extracted 10 spectral70

features by applying a Fast Fourier Transform (FFT). Several
:::
fast

::::::
Fourier

:::::::::
transform.

::::
They

:::::
tested

::::::
several

:
machine-learning clas-

sifiers were tested using these input features, such as random forest algorithms, support vector machines, and artificial neural

networks. The
::::::
Among

:::::
them,

::::
their decision stump classifier reached the highest precision of 13.2%

::::
0.13,

:::::::::
indicating

::::
many

:::::
false

::::::
alarms, on manually identified avalanches, while .

:::
At

:::
the

:::::
same

::::
time,

:
they reported a recall of 89.5%

::::
0.90

:
and an accuracy of

93.0%
::::
0.93. More recently, Hammer et al. (2017) and Heck et al. (2018a) applied hidden Markov models (HMMs) to learn class75

characteristic patterns based on extracted spectral features for automatic avalanche classification. Extending on this approach,

Heck et al. (2018b) trained an HMM-based method to detect avalanches in continuous seismic data.
::
So

:::
far,

:::::
these

::::::::::
approaches

:::::
relied

::
on

:
a
::::::
careful

::::
and

:::::::::::::
time-consuming

::::::::
selection

::
of

:::::::
features

::::::
derived

::::
from

:::::::::
processing

::::::
signals

::
in

:::
the

::::
time

:::
and

:::::::::
frequency

:::::::
domain.

In recent years, the
:::::::::
emergence

::
of

:::::
deep

:::::::
learning

:::::::::
algorithms

:::
and

:::
the

:
extensive growth of collected data and the emergence80

of machine learning algorithms have opened up new perspectives for efficient and automated data processing. Machine

learning models can handle complex data sets
::
A

:::::::::
fascinating

:::::::
subfield

:::
of

::::
deep

:::::::
learning

:::
is

::::::::::::
representation

:::::::
learning,

:::::::::
providing

::
an

:::::::::
alternative

:::
to

:::
the

:::::
more

:::::::::
traditional

:::::::
process

::
of

::::::::::::
hand-crafting

::::
data

:::::::::::::
representations

:::::
based

:::
on

:::::::
specific

:::::::
domain

::::::::::
knowledge

:::::::::::::::::::::::::::::::::::
(Bengio et al., 2013; Längkvist et al., 2014).

::::::
These

::::::
models

::::
can

:::::::
process

:::::::
complex

:::::::
datasets

::::
and

::::
infer

:::::::::::::
representations

:
in a rea-

sonable time
::
by

:::::::
reducing

:::
the

:::::::::::::
dimensionality

::
of

::::
data

::::::::::::::::::::::::::::
(Hinton and Salakhutdinov, 2006) and rapidly synthesise data processes,85

providing valuable and complementary insightsinto data (Mousavi and Beroza, 2022). Over the past decade, statistical and

machine learning methods have been developed for automatically classifying seismic signals generated by different types of

slope failures based on Hidden Markov Models (Hammer et al., 2013; Dammeier et al., 2016), fuzzy logic (Hibert et al., 2014)

and Random Forest algorithms (Provost et al., 2017). So far, these approaches relied on carefully engineered features derived

from processing signals in the time and frequency domains . In contrast, we explored a novel approach to automatic feature90

extraction by developing two unsupervised autoencoders for learning temporal and spectral signals. Autoencoders, introduced

by Rumelhart et al. (1986), are neural networks specialised in extracting relevant features from the data, relying on unsupervised

learning. They can be directly trained on raw input signals and thus are not dependent on labels or expert-based tuning of

specialised feature extractors . The architecture traditionally consists of an encoder and decoder, where the former embeds an
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input signal to a bottleneck layer, i.e. the latent space, where relevant information is stored. This low-dimensional embedding95

is designed and trained to include all the relevant information of a given signal in a feature vector of lower dimensionality

than the input. For example, Mousavi et al. (2019) used an autoencoder to
:::::::
However,

:::::
these

:::::
novel

:::::
deep

:::::::
learning

::::::::::
approaches

::::
have

:::
not

:::
yet

:::::
been

:::::::
explored

:::
for

:::::::
seismic

::::::::
avalanche

:::::::
signals,

::::::::
although

::::
they

::::
have

:::::
been

::::::
applied

:::::::::::
successfully

::
in

::::::
related

::::::::
domains

::::::::::::::::::::::::::::::::::::::::
(Seydoux et al., 2020; Mousavi and Beroza, 2022)

:
.
:::
For

:::::::
instance,

::::::::::::::::::
Mousavi et al. (2019)

::::::
trained

::::::
feature

::::::::
extractors

::
to cluster seis-

mic signals of an earthquake catalogue and showed comparable precision to supervised methods. Kong et al. (2021) evaluated100

different autoencoder architectures
:
In

::::::::
contrast,

:::::::::::::::
Kong et al. (2021)

::::::::
evaluated

::::::
similar

:::::::
methods

:
for seismic event discrimination

and phase picking.
:::::
These

::::::
studies

::::
have

::::::
proven

::::
that

:::::::::::
unsupervised

::::::
feature

:::::::::
extractors

:::
can

::::
keep

:::
up

::::
with

:::::::::::::
state-of-the-art

:::::::
models,

::::::::
mitigating

:::
the

::::::::::::::
time-consuming

:::
and

::::::::
expensive

::::
data

::::::::
labelling.

:

In this study, weexplored the autoencoder model for automatic feature extraction from seismic signals generated by avalanches

and other sources. First, we ,
:::::::::

therefore,
::::::::
leveraged

:::
the

::::::::
potential

::
of

:::::::::::
unsupervised

::::::::::::
representation

:::::::
learning

::::::::
methods

::
by

::::::::
applying105

::
the

:::::::::::
autoencoder

:::::
model

::::::::::
introduced

::
by

::::::::::::::::::::
Rumelhart et al. (1986)

::
for

::::
the

:::
first

::::
time

:::
to

::::::
seismic

:::::::::
avalanche

::::::
signals

::
to

::::::::::::
automatically

:::::
extract

::::::::::::
discriminative

:::::::
features.

:::::::::
Moreover,

:::
we

:::::::::::
benchmarked

:::::
these

::::
novel

:::::::
features

::::::
against

:::
our

::::::::
baseline,

:
a
:::
set

::
of

:::::::::::::::
expert-engineered

::::::
seismic

::::::::
attributes,

:::
by

:::::::::
evaluating

::::
them

:::
on

::
an

:::::::::
avalanche

:::::::::::
classification

:::
task

:::::
using

:::::::
random

:::::
forest

:::::::
models.

::::
With

::::
this

::::::::
approach,

:::
we

:::
aim

::
to

:::::::
advance

::::
and

::::::::
automate

::::::::
avalanche

::::::::
detection

:::::
using

:::::::
seismic

:::::::::
monitoring

::::::::
systems.

:::
For

::::
this,

:::
we

::::
first compiled a catalogue

of seismic events recorded at our
::
84

:::::::::
avalanches

::::
and

:::
828

::::::::
unrelated

:::::
noise

:::::
events

::::::::
recorded

::::
with

::
an

:::::
array

::
of

::::
five

::::::
seismic

:::::::
sensors110

:
at
::

a
:
study site above Davos (Sect. 2), Switzerland, throughout the winter seasons of 2020-2021 and 2021-2022. In Sect. 3,

we described the foundation of this
::
the

:::::::
training dataset, which is one of the most critical parts of any machine learning model

development. Similar to previous studies, we
::::
built

::::
upon

::::::::
manually

::::::
picking

:::::
event

::::
onset

::::
and

::::
end,

::::
using

::::
each

::::::
sensor

::::::::
separately

::::
and

:::::::
applying

:
a
::::::::::

windowing
::::::::
algorithm

:::
of

:::
10 s

::::
with

:::::
50%

:::::::
overlap.

:::
We

::::
then extracted features from

::::
these 10 s seismic time windows

and trained classifiers based on these features. In the feature extraction process,
:::
we

:::::::::::
implemented

:
a
:::::::
baseline

:::::::
method (Sect. ??),115

we implemented two new
:::
4.1),

::::::
which

::
is

:
a
:::
set

::
of

::::::::::
engineered

::::::
seismic

:::::::::
attributes.

:::::::::
Moreover,

:::
we

:::::::::
developed

:::
two

:
methods based

on autoencoders , automatically tuned to extract 32 and 16 input features , and compared them against a set of 57 standard

expert-based seismic attributes. The routines to optimize and train the autoencoder models is shown in Sect. ??. Using the

different
:::::
(Sect.

::::
4.2),

:::::
which

:::::::
learned

::
to

:::::::::::
automatically

::::::
extract

:::::::
features

::::
from

:::
the

:::::::
signal’s

::::
time

:::
and

:::::::::
frequency

::::::
domain

:::::::::::
respectively.

:::::
Using

:::::
these

::::
three

:
sets of input features, we trained three random forest classifiers

:::::::
optimised

::::
and

::::::
trained

::::
one

:::::::
random

:::::
forest120

:::::::
classifier

:::
per

::::
set, to automatically distinguish the avalanche signals from other seismic events (Sect. 4.3). We analyzed and

::::::
Further,

:::
we

:::::::
defined

:::
two

::::::::::::::
post-processing

:::::::::
techniques

::
on

::::
the

:::::::::::
single-sensor

:::::::::
predictions

::
to
:::::

reach
::::::

sensor
::::::::::
array-based

::::::::::
predictions

::::::
through

:::::::::::::
multiple-sensor

:::::::::::
aggregation,

:::
and

::::::::::
event-based

::::::::::
predictions

:::::
(Sect.

:::::
4.0.1).

:::
In

::::
Sect.

::
5

:::
we

:::::::
analysed

::::
and compared the per-

formance of the models in Sect. 5. Finally, a discussion of the main results and conclusions is presented
:
a
::::::::::::
single-sensor,

:::::::::
array-based

::::
and

::::::::::
event-based

::::::
setting.

:::::::
Finally,

:
in Sect. 6 and 7

::
we

:::::::
discuss

:::
the

::::
main

::::::
results

::::
and

:::
the

:::::::
potential

::
of

::::::::
applying

:::::
these125

:::::::
methods

::
to

::::::::
avalanche

:::::::
activity

::::::::::
monitoring,

::::::::
automatic

::::::
dataset

:::::::
labelling

::::
and

::::
early

:::::::
warning

::
in
:::
the

::::::
future

:::
and

::::::
present

::::::::::
conclusions.
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Figure 1. Right
:::
Left: Map and location of the

:::::::
Dischma study site. The instrumentation consisted of a seismo-acoustic

::::
sensor

:
array (blue

dots), three cameras and a Doppler radar(red triangle). The approximate area where avalanches can
::::
could

:
be detected is shown for the

seismo-acoustic
:::::
sensor array (blue ellipse) and the radar (red cone). Moreover, an

:::
the

::::::::
red-shaded

::::
area

:::::::
highlights

:::
the

::::
same

:
avalanche path

is highlighted with
::
as

::
in the red shaded area

::::
photo

:::
on

:::
the

::::
right. Left

::::
Right: Photo taken by an automatic camera at the Dischma study site,

showing the georeferenced path of a dry-snow avalanche released on 2 February 2022 at 02:31.

2 Study Site
:::
site

:::
and

:::::::::::::::
instrumentation

The study site
::::::::
avalanche

:::::
study

::::
site

:::::::::
’Dischma’ is located at the end of the Dischma Valley, a tributary valley above Davos,

Switzerland (Fig. 1). The seismic
:
A
::::::::::::

continuously
::::::::
operating

::::::::
detection

:::::::
system

:::::::::
integrating

::::::::
multiple

::::::
sensor

:::::
types

::::::::
monitors

:::::::::
avalanches

::::::
flowing

::::::
down

:::
the

::::::::::
surrounding

::::::
slopes.

::::
The

:
system was deployed on a flat meadow at about 2000 m a.s.l. (East-130

ern Swiss Alps; 46.72°N, 9.92°E). The surrounding mountains form a basin of steep slopes reaching up to 3000 m a.s.l. Since

the winter season of 2020-2021, approximately
:::::
usually

:
from November to May, we installed a seismo-acoustic

:::::
sensor

:
ar-

ray of five co-located seismic and infrasound sensors arranged in a star-like pattern.
::::
This

::::::
spatial

:::::::::::
configuration

::::::
allows

:::
for

:::
the

:::::::::
localisation

::
of
::::::::::

avalanches
::::::::::::::::
(Heck et al., 2018b)

:
. The seismic sensors were buried into the ground at a depth of approximately

50 cm and subsequently covered by snow during winter. A single measuring unit consists of a one-component seismometer135

Lennartz LE-1D/V (eigenfrequency of 1 Hz and sensitivity of 800Vm−1 s) and an infrasound sensor Item-prs (frequency re-

sponse of 0.2-100 Hz and sensitivity of 400mVPa−1). The central seismic sensor consisted of
::::
only

::::::::
exception

::::
was

:::
the

::::::
central

::::::::
measuring

::::
unit

:::::::
applying

:
a three-component seismometer LE-3Dlite (eigenfrequency of 1 Hz and sensitivity of 800Vm−1 s), of

which we,
::::::::
however, only used the vertical component in this study. The sensors were connected to the same digitizer (Centaur

digitizer from Nanometrics), recording continuously with a sampling frequency of 200 Hz. The seismo-acoustic
:::::
sensor

:
array140

monitors avalanches released from all slopes within a radius of approximately 3 km (blue ellipse in Fig. 1).

Additionally, the site is
:::
was equipped with a Doppler radar and three automatic cameras to obtain independent validation

data
:::::::
provided

:::
that

:::::::
weather

:::::::::
conditions

:::::::
allowed

::
it, including accurate release times and information on the type and size of the

5



avalanches. The radar emits electromagnetic waves that are reflected by the avalanche flow, providing the location and velocity

of the moving avalanche (Meier et al., 2016). Figure 1 shows the location of the radar, which monitors several avalanche145

paths exposed to the west-southwest, covering an approximate area of 4 km2 (red delineated areain Fig. 1). In this case,

avalanches can
::
).

::::
With

:::
this

:::::
radar,

:::::::::
avalanches

:::::
could

:
be detected up to a maximum distance of approximately 2 km. The cameras

automatically photograph every
:::::::::::
photographed

::
all

::::::::::
surrounding

::::::
slopes

:::::
every 30 minutes all the surrounding slopes

::::::
minutes

:
(Fig.

1).

::
In

::::::::
summary,

::::
the

::::::::::
combination

:::
of

::::::::
detection

:::::::
systems

::::::::
installed

::
at
::::

the
:::::
study

:::
site

::::::::
allowed

::
us

:::
to

:::::
assess

::::
the

:::::::::
limitations

::::
and150

:::::::::
advantages

::
of

::::
each

::::::
system

::::::::::
individually,

:::
as

:::
well

:::
as

::::
their

::::::::
combined

:::::::::::
effectiveness

:::
for

::::::::
avalanche

::::::::
detection

:::
and

::::::::::::::
characterisation.

::
In

:::
this

:::::
study,

:::
we

:::::::
focused

:::::::::
exclusively

:::
on

:::::::::::
automatically

::::::::
detecting

:::::::::
avalanches

:::::
using

:::::::
seismic

::::
data.

::
In

::::::::
contrast,

::
we

:::::
used

:::
the

:::::::
Doppler

:::::
radar,

:::::::
cameras

:::
and

:::::::
acoustic

:::::::
systems

::
to

:::::::
validate

:::
the

:::::::
detected

::::::::
avalanche

::::::
events

:::::::::::
qualitatively.

3 Data

We compiled a catalogue of seismic events from
::::
From

:
the continuous recordings of the

::::::
seismic

::::::::
detection

::::::
system

:::::
(Sect.

:::
2),

:::
we155

:::::::
compiled

:::
an

:::::
event

::::::::
catalogue

:::
for

:::
the winter seasons 2020-2021 and 2021-2022. Concretely, we manually picked

::::::::
Foremost,

:::
we

:::::::
collected

:::::::::
avalanche

::::::
signals

:::::::
detected

::
by

:::
the

:::::
radar

:::
and

:::::::
cameras.

:::::::::::
Additionally,

:::
we

::::::::
manually

::::::
picked

::::::
seismic

:
events within periods

of known avalanche activity and pre-processed the seismic signals. Then
::::
(Sect

::::
3.1),

::::::::
ensuring

::
to

::::::
include

:::::::::
avalanches

:::
that

:::::
were

:::
not

::::::::
detectable

:::
by

::::
these

:::::
other

:::::::
systems.

:::::
Next, three experts labelled the events , with which we compiled a two-class classification

dataset .
::
to

:::::::
compile

:
a
::::::
binary

:::::::::::
classification

::::::
dataset

:::::
(Sect.

::::
3.2).

::::::
Lastly,

:::
we

:::::::
prepared

:::
the

::::::
signals

::
of

:::
the

:::::
event

::::::::
catalogue

:::
for

::::::
model160

::::::::::
development

:::::
(Sect.

:::::
3.3).

3.1 Event picking and signal processing

Supervised machine-learning models require a definition of eventsand a subsequent data annotation for training. For the former

requirement
::
To

::::::
define

::::::::
avalanche

:::::::
events,

::
we

::::::::
selected

::::::
signals

:::::
based

::
on

::::
the

::::::
release

:::::
times

:::::::
provided

:::
by

:::
the

:::::
radar

:::
and

:::::::::
automatic

:::::::
cameras.

::
In

::::::::
addition, we picked events

:::::::
potential

:::::::::
avalanche

::::::
events

:::
and

:::::
other

:::::::
sources from the continuous recordings

::::::
seismic165

::::::::
recordings

::::
that

:::
had

:::::
been

::::::
missed

::
by

:::
the

:::::
radar

:::
and

:::::::
cameras. Typically, the amplitude of seismic signals generated by avalanches

gradually increases
:::::::
emerges

::::
(see

:::
Fig.

:::
2) since the avalanche approaches the location of the seismic sensors

:
at

:::
our

:::::
study

::::
site

(Fig. 1) and larger seismic energy dissipation
::::::
seismic

::::::
energy

::::::
radiates

:
due to snow entertainment and erosion processes within

the flowing avalanche (Pérez-Guillén et al., 2016). As avalanche signals gradually emerge from background noise and initially

have a low signal-to-noise ratio (Fig. 2a)
::::::::
Therefore, automated picking methods often miss the starting phase of avalanches and170

sometimes entire events. To prevent this, we visually inspected the continuous seismic recordings and identified signals that

exhibited a high signal-to-noise ratio, i.e. were not in the order of magnitude of the background noise. We
:::
For

:::::::::
efficiency,

:::
we

limited our search to periods with known avalanche activityfor efficiency. This included ,
:::::
such

::
as avalanche cycles during snow

storms, days when avalanches were
:::
had

:::::::
already

::::
been

:
detected by the radar and periods with observed avalanche deposits in

the cameras.175
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Before
:::
For

::::
ease

::
of

:
picking the signals in those periods, we transformed the raw seismic signals from the five sensors to

ground velocity (meters per second). Additionally, the signals were linearly detrended, tapered with a Hanning window and

filtered with a 4th-order Butterworth band-pass filter between 1 and 10 Hz. We found this to be the most energetic frequency

band of the avalanche signals recorded at our study site
::::
(Fig.

::
2), considering the typical relative distance between the avalanche

and our receivers. Finally, we manually cut the identified signals to
::
To

::::::
finally compile a clean event catalogue. To manually pick180

the start ,
:::

we
::::::::
manually

:::::::
defined

:::
the

:::::
onset and end times , we visually inspected

:
of

:::
the

::::::::
identified

:::::::
signals

::
by

:::::::
visually

:::::::::
inspecting

the seismic signal, the envelope signal and the spectrogram. In summary
::::
total, we picked 912 non-background noise signals

:::::
events

:
lasting between 5 and 515 s, which we labeled

::::::
labelled

:
in the next step.

3.2 Labelling of events
:::::
Event

:::::::
labelling

For the annotation and labelling of
:::::
Having

::::::
picked

::::::::
potential events, three experts assigned signals into two classes, avalanches185

::::::::
avalanche and non-avalanche events:

Avalanches: Avalanche events were first identified using the radar and camera data (Fig. 1) . We did this by matching seismic

signals to the avalanches observed in the radar data
:::::::::
avalanches

:::::::
detected

:::
by

:::
the

::::
radar

:
or on images. A second step to

collect avalanches missed by these systems was to visually classify signals based on the characteristic seismic signature

of avalanches (e.g. non-impulsive onsets, spindle-shaped signals and triangular-shaped spectrograms;
:::
left

::::::
column

:::
in190

Fig. 2a) as proposed by van Herwijnen and Schweizer (2011). Additionally, the output of wave parameters derived from

:::::
sensor

:
array processing of the seismic and infrasound data was considered, i.e. backazimuth angles and apparent velocity

(Marchetti et al., 2015; Heck et al., 2018b).

Noise (non-avalanche events): Earthquakes were the most frequent source of environmental noise at our study site. They

were identified by visual inspection of the signals (typical emergent onsets and usually identifiable arrival of the dif-195

ferent phases;
:::::
middle

:::::::
column

::
in

:
Fig. 2b) and comparison of our seismo-acoustic recordings with two nearby seismic

stations from the Swiss National Network (e.g. Clinton et al., 2011)
::::::
national

:::::::
network

:::::::::::::::::
(Clinton et al., 2011). In addition,

online earthquake catalogues were consulted to match our recordings with catalogued events (SED, 2023; EMS, 2023).

The remaining portion of seismic events was generated by different sources, including aeroplanes (
:::
right

:::::::
column

::
in

:
Fig.

2c), helicopters, explosions in nearby skiing resorts, weather events (e.g. wind), people or animals walking close to the200

sensors, and many more unknown event sources. We summarized
::::::::::
summarised this collection of unrelated events as

:
a

“noise” class. In particular, weak signals generated by non-verified small avalanches might also fall into this heteroge-

neous noise class. Notably
::::
class.

:::::::::
Moreover, this definition of the noise class barely included low SNR

::::::::::::
signal-to-noise

::::
ratio

:::::
(SNR)

:
background noise.

To label avalanche events,
:::
The

:
three experts independently assigned subjective probabilities using either 0 (unidentified205

avalanche
:::::::::::
non-avalanche), 0.5 (potential avalanche) or 1 (certain avalanche). A signal was labelled positive if the sum of

the three expert scores exceeded 1.5. Note that the average rate of agreement in avalanche score
:::::
expert

:::::::::::
probabilities

:
on the

avalanche signals between the three experts was 58%.
:::
This

:::::
hints

::
at

:::
the

::::::::
inevitable

:::::
expert

:::::
bias,

:::
the

:::::::
inherent

:::::::::
subjectivity

::::
and

:::
the
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Figure 2. Recordings
::::::::
Waveform

:::
and

:::::::::
spectrogram

:
of the avalanche in Fig. 1

::::
(left), an earthquake

:::::::
(middle) and an airplane

:::::::
aeroplane

:::::
(right).

The dashed orange vertical lines indicate the manual cuts of the
:::::::
manually

::::::
defined event catalogue

::::
onsets

:::
and

::::
ends.

:::
The

::::
pink

::::::
vertical

::::
lines

:
in
:::
the

::::::::
avalanche

:::::::
waveform

::::::
indicate

::
a
:::
10 s

::::::
seismic

:::::
snippet

::::::::
extracted

::
by

::
the

:::::::::
windowing

::::::::
algorithm.

:::
This

::::::
specific

:::::
signal

::::::
window

::
is
:::::::::
highlighted

:::
later

::::
also

:
in
::::
Fig.

:
4
:::
and

:::
10.

:::::::::
complexity

::
of

:::
the

::::
task.

:::::::
Finally,

:
a
::::::
signal

:::
was

:::::::
labelled

:::::::
positive

::
if

:::
the

::::
sum

::
of

:::
the

::::
three

::::::
expert

::::::::::
probabilities

::::
was

::
at

::::
least

::
2.

:
In this

manner, we compiled an event catalogue with 84 avalanches (31 verified with the radar or camera images) and 828 unrelated210

noise events from the 2020-2021 and 2021-2022 winter seasons. For completeness
:::
but

:::
not

::::::
subject

::
to

:::
the

::::::
binary

:::::::::::
classification

::::::::
presented

::
in

:::
this

:::::
study, the same labelling process was used for earthquakes, with which we found 183 earthquakes in the noise

class. The seismic sensors recorded maximum absolute amplitudes ranging from 3.3×10−8 to 4.7×10−5 ms−1 for avalanches,

1.3×10−8 to 9.7×10−6 ms−1 for earthquakes and 1.4×10−9 to 5.1×10−5 ms−1 for noise signals. Signal duration
::::::::
durations

ranged from 13 to 113 s, 7 to 263 s and 5 to 515 s in each class, respectively. Noteworthy, the amplitude range of the noise215

classincludes the amplitude ranges of both avalanches and earthquakes
:::::::
Notably,

:::
the

::::
noise

::::::
class’s

:::::::::
amplitude

:::::
range

:::::::
includes

:::
the

::::::::
avalanche

::::::
class’s

::::::::
amplitude

:::::
range, highlighting its heterogeneity.

3.3 Signal windowing,
:::::::::::::
normalisation and dataset splitting

Before training the models
:::::::
Aiming

::
to

::::::
enlarge

:::
the

:::::::
number

::
of

:::::::
samples

:::
and

:::::::
develop

:
a
::::::
model

:::::::
pipeline

:::
for

::::::::
real-time

:::::::
detection, we

further processed the event data in the catalogue. First, we treated the records of
:::::
signals

:::
of

:::
the

:::::
event

:::::::::
catalogue.

:::::::::
Therefore,220

::
we

:::::
used each seismic sensorindependently yielding a five-fold enlargement

:
’s

::::::
records

:::::::::::::
independently,

:::::::
yielding

:::
five

:::::
times

:::::
more

::::::
samples

::::
for

:::::
model

:::::::
training. Second, we applied a 10 s windowing

::::::
moving

:::::::
window

:
with 50% overlap to all signals. This

windowing resulted in
::::::
moving

:::::::
window

::::::::
algorithm

:::::::
resulted

::
in

::::
again

:
more data samples to train , as the modelsonly received a

:::
and

::::::
ensured

:
fixed-sized input. We note that this strategy might also be

:::::
inputs

::
for

:::
the

:::::::
models.

::::::
Earlier

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lacroix et al., 2012; Hammer et al., 2017; Pérez-Guillén et al., 2019)

8



::::
have

:::::
found

:::
the

::::::::
minimum

:::::::
duration

:::
of

:::::::::
avalanches

::
to

::
be

:::::::
roughly

:::
ten

:::::::
seconds.

:::::::
Beyond,

::::
this

:::::::
strategy

::
is

:::
also

:
beneficial in a poten-225

tial (near) real-time detection system, where 10 s windows are continuously parsed.
::::::
Lastly,

:
a
::::::
crucial

::::
part

:::::
when

::::::::::
developing

:::::
neural

::::::::
networks

::
is
:::::

input
::::

data
::::::::::::

normalisation
::::::::::::::::::::
(Sola and Sevilla, 1997)

:
.
:::
By

::::::::
applying

:::
the

::::::::::
windowing

:::::::::
algorithm,

:::
we

::::::::
obtained

:::::::::::
subsequences

::
of

::::
time

::::::
series.

:::::
Since

::::::::
waveform

::::::::::::
characteristics

::
of

::
an

:::::::::
upcoming

:::::
event

:::
are

:::
not

::::::
known

::
in

:::::::
advance

:::::
during

:::::::::
inference,

::
we

::::::::::
normalised

::::
each

:::::::
window

::::::::
separately

:::
by

::
its

:::::::::
maximum

:::::::
absolute

::::::::
amplitude

:::::::
instead

::
of

:::::
using

::
the

:::::::::
maximum

:::::::
absolute

:::::::::
amplitude

::
of

:::
the

:::::
entire

:::::
event

::
to

:::::
avoid

::::::::::
look-ahead

:::::::::::
normalisation

:::::::::::::::::::::::::::::::::::::::::::
(Rakthanmanon et al., 2012; Lima and Souza, 2023).

:
With this, the la-230

belled data set
:::::
dataset

:
comprised 3’580 avalanche and 37’110 noise (non-avalanche) windows, which include

:::::::
included 11’575

earthquake windows. This dataset is at the core of this study and allows us to systematically compare the methods in different

settings.

Lastly, to learn the model
::::::
Finally,

:::
we

:::::::
defined

::::
four

:::::::::::
independent

::::
data

:::::
folds

::
to

:::::::
develop

:::
the

:::::::
models

:
and select the best

architectures and
:::::::
optimal

:::::::::::
architectures

:::
and

::::
their

:
hyper-parameters , we defined four independent data folds, i.e. three train235

folds for cross-validation and a test fold for assessing the error
:::
(see

::::
Fig.

::
3).

::::::
Three

:::::
folds,

:::::::::
comprising

::::
70%

::
of

:::
the

::::
data

::::::::
samples,

::::
were

::::
used

:::
for

:::::
model

:::::::
training

:::
and

:::::::::::
optimisation

::
via

::::::
3-fold

:::::::::::::
cross-validation.

::::
The

:::
test

:::
set

::::
(top

:::
bar

::
in

:::
Fig.

:::
3),

:::::::::
containing

::::
30%

::
of

:::
the

::::
data,

:::
was

:::
set

:::::
aside

::
to

:::::
assess

:::
the

:::::
model

:::::::::::
performance on an independent inference set. We separated the folds by specific dates to

not induce any correlation between the folds and reduce
::::::
prevent

::::
any

:::::::::
correlation

:::
and

:
temporal data leakage

:::::::
between

:::
the

::::
folds.

We chose the dates such that the class distributions across the folds are even
::::
were

::::::::::::
approximately

::::::::
balanced

:
(Fig. 3). The first240

train fold included dry avalanches exclusively, whereas the second contained a mixture of dry avalanches in the early part of

the period,
:::::::::::
Additionally,

:::
we

::::::
ensured

::::
that

:::
the

::::::::::
independent

:::
test

:::
set

::::::::
included

::::
both

:::
dry

:
and wet avalanchesin the latter. The third

train fold and the fourth test fold spanned the winter season of 2021-2022. Again, the earlier counted towards dry conditions

and the last both wet and dry.
:::
This

::::::
dataset

::::
was

:::
the

:::::::::
foundation

::
of

::::::
model

:::::::::::
development

:::
and

:::::::
allowed

:::
for

:::::::::
systematic

::::::::::
comparison

::
of

:::
the

::::::
models

::
in

:::::::
different

:::::::
settings.

:
245
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11195

7995
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Figure 3. Class distributions
:::
and

:::
date

::::::
ranges in the

:::
train

:::
and

:::
test

:
folds. The annotations on top

:
at

:::
the

:::
end of the bars depict

:::
show

:
the total

number of 10 s seismic windows in each fold.
:::
The

:::::::::
annotations

::
in

:::
blue

:::::
depict

:::
the

::::::::
percentage

::
of

::::::::
avalanche

:::::::
windows.
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4 Model development
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Figure 4. Overview of the three different approaches for
::::::
methods

::
to

::::
infer avalanche classification

:::::::::
probabilities. The blue elements depict the

feature extraction.
::::::
During

:::::::
inference, while the

:::::
decoder

::
of
:::

the
::::::::::
autoencoders

::
is

::::::::
discarded,

:::
and

::::
only

:::
the

::::::
encoder

::
is

::::
used

::
to

:::::
extract

:::::::
features.

:::
The orange parts show the classification

:::
using

::::::
random

:::::
forest

::::::
models. Top

:::
The

::::::::
predictions

:::
are

:::::
shown

::
in

::::
pink

::
for

:::
the

:::::
given

:::::
seismic

:::::::
window

(blue
::
the

::::
same

::
as

::
in

::
the

:::
top

:::
left

::
of

:::
Fig.

:
2)

:
.
:::
Left: The temporal autoencoder features

::::
(TAE)

::::::
feature

::::::::::
classification; middle: The hand-engineered

::::::
baseline

::::::::::
classification

::::
using

::::::::
engineered

:
seismic attributes; bottom

::::
right: The spectral autoencoder features

:::::
(SAE)

:::::
feature

::::::::::
classification.

In order to classify each signal window (Fig. 4), we need to extract features from them (Sect. ??), followed by a classification

model learned to discriminate classes of interest (Sect. 4.3). In the former, we used a conventional human-supervised feature-engineering

approach (Sect. 4.1 and Appendix B)as a benchmark and two fully unsupervised autoencoders (Sect. ??), which required

definitions of the training strategies (Sect. ??). In the latter, we chose and developed binary classifiers for the preceding feature250

extraction methods (Sect. 4.3).
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4.1 Feature extraction

:::
For

:::
the

::::
later

::::::::::::
classification,

:::
we

::::
first

::::::::
extracted

:::::::
features

:::::
from

:::
the

::::
10 s

:::::
signal

::::::::
windows

:::::
(Fig.

:::
4).

:
Feature extraction generally

describes the compression of a signal to a lower dimensional embedding while retrieving/preserving
:
to

:::::::
retrieve

:
the signal’s

most distinctive information. The embedded information (the features) is usually input into
:::
used

::
in
:
an upstream classification255

or regression task. Following this general approach, we explore
::::::::::
framework,

::
we

::::::::
explored three methods to extract information

from seismic signals either as lower dimensional
::::::
learned feature vectors or domain-specific

:::::::::
engineered features, which are

then classified as avalanche or noise.
:::::::::
Concretely,

::
we

:::::::::::
implemented

::
a

:::::::
baseline

:::::
based

::
on

:
a
:::::::::::
conventional

:::::::::::::::
expert-supervised

::::::
feature

:::::::::
engineering

::::::::
approach

::::::
(Sect.

::::
4.1)

:::
and

:::::::::
developed

::::
two

::::
fully

:::::::::::
unsupervised

:::::::::::
autoencoders

:::
to

::::::
extract

:::::::
features

::::
from

::::::::
temporal

::::
and

::::::
spectral

:::::
input

::::
data,

:::::::::::
respectively

:::::
(Sect.

::::
4.2).

:::
We

::::
then

:::::::::
optimised

:::::
three

:::::::
separate

::::::
random

::::::
forest

::::::
models

:::
on

:::
top

::
of

:::
the

:::::::::
preceding260

::::::
feature

::::::::
extraction

:::::::
methods

:::::::::
predicting

::::::::
avalanche

::::
and

::::
noise

:::::::::::
probabilities

:::::
(Sect.

::::
4.3).

:

In a first attempt, following a

4.1
:::::::

Baseline
:::::::
features

::::
Since

::::::::::::
representation

:::::::
learning

:::::::
methods

:::
are

::
a

:::::
novel

:::::::
approach

::
in

:::::::
seismic

::::::::
avalanche

::::::::
detection,

:::
we

::::::
sought

:
a
:::::::
baseline

::::::
against

::::::
which

::
to

:::::::::
benchmark

:::::
them.

::::::
Earlier

:::::::
studies

::
on

::::
time

::::::
series

:::::::::::
classification

::
in

::::::
general

:::::::::::::::::::::::::::::::::::::::::
(Ismail Fawaz et al., 2019; Barandas et al., 2020)265

:::
and

::
on

:::::::
seismic

:::::::
detection

::
of

::::::::
different

::::
types

::
of

:::::
mass

:::::::::
movements

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rubin et al., 2012; Provost et al., 2017; Lin et al., 2020; Wenner et al., 2021; Chmiel et al., 2021)

::::::::
developed

:::::::::::
classification

::::::
models

:::::
using

:::::::::
traditional

::::::
feature

::::::::::
engineering

::::::::
strategies.

:::::::::
Therefore,

::
in

:::
the

:::::::
baseline

::::::
model,

:::
we

::::::::
followed

:
a similar approach to Provost et al. (2017), which classified seismic events generated by landslides , we

:::
and extracted a set of 57

predefined standard seismic attributes(Sect. 4.1). The feature engineering approach is widely used in seismic detection of mass

movements (Rubin et al., 2012; Provost et al., 2017; Lin et al., 2020; Wenner et al., 2021; Chmiel et al., 2021) and time series270

classification in general (Barandas et al., 2020). Additionally, it served as a benchmark for comparing our second approach

(Sect. ??), which is to learn the feature extraction completely unsupervised without making any preliminary assumptions about

the signals
::
71

:::::::::::::::
expert-engineered

::::::
seismic

::::::::
attributes. Using an unsupervised approach is beneficial when not having ground-truth

labels, as in our case. Therefore, we used two autoencoder models to extract features from temporal and spectral input data,

respectively (Sect. ??). The autoencoder architecture, which
::::::::::
Specifically,

:::
we

::::
used

::
a

:::::
subset

::
of

:::
22

:::::::::
waveform,

::
17

:::::::
spectral

:::
and

:::
18275

::::::::::
spectrogram

::::::::
attributes

:::
(see

:::::
Table

::::
B1,

:::
B2

:::
and

:::
B3

:::
for

::::
more

:::::::
details).

:::
We

::::::::
extracted

:::::
these

::::
from

:::
the

:::::::::::::::
frequency-filtered

::
(1

::
to

::::::
10 Hz)

:::
10 s

:::::::
seismic

::::::
signals

:::
for

::
all

:::::::
sensors

:::::::::
separately.

:::::::::::
Additionally,

::
we

::::
did

:::
not

::::::
include

:::::::
network

::
or

:::::::::::::
polarity-related

::::::::
attributes

:::::
since

:::
we

:::::
aimed

::
at

:::::::::
developing

::::::
models

:::
for

::
a

:::::::::::
single-sensor

::::::
setting

:::
and

:::
our

:::::
study

:::
site

::::
was

::::::::
equipped

::::
with

:::::::::::::
one-component

::::::
sensors.

:

4.2
::::::::::

Autoencoder
::::::::
features

:::
The

::::::::::
autoencoder

:::::::
concept was first introduced in Rumelhart et al. (1986) ,

::
by

::::::::::::::::::::
Rumelhart et al. (1986) and has since been adapted280

for various applications (Xugang et al., 2013; Mousavi et al., 2019; Gu et al., 2021). A vanilla autoencoder
:::
The

::::::::::
architecture

consists of an encoder and a decoder:
:
. The encoder compresses the input signal to a lower-dimensional embedding, the latent

space
:::
i.e.

:::
the

:::::
latent

:::::::
(feature)

::::::
vectors. The decoder transforms feature vectors from this latent space

:::::::::::
decompresses

:::::
these

::::::
feature

11



::::::
vectors to the original input dimension. An

::::::
Overall,

:::
the

:
autoencoder is trained by learning to reconstruct the input signalsfrom

the lower-dimensional latent space, which requires the latter to store the most relevant information characterising each piece of285

the signal. By .
:::::
Thus,

:::
by design, the

::::::
encoder feature vectors are optimized to carry

::::::::
optimised

::
to

:::::::
preserve

:
the most distinctive

information of
:::::::::::
characterising

:
a given input signal , such

::
so that the decoder can reconstruct it. During inference, the decoder is

discarded, and only latent vectors are used as inputs to the classifier, which is trained separately.

4.2.1 Seismic attributes

In the first approach, we used a set of 22 waveform, 17 spectral and 18 spectrogram attributes (see Table B1, B2 and B3 for290

more details). These features were extracted from the frequency-filtered (1
::::
given

::::
that

:::
the

::::::::::::
autoencoder’s

:::::::
purpose

::
is to 10 Hz)

and normalized 10 s seismic signals for all sensors separately. Note that we did not include any network or polarity-related

attributes.
::::::
extract

:::::::
features

:::
for

:
a
:::::::::::
classification

:::::::
process

::
on

::::
top,

:::
the

:::::::
decoder

:::
can

:::
be

::::::::
discarded.

::::
The

:::::::::
classifiers,

::::::
which

:::
are

::::::
trained

::::::::
separately,

::::
use

:::::
solely

:::
the

::::::
feature

:::::::
vectors.

4.2.1 Autoenconders295

Developing neural networks involves optimizing network hyper-parameters and defining a training strategy. Therefore, we

used the first three folds in Fig. 3 to run 3-fold cross-validation. We defined a grid of hyper-parameter combinations, iteratively

trained the models on two and evaluated them on the left-out fold. We selected the model showing the best average performance

on all three folds according to predefined metrics. By definition, the autoencoder performance can be measured with its

reconstruction loss. However, given a decent reconstruction, we aimed to find the best input features for classification. Hence,300

we evaluated the autoencoders based on the avalanche and noise class separation within the latent (feature ) space. We

calculated the silhouette score (Rousseeuw, 1987) and the Calinski-Harabasz index (Caliński and Harabasz, 1974) for the features

and their given expert labels (see Appendix C). The best autoencoder was selected by searching for the highest-ranking

combination of silhouette score, Calinski-Harabasz index and the reconstruction mean squared error loss (see Appendix E).

Following the model selection, the autoencoders were retrained on the train folds (fold 1, 2 and 3 in Fig. 3), and after, we305

extracted the autoencoder features from all folds.

4.2.1
:::::::::::
Architecture

In the first autoencoder, i.e. the temporal autoencoder (TAE) , we considered the seismic time series data, hence the name. It was

developed for seismic waveform signals of 10 snormalized by their absolute maximum ,
::::::::::
normalised

::
by

::::
their

:::::::::
maximum

:::::::
absolute

amplitude. When dealing with time series data, common choices of computational units are one-dimensional convolutions310

:::::::::::::::::::
(Kiranyaz et al., 2021) and recurrent units such as the long short-term memory (LSTM) cells

::::
cells

:::::::
(LSTM;

:::::::::::::::::::::::::::::
(Hochreiter and Schmidhuber, 1997)

:
). Thus, we implemented the encoder as a sequence of 3 convolution

:::::::::::
convolutional

:
layers and one LSTM cell layer learning

temporal dynamics. The best model from the cross-validation procedure (
::::
based

:::
on

:::
the

::::::::::
optimisation

:::::::::
procedure

:::::
(Sect.

::::
4.2.3

::::
and

Table E2) was composed of convolutions with kernel size 20 (or 0.1 s) and stride 10. This implementation of stride reduces

12



Figure 5. Illustration of the architecture of the temporal autoencoder
:::::::::
architecture.

:::
The

::::::
encoder

::::::::
comprises

::::::::::::
one-dimensional

:::::::::::
convolutional

::::
layers

:::::::
(kernels

:
in
:::::

blue)
:::
with

:::::
leaky

:::::
ReLU

:::::::
activation

:::
and

::::
batch

:::::::::::
normalisation

:::::::
followed

::
by

:
a
::::
long

::::::::
short-term

::::::
memory

:::
cell

:::::::
(LSTM,

::::
pink).

::::
The

::::::
decoder

:::
uses

:::::::::::::
one-dimensional

::::::::
transposed

:::::::::
convolutions

::
to
:::::::::
decompress

:::
the

:::::::
extracted

::::::
encoder

::::::
features

:::::::::
(highlighted

::
in
::::::
orange)

:::
and

:::::::::
reconstruct

::
the

::::
input

::::::
signal.

the initial input length of 2000 samples (200 Hz × 10 s) to 200, 20, and 2 within each encoder layer. Similarly, we selected315

::
the

::::::
tuning

:::::::::
procedure

::::::::
suggested

:
32 filters in the first convolutional layerand doubled the number

:
,
:::::
which

:::
we

::::
then

::::::::
doubled in

each consecutive layer. In the last encoder layer, the LSTM cell summarizes
:::::::::
summarises

:
the output of the convolutions, i.e.

two 128-dimensional vectors, to a feature vector of 32 dimensions (32 features). The decoder sequentially repeats this latent

vector twice and applies 3
::::
three

:
transposed convolutions with kernel size 20 and stride 10 to decompress the sequence back

to its original length.
:
,
:::
i.e.

:::::
2000. Starting at 128 filters, we halved them in each

::::::
decoder

:
layer to reach 32 channels. To reduce320

this number back to the number of input channels, i.e. 1,
:::
we

::::::
applied

:
a convolutional layer with kernel size 3 ,

:::
and

:
stride 1 is

applied in the decoder output layer.

In addition, we used batch normalization
:::::::::::
normalisation (BN) (Ioffe and Szegedy, 2015) in all encoder and decoder layers

:
,

except for the decoder output layerto stabilize
:
,
::
to

:::::::
stabilise

:
and accelerate training. As an activation function, we use

::::
used the

leaky rectified linear unit (leaky ReLU; (Xu et al., 2015))
:
,
:::::
which

:::::::::::
outperformed

:::
the

:::::::
tangent

:::::::::
hyperbolic

:::::::
function

::::::
(Tanh)

::::::
during325

:::::
model

:::::::::::
optimisation. The only exception is again the output layer, where we replace

:::::::
replaced

:
the leaky ReLU with the tangent

hyperbolic (Tanh )
::::
Tanh

:
function to output values in the same range as the normalized input signalsin −1,1]

:::::::::
normalised

:::::
input

::::::
signals,

::::::
which

::
is

::::::
[−1,1]. In summary, Fig. 5 gives a simplified overview of this architecture comprising 514’337 learnable

parameters (226’848 in the encoder). Note that this
::::
This architecture is relatively small in the number of trainable parameters ,

hence
::::
and,

::::::::
therefore, well adapted to the size of our dataset.330

The second autoencoder implementation operates in the spectral domain, henceforth referred to as the
:::::
hence

::::::
named

:
spec-

tral autoencoder (SAE). We used the fast Fourier transform (FFT) to convert the filtered 10 s seismic signals into the fre-

quency domain. Thus, the input data to this model contains
::::::::
contained

:
the amplitude spectrum normalised using the min-max

normalization
:::::::::::
normalisation. In contrast to the temporal autoencoder, we replaced the aforementioned computational units, i.e.

13



Figure 6. Illustration of the
:::::

spectral
:::::::::
autoencoder

:
architecture

:
.
:::
The

::::::
encoder

:::
and

:::::::
decoder

::
are

::
a
:::::::
sequence of

:::::::::
compressing

:::
and

::::::::::::
decompressing

:::
fully

::::::::
connected

:::::
linear

:::::
layers

::::::
(dashed

:::
blue

:::::
lines).

::::
Each

::::
layer

::::
uses the spectral autoencoder

::::::::
hyperbolic

:::::
tangent

::::::
(Tanh)

:::::::
activation

:::::::
function

:::
and

::::
layer

::::::::::
normalisation.

:::
The

:::::::
extracted

::::::
features

::
are

::::::
shown

:
in
::::::
orange.

convolutions and LSTM cells, with fully connected layers. Through hyper-parameter optimization
::::::::::
optimisation

:::::
(Sect.

::::
4.2.3

::::
and335

::::
Table

::::
E4), we designed the encoder and decoder to compose 3

:::::::
comprise

:::::
three fully connected linear layers

::::
each. The hidden

dimensions in the encoder evolve
::::::
evolved

:
from 200 to 139, 78 and 16 (feature dimension). The decoder is

:::
was

:
a mirrored

version of the encoder. We
:::::
Based

:::
on

::::::::
parameter

::::::
tuning

:::
we

:
used the Tanh function as the non-linearity of choice in all layers

(Table E4). Moreover, we apply layer normalization
::::::
applied

::::
layer

::::::::::::
normalisation (LN) in each layer with the same exception of

the output layer. Figure 6 illustrates a simplified version of this architecture summing up to 81’330 learnable weights (40’589340

in the encoder). As for the TAE, this architecture is small and
::::
even

::::::
smaller

::::
and

::::
thus

:::
also

:
well adapted to our dataset.

::
the

::::
size

::
of

:::
the

::::::
dataset.

:

4.3 Autoencoder training

The training strategy is another main part of model development, which we optimized for the selected autoencoder architectures.

345

4.2.1
:::::::
Training

:::::::
regime

A training step in neural network optimization
::::::::::
optimisation

:
starts with sampling a batch of predefined size from the dataset.

For sampling, given that the data set is
:::
our

::::::
dataset

:::
was

:
severely imbalanced (Fig. 3), we implemented the

::::
used

:::
the

::::::::
so-called

weighted random sampler(,
:
as implemented in Paszke et al. (2019), see Appendix ??) , which samples data points according

to user-specified class weights. This allowed us to control the proportion of avalanche
:::::::
PyTorch

:::::::::::::::::
(Paszke et al., 2019).

:::::
This350

:::::::
sampling

:::::::
method

::::::::::
oversamples

:::
the

::::::::
minority

::::::::::
(avalanche)

::::
class

::::
and

::::
thus

:::::::
prevents

:::
the

::::::
model

::::
from

::::::
biasing

:::::::
towards

:::
the

::::::::
majority

::::::
(noise)

::::
class.

::::
The

::::::::
sampling

::::::
process

:::::
relies

:::
on

::::::::::
user-defined

::::
class

::::::::
weights,

:::::
which

::::::
allows

:::
the

:::
user

::
to
:::::::
control

:::
the

:::::::
expected

:::::::
number

14



::
of

:::::::
minority

::::
class

::::::::::
(avalanche)

:
samples within each batch.

::::::::
Therefore,

:::
we

::::::::
assigned

:::
the

::::::::
following

::::::
relative

::::::
weight

::
to

:::::
each

::::::
sample

::
of

:::
the

::::::::
avalanche

::::
class

::::::
(wav),

:::::
while

:::
we

:::::::
assigned

:::
the

:::::
noise

:::::::
samples

:
a
::::::
weight

::
of

::::
one

:::::::::
(wno = 1).

::::::::
Internally,

:::
the

::::::::
sampling

:::::::
method

::::::
rescales

::::
and

::::::::
interprets

::::
these

:::::::
weights

::
as

:::::::::::
probabilities.

:
355

wav =
Nno

Nav

Pav

1−Pav
::::::::::::::::

(1)

:::
Pav::

is
:::
the

:::::::::::
user-defined

::::::::
expected

::::::
portion

:::
of

:::::::::
avalanches

::::
per

:::::
batch,

::::
e.g.

:::
0.5

:::
for

::::::
evenly

::::::::
balanced

:::::::
batches.

:
The batch is then

passed through the entire network (forward pass) to produce the output (prediction). The output is compared to the tar-

get and the reconstruction loss (Mean Squared Error – MSE) is computed
::::
mean

:::::::
squared

:::::
error

::::::
(MSE)

::::::::::::
reconstruction

::::
loss

::
is

::::::::
computed

::::
(see

:::::::
Equation

::::
C1). The network weights are then optimized

::::::::
optimised by computing the gradients of the loss func-360

tion and applying a specified
::::::::::
propagating

:::::
them

::::
back

:::::::
through

:::
the

:::::::
network

::
(back-propagationalgorithm. Within this training

procedure, we searched for the optimal number of expected avalanche samples in each batch, the batch size and
:
)
:::::
using

:::
the

:::::
Adam

::::::::
optimizer

::::::::::::::::::::
(Kingma and Ba, 2014)

:::
with

::
a
:::::::
specified

:::::::
learning

::::
rate.

::::::
After, the learning rate to use with the Adam optimizer

(Kingma and Ba, 2014). After following
::::
next

:::::
batch

::
is

::::::
passed

::
to

:::
the

:::::::
network

:::::::::
repeatedly

:::::
until

::
all

:::::::
batches

::
in

:::
the

::::::
dataset

:::::
have

::::
been

::::
seen

:::::
once,

:::::
which

::::::
defines

::
an

::::::
epoch.

::::
The

:::::
entire

::::::
process

::
is

::::
then

:::::
again

:::::::
repeated

:::
for

:
a
::::::
certain

:::::::
number

::
of

::::::
epochs.

::::::
Figure

:::
E1

::
in365

::
the

::::::::
appendix

::::::::
illustrates

:::
the

:::::::
training

:::
and

:::::::::
validation

:::::::
progress

:::
per

:::::::
training

:::::
epoch

:::
for

::
the

::::::::
temporal

::::::
(TAE)

:::
and

:::::::
spectral

::::::::::
autoencoder

::::::
(SAE).

::::::::
Following

:
our hyper-parameter optimization

:::::
tuning strategy, we found the temporal autoencoder

::::::
training

:
optimal with an

expected portion of avalanches per batch of 0.6
::::::::
Pav = 0.6, a learning rate of 1e−4 and a batch size of 128

:::::
(Table

:::
E3). The

model was trained for 120 epochs, i.e. iterations through the entire dataset, with early stopping when the class-separation370

metrics
::::
(Sect.

::::::
4.2.2) started decreasing. Additionally, we applied data augmentation by randomly shifting the 10 s window

signals by 0 to 1 seconds to either the right or left , to reduce overfitting in the avalanche class and for better generalization

:::::::::::
generalisation

:
(Zhu et al., 2020). Similarly, in the spectral autoencoder

::::::
training, we used an expected portion of 0.5 avalanches

::::::::
Pav = 0.5

:::::::::
avalanches

:::
per

:::::
batch, a learning rate of 1e−4 and a batch size of 128 and found 5

:::::
(Table

::::
E5).

:::::::::
Moreover,

:::
we

:::::
found

:::
five training epochs to be optimal.375

4.2.2
:::::::::
Validation

::
In

:::::::
addition

::
to

::
the

:::::::
training

::::::
regime

:::::
(Sect.

:::::
4.2.1),

:::
we

::::::
defined

::
a
::::::::
validation

::::::
routine

:::
for

:::::::::
comparing

:::::::
different

::::::::::
autoencoder

:::::::::::
architectures

:::
and

:::::::
settings

::
in

:::
the

::::::
model

:::::::::::
optimisation

:::::
(Sect.

::::::
4.2.3).

:::
By

:::::::::
definition,

:::
the

::::::::::
autoencoder

:::::::::::
performance

::::
can

::
be

:::::::::
measured

::::
with

:::
its

:::::::::::
reconstruction

:::::
loss.

::::::::
However,

::::
given

::
a
:::::
decent

:::::::::::::
reconstruction,

:::
we

:::::
aimed

::
to

::::
find

:::
the

:::
best

:::::
input

:::::::
features

::
for

:::
the

::::
later

::::::::::::
classification.

::::::
Hence,

::
we

:::::::::
evaluated

:::
the

:::::::::::
autoencoders

:::::
based

::
on

:::
the

:::::::::
avalanche

:::
and

:::::
noise

::::
class

:::::::::
separation

::::::
within

:::
the

:::::
latent

:::::::
(feature)

::::::
space.

:::
We380

::::::::
calculated

:::
the

:::::::::
silhouette

:::::
score

::::::::::::::::
(Rousseeuw, 1987)

:::
and

:::
the

::::::::::::::::
Calinski-Harabasz

:::::
index

:::::::::::::::::::::::::
(Caliński and Harabasz, 1974)

:::::
based

:::
on

::
the

::::::
feature

::::::::::
embedding

:::::::
location

:::
and

::::
their

:::::
given

:::::
expert

:::::
labels

::::
(see

::::::::
Appendix

::::
C3).

:::
We

:::::::
selected

:::
the

::::
best

::::::::::
autoencoder

:::
by

::::::::
searching

::
for

:::
the

:::::::::::::
highest-ranking

:::::::::::
combination

::
of

::::::::
silhouette

:::::
score,

::::::::::::::::
Calinski-Harabasz

:::::
index

:::
and

:::
the

:::::
mean

:::::::
squared

::::
error

::::
loss.

:
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4.2.3
:::::
Model

::::::::
selection

:::::::::
Developing

::::::
neural

:::::::
networks

:::::::
involves

::::::
tuning

:::::::
network

:::::::::::::::
hyper-parameters,

::::
such

::
as

::
the

:::::::
number

::
of

::::::
layers,

:::::
kernel

::::
sizes

::
of

:::::::::::
convolutions385

::
or

::::::
hidden

::::::::::
dimensions.

::::::::
Therefore,

:::
we

::::
used

:::
the

:::::
three

::::
train

::::
folds

::
in

::::
Fig.

:
3
::
to

:::
run

:::::
3-fold

::::::::::::::
cross-validation.

:::::
Using

:::::
three

::::
folds

:::::::
reduces

::
the

:::::::
impact

::
of

::::
data

:::::::::
variability

::::
and

:::::
yields

:::::
more

:::::::
reliable

::::::::::
performance

:::::::::
estimates.

:::::
Next,

:::
we

:::::::
defined

:
a
::::

grid
:::

of
::::::::::::::
hyper-parameter

:::::::::::
combinations

:::::
(Table

::::
D1)

::::
and

::::::::
iteratively

::::::
trained

:::
the

::::::::
resulting

:::::
model

::::::::::::
configurations

:::
on

::::
two

:::
and

::::::::
evaluated

:::::
them

::
on

:::
the

:::::::
left-out

::::
fold.

:::
We

:::::::
selected

:::
the

:::::
model

::::::::
showing

:::
the

::::
best

::::::
average

:::::::::::
performance

::::
over

:::
all

::::
three

:::::
folds

::::::::
according

::
to

:::
the

:::::::::
predefined

:::::::::
validation

::::::
metrics

:::::
(Sect.

::::::
4.2.2).

:::::::
Besides

:::
the

:::::::
internal

:::::::
network

::::::::::
parameters,

:::
we

::::::
applied

:::
the

:::::
same

:::::::::
procedure

::
to

::::
tune

:::
the

:::::::::
parameters

:::
of

:::
the390

::::::
training

::::::
regime

::::::
(Sect.

:::::
4.2.1).

::::::::::
Concretely,

:::
we

::::::::
searched

:::
for

:::
the

:::::::
optimal

:::::::
number

::
of

::::::::
expected

::::::::
avalanche

:::::::
samples

::
in
:::::

each
:::::
batch

::::
(Pav ::

in
::::::::
Equation

::
1),

:::
the

:::::::
learning

::::
rate

:::
and

:::
the

:::::
batch

::::
size.

::::::
Details

::
of

::::
this

::::::
process

:::
can

:::
be

:::::
found

::
in

:::
the

::::::::
Appendix

:::
E.

4.3 Feature classification

The motivation for separating the feature extraction and classification processes was manifold. First, the partial uncertainty in

the labels led to the conclusion that an unsupervised feature extraction approach is more robust to label noise and therefore395

preferable, as it could additionally leverage more unlabelled data. In contrast, a fully supervised neural network might suffer

from the relatively low number of labels and bias, tending to overfit these expert labels rather than learn avalanche characteristic

patterns in seismic signals. In an early stage, we tested this approach and did not observe better results. Thus for better

comparability of the features themselves with the benchmark model, i.e. feature engineering, we pursued the unsupervised

feature extraction approach. Ideally, several classifiers can then be used, combined or ensembled over different feature extraction400

steps.

Apart from expert labels, we considered the subjectivity of the manual cuts, the attenuation of avalanche signals with

the distance to the sensors and the low initial energy of avalanches, with which we inevitably included 10 s windows from

avalanche signals, which rather account towards background noise. This particularly applies to
::::::::
Foremost,

:::
this

:::::
work

:::::
aims

::
to

:::::
detect

:::::::::
avalanches

::
in

:::::::
seismic

:::::::::
recordings.

:::::::::
Therefore,

:
the starting and ending sections of a signal (see the upper plot in Fig. 2).405

Labelling these parts as avalanches (false positives)bears the danger of distracting a fully supervised neural network. Therefore,

we decoupled the classification from the unsupervised feature extraction and implemented
:::::::
previous

:::::::::
extraction

::
of

:::::::::
distinctive

::::::
features

::::
was

::::
only

::
an

:::::::::::
intermediate

::::
step.

::
To

:::::::
classify

:::::
these

:::::::
features,

:::
we

::::::::
developed

:::::
three random forest classifiers for each feature

set.
:
-
::::
one

:::
per

::::::
feature

::::::::
extraction

::::::::
method.

:::
We

:::::
tuned

::::
them

:::
for

::::
the

:::::::
baseline,

:::
the

::::::::
temporal

:::
and

::::
the

::::::
spectral

:::::::::::
autoencoder

:::::::
features

::::::::
separately

::
to

::::
infer

:::::
class

::::::::::
probabilities

::::
(see

:::
Fig

:::
4).410

4.3.1
:::::::
Random

::::::
forest

:::::
model

The random forest model is a widely used algorithm for classification in general and for seismic event detection (e.g. Li et al., 2018; Provost et al., 2017; Chmiel et al., 2021)

::
in

::::::::
particular

::::::::::::::::::::::::::::::::::::::::::::::
(Provost et al., 2017; Li et al., 2018; Chmiel et al., 2021), as it is favourable when dealing with high-dimensional

features and heterogeneous (seismic attributes
:::
e.g.

:::::::::
engineered

:::::::
features) input dataand it provides output probabilities estimates.

415
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The random forest
:
.
:::
The

:
algorithm was introduced by Breiman (2001) and belongs to the class of ensemble methods. During

training, several decision trees (estimators) are grown. Each tree is grown on a different bootstrap sample of the original

dataset, i.e. a random draw with replacement. Instead of using the entire set of features (columns) in the original dataset, a

random subset is assigned to each node in the tree individually. The split (branch) is based on a single feature from this random

subset, which is optimal under a specified splitting criterion, such as the Gini information criterion
:::::::::::::
(Breiman, 2017) when420

dealing with categorical (classification) splitting problems. During inference, each tree prediction is aggregated to form a final

majority vote, from which it is possible to retrieve class proportions, often interpreted as probabilities.

4.3.2
::::::::::::::
Cross-validation

In search of the best hyper-parameters of this tree-growing algorithm, e.g. the maximal number of estimators (trees), we used

a randomized
:::::::::
randomised

:
grid search with 3-fold cross-validation. This method evaluates hyper-parameter combinations by425

::::::::
iteratively

:
fitting the random forest model to two of the three train folds and testing

:::
(Fig.

:::
3)

:::
and

:::::::::
validating it on the left-out

fold. As a scoring function, we chose the avalanche class f1-score to weigh the
::::::::
avalanche

:
precision and recall uniformly .

Finally, we averaged the performance
:::
and

::::::::
averaged

:::
this

:::::
score

:
across the three folds. This optimization

::::::::::
optimisation

:
process

was applied with the three feature sets individually, i.e. the seismic attributes and the
::::::
baseline

::::
and autoencoder features, to find

the random forests presented in Table D1.430

5 Results

After completion of the model development, we evaluated the three approaches on the test fold (fold 4 in Fig. 3) . First, we

summarized the results of the seismic attribute, TAE and SAE feature classification on the windowed

4.0.1
::::::::
Inference

::::
and

:::::::::::::
post-processing

::::::
During

::::::::
inference,

:
a
:::::
(test)

::::::
feature

:::::
vector

::
is

::::
first

:::::
passed

:::::::::
separately

::
to

::::
each

:::::::
decision

::::
tree

::
in

::
the

:::::::
random

:::::
forest.

:::::
Each

:::
tree

::::::
applies

:::
its435

::::::
learned

::::::::
sequence

::
of

:::::::
decision

::::
rules

::::
and

:::::::
classifies

:::
the

::::::
feature

::::::
vector

::
as

:::::
either

::::::::
avalanche

:::
or

:::::
noise.

:::::
Then,

::::
each

:::::
tree’s

:::::::::::
classification

:
is
::::::::::

aggregated
:::
by

:::::::::
computing

:::
the

::::::
mean.

:::
For

::::::::
instance,

:::::::::
assuming

::
90

::::
out

::
of

::::
100

::::
trees

:::::::::
classified

:
a
::::::

given
::::::
feature

::::::
vector

::
as

:::
an

::::::::
avalanche,

::::
this

::::::
sample

::::
was

:::::::
assigned

:::
an

::::::::
avalanche

:::::::::
probability

:::
of

:::
0.9,

::::::::
estimated

:::
as

:::
the

::::::
fraction

:::
of

::::
votes

::::::
within

:::
the

::::::
forest.

::::
This

::::::
process,

::::::
known

:::
as

::::::::::
ensembling,

::
is

::::
why

:::
the

::::::
random

:::::
forest

:::::::::
algorithm

::
is

:::::::::
considered

::
an

::::::::
ensemble

:::::::
method.

::::
The

::::
only

:::::::::
parameter

::
to

:::::
define

:::
was

::
a
:::::::::
probability

::::::::
threshold

:::::
above

::::::
which,

:::
we

::::::::
classified

:::
the

::::::
sample

::
as

::
an

:::::::::
avalanche.

:::
We

::::
used

:::
the

::::::
default

::::::::
threshold

::
of

::::
0.5,440

:::::
which

:::::
means

::
a
::::::
sample

:::
was

::::::::
classified

::
as

:::
an

::::::::
avalanche

::
if

::
at

::::
least

:::
half

::
of

:::
the

::::
trees

::::::
agreed

:::
on

:::
this

:::::::::::
classification.

::::::
Hence,

:::
for

::
a

:::::
single

10 s seismic signals (Sect. 5.1). Further, we
:
s
::::::
seismic

::::::
signal,

:::
the

:::::::
random

:::::
forest

:::::::
models

:::::::
provided

::::
both

::
a
::::::
binary

:::::::::::
classification

:::::::::
(avalanche

::
or

:::::
noise)

::::
and

::
the

::::::::::
probability

:::
for

::::
each

:::::
class.

:::::
Then,

::
in

:::
the

:::
first

::::::::::::::
post-processing

::::
step,

:::
we

::::::::
leveraged

:::
the

:::::
array

::
of

:::
five

:::::::
seismic

::::::
sensors

::::::::
deployed

::
at

:::
our

:::::
study

::::
site

:::
and

:
aggre-

gated the predictions by averaging the per-sensor
:::::
model

::::::
output

:::::::::::
probabilities,

:::::::::
computing

:
a
:::::::::::
multi-sensor

::::::::
avalanche

::::::::::
probability445

::
for

::::
each

:
10 s window

:::::::
window.

::::
The

:::::::::
array-based

:::::::::
avalanche

:::::::::
probability

:::
was

:::::::::
calculated

::
as

:::
the

:::::
mean

::
of

:::
the

::::::::
individual

:::::::::::
probabilities
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::::
from

::::
each

::::::
sensor.

::
In

:::
the

::::::
second

:::::::::::::
post-processing

::::
step,

:::
we

:::::::
revisited

:::
the

::::::
offline

::::::::
avalanche

:::::::
activity

:::::::::
monitoring

::
or

::::::
dataset

::::::::
labelling

:::::::
objective

:::
by

:::::::::
evaluating

:::
the

::::::::
classifiers

:::
on

:::::
entire

:::::
events

::::::
rather

::::
than

:::::
single

::::
10 s

::::::::
windows.

:::::::::
Therefore,

:::
we

:::::::::
considered

::
an

:::::
event

:::
an

::::::::
avalanche

::
if

::
at

::::
least

::::
two

:::::::::::
(overlapping)

::::::::::
consecutive

::::::::
windows

::::
(i.e.

:::::::::::::::::::::
2 ∗ 10s− 0.5 ∗ 10s= 15s

::
of

:::
an

:::::
event)

::::
had

::::
been

:::::::::
positively

::::::::
predicted.

:::::
Given

::::
that

:::
the

:::::::
shortest

::::::::
avalanche

::
in

:::
the

::::::
dataset

::::
was

::::
13 s,

:::
we

:::::::::
considered

::::
this

::::::::
boundary

:::::::
feasible.

::::
The

::::::
reason

:::
for

:::
not450

:::::::::
aggregating

:::
the

:
probabilities over the seismic array (Sect. 5.2). Thus, we gained insights into the predictions of unique

:::::
event

:::::
length

::
or

:::::::
similar

:::
was

::::
that

::
in

::
a

:::::::::
continuous

::::::::::
application,

::::
such

:::
as

::::::::
avalanche

:::::::
activity

:::::::::
monitoring

:::
or

:::::::
labelling

:::
of

::
an

:::::::::::
unannotated

::::::
dataset,

:::
the

:::::
event

:::::
length

::
is

::::::::
unknown.

:

::::
With

:::
this

::::::::::::::
post-processing,

:::
we

:::::
could

:::::::
evaluate

:::
the

::::::::::
performance

::
of

:::
the

:::::::
random

:::::
forest

::::::::
classifiers

:::::
based

:::
on

:::::::::::
single-sensor,

::::::
sensor

:::::::::
array-based

::::
and

::::::::::
event-based

:::::::::
detections.455

5
::::::
Results

::::
After

::::::
model

::::::::::
development

::::::::::
completion,

:::
we

::::::::
evaluated

:::
the

:::::::
baseline,

:::
the

::::::::
temporal

::::::::::
autoencoder

::::::
(TAE)

:::
and

:::
the

:::::::
spectral

::::::::::
autoencoder

:::::
(SAE)

:::
on

:::
the

::::::
unseen

:::
test

::::
fold

:::
(top

:::
bar

:::
in

:::
Fig.

:::
3).

::
To

::::::
assess

:::
the

:::::::
models’

:::::::
stability,

:::
we

::::::
trained

:::
and

::::::
tested

::::
them

:::::
using

::
20

::::::::
different

::::::
random

::::::
seeds,

:::
i.e.

::::::
powers

::
of

::::
two

:::::::
starting

::::
with

:::
20.

:::::::::
Therefore,

:::
we

:::::::::
calculated

:::
the

:::::
mean

:::
and

::::::::
standard

::::::::
deviation

::
of

:::
all

:::::::
metrics,

::::
while

:::
for

:::::::
specific

:::::
result

::::::::
analysis,

:::
e.g.

::::
Fig.

:::
10,

:::
we

::::
used

:::
the

:::::::
random

::::
seed

:::
for

:::::
which

::
a

:::
the

:::::
model

:::::::
showed

:::
the

::::::
highest

:::::::::
avalanche460

:::::::
f1-score

:::
(25

::
for

:::
the

::::::::
baseline,

:::
216

:::
for

::::
both

::::::::::::
autoencoders).

:

Figure 7.
:::
Test

::
set

:::::
latent

::::
space

::::::::::
visualisation

::
of
:::

the
::::
most

::::::::
important

::::::
features

::::::::
according

::
to

:::
the

:::::::::::
impurity-based

::::::
feature

:::::::::
importance

:::::
(value

::
in

:::::::::
parenthesis)

::
of

:::
the

::::::
random

::::
forest

::::::
models

:::
for

:::
the

::::::
baseline

:::::
(left),

:::
the

::::
TAE

::::::
features

:::::::
(middle)

:::
and

:::
the

::::
SAE

::::::
features

::::::
(right).

::
In

:::
the

:::
left

::::
plot,

::::::::
DISTQ3Q1

::
is
:::
the

::::
mean

::::::
distance

:::::::
between

:::
the

::
3rd

::::
and

::
the

:::
1st

::::::
quartile

::
of

::
all

::::
FFTs

::
as

::
a

::::::
function

::
of

::::
time,

:::
ES[

:
2]

:::
and

::
ES[

:
3]

:
is
:::
the

:::::
energy

::
in

:::
the

:::::::
frequency

::::
band

:
[
:
5,
::

7]
:::
Hz

:::
and [

:
6,
::
9]

:::
Hz

:::::::::
respectively

::::::
(features

:::
57,

::
35

:::
and

::
36

::
in
:::::
Table

::
B3

:::
and

::::
B2).

:::
The

:::
axis

:::::
labels

::::::
starting

::::
with

::
the

::::
letter

:::
’F’

::
in

::
the

::::::
middle

:::
and

::::
right

:::
plot

:::::::
represent

:
a
::::::
specific

:::::::::
autoencoder

::::::
feature

::::::
carrying

::
no

::::::
explicit

:::::::
physical

:::::::
meaning.
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5.1
:::::::::::

Single-sensor
::::::::::
predictions

::
As

::
a
::::
first

::::
step,

:::
we

::::::::
evaluated

:::
the

::::::::
detection

:::::::::::
performance

::
of

:::::
each

:::::::
model’s

:::::::::::
single-sensor

:::::::::
predictions

:::
on

:::
the

:
10 s signals at our

study site.

5.2 Single sensor predictions465

::::::
seismic

:::::::
signals. The true positive rates (or avalanche recall) were similar across the models (Fig. 8), i.e. between 67.3% and

71.2%
:::::::::::::
67.3%(±1.4%)

:::
and

::::::::::::::
69.8%(±1.8%),

:::::::::
indicating

::::
that

::::::::::::
approximately

::::
30%

::
of

:::
all

::::::::
avalanche

::::::::
windows

:::::
were

::::::
missed. Nev-

ertheless, the avalanche recall was slightly higher for the autoencoder
::::::
highest

:::
for

:::
the

::::
TAE

:
features classification. Regarding

the true negative rates (or specificities), i.e. the probability that an actual noise event will be predicted as noise, we noted that

the TAE features classification showed the lowest rate of 82.6% and
:::::::::::::
83.0%(±1.0%)

::::
and,

::::::::
therefore

:
also showed the lowest470

avalanche precision of 0.33
::::::::::
0.33(±0.01), compared to 0.51 for the seismic attributes and 0.45 for the spectral autoencoder

features
::::::::::
0.52(±0.00)

:::
for

:::
the

::::::::
baseline

:::
and

:::::::::::
0.44(±0.01)

:::
for

:::
the

::::
SAE

:
(Table 1). Thus, we expect this model to produce com-

parably more false alarms (false positives)
::
at

:
a
::::
rate

::
of

:::::::::::::
17.0%(±1.0%). Overall, the macro-average f1-score reached values of

0.76, 0.67 and 0.74 for the seismic attributes
:::::::::::
0.76(±0.00),

:::::::::::
0.67(±0.01)

::::
and

:::::::::::
0.73(±0.00)

:::
for

:::
the

:::::::
baseline, the TAE features

and the SAE features
::::::
feature classification respectively (Table 1).475

Additionally, since
:::
the feature extraction and its information content are core concepts of this study, we visualized the

::::::::
visualised part of the latent spaces in Fig. 7. As earthquakes are

::::::
account

:::
for

:
a significant proportion of the noise class

:::::
(31%)

:
and

labels were available , we show
:::::::
anyway,

:::
we

::::::
showed

:
them separately. This visualization

::::::::::
visualisation

:
provided some insights

into the organization of the autoencoder latent space.
::::::::::
organisation

::
of

::::
the

:::::
latent

::::::
spaces.

::::
For

::::::::
instance,

:::
all

::::::
models

::::::::
spatially

::::::::
separated

::::::::
avalanche

:::
and

::::::::::
earthquake

:::::::
samples.

:
480
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Figure 8. Confusion matrices of the binary classification results for the three feature sets on the held-out test fold data
:
,
:::::::
including

:::
all

:::
five

:::::
sensors. The rows indicate the true (expert) labels, while the columns provide the predicted labels of the random forest classifiers. The colours

code the percentage numbers
::::
values.

Table 1. Classification metrics on the (unseen) test fold data
::::::::
comprising

::::
1335

::::::::
avalanche

:::
and

:::::
11135

::::
noise

::::::
samples

:
for the three feature sets.

Due to the strong class imbalance, the weighted averages of the metrics are not shown.

Model Class Precision Recall F1 Support

Baseline

Avalanche 0.51
::::
0.52

::
±

::::
0.00 0.67

::
±

::::
0.00 0.58 1335

::
±

::::
0.00

Noise 0.96
::
±

::::
0.00 0.92

::
±

::::
0.00 0.94 11135

:
±

::::
0.00

:

Macro Avg 0.74
::
±

::::
0.00 0.80

::
±

::::
0.00 0.76 12470

:
±

::::
0.00

:

Accuracy 0.90
::
±

::::
0.00

TAE

Avalanche 0.33
::
±

::::
0.01 0.71

::::
0.70

::
±

::::
0.02 0.45 1335

::
±

::::
0.01

Noise 0.96
::
±

::::
0.00 0.83

::
±

::::
0.01 0.89 11135

:
±

::::
0.01

:

Macro Avg 0.64
::
±

::::
0.01 0.77

::
±

::::
0.01 0.67 12470

:
±

::::
0.01

:

Accuracy 0.81
:::
0.82

:::
±

::::
0.01

SAE

Avalanche 0.45
::::
0.44

::
±

::::
0.01 0.70

::::
0.67

::
±

::::
0.01 0.54 1335

::
±

::::
0.01

Noise 0.96
::
±

::::
0.00 0.90

::
±

::::
0.00 0.93 11135

:
±

::::
0.00

:

Macro Avg 0.70
::
±

::::
0.00 0.80

::::
0.79

::
±

::::
0.01 0.74 12470

:::
0.73

::
±

::::
0.00

:

Accuracy 0.87
::
±

::::
0.00

20



Latent space visualization of the most important features according to the impurity-based feature importance of random

forest models for the seismic attributes (left), the temporal autoencoder features (middle) and the spectral autoencoder features

(right). In parenthesis, the impurity-based importance of each feature is shown.

5.2 Array-based
::::::
Sensor

::::::::::
array-based

:
predictions

In addition to the predictions on the individual 10 s windows, we aggregated the window
:::::::::::
single-sensor predictions over485

the 5
:::
five sensors in the seismic array by averaging the per-sensor

:::::::::::
single-sensor output probabilities, resulting in improved

model performance (Fig. 9). The macro-average f1-score increased by 2.6% (seismic attributes), 4.5%
:::::::
f1-scores

::::::::
increased

:::
by

::::
2.6%

:::::::::
(baseline),

:::::
4.5%

:
(TAE) and 5.4%

::::
5.5%

:
(SAE). After ensembling, the seismic attribute

::::
This

:::::::::::
improvement

::::::::::
particularly

::::::::
originated

:::::
from

:::::
lower

::::
false

:::::::
positive

:::::
rates,

:::::
while

:::
the

:::
rate

:::
of

::::::
missed

::::::::
avalanche

::::::::
windows

::::::::
remained

::
at

:::::
about

::::
30%

::
in

:::
all

:::::::
models.

::::
After

:::::::::::
aggregation,

:::
the

:::::::
baseline

:
and the SAE feature classification yielded similar performance in the classification metrics490

(see Table 2). Despite this improvement, the
::::
The TAE feature classification

:
,
:::::::
however,

:
still showed approximately double the

number of false alarms, i.e. 323 (14.7%
:::
308

:::::::::::::
(14.0% ± 0.8%), compared to the other models . The

::::::
despite

:::
this

::::::::::::
improvement.

:::
The

::::::
sensor

:
array-based aggregation further enabled us to investigate how predictions

:::::
evolve

:
over an entire seismic signal

evolve across the array (Fig. 10). For the avalanche shown in Fig. 1 and 2
:::
Fig.

:
2
:::::
(left), the models are comparably unsure

::::
were

:::::::
uncertain

:
in the starting phase, i.e. when it emerges from background noise

::::
when

:::
the

:::::::::
avalanche

:::::::::
amplitudes

::::::
slowly

::::::::
emerged495

::::
from

:::
the

::::::::::
background

::::
noise

::::::
signal. However, as the signal becomes

:::::::
became more energetic, the avalanche probability increases

::::::::
increased for all models.

:::::::
Overall,

:::
this

::::::::::::::
post-processing

::::::
strategy

:::::::
reduced

:::
the

:::::::
number

::
of

:::::
false

:::::
alarms

::::
and

:::::::
slightly

::::::::
improved

:::
the

::::::::
avalanche

:::::
recall.

:

Figure 9. Results on the held-out test set
::
fold

::::
data

:
after applying a probabilistic aggregation of the

:::::::::
single-sensor

:
10 s predictions over the

5
:::
five

:
sensors of the

:::::
sensor array. The rows indicate the true (expert) labels, while the columns provide the predicted labels of the random

forest classifiers. The colours code the percentage numbers
:::::
values.
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Table 2. Classification metrics on the
::::::
(unseen)

:
test fold data set

::::::::
comprising

::::
267

:::::::
avalanche

::::
and

::::
2202

:::::
noise

::::::
samples

:
after probabilistic

aggregation over the 5
::

five
:
sensors. Due to the strong class imbalance and bias towards the noise class, the weighted averages of the metrics

are not shown.

Model Class Precision Recall F1 Support

Baseline

Avalanche 0.56
::
±

::::
0.01 0.68

::::
0.67

::
±

::::
0.00 0.61 267

::
±

::::
0.00

Noise 0.96
::
±

::::
0.00 0.93

::
±

::::
0.00 0.95 2202

:
±

::::
0.00

:

Macro Avg 0.76
::
±

::::
0.00 0.81

::::
0.80

::
±

::::
0.00 0.78 2469

:
±

::::
0.00

:

Accuracy 0.91
::
±

::::
0.00

:

TAE

Avalanche 0.37
::::
0.38

::
±

::::
0.01 0.71

::
±

::::
0.02 0.49 267

::
±

::::
0.01

Noise 0.96
::
±

::::
0.00 0.85

::::
0.86

::
±

::::
0.01 0.90 2202

:::
0.91

::
±

::::
0.00

:

Macro Avg 0.67
::
±

::::
0.01 0.78

::
±

::::
0.01 0.70 2469

:
±

::::
0.01

:

Accuracy 0.84
::
±

::::
0.01

:

SAE

Avalanche 0.53
::::
0.52

::
±

::::
0.01 0.71

::::
0.70

::
±

::::
0.01 0.60 267

::
±

::::
0.01

Noise 0.96
::
±

::::
0.00 0.92

::
±

::::
0.00 0.94 2202

:
±

::::
0.00

:

Macro Avg 0.75
::::
0.74

::
±

::::
0.01 0.82

::::
0.81

::
±

::::
0.01 0.77 2469

:
±

::::
0.01

:

Accuracy 0.90
::
±

::::
0.00

:

22



5.3 Event-based predictions
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Figure 10.
::::::::
Waveform

:::
and

:::::::::
spectrogram

:::::::
generated

:::
by

::
the

::::::::
avalanche

::
in

:::
Fig.

:
1
:::
and

:::
the

:::::::::
array-based

:::::
output

:::::::::
probabilities

:::
for

::::
each

:::::
model

:::
over

:::
the

::::
entire

::::::::
avalanche

::::
signal

::::::::
(bottom).

:::
The

:::::
signals

::::
have

::::
been

:::::
filtered

::::
from

::
1
::
to

::::
10 Hz

:::::::::::
corresponding

::
to

::
the

:::::
input

:::::::
frequency

::::
band

::
of

:::
the

::::::
models.

::
In

::::
pink,

::
the

:::::
same

:::
10 s

::::::
seismic

::::::
window

::
as

::
in

:::
Fig.

::
2
::::
(left)

:::
and

:::
Fig.

::
4

:
is
::::::

shown
:::
and

::
the

::::::::
according

:::::::::
probabilities

:::
are

:::::::::
highlighted

:::::
(lower

::::
plot).

::::
The

:::::::::
probabilities

:::
are

:::::::
computed

::
as
:::
the

::::::
average

::
of

:::
the

::::::::::
single-sensor

:::::::::
probabilities

:::::::
predicted

:::::
every

:
5
::::::
seconds

::::
(10 s

:::::::
windows

::::
with

::::
50%

::
of

:::::::
overlap).

:::
The

:::::::
manually

::::::
defined

::::
event

::::
onset

:::
and

:::
end

:::
are

:::::::::
highlighted

::
in

:::::
dashed

::::
grey

::::
lines

:::::
(upper

::::
plot),

:::
and

:::
the

::::::::::
classification

:::::::
threshold

:::
0.5

:
is
::

in
::::::
orange

:::::
(lower

::::
plot).

Besides the single sensor500

5.3
::::::::::

Event-based
::::::::::
predictions

::::::
Besides

:::
the

::::::::::::
single-sensor and array-based predictions (Sect. 5.1 and 5.2), we investigated the predictions on the event level

::
an

:::::
event

::::
basis

:
to close the gap to avalanche activity assessment and provide a broader outlook. This for, we aggregated the

array-level predictions in Fig. 9 over the entire duration of an event . We applied the rule that if at least two consecutive windows

(or 15
:::
For

::::
this,

::
we

::::::::
assigned

::
an

:::::
event

::
to

:::
the

:::::::::
avalanche

::::
class

::
if
::::
two

::::::::::
consecutive

::
10 s of an event) were positively predicted, the505

entire event was positive, i.e. an avalanche. This threshold of two windows was not optimized. However, considering that

the shortest avalanche in the dataset is 13 s, this boundary was feasible
::::::::
windows

:::::
(50%

:::::::
overlap)

:::
of

:::
the

::::::
sensor

::::::::::
array-based

:::::::::
predictions

:::::
were

:::::::
detected

::
as
:::::::::

avalanche
:::::::
signals. This post-processing led to the results in Appendix ??. Figure E2 shows

a significant increase in avalanche recall with values of 81.8% (seismic attributes), 87.9%
:::::
Figure

:::
E2

::::
and

:::::
Table

:::
E6

:::
in

:::
the
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::::::::
Appendix

:::
E2.

::::::::
Although

:::
the

::::::
overall

:::::::::::
performance

::
of

:::
the

:::::
three

::::::
models

:::::::::
decreased

::
by

:::::
about

:::
5%

::::
(see

:::::
Table

::::
E6),

:::
the

::::
true

:::::::
positive510

::::
rates

:::::::::
(avalanche

:::::
recall)

::::::::
increased

:::::::::::
significantly

::
to

:::::::::::::
81.4%(±1.1%)

:::::::::
(baseline),

:::::::::::::
84.8%(±2.6%) (TAE) and 5.4%

:::::::::::::
89.3%(±4.3%)

(SAE). Nevertheless, the overall performance of the three models decreases by about 5% (see Table E6)
:::::
Hence,

:::
by

::::::::
applying

:::
this

::::
step,

:::
the

:::::::
spectral

::::::::::
autoencoder

:::::
could

::::::::::
successfully

::::::
detect

:::::::::::::
89.3%(±4.3%)

::
of

::
all

::::::::::
avalanches

::
in

:::
the

:::
test

::::
fold.

Example of the seismic signal generated by an avalanche (up) and the mean output probabilities for each developed model

over the entire avalanche signal (down). The probability is computed as the average of the individual probabilities predicted by515

each sensor every 5 seconds (10 s windows with 50% of overlap). The manual cuts are highlighted in dashed grey lines (upper

plot), and the classification threshold 0.5 is in orange (lower plot).

6 Discussion

So far, we compared the performance of a human-engineered
::
the

::::::::
baseline,

::
an

:::::::::::::::
expert-engineered

:
seismic attribute classifica-

tionapproach ,
:

and the autoencoder feature classification results
:::::::::::
classifications based on a dataset containing 10 s seismic sig-520

nals on a single sensor-level and multiple sensor-level (aggregation). With the latter
::
in

:
a
::::::::::::
single-sensor,

:::::
sensor

::::::::::
array-based

::::
and

:::::::::
event-based

:::::::
setting.

::
In

:::
the

:::::::::::
single-sensor

::::::
setting,

:::
the

::::::
models

::::::
missed

::::::::::::
approximately

::::
30%

::
of

:::
all

::::::::
avalanche

::::::::
windows

:::
and

::::::::
produced

::::
false

:::::
alerts

::
at

:::::
rates

:::::::
between

:::::::::::::
7.6%(±0.1%)

:::
and

::::::::::::::
17.0%(±1.0%).

:::::
With

:::
the

::::::
sensor

::::::::::
array-based

:
aggregation, we observed a

significant reduction in false alarms and a slight improvement in recall for the avalanche class. Furthermore
::::::::
avalanche

::::::
recall.

::
In

::
the

::::::::::
event-based

:::::::
setting,

:::
we

:::::::::::
compromised

:::
an

:::::::::::
improvement

::
in

::::::::
avalanche

:::::
recall

:::::
with

::
an

:::::::
increase

::
in

:::::
false

::::::
alarms.

::::::::
Moreover, we525

noticed that the automatically learned features, and specifically the ones from the spectral autoencoder, performed better than

the seismic attributes
:::::::::
comparably

::
to

:::
the

:::::::
baseline. Hence, the results showed that spectral input information seemed favourable.

In the following, we contextualise the results by investigating the detection errors and their possible origins. Therefore, we

summarize
:::::::::
summarise

:
the model development (Sect. 6.1) and dived into

:::::
focus

::
on

:
the false predictions of the models to find

potential limitations and reasons (Sect. 6.2 and 6.3). Finally, we compared the
:::::
argue

:::::
about

:::
the

::::::::::
applicability

:::
of

::::
these

:::::::
models530

:::::
(Sect.

:::
6.4)

::::
and

:::::::
compare

:::
the results to previous works

::::
work

:
(Sect. 6.5).

6.1 Model
:::::::::::
performance

::::
and

::::::::::
limitations

Machine-learning models are strongly influenced by the
:::
The

:
quality and size of the dataset

::::::
strongly

::::::::
influence

:::::
deep

:::::::
learning

::::::
models. The relatively small size constrained us to design autoencoder architectures with rather few trainable weights

:::
few

:::::::
trainable

:::::::::
parameters. In addition, we used each sensor independently to compensate for dataset size, as each sensor can be535

considered as a different view of the events
::::
same

:::::
event. However, this came at the cost of introducing correlation among dataset

samples as the sensors were installed nearby (Fig. 1) and thus recorded very similar signals, yet not necessarily adding much

new and enriching information to the dataset. Given that the dataset will increase in the next years
::::::::
upcoming

:::::::
winters, we will

consider incorporating the 5
:::
five

:
sensors as distinct channels in a convolutional

:::::
and/or

::::::::
recurrent model in future studies. With

this, the sensor
::::::::::
array-based aggregation and fusion would be implicitly implemented into the model.540

24



Figure 11. Array-based
:::::
Sensor

::::::::
array-based

:
output probabilities of the random forest models for their respective input features with

:::::
plotted

:::::
against

:
expert avalanche scores. The blue dashed line indicates the threshold applied to the expert scores to assign avalanche class labels.

Another aspect to bear in mind was the input normalization. Normalizing
:::::::
consider

:::
was

::::
our

:::::::
approach

:::
to

::::::::
normalise

::::
each

::::
10 s

::::::
seismic

:::::::
window

::::::::::::
independently.

:::::::::::
Normalising

:
input data has proven crucial when training neural networks (Sola and Sevilla,

1997). The temporal autoencoder, in particular, therefore loses
:::
lost

:
information on absolute and relative amplitudes. Yet,

both autoencoders could still capture signal characteristics and remarkably show
::::::
showed

:
similar patterns when looking at

continuous predictions
:::
and

:::::::::
comparing

::::
with

:::
the

::::::::
baseline (see Fig. 10). Alternatively, a normalization

:::::::::::
normalisation

:
over the545

entire signal before windowing
:::::::
applying

:::
the

::::::::::
windowing

::::::::
algorithm

:
could be envisioned to preserve information on relative

amplitudes. However, this is not
:::::::::::
normalisation

::
is
:::
not

:::::::::
applicable

::::::
during

::
an

::::::
online

::::::::
inference,

:::
as

:
it
::::::
would

::::::
require

:::::::
looking

:::::
ahead

:
at
:::
the

::::::::::
amplitudes

::
of

:::
the

::::::::
incoming

:::::::::
waveforms.

:::::::::
Therefore,

::
it

::
is

:::
not practical for (near) real-time signal processing.

:::::::::::
classification.

:::::::::::
Alternatively,

::::::::::
normalising

:::
by

:
a
::::::::::::

characteristic
:::::
value

::
of

:::
the

:::::::
training

::::::
dataset

::
is
::::::::::::

unfavourable
::::::::::
considering

:::
the

:::::::::::
heterogeneity

:::
of

::
the

::::
data

::::
and

:
a
:::::
future

:::::::::::::
implementation

::
at
:::::::
another

:::::
study

:::
site

::::
with

:::::::::
potentially

::::::::::
completely

:::::::
different

::::::::::::
characteristics.

:::::
Also,

::::
note

::::
that550

::::::::::
normalising

::
by

::::
class

::::::::::::
characteristics

:::
of

::
the

:::::::
training

::::
data

::::::
would

:::::
violate

:::
the

:::::::::::
unsupervised

::::::::
learning

::::::
regime.

:

Further, the dataset drove the decision to separate the
:::::::
Further,

:::
the

:::::::::
separation

:::
of

:::
the

:
feature extraction and classifica-

tion . The
::::::
process

::::
was

::::::
driven

:::
by

:::
the

:::::::
dataset

::
at

:::::
hand

::::
and

:::
the

:::::::
success

::
of

:::::::::::::
representation

:::::::
learning

::
in
:::::::

various
:::::::::::

applications

:::::::::::::::::::::::::::::::::::
(Bengio et al., 2013; Längkvist et al., 2014).

:::::::::::
Considering

:::
the

:::::
data,

:::
the

:
unsupervised feature extraction is not constrained to

a labelled dataset
:::
was

:::
not

::::::::::
constrained

::
by

:::::
class

:::::
labels (only the model selection and hyperparameter tuning are

:::::::::::::
hyper-parameter555

:::::
tuning

::
of

:::
the

:::::::::
classifiers

::::
were), an advantage when dealing with non-ground-truth labels (two-thirds of the avalanches were not

verified
:::::
neither

:::::::
verified

:::
by

:::
the

:::::
radar

:::
nor

:::
the

:::::::
cameras). The performance of the classifier is then decoupled from the feature

extraction. This
:::::
applied

::::::
expert

::::::::
labelling

::
to
::::

the
::::::::::
non-verified

::::::
events

::::
was

::::::
subject

:::
to

::
an

::::::::
unknown

:::::::
degree

::
of

::::::::::
subjectivity

::::
and

:::::
belief.

:::
We

::::::
found

:::
the

:::::::
average

:::::::::
agreement

::::
rate

::
of

:::
the

:::::::::
avalanche

:::::
expert

:::::::::::
probabilities

::
to
:::

be
:::::
58%,

::::::::
meaning

:::
two

:::::::
experts

::::::
agreed

::
on

::::
58%

:::
of

:::
the

:::::::::
avalanches.

:::
In

:::::::
addition,

::::::
having

:::::::
decided

:::::
upon

:
a
:::::

hard
::::::::
threshold

::
to

::::::
convert

::::::
expert

::::::
scores

::
to

::::
class

::::::
labels

::::::
further560

::::::
blurred

:::
the

:::::::::
boundaries

:::::::
between

:::
the

:::::::::
avalanche

:::
and

:::::
noise

:::::
class,

:::::::::
potentially

::::::::
including

:::::
minor

::::::::::
avalanches

::
in

:::
the

::::
noise

:::::
class

:::::
(false
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:::::::::
negatives).

:::::
Apart

::::
from

:::
the

:::::
event

::::
label

::::::::::
uncertainty,

:::
we

:::::::::
considered

:::
the

:::::::::
subjectivity

::
of

::::::::
manually

:::::::
defining

:::::
event

:::::
onset

:::
and

:::
end

::::
and

::
the

::::::::::
uncertainty

::
of

::::::::
adopting

::
the

:::::
event

:::::
labels

::
to

:::
the

::::
10 s

:::::::
snippets

::::
after

::::::::
applying

::
the

::::::::::
windowing

:::::::::
algorithm.

:::
Due

::
to
:::
the

::::::::::
attenuation

::
of

::::::::
avalanche

::::::
signals

::::
with

:::
the

::::::::
distance

::
to

:::
the

::::::
sensors

::::
and

:::
the

:::
low

:::::
initial

::::::
energy

:::
of

:::::::::
avalanches,

:::::
some

::::
10 s

::::::::
windows

:::::::::
containing

:::::::
primarily

::::::::::
background

:::::
noise

::::::
within

::
an

:::::::::
avalanche

:::::
event

::::
were

:::::::::
inevitably

::::::::::
mislabelled

:::::
(false

::::::::
positives).

:::::
This

:::::::::
particularly

:::::::
applies565

::
to

:
a
:::::::
signal’s

::::::
starting

:::
and

::::::
ending

:::::::
sections

::::
(see

:::
the

:::::
upper

::::
plot

::
in

:::
Fig.

::::
10).

:

::
In

::::::::
summary,

:::
all

::
of

:::
the

:::::
above

::::
led

::
to

:::
the

:::::::::
conclusion

::
to

::::::::
explicitly

::::::::
separate

:::
the

::::::
feature

:::::::::
extraction

::::
from

:::
the

:::::::::::
classification

::::
and

:::::::::
implement

::
an

:::::::::::
unsupervised

:::::::
learning

:::::::::
approach,

:::::
which

::
is

::::
more

::::::
robust

::
to

::::::::::
uncertainty

:::
and

:::::
noise

::
in

:::
the

:::::
labels

::::
and

::::
could

::::::::
leverage

::::
more

:::::::::
unlabelled

::::
data.

::
In
::::::::

contrast,
:
a
:::::
fully

:::::::::
supervised

:::::
neural

:::::::
network

:::::
might

:::::
suffer

:::::
from

:::
the

::::::::
relatively

:::
low

:::::::
number

::
of

:::::
labels

::::
and

::::
bias,

::::::
tending

::
to
::::::
overfit

:::::
these

:::::
expert

:::::
labels

::::::
rather

::::
than

::::
learn

:::::::::
avalanche

:::::::::::
characteristic

:::::::
patterns

::
in

::::::
seismic

:::::::
signals.

:::::::::
Moreover,

:::
the570

::::::::
developed

::::::::::
autoencoder

::::::::::
approaches

::::::
offered

:::::
better

::::::::::::
comparability

::::
with

:::
the

:::::::
baseline

::::::
model,

:::
i.e.

::::::
feature

::::::::::
engineering.

:

::::
This

::::::::
separation

::::
then

:
allowed us to analyze

::::::
analyse a lower-dimensional embedding of the dataset by inspecting the feature

space distributions (Fig. 7). Here
::
As

:::::
labels

:::
for

::::::::::
earthquakes

::::
were

::::::::
available, we visualised the earthquake class separately, as

::::
them

::::::::
separately.

:::::::::
Moreover,

:
earthquake and avalanche signals can be similar in the time domain (Heck et al., 2018b), which we, thus

,
:::
thus

:::
we

:
wanted to investigate

::::
them

:
in the feature domain. We also had labels for earthquakes simplifying the visualization.575

In an early stage, we trained models with three classes (earthquake separately), without seeing an increase in overall model

performance. Moreover, note that training a model to also classify earthquakes was out of scope as these can be detected

with other methods. Overall, the three event types, i.e. avalanches, earthquakes and rest, varied in the encoding locations,

yet also showed considerable overlap. Interestingly though, the avalanche and earthquake signals were well separated (blue

and orange in Fig. 7). The rest (grey) resembled a connecting cloud between avalanche and earthquake signals. The reason580

for this might be two-fold; first, the heterogeneity of these noise events by potentially comprising minor avalanches and low

magnitude earthquakes (false negatives), and second, the strong attenuation in some sections of avalanche signals resulting

in low amplitude avalanche windows. The heterogeneity within the noise class originated from including
:::::
former

:::::
noise

:::::
class

:::::::::::
heterogeneity

:::::::::
originated

::::
from

::::::::::
comprising different sources in comparable amplitude ranges, e.g.

:
, earthquakes, aeroplanes or

strong wind. However, the different types of seismic sources of comparable amplitude range
::::
these

:::::::
various

::::::
sources are definitive585

to be expected and need to be considered in a real-time detection system.

Finally, the applied expert labelling was subject to an unknown degree of subjectivity and belief for the non-verified events.

In addition, having decided upon a hard threshold to convert expert scores to class labels further blurred the boundaries between

the avalanche and noise class, i.e. the noise class might include minor avalanches (false negatives). We, therefore, investigated

the relationship between the random forest’s output probabilities and
::::::
Despite

:::::::
actually

::::::
having

:::::::::
earthquake

::::::
labels,

:::
we

:::::
opted

::
for

::
a590

:::::
binary

:::::::::::
classification.

:::
In

::
an

::::
early

:::::
stage,

:::
we

::::::
trained

::::::
models

::::
with

:::::
three

::::::
classes

::::::::::
(earthquake

:::::::::
separately),

:::::::
without

:::::
seeing

:::
an

:::::::
increase

::
in

::::::
overall

:::::
model

:::::::::::
performance.

::::
This

:::::
came

::
as

:::
no

:::::::
surprise

:::::
when

::::::
looking

::
at
:::
the

:::::
clear

:::::::::
separation

::
of the expert scores of potential

avalanche signals (Fig. 11). Also, we found the average expert agreement rate on the avalanche samples to be 58%, i.e. on

average, two experts agree on 58% of the avalanche signals.
:::::::::
earthquake

::::
from

:::
the

:::::::::
avalanche

:::::::
samples

::
in

:::::
latent

:::::
space.

:::::::::
Moreover,

::::::
training

::
a

:::::
model

::
to

::::
also

:::::::
classify

::::::::::
earthquakes

::::
was

:::
out

::
of

:::::
scope

::
as

:::::
these

:::
can

:::
be

:::::::
detected

::::
with

:::::
other

::::::::
methods.

:::::
Thus,

::
we

::::
did

:::
not595

:::::::
consider

::::::::::
earthquakes

:
a
:::::::
separate

:::::
class

::
in

:::
the

:::::::::::
classification.

::::::::
However,

::::::::::
considering

:::
the

:::::::::
avalanche

:::::
class,

:::::::::::
investigations

:::::
could

::::
also
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::
be

:::::::::
conducted

::
by

::::::::::::
differentiating

:::::::
between

::::
type

::::
and

::::
size

::
in

:::::
future

::::::::::::::
implementations.

:::::
Since

:::
the

:::::::
primary

::::
goal

:::
of

:::
this

:::::
study

::::
was

::
to

::::::
develop

::::
and

:::::::
compare

:::::::
models

::
to

:::::
detect

::::::::::
avalanches

::::::::
regardless

:::
of

::::
their

::::
type

::
or

::::
size,

:::
we

:::::::
trained

:::
the

::::::
models

::::::::::
considering

:::
all

:::
the

:::::::
recorded

::::::::::
avalanches.

:::::::::
Therefore,

:::
we

::::::
ensured

::::
that

::::::
various

:::::::::
avalanche

:::::
types

::::
were

:::::::
included

:::
in

:::
the

::::
train

:::
and

::::
test

::
set

:::
by

:::::::::
separating

::::
them

:::::
based

:::
on

::::::::::
appropriate

::::
dates

::::::
(Sect.

::::
3.3).

:::::::::
According

::
to

:::::
radar

::::
and

:::::
image

:::::
data,

::::
most

::::::::::
avalanches

:::::::
detected

::
at

:::
our

:::::
study

::::
site600

:::::
ranged

::::::::
between

::::
sizes

::
2

:::
and

::
3,

:::::
based

:::
on

:::
the

::::::::
European

::::::::
avalanche

::::
size

:::::::::::
classification

::::::::::::
(EAWS, 2021)

:
.
:::::
Given

:::
that

:::::::
seismic

:::::::
patterns

::
of

:::::::::
avalanches

:::
are

:::::::::
influenced

:::
by

:::
the

::::::::
avalanche

::::
type

:::::::::::::::::::::::
(Pérez-Guillén et al., 2016),

:::
an

:::::::::
alternative

::::::::
approach

:::::
could

:::
be

::
to

:::::::
develop

:::
two

::::::::::
independent

:::::::
models

::
to

:::::
detect

::::::::
dry-snow

::::
and

::::::::
wet-snow

:::::::::
avalanches

:::::::::
separately.

:::::::::
However,

:::
the

::::::
current

::::::
dataset

::::
was

:::
too

:::::
small

::
to

::::::
further

::::::::
categorise

:::
the

::::::::
avalanche

::::::
events

::
by

::::
size

:::
and

:::::
type,

:::
and

:::::::
accurate

:::::::::::
ground-truth

::::
data

::::
was

::::
often

::::
also

:::::::
missing.

:::::::
Instead,

:::
we

::::::
focused

:::
on

:::
the

:::::
given

:::
and

:::::::
analysed

:::
the

::::::::::::::
misclassification

::
of

:::
the

::::::
current

:::::::
models.

:
605

::::::
Finally,

::
to

:::::
obtain

:::
an

:::::::
intuition

:::
and

:::::::
analyse

:::
how

:::
the

:::::::::
supervised

:::::::
random

:::::
forest

::::::::
classifiers

::::::
related

::
to

:::
the

:::::
expert

::::::
scores,

:::
we

::::::
plotted

::
the

::::::
expert

:::::
scores

::
of

::::::::
potential

::::::::
avalanche

::::::
signals

::::::
against

:::
the

:::::::
model’s

::::::
output

::::::::::
probabilities

::::
(Fig.

::::
11). Overall, the output probabili-

ties of the random forest models positively increased with the expert scores. As expected, we also noted the highest uncertainty

at the selected threshold (dotted blue line
:
in

::::
Fig.

:::
11). When comparing the feature sets, the classification with the seismic

attributes yielded clearer
::::::
baseline

:::::::
features

:::::::
yielded

::::
more

::::::::
apparent

:
steps over expert scores and more distinctive probabilities610

for the highest and lowest expert scores. A measure to mitigate having to deal with
:::
such

:
noisy labels in future works might be

to solely include verified avalanches
:::::
solely

:
and discard the non-verified ones for training the autoencoders. Another noticeable

observation, which bridges to the upcoming Sect. 6.2 and 6.3, was the number of outliers for the expert scores of 0.5 (false

positives) and 3.0 (false negatives), most prominently in the seismic attributes classification
:::::::
models.

::::::::
However,

:::
the

:::::::::::
unsupervised

:::::::::::
autoencoders

:::
are

::::::
entirely

:::::::::::
independent

::
of

::::
any

:::::
labels

::
or

:::::
class

::::::::::
information.

:::::
Thus,

:::
by

::::::::::
considering

::::
only

:::::::
verified

::::::::::
avalanches,

:::
we615

:::::
would

:::
not

::::::
reduce

:::::
class

::::::::
ambiguity

:::::
from

:::
the

::::::::::::
autoencoder’s

::::::::::
perspective,

:::
but

:::
the

::::::
dataset

::::
size

::::
and

::::
with

::
it,

::::::::
valuable

::::::::::
information

:::::
might

::
be

:::
lost.

6.2 Missed avalanche windows

Two types of errors are inherent in a binary classification problem, namely
::
As

:::::::::
avalanches

:::::
were

:::
this

::::::
work’s

:::::
main

::::::::
objective,

:::
we

:::
first

::::::::
analysed

:::
the

::::::
missed

::::::::
avalanche

::::::::
windows,

:::
i.e.

:::
the false negatives (FNs)and false positives (FPs), which are the focus of this620

and the following Sect. 6.3 respectively.

:
. Looking again at Fig. 11, we accredited the outliers

::::::::
relatively

::::
high

:::::::
number

::
of

:::::::
outliers

:::::
(FNs)

:
in the expert score of 3.0,

i.e. FNs
::
3,

:::
i.e.

:::::::
verified

:::::::::
avalanches, to the nature of avalanche

::::
mass

:::::::::
movement

:
signals. Concretely, avalanche signals slowly

emerge from the background noise due to source-receiver distance and the low generation of energy in the initial and very

end stages of avalanche motion, resulting in the typical spindle-shape signal with a relatively low signal-to-noise ratio at the625

beginning and end of the signal (Suriñach et al., 2001; van Herwijnen and Schweizer, 2011; Pérez-Guillén et al., 2016). We

suspect that the models had difficulties correctly classifying these parts of an avalanche signal , producing FN predictions.

Further, the manual cutting
::::::::
definition

::
of

:::::
event

:::::
onset

:::
and

:::
end

:
was rather generous in including the entire avalanche signal with

parts characterised by very low amplitudes . The selection of the initial and end of the signals was subjective, and we cannot

exclude that
:::
and

:::::::::
potentially

::::
also some background noise was included. For instance, Fig. 12 a) shows a comparison of the time630
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series of
:::::
sensor

:
array-based averaged predictions for each model with the misclassified onset of an avalanche event

::
in

:::
the

:::
left

:::
plot, while in Fig. 12 b)

::
the

:::::
right, the end portion was characterised by a very low signal-to-noise ratio

:::
and

:::::
hence

:::::::::::
misclassified.

In Fig. 12 a
:::
(left), the first few time windows from 10 s to

::::::
approx.

:
35 s are arguably rather noise

::::
noisy, as suggested by the

model probabilities. Tough as the signal strength increases, model probabilities also increase. Concretely, if we considered the

first five predictions or time windowsas noise, this sample accounts for 5 (non) FNs in the results in Fig. 9 and approximately635

25
:
(5

:::::::
sensors

:
∗
::

5
::::::::
windows)

:
in Fig. 8 per model. The

:::::
sensor array-based prediction aggregation did not reduce these missed

‘avalanche’ windows (Fig. 9) since all the sensors predicted low probabilities of being an avalanche. Thus, we were left with

approximately one-third of
::::
30% FNs in all three models. In a potential early-warning operation, an effective model should be

able to detect all signal parts generated by avalanches, particularly the onset, to identify the avalanche movement in its early

stages and trigger a corresponding alarm. Thus, as the models tend to miss the start of an avalanche, the current classifiers640

might not be suited for avalanche warning. In addition, when trying to assess the overall avalanche activity, missed avalanches

are not favourable. Installing an additional sensor near the release area and avalanche path could address this issue. However,

considering the characteristics of our test site (Fig. 1), where avalanches can flow over multiple paths, a single sensor will not

be enough for the detection of all the avalanches.

For a general outlook, we further post-processed the array-based predictions (Fig. 9) to formulate event-based predictions.645

We considered an entire signal an avalanche if at least two consecutive windows (i.e. 15 s that is approximately the minimum

duration of an avalanche signal) were positively predicted. In theory, this should eliminate the FNs in the tails of the actual

signal and provide us with event-based detectors. For instance, in Fig. 12, we then would detect avalanches with this post-processing.

Indeed, in Fig. E2, we observe a drastic reduction in missed avalanches for the three models, which achieved a high avalanche

recall of 0.82 (seismic attributes), 0.88 (TAE) and 0.91% (SAE).650

In closing, we reduced the missed avalanches by applying the presented post-processing steps. Furthermore, we observed

that the models struggle to detect the starting and ending of an event (Fig. 12). We argued that this behaviour is reasonable and

in part desirable as these parts of an event often resemble background noise. However, in most cases, the entire (unique) event

is detected (Fig. E2). Thus, the models could, in turn, be considered to annotate large datasets, which in turn can be used to

detect fine precursor signals.655
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Figure 12. Signals
::::::::
Waveform

:::
and

::::::::::
spectrogram generated by avalanches triggered on 2 February 2022 at 18:14 (top left) and 7 February

2022 at 04:07 (top right)and
:
.
:::
The

:::::
signals

::::
have

::::
been

::::::
filtered

::::
from

:
1
::
to
:::::
10 Hz

:::::::::::
corresponding

::
to

::
the

:::::
input

:::::::
frequency

::::
band

::
of
:::

the
::::::
models.

:::
At

::
the

::::::
bottom,

::
a comparison of the

::::
sensor

:
array-based averaged probabilities by

:
of

:
each model over the entire length of the avalanche signals

(bottom)
:::::
signal

:
is
:::::
shown. The dashed vertical lines

::::::
manually

::::::
defined

::::
event

::::
onset

:::
and

:::
end

:::
are

:::::::::
highlighted in

:::::
dashed grey indicate

::::
lines

:::::
(upper

::::
plot),

:::
and the manual cuts

:::::::::
classification

:::::::
threshold

:::
0.5

::
is

::
in

:::::
orange

:::::
(lower

::::
plot).

6.3 False alarms

The second type of error, i.e. false positives (FPs) or false avalanche alarms, showed greater variation in numbers across the

three models. With 7.8% the seismic attributes produced the smallest portion
::::::::::::
7.6%(±0.1%)

::::
(Fig.

:::
8),

:::
the

:::::::
baseline

::::::::
produced

:::
the

::::
least

::::::
amount

:
of false positives. Predicting with the TAE features resulted in roughly three times

::::
twice

:
as many false positives,

with the SAE feature prediction in between. However, we observed a more significant improvement in these errors when660

aggregating over the
:::::
sensor

:
array (Fig. 9). This suggested that the 5 recordings of a specific event, particularly noise events ,

can show strong
:::
five

:::::::::
recordings

::
of

::::
some

:::::
noise

::::::
events

::::::
showed

::::::::::
substantial variations across the

:::::
sensor

:
array, which we filtered

by this averaging. As the noise class is extremely dominant
:::::
highly

::::::::
dominant

::::::
(11135

:::::::::
windows)

:
and, for instance, 10% FPs

result in approximately 1000 FP samples (compared to 1335 avalanche samples), the avalanche precision of all three models is

relatively low with 0.51 (Seismic Attributes), 0.33
::::::::::
0.52(±0.00)

:::::::::
(baseline),

:::::::::::
0.33(±0.01)

:
(TAE) and 0.45

::::::::::
0.44(±0.01)

:
(SAE)665

.

We therefore analyzed
::::::
(Table.

:::
1).

:::
We

::::::::
therefore

::::::::
analysed the origins of FPs to find potential tendencies or failure cases

(Fig. 13). Most FPs, i.e. 76% (seismic attributes), 65%
:::
77%

:::::::::
(baseline),

:::::
66% (TAE) and 71%

:::
72%

:
(SAE), were generated by
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windows either carrying a non-zero avalanche score or belonging to an earthquake. Interestingly, the highest portion of false

positives falls
::
fell

:
to windows with an avalanche score of 0.5, i.e. ’one’ expert thinks

::::::
thought it might be an avalanche. This670

might
:::::
could indicate that minor-size avalanches, or larger avalanches that flowed at the detection limits of the system, are not

well recognized
::::
were

:::
not

::::
well

:::::::::
recognised by the experts yet by the models. Considering the earthquakes, the test fold comprises

::::::::
comprised

:
a total of 3880 earthquake windows, of which only 135

:::
132

:
(Seismic), 200

:::
214 (TAE) and 158

:::
146 (SAE) are

::::
were

misclassified as avalanches, i.e. 3.5%, 5.2%, 4.1%.
:::::
3.4%,

:::::
5.5%

:::
and

::::::
3.8%.

::::
This

::::::::::
underscored

:::
the

::::::
earlier

::::::::::
observation

::
of

:::::
good

::::::::
separation

:::::::
between

::::::::::
avalanches

:::
and

::::::::::
earthquakes

::
in

:::
the

:::::
latent

::::::
spaces.

:
The remaining approx. 30% FPs in all models originated675

from unknown sources.

Overall
::::
First, our results thus showed that using an array of sensors helped to reduce the number of false avalanche detections

by averaging the predictions of the sensors
:::::::::::
single-sensor

:::::::::
predictions. This can be viewed as model ensembling and is generally

known to improve results (Mohammed and Kora, 2023). Second, including features from the frequency domain
::::::::
frequency

::::::
domain

:::::::
features tended to show fewer FPs. Third, an interesting and positive finding was that the models rarely confused earth-680

quakes for avalanches (on average 4.3%
:::::
4.2% of all earthquake windows). Finally

::::::::
Moreover, the models generate

::::::::
generated

false alerts to a similar extent to previous studies in avalanche detection (e.g. Bessason et al., 2007; Rubin et al., 2012; Hammer et al., 2017; Heck et al., 2018a)

. Thus, they might
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bessason et al., 2007; Rubin et al., 2012; Hammer et al., 2017; Heck et al., 2018a).

:::
In

::::::
pursuit

::
of

::::::::
reducing

::
the

:::::::
number

:::
of

::::
false

:::::
alerts,

::::
one

:::::
might

::::::::
consider

::::::::
including

:::::
other

:::::
types

::
of

:::::::::
recordings,

::::
e.g.

:::::::::
infrasound

::::
data

:::::::::::::::::
(Mayer et al., 2020)

:
.
::
In

::::::::
addition,

::::::::::
considering

:::::
longer

:::::::
seismic

::::::::
windows

::
in

::::::
future

::::::::::::::
implementations

:::::
might

::::
help

::::::
reduce

::::
the

::::::
number

:::
of

::::
false

::::::
alerts.685

::::::::
However,

:::
this

:::::
would

:::::::
require

::::
more

:::::::::
avalanche

::::
data

::
to

::::
start

::::
with

:::
and

::
to

::::
train

:::::::
models.
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Figure 13.
:::::::
Analysis

:
of
::::::

origins
::
for

::::
false

:::::::
positives

::
as

:
a
:::::::::
percentage

:
of
:::

the
::::
total

::::::
amount

::
of

:::
false

:::::::
positives

:::
per

:::::
model.

6.4
:::::::::::

Applicability
::
to

:::::
early

:::::::
warning

::::
and

::::::::::
monitoring

:::::::
systems
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::
In

:
a
:::::::
potential

::::::::::::
early-warning

::::::::
operation,

::
a
:::::::
practical

:::::
model

:::::
must

:::::
detect

::
all

::::
key

::::
parts

::
of

:::
the

::::::
signal,

:::::::::
particularly

:::
the

:::::
onset,

::
to

:::::::
identify

::::::::
avalanche

:::::::::
movement

::
in

:::
its

::::
early

::::::
stages

:::
and

::::::
trigger

::
an

::::::::::
appropriate

:::::
alert.

::::
The

::::::
current

:::::::::
classifiers,

:::::
which

:::::
often

:::::
failed

::
to

:::::::
capture

::::
these

:::::::::
avalanche

:::::
onsets,

::::
may

:
not yet be suited for an

::::::
suitable

:::
for

:::
this

:::::::
purpose.

:::
To

:::::::
improve

:
early-warning application. However,690

the models
::::::
models,

::::::
future

::::::
studies

::::::
should

:::::
focus

:::
on

:::::::::
examining

:::::::::
avalanche

::::::
onsets

::
in

:::::
more

:::::
detail

::::
and

:::::::::
developing

::::::::::
specialised

::::::
models

:::
that

:::::
target

:::::
these

:::::::
specific

:::::
signal

::::::::
windows.

::::
For

::::::::
avalanche

::::::
activity

::::::::::
monitoring,

:::::
false

::::::::
negatives

::
at

:::
the

::::
start

::
or

:::
end

:::
of

::::
each

::::
event

:::
are

:::
not

::::
very

:::::::::::
problematic.

:::
As

::::
long

::
as

:::
the

::::
most

::::::::
energetic

::::
part

::
of

:::
the

:::::
signal

::
is
::::
well

::::::::
detected,

:::
the

::::::
overall

::::::::
avalanche

:::::::
activity

:::
can

:::
still

:::
be

:::::::::
accurately

::::::::
recorded.

::::::::
However,

:::::
when

::::::::
assessing

:::::::
overall

::::::::
avalanche

:::::::
activity,

::::::
missed

:::::::::
detections

:::
can

:::
be

:::::::::::
problematic.

::::::::
Therefore,

:::
we

::::::
further

:::::::::::::
post-processed

:::
the

::::::
sensor

::::::::::
array-based

:::::::::
predictions

:::::
(Fig.

::
9)

::
to
:::::::::

formulate
::::::::::
event-based

:::::::::
predictions

::::::
(Sect.695

:::
5.3)

::::
and

::::
give

:
a
:::::::
broader

:::::::
outlook.

::
In

::::::
theory,

::::
this

::::::
should

::::::::
eliminate

:::
the

::::
FNs

::
in

:::
the

::::
tails

::
of

:::
the

::::::
actual

:::::
signal

::::
and

::::::
provide

:::
us

::::
with

:::::::::
event-based

:::::::::
detectors.

:::
For

:::::::
instance,

::
in

::::
Fig.

:::
12,

:::
the

::::::
models

::::
then

:::::
would

::::::
detect

:::::::::
avalanches

::::
with

:::
this

::::::::::::::
post-processing.

:::
And

:::::::
indeed,

::
in

:::
Fig.

:::
E2,

:::
we

::::::::
observed

:
a
::::::
drastic

::::::::
reduction

::
in

::::::
missed

:::::::::
avalanches

:::
for

:::
the

:::::
three

:::::::
models,

:::::
which

:::::::
achieved

::
a
::::
high

:::
true

:::::::
positive

::::
rate

::
of

:::::::::::::
81.4%(±1.1%)

:::::::::
(baseline),

:::::::::::::
84.8%(±2.6%)

::::::
(TAE)

:::
and

:::::::::::::
89.3%(±4.3%)

::::::
(SAE).

:

::
In

:::::::::
conclusion,

:::
we

::::::::
observed

:::
that

:::
the

:::::::
models

::::::::
struggled

::
to

:::::
detect

:::
the

::::::
starting

::::
and

::::::
ending

::
of

::
an

:::::
event

::::
(Fig.

::::
12).

:::
We

::::::
argued

::::
that700

:::
this

::::::::
behaviour

::::
was

:::::::::
reasonable

::::
and,

::
in

::::
part,

::::::::
desirable

::
as

:::::
these

::::
parts

:::
of

::
an

:::::
event

::::
often

::::::::
resemble

::::::::::
background

:::::
noise.

:::::::::
However,

::
in

::::
most

:::::
cases,

:::
the

:::::
entire

::::::::
(unique)

::::
event

::::
was

:::::::
detected

:::::
(Fig.

:::
E2).

::::::
Thus,

:::
the

::::::
models could be implemented in an avalanche activity

assessment process or to label unverified events
:::::::
annotate

:::::
large

::::::
datasets

:
in the future by being aware of the limitations and

::::
their

:::::::::
limitations

:::
and

:::
the

::::
fact that they tend to produce too many avalanche detections. In pursuit of reducing the number of false

alerts, one might consider including other types of recordings, e.g. infrasound data (Mayer et al., 2020). Also, implementing705

specialized
::::::
Another

::::::::::
compelling

::::::::::
prerequisite

:::
for

::::::::
avalanche

:::::::
activity

:::::::::
monitoring

::
in
::::::

future
::::::
studies

::
is

:::
the

::::::::::::
transferability

::
to

:::::
other

::::
study

:::::
sites.

:::
We

::::::
would

::::::
expect

::::::::
variations

::
in
::::

the
::::::::
detection

::::::::::
performance

::
to
:::::

arise
::::
from

::::::::
different

::::::::::::
configurations

::
in

:::
the

:::::
study

::::
site

:::::
setup,

:::::
sensor

:::::::
location

:::
and

::::::::::::
configuration,

:::
and

:::
the

::::::::::::
characteristics

::
of

:::
the

::::::
terrain

:::
and

:::
the

::::::::::
avalanches.

:::::::::
Therefore,

:::
also

::::::::::::
implementing

:::::::::
specialised data augmentation techniques to increase the variety and number of the avalanche recordings, e.g. seismic data

augmentation techniques (Zhu et al., 2020) or generative models (Wang et al., 2021), might help to make the classifiers more710

robust
::
to

::::::::
changing

:::::::::::
environments

::::
and

:::::
setups.

Analysis of origins for false positives as a percentage of the total amount of false positives per model.

6.5 Comparison to previous studies

To conclude, we put our results in a broader context by comparing them with previous studies. Provost et al. (2017) used a

random forest model based on the 71 engineered seismic attributes
::
to

::::::
classify

:::::::::
landslides. They reported stunning true positive715

rates of 94%, 93% and 94% for the rockfall, quake and earthquake class and a true negative rate of 92% for the noise class.

The setting, however, is difficult to compare, as they
::::::::
Therefore,

:::
we

:::::::
adopted

::::
their

:::::::
feature

::::::::
extraction

::::::::
approach

::
as

::::
our

:::::::
baseline

::::::
model,

:::::::
though

:::
our

::::::
dataset

:::::::
differed

::::::::::
significantly.

:::::
They used non-windowed signals from an evenly distributed dataset compris-

ing 418 rockfalls, 239 quakes, 407 earthquakes, and 395 noise events. Also, these event types typically generate signals with

a higher signal-to-noise ratio than avalanches. Moreover, they included polarity and network attributes in the features, which720

for the classification turned out to be most important. Nevertheless
:::::::
However, with 92% true negatives

:::::::
negative

::::
rate, their model
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is comparably prone to producing false alerts
:::
FPs

:::::
(false

::::::
alerts) as the models in this study are. Also, for

::::
were.

:::
For

:
avalanche

detection, several studies
::::
also presented the approach of engineering features

:::::
feature

::::::::::
engineering

:
and subsequent classification

(e.g. Bessason et al., 2007; Rubin et al., 2012; Hammer et al., 2017; Heck et al., 2018a)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bessason et al., 2007; Rubin et al., 2012; Hammer et al., 2017; Heck et al., 2018a)

. Rubin et al. (2012) used 10 engineered features in the frequency domain and tested 12 classification models, of which the725

decision stump classifier showed the highest overall accuracy of 93%
:::
0.93. However, the model showed a poor precision of

13.2%, hence,
::::
0.13,

:
producing many more false alerts . In contrast to our approach, they only considered avalanches verified

on camera images or manually picked events
::::::::
compared

::
to

:::
our

:::::::::
classifiers. Heck et al. (2018a) used the same avalanche catalogue

of 283 avalanches, of which 25 were confirmed and the rest were labelled by three experts. They implemented engineered tem-

poral and spectral features and used an HMM as a classifier. Similar to most previous studies, they also noted high values of730

FPs. Moreover, they observed improvements when aggregating single sensor to
:::::::::::
single-sensor

::
to

::::::
sensor array-based predictions

as we did in this study. In conclusion, based on the results of this and previous studies, we expect that an avalanche predictor

based on solely seismic data will always produce false alarms, as it remains a difficult task to identify low-energy avalanche

signals. Therefore, installing a secondary seismic detection system in the proximity of the
:::
near

:::
the

:
avalanche path would be

advantageous in mitigating false alarms.
:::::::
However,

:::::
given

:::
the

::::::
terrain

::::::::::::
characteristics

::
at

:::
our

:::::
study

:::
site

::::
(Fig.

:::
1),

::::::
where

:::::::::
avalanches735

:::
can

:::::
occur

:::::
along

:::::::
multiple

::::::
paths,

:
a
:::::
single

:::::::::
additional

::::::::
detection

::::::
system

::::
may

:::
not

:::
be

::::::::
sufficient

::
to

:::::
detect

:::
all

::::::
events.

:
Alternatively,

integrating a complementary detection system , such as
:::
like

:
an infrasound system , could also

:::::
could be beneficial but less

cost-effective.

In summary, the classification results met the performance of previous studies on avalanche detection. However, the core

contribution of this study is two alternatives to extract features from seismic signals. We showed that the proposed encoder740

features are applicable for avalanche detection and compare well to engineered features. In particular, the learned feature

extraction does not depend on prior expertise or knowledge and thus can be adapted easily to new settings, e.g. changing

environments, without having to set some parametrisations of expert features. Moreover, with growing dataset size or larger

datasets, it can improve over time. Finally, a future interesting comparison would be to evaluate the models on how they

generalize to other test sites and settings.745

7 Conclusions

We proposed two unsupervised seismic feature extraction methods based on deep learning algorithms and a standard seismic

attributes set
:::::::::::::::
autoencoder-based

::::::
feature

:::::::::
extractors

:::
and

:::::::
retrieved

:
a
:::
set

::
of

:::::::
standard

:::::::::
engineered

:::::::
seismic

::::::::
attributes

:::::::::::::::::
(Provost et al., 2017)

to train three random forest classifiers for avalanche detection. The dataset was compiled
:::
We

::::::::
compiled

:::
and

::::::::
annotated

::
a
::::::
dataset

from seismic avalanche data recorded during two winter seasons in Davos, Switzerland. While in earlier studies, seismic data750

classification mostly followed the approach of extracting
:::::::::
engineering

:
well-defined signal attributes to train classifiers, the

proposed deep learning models bridge
::::::::::
autoencoder

::::::
models

:::::::
bridged the gap to a purely learned (automatic) pipeline.

Overall, the classifiers achieved macro-average f1-scores ranging from 0.70 to 0.78
:::::::::::
0.70(±0.01)

::
to

:::::::::::
0.78(±0.00)

:
with

avalanche recall values ranging from 0.68 to 0.71. Our results clearly show
::::::::::
0.67(±0.00)

:::
to

:::::::::::
0.71(±0.02).

:::::::::
Moreover,

::::
the
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:::::
results

::::::
clearly

:::::::::
suggested that including features from the frequency domain improves model performance. As the

::::::
Further,

:::
as755

::
we

::::::::
observed

::::
that

:::
the

::::::
models

:::::
often

::::::::::
misclassified

:::
the

:
onset and end of avalanche signals were often misclassified as noise, due

to low signal-to-noise ratios,
:::
but

:::
not

:::
the

::::
most

::::::::
energetic

::::::
signal

:::::
parts,

:
we proposed a simple

::::::::::::
straightforward

:
post-processing

stepto reduce the missed avalanches by
:
.
:::
By imposing that at least two consecutive prediction windows, i.e. 15 s, are positive

::::
must

::
be

:::::::
positive

:::
for

::
an

:::::
entire

:::::
event

::
to

::
be

:::::::
positive,

:::
we

:::::::::
drastically

:::::::
reduced

::
the

::::::
missed

::::::::::
avalanches

::::
(false

:::::::::
negatives). This criterion

significantly improves
::::::::
improved the avalanche recall, ranging from 0.82 to 0.91

::::::::::
0.81(±0.01)

::
to

:::::::::::
0.89(±0.04). Lastly, contrary760

to previous expectations, earthquakes are
::::
were

:
rarely mistaken for avalanches at our study site.

Revisiting our primary goal of comparing human-engineered with automatic feature extraction, there is no denying that the

standard seismic attributes classification is a robust approach. These predefined attributes
::
the

:::::::
primary

::::::::
objective

::
of

:::::::::
advancing

:::
and

::::::::::
automating

::::::::
avalanche

::::::::
detection

:::::::
through

:::::::
seismic

:::::::::
monitoring

::::::::
systems,

:::
we

::::::
believe

::::
that

::::
both

:::
the

:::::::
baseline

::::::::::::::
implementation

:::
and

:::
the

:::::
novel

:::::::::::::::
autoencoder-based

::::::::::
approaches

:::
for

::::::::
avalanche

::::
data

:::::::
analysis

::::
bear

:::::
strong

::::::::
potential

:::
for

:::::
future

:::::::::::::::
implementations.

:::
We765

:::::::::::
demonstrated

:::
that

:::::::::::
autoencoders

::::
can

::::
learn

::::::::::::
characteristic

::::::::
avalanche

:::::::
features

::::
from

:::::::
merely

::
84

:::::::
seismic

::::::::
avalanche

::::::
signals

::::
and

:::
are

:::::::::
performing

:::::::
equally

::
on

:::
an

::::::::
avalanche

::::::::
detection

::::
task

::
as

:::::::::::::::
expert-engineered

::::::::
features,

:::::
which

:
have been studied and applied for a

decade and optimized and tuned throughout
::::
over

:
a
:::::::
decade,

::::::::
optimised

:::
and

:::::::::
fine-tuned

::::::
through

:
various studies. The unsupervised

representation learning, in contrast, is a completely new approach to seismic avalanche data analysis. We have shown that it

bears potential for future implementations and applications. Compared to engineered features, the learned features require no770

prior expertise and, therefore, can easily be adapted to changing environments without having to set some parametrisations

of expert features. Also, they can improve with growing dataset size in future
:::::::::
Therefore,

:::
we

:::::
argue

::::
that

::
as

:::::::
seismic

:::::::
datasets

::::
grow,

::::
i.e.

::::
with

:::::
more

:::::::
(diverse)

:::::::::
avalanche

::::::
signals

::::::::
available

:::
for

::::::::
learning,

:::::::::::
unsupervised

::::::::::::
representation

:::::::
learning

::::::::
methods

:::::
could

:::::::::
potentially

::::::
surpass

:::
the

:::::::::::
conventional

::::::
feature

::::::::::
engineering

:::::::
approach

::
in
:::
the

::::::
future.

::
In

::::::::::
conclusion,

:::
the

::::::::
proposed

:::::::
methods

::::::::
represent

:
a
::::
step

:::::::
towards

::::::::
enhancing

:::
the

::::::::::
throughput

::
of

::::::::
avalanche

::::::::
detection

:::::::
systems

::::
and

:::
the

::::::::
automatic

::::
and

:::::::::
continuous

::::::::::::
documentation

:::
of775

:::::
events.

::::::::
Acquiring

:::::::::
avalanche

::::::::
detections

:::::
from

::::
such

:::::::
systems

:::::
across

::::::::
different

:::::::
locations

::::::::
spanning

:::::
wider

:::::
areas

:::
has

:::
the

::::::::
potential

::
to

:::::::
improve

:::
and

:::::::
validate

::::::::
avalanche

:::::::
warning

::::::::
services.

:::::
This,

:::::::
however,

::::::::::
necessitates

::::::
future

::::
work

:::
on

:::::::::::
investigating

:::
the

::::::::
scalability

::::
and

:::::::::::
transferability

::
of

:::::
such

:::::::
methods

::
to

::::
new

:::::::::::
environments.

:

Code and data availability. The code to reproduce the results and test the models is available on Zenodo (DOI: 10.5281/zenodo.15001358).

It is predominately written in Python using the PyTorch library (Paszke et al., 2019) for the autoencoder design, the random forest implemen-780

tation of the Scikit-learn library (Pedregosa et al., 2011), the Pandas library (Wes McKinney, 2010) for handling the data and more standard

Python libraries such as NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020). Additionally, the event catalogue with the raw seismic

waveforms is found on Zenodo (DOI: 10.5281/zenodo.14892926).
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Appendix A: Dataset

Table A1 depicts the date ranges in each fold and the respective number of events. We used folds 1, 2 and 3 for the cross-validation,785

i.e. the model development, and the test fold (number 4) to obtain the final results on unseen data. In general, we picked the

folds consecutive in time, with a minor exception in the test fold, where we moved the 2nd of February from fold 3 to the test

fold. This balanced the number of events in the folds more evenly.

Table A1. Detailed view on the applied splits of the dataset. For each fold, the table shows the number of respective events.
:::
The

::::
folds

::::
were

:::::
picked

:::::::::
consecutive

:
in
::::
time,

::::
with

:
a
:::::
minor

:::::::
exception

::
in

:::
the

::
test

::::
fold,

:::::
which

:::::::
included

::
the

:::
2nd

::
of

:::::::
February

::::
from

:::
fold

::
3.

:::
This

:::::::
balanced

:::
the

::::::
number

:
of
:::::

events
::

in
:::
the

::::
folds

::::
more

::::::
evenly.

Fold Date Avalanches Earthquakes Noise

1
13.01.2021

- 28.01.2021
17 39 196

2
29.01.2021

- 24.05.2021
16 39 100

3

10.01.2022

- 04.02.2022

(excl. 02.02.2022)

18 39 138

4

06.02.2022

- 17.05.2022

(incl. 02.02.2022)

33 66 211

Appendix B: Seismic attributes

The implemented engineered feature extraction follows
:::::::
followed the work of Provost et al. (2017) and Turner et al. (2021). In790

contrastto these, by defining our frequency band to ,
:::
by

:::::
using

::::::::::::::
bandpass-filtered

::::::
signals

::
(1-10 Hz

:
),
:
we modified the attributes

correspondingly. Also, we discarded network or
:::
and

:
polarity-related attributes as we developed individual models per sensor,

and most of our sensors only contained one vertical component
:::::
models

:::
for

::
a
:::::::::::
single-sensor

:::::::
setting,

:::
and

::::
our

:::::
study

:::
site

:::::
only

::::
used

:::::::::::::
one-component

::::::
sensors. In summary, we extracted 22 waveform attributes (Table B1), 17 spectral (Table B2) and 18

spectrogram attributes (Table B3).795
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Table B1. Waveform attributes extracted from the 10 s seismic signals.

Number Description

1− 2
Ratio of the mean and median

over the maximum of the normalised envelop signal

3 Ratio between ascending and descending time

4 Kurtosis of the raw signal

5 Kurtosis of the envelope

6 Skewness of the raw signal

7 Skewness of the envelope

8 Number of peaks in the autocorrelation function

9
Energy in the first third part

of the autocorrelation function

10
Energy in the remaining part

of the autocorrelation function

11 Ratio of 10 and 9

12− 16
Energy of the signal filtered in

[1,3], [3,6], [5,7], [6,9] and [8,10]Hz

17− 21
Kurtosis of the signal in

[1,3], [3,6], [5,7], [6,9] and [8,10]Hz

22
RMS between the decreasing part of the signal

and I(t) = Ymax − Ymax

tf−tmax
t
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Table B2. Spectral attributes extracted from the 10 s seismic signals.The Nyquist frequency (NyF) is 100 Hz, i.e. half of the sampling rate.

Number Description

23− 24 Mean and Max of the FFT

25 Frequency at the maximum

26− 27 Central frequency of the 1st quartile and 2nd quartile

28− 29 Median and Variance of the normalized
:::::::::
normalised

:
FFT

30 Number of peaks

31 Number of peaks in the autocorrelation function

32 Mean value for the peaks

33− 36
::::::
33− 37

: Energy in [1,3], [3,6], [5,7], [6,9] and [8,10]Hz

37
::
38 Spectral centroid

38
::
39 Gyration radius

39
::
40 Spectral centroid width
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Table B3. Spectrogram attributes extracted from the 10 s seismic signals.

40
::::::
Number

: ::::::::::
Description

41
Kurtosis of the maximum of

all fast Fourier transforms (FFTs) over time

42 Kurtosis of the maximum of all FFTs as a function of time

43 Mean ratio between the maximum and the mean of all FFTs

44− 46
::
44

: Mean ratio between the maximum and the median of all FFTs

47
::::::
45− 47

:
Ratio between 44 and 45

Number of peaks in the curve showing the temporal evolution

of the FFTs maximum (45), mean (46) and median (47)

48 Ratio between 44
::
45 and 46

49
:::::
Ratio

:::::::
between

::
46

::::
and

::
47

:

50
Number of peaks in the curve of the temporal evolution

of the FFTs central frequency

51
Number of peaks in the curve of the temporal evolution

of the FFTs maximum frequency

::
52 Ratio between 50 and 51

52 53
Mean distance between the curves of the temporal evolution

of the FFTs maximum frequency and mean frequency

54
Mean distance between the curves of the temporal evolution

of the FFTs maximum frequency and median frequency

55
Mean distance between the 1st quartile and the median

of all FFTs as a function of time

56
Mean distance between the 3rd quartile and

the median of all FFTs as a function of time

57 Number of gaps in the signal
Mean distance between the 3rd quartile and

the 1st quartile of all FFTs as a function of time

Appendix C: Metrics
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Besides the classifiers, we also evaluated the unsupervised clustering of the autoencoders in the latent space. Therefore, we

used the classification and clustering metrics defined here.
:::
We

::::
used

:::
the

:::::::::::::
reconstruction,

:::::::::::
classification

::::
and

::::::::
clustering

:::::::
metrics

::::::
defined

::::
here

::
to

:::::::
evaluate

:::
the

:::::::::::
autoencoders

:::
and

:::
the

:::::::::
classifiers.

:

C1
:::::::::::::
Reconstruction

:::::::
metrics800

::::
Since

::::::::::::
autoencoders

:::
aim

::
at

::::::::::::
reconstructing

:
a
:::::

given
:::::
input

:::::
signal

::
y,
::::

they
:::
are

:::::::
trained

::::
using

::
a
::::::::::::
reconstruction

::::
loss.

::
In

::::
this

:::::
study,

:::
we

::::::::::
implemented

:::
the

:::::
mean

:::::::
squared

::::
error

::::
loss

::::::
(MSE),

::::::
which

::
is

::::::
defined

:::
for

:
a
:::::
batch

::
of

::::
size

::
B

::
as

:::::::
follows.

:

MSE(y, ŷ) =
1

B

B−1∑
i=0

(yi − ŷi)
2

::::::::::::::::::::::::

(C1)

:̂
y
::
is

:::
the

:::::::::::
autoencoder’s

::::::::
predicted

::::::
output,

::::
i.e.,

:::
the

::::::::::::
reconstruction.

:

C2 Classification metrics805

Various metrics exist to evaluate binary classification problemsand are all
:
.
:::
All

:::
are tailored to specific objectives. For instance,

the precision is chosen when false alerts, i.e. false positives, are critical, the recall is sensitive to missed events, i.e. false

negatives
:
, and the f1-score combines both to form the harmonic mean of both as follows:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(C2)

The macro average summarizes
::::::::::
summarises the per-class results within a single value. This value is an unweighted mean810

over the given classes and ensures that the values are not biased towards the most frequent class, i.e. noise
::::::
majority

:::::
class.

Macro−F1 =
1

K
∗

K∑
k=0

F1k , whereK = 2 (C3)

C3 Clustering metrics

A natural metric choice when evaluating different autoencoders is a
::::::::::
autoencoders

::
is
:::
the

:
reconstruction loss, e.g. the mean

squared erroron which
:
,
::
on

:::::
which

:::
we

::::::
trained

:
the autoencoders in this workwere trained. In pursuit of good autoencoder features815

for later classification, however, we aimed to optimize
:::::::
optimise the latent space representation. Since a good reconstruction

does not necessarily imply a sufficient separation in latent space, we explored clustering metrics to compare the latent space

distribution of different models with the given (expert) labels. We, therefore, implemented the silhouette score (Rousseeuw,

1987) and the Calinski–Harabasz index (Caliński and Harabasz, 1974). These scores are usually used to evaluate clustering

algorithms that predict classes, e.g. k-means. The silhouette score computes the mean intra-cluster and inter-cluster distances820

per sample. For instance, given a sample, it calculates the distance to the cluster it is part of (a) and the distance to the nearest
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cluster it is not part of (b) and forms the sample score:

Si =
b− a

max(a,b)
(C4)

After taking the mean over all samples, the silhouette score ranges from -1 (worst) to 1 (best). The Calinski–Harabasz index, or

variance ratio criterion, on the other hand, is the ratio of between- and within-cluster dispersion. The between-cluster dispersion825

is defined as the weighted sum of squared Euclidean distances of the cluster centroids and the overall centroid (higher , better),

and the
:::::
better).

::::
The

:
within-cluster dispersion is given as the sum of

::
the

:
squared Euclidean distance of the samples and their

respective cluster centre (lower better). Thus, a good clustering algorithm is supposed to yield a high Calinski–Harabasz score.

Appendix D: Weighted random sampler
:::::::
Random

:::::
forest

:::::::::::
optimisation

Training a deep learning model on a dataset characterised by a severe class imbalance can bias the model predictions towards830

focusing solely on the most frequent class. The model can thus achieve high accuracy by accurately predicting this class.

Therefore, it can fail to predict events in the minority class, which in our study is the most interesting one, i.e., avalanches.

To mitigate this problem, we applied a weighted bootstrapping technique during the training of the autoencoders, a so-called

weighted random sampler, as implemented in PyTorch (Paszke et al., 2019). Therefore, we assign the following weights to

each sample of the avalanche (wav) or noise class (wno).835

wav =
Nno

Nav

Pav

1−Pav
; wno = 1

Pav is the user-defined portion of expected avalanches within each batch. Internally, these weights are rescaled and interpreted

as probabilities.

Appendix E: Random forest optimization

The random forest models and their optimizations were implemented using the scikit-learn library (Pedregosa et al., 2011).840

Table D1 presents the three selected random forest models that were optimized on the same hyper-parameters grid and ranked

based on the avalanche class f1-score.
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Table D1. Selected Random Forest Models
::::::
random

::::
forest

::::::
models

Parameter
:::::::
Baseline TAE SAE

Number of Estimators 512 512 512

Maximum Depth 8 8 8

Maximum Number

of Features
log2 sqrt sqrt

Maximum Number

of Samples
0.1 0.2 0.2

Class Weight Balanced

Criterion Gini

Bootstrap True

Appendix E: Autoencoder optimization
:::::::::::
optimisation

Table E1. Selected Autoencoders
::::::::::
autoencoders

Parameter
::::
TAE

::::
SAE

Number of Weights 514’337 81’330

Feature Dimension 32 16

Hidden Dimension [200, 20, 2] [139, 78, 16]

Filters [32, 64, 128] -

Number of Layers 3 3

Kernel Size 20 -

Stride 10 -

Expected Avalanche

Portion in Batch
0.6 0.5

Learning Rate 1e−4 1e−4

Batch Size 128 128
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To select the autoencoder hyper-parameters, we opted to first optimize
:::
first

:::
to

:::::::
optimise

:
model intrinsic parameters, e.g.,

::::
such

::
as hidden dimensions or the number of layers, instead of training strategy parameters. This separation reduced the computation845

time.

The temporal autoencoder architecture optimization
::::::::::
optimisation

:
proved to be more sensitive and critical. First, we optimized

::::::::
optimised the kernel size, stride, number of filters, feature dimension and activation function. We observed that the kernel size

and stride combinations of (20, 10) and (8, 4) showed the best clustering metrics. Moreover, concerning the non-linear activa-

tion, the leaky ReLU outperformed the Tanh function in most tests. Since the overall performance was not entirely satisfying,850

we tested the weighted random sampler (Sect. ??
::::
4.2.1 with 50% expected avalanches in each batch. This addition to the train-

ing strategy showed a considerable improvement for most models with kernel size 20 and stride 10. Although using a kernel

size of 8 and stride of 4 tended to show better clustering metrics, the reconstruction of the signals was comparably poor. Based

on these observations, we implemented a kernel size of 20 and stride of 10. Also, we found the feature dimension 32 better

suited than 64 or 16. Lastly, we selected the number of filters as 32, 64
:
, and 128 within the encoder

::::
filters

::::::
within

::::
each

:::::::
encoder855

::::
layer. See Table E2 for a summary of the best 10 models of this process and Table E1 for the selected autoencoders. Having

defined the intrinsic parameters, we tested different training strategies. In particular, we optimized
::::::::
optimised the learning rate,

the batch size and the expected portion of avalanches in a
:::
per batch. This test led to values of 1e−4, 128 and 0.6 for the temporal

autoencoder
:::::
(Table

::::
E3). Finally, we found that augmenting the data by randomly shifting input samples by 0 to 1 s to the left

or right helps
:::::::
improved

:::::::::
robustness.860
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Table E2. The Table summarizes
:::::::
Summary

::
of

:
the TAE hyper-parameter optimization

:::::::::
optimisation. It shows only

::::
Only

:
the models for which

all three metrics are ranked in the top 20.
::
20

:::
are

:::::
shown.

:
The best metrics are highlighted in bold, and the selected model architecture is

::
are

::::::::
highlighted

:
in orange

::::
bold.

Weights
Filters in

first Layer

Feature

Dimension

Kernel

Size
Stride

Expected

Avalanche

Portion

Augmentation
Silhouette

Score

Calinski–Harabasz

Index
MSE

109865 8 64 8 4 default False 0.191 849.959 0.078

109865 8 64 8 4 0.5 False 0.024 357.494 0.073

109865 8 64 8 4 0.5 True 0.018 345.684 0.076

156945 16 32 20 10 0.5 False 0.033 374.174 0.06

156945 16 32 20 10 0.5 True 0.011 567.276 0.055

514337 32 32 20 10 default True -0.072 368.876 0.054

514337 32 32 20 10 0.5 False 0.061 333.174 0.061

514337
::::::
514337 32

::
32 32

::
32 20

::
20 10

::
10 0.5

::
0.5 True

::::
True 0.041 613.917 0.054

625185 32 64 20 10 0.5 False -0.095 292.78 0.063

625185 32 64 20 10 0.5 True -0.105 307.477 0.064

While optimizing
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Table E3.
:::::::
Summary

::
of

::
the

::::
TAE

::::::
learning

::::
rate

:::
and

::::
batch

:::
size

::::::::::
optimisation.

:::
The

::::
best

:::::
metrics

::::
and

::
the

::::::
selected

:::::
model

:::
are

:::::::::
highlighted

::
in

::::
bold.

:::::
batch

::
lr

Silhouette

Score

Calinski–Harabasz

Index :::::
MSE

::
16

: ::::
1e-05

: ::::::
-0.093

:::::::
259.029

:::::
0.057

::
32

: ::::
1e-05

: ::::::
-0.123

:::::::
191.291

:::::
0.058

::
16

: ::::::
0.0001

::::
0.019

: :::::::
435.901

:::::
0.053

::
32

: ::::::
0.0001

::::::
-0.006

:::::::
460.183

:::::
0.055

::
64

: ::::::
0.0001

::::
0.013

: :::::::
525.536

:::::
0.054

:::
128

::::::
0.0001

:::::
0.051

::::::
696.984

:::::
0.054

::
16

: ::::
0.001

: ::::
0.039

: :::::::
352.668

:::::
0.051

::
32

: ::::
0.001

: ::::
0.011

: :::::::
373.105

:::::
0.053

::
64

: ::::
0.001

: ::::
0.034

: :::::::
381.183

:::::
0.052

:::
128

::::
0.001

: ::::
0.007

: :::::::
347.923

:::::
0.052

:::::
While

:::::::::
optimising the spectral autoencoder, we found faster convergence. We started by testing combinations of the number

of layers with hidden dimensions, feature dimensions and activation functions. The
::::
Table

:::
E4

::::::
shows

:::
the results for the best

8 modelsare shown in Table E4
::::
eight

::::::
models. We foremost noted that 16 features were optimal for this task. Moreover, we

observed that the Tanh activation function was favourable in comparable architectures. Finally, we selected the model high-865

lighted in orange
::::
bold since it showed a good compromise between the number of weights of

:
in

:
the network and performance.

Following the same training strategy as for the temporal autoencoder, we optimized
::::::::
optimised

:
the learning rate, the batch size

and the expected portion of avalanches in a
:::
per batch. In contrast to the temporal autoencoder, we used an expected portion of

0.5 avalanches within a batch, a learning rate of 1e−4 and a batch size of 128
:::::
(Table

::::
E5).
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Table E4. The Table summarizes
:::::::
Summary

::
of

:
the SAE hyper-parameter optimization

:::::::::
optimisation. It shows only

::::
Only

:
the models for which

all three metrics are ranked in the top 10.
::
10

:::
are

::::::
shown. A

::::::
“default”

:
hidden dimension of 0.0 indicates that the dimensions in the layers of

the encoder linearly decrease from the input dimension (200) to the feature dimension. The best clustering metrics are highlighted in bold,

and the selected model architecture is
:::
are

::::::::
highlighted

:
in orange

:::
bold.

Weights Layers
Feature

Dimension

Activation

Function

Hidden

Dimensions

Silhouette

Score

Calinski–Harabasz

Index
MSE

47552 2 16 Tanh 0.0
::::::
default 0.227 1205.952 0.014

47552 2 16 leaky ReLU 0.0
::::::
default 0.218 1088.234 0.012

70880 2 64 Tanh 0.0
::::::
default 0.198 999.475 0.014

81330
:::::
81330 3

:
3 16

::
16 Tanh

::::
Tanh 0.0

::::::
default 0.224 1237.579 0.013

81330 3 16 leaky ReLU 0.0
::::::
default 0.217 1015.357 0.012

112432 4 16 Tanh 0.0
::::::
default 0.238 1111.027 0.013

112432 4 16 leaky ReLU 0.0
::::::
default 0.223 1013.013 0.012

146120 5 16 leaky ReLU 0.0
::::::
default 0.223 968.953 0.012
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Table E5.
:::::::
Summary

::
of

:::
the

::::
SAE

::::::
learning

:::
rate

:::
and

:::::
batch

:::
size

::::::::::
optimisation.

::::
Only

:::
the

:::
top

::
ten

::::::
models

:::
are

::::::
shown.

:::
The

:::
best

::::::::
clustering

::::::
metrics

:::
and

::
the

::::::
selected

:::::
model

:::
are

:::::::::
highlighted

::
in

::::
bold.

:::::
batch

::
lr

Silhouette

Score

Calinski–Harabasz

Index :::::
MSE

::
16

: ::::
1e-05

: ::::
0.216

: :::::::
1295.275

: :::::
0.015

::
32

: ::::
1e-05

: ::::
0.225

: :::::::
1337.226

: :::::
0.015

:::
128

::::
1e-05

: ::::
0.219

: :::::::
1339.248

: :::::
0.015

::
16

: ::::::
0.0001

::::
0.25

:::::::
1062.001

: :::::
0.009

::
32

: ::::::
0.0001

::::
0.24

:::::::
1131.993

: :::::
0.009

::
64

: ::::::
0.0001

::::
0.241

: :::::::
1283.843

: :::::
0.013

:::
128

::::::
0.0001

::::
0.245

: ::::::::
1391.865

:::::
0.014

::
16

: ::::
0.001

: ::::
0.268

: :::::::
872.865

:::::
0.009

::
32

: ::::
0.001

: :::::
0.272

:::::::
831.938

:::::
0.009

::
64

: ::::
0.001

: ::::
0.261

: :::::::
852.354

:::::
0.009
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::::::::
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::::::
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Figure E1.
::::::
Learning

:::::
curves

::
of
:::
the

::::
TAE

::::
(left)

:::
and

::::
SAE

::::::
(right).

:::
The

:::
blue

::::
line

:::::
shows

::
the

:::::
mean

::::::
squared

::::
error

:::::
(MSE)

::::
loss

::
on

:::
the

::::::
training

:::
set,

::::
while

:::
the

:::::
orange

:::
line

:::::
shows

:::
the

:::
loss

:::::::::
progression

::
on

:::
the

::::::
held-out

:::
test

:::
set

::::
(Fold

:
4
::
in

:::
Fig.

:::
3).

E2 Event-based prediction results

Figure E2. Confusion matrices of the results for the three feature sets aggregated on an event basis
::::
level. The rows indicate the true (expert)

labels, while the columns provide the predicted labels of the random forest classifiers. The colours code the percentage numbers.
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Table E6. Classification metrics on the
::::::

(unseen) test fold data set
::::::::
comprising

:::
33

:::::::
avalanche

:::
and

:::
275

:::::
noise

::::::
samples after the aggregation over

entire events of the
:::::
sensor array-based predictions. Due to the strong class imbalance and bias towards the noise class, the weighted averages

of the metrics are not shown.

Model Class Precision Recall F1 Support

Baseline

Avalanche 0.42
::
±

::::
0.01 0.82

::::
0.81

::
±

::::
0.01 0.55 33

::::
0.56

::
±

::::
0.01

Noise 0.98
::::
0.97

::
±

::::
0.00 0.86

::::
0.87

::
±

::::
0.01 0.92 275

:
±

::::
0.00

:

Macro Avg 0.70
::
±

::::
0.01 0.84

::
±

::::
0.01 0.73 308

:::
0.74

::
±

::::
0.01

:

Accuracy 0.86
::
±

::::
0.01

TAE

Avalanche 0.27
::
±

::::
0.01 0.88

::::
0.85

::
±

::::
0.03 0.41 33

::
±

::::
0.01

Noise 0.98
::
±

::::
0.00 0.72

::
±

::::
0.01 0.83 275

:
±

::::
0.01

:

Macro Avg 0.63
::
±

::::
0.01 0.8

:::
0.79

::
±

::::
0.02

:
0.62 308

:
±

::::
0.01

:

Accuracy 0.73
:::
0.74

:::
±

::::
0.01

SAE

Avalanche 0.41
::::
0.39

::
±

::::
0.01 0.91

::::
0.89

::
±

::::
0.04 0.56 33

::::
0.54

::
±

::::
0.02

Noise 0.99
::::
0.98

::
±

::::
0.01 0.84

::::
0.83

::
±

::::
0.01 0.91 275

:::
0.90

::
±

::::
0.01

:

Macro Avg 0.7
:::
0.68

::
±

::::
0.01

:
0.87

::::
0.86

::
±

::::
0.02 0.73 308

:::
0.72

::
±

::::
0.01

:

Accuracy 0.85
:::
0.84

:::
±

::::
0.01
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