
The Authors want to take this opportunity to thank the reviewer for their time and their help in
improving the manuscript.

Reviewer’s 1 Comments

1. On page 3, line 72 you speculate that this software could be a valuable tool for
upcoming CMIP7 experiments. However, in the rest of the text, I get the impression that
VISION is designed to work with hourly output from UM/UKESM with specific output file
names. Furthermore, to my knowledge the most frequent global fields in CMIP are 3-
hourly. Does the tool operate on CMIP6 CMORized output? If not, could you elaborate in
the discussion what would be needed for VISION to claim a role in the CMIP7
assessment cycle?

The VISION tools are currently capable of reading CMIP6 CMORized output using cf-python
libraries. Whilst the UM/UKESM has been used as a test model and the current version of
the tool is designed to work with UM output, the next version of the VISION toolkit (currently
under development) will be model independent and is currently being tested with output from
other models.

As part of the NERC-TWINE VISION project (which is partly funding the further development
of the VISION toolkit), we aim to run training sessions and produce training material to
support modellers who wish to integrate VISION into their model’s workflow. If the CMIP
community recognises the value of this tool and is willing to engage in the required training,
some CMIP7 models could include VISION into their workflow and produce temporary hourly
output which could be converted into CMORized co-located data for archiving.

In order to clarify this point, the text on page 3, line 72 will be changed from:

“The code is being developed to read any CF compliant model data and so could provide a
valuable tool for supporting expanded diagnostics in upcoming CMIP7 experiments.”

to:

“Whilst the UM/UKESM has been used as a test model and the current version of the tool is
designed to work with UM output, the next version of the VISION toolkit (currently under
development) will be model independent. Since VISION is designed to work with CF
compliant data, including CMIP CMORized output, it could prove a valuable tool for
supporting expanded diagnostics in upcoming CMIP7 experiments.”

2. In section 2.3 you briefly discuss the output of the VISION tool. Is the output CF-
compliant? Please mention if so.

The current version of the tool uses CIS libraries to write output in NetCDF format. Whilst
this output can be easily read and processed, it is not fully CF compliant. The next version of
the VISION toolkit (currently under development) is using cf-python libraries to write model
output which will be fully CF compliant.

3. Table 2: you test different I/O libraries for NetCDF on performance. Surprisingly, the cf-
python library is faster when reading a pp file with 36 fields than a single field. Could
you elaborate on this?

The JASMIN facility, on which tests described in Table 2 were performed, is a shared
computing facility and the load on the system can vary at different times throughout the day.
To avoid bias in the comparison of different libraries reading the same type of input file, all
tests in the same column in Table 2 were performed simultaneously on the system.
However, tests in different columns in Table 2 were performed at different times and this
might result in perceived inconsistencies such as the one highlighted by the reviewer. Given
that another reviewer has questioned the use of old version of the iris library, we have
repeated these tests with the most recent versions of the three libraries and we have
performed the tests on a local computer cluster to further minimise the impact of variable
load on the timings in Table 2. This has resulted in more consistent numbers when looking
at the performance of a Python library with multiple file formats.

In a broader perspective, I'm not sure whether a numpy.print is a good indicator for the
I/O performance of the actual VISION workload, especially for distributed lazy I/O
libraries under consideration. Maybe extracting values along a trajectory would provide
a better indication of the performance? Please address this concern in the text.

Initial timing tests using the VISION toolkit, identified reading of the model data as the single,
most time-consuming step compared to reading of the observational data, extracting the
values along a trajectory and writing the output. Therefore, we decided to focus our
investigations on the time required to read the model data using different Python libraries,
rather than the time required to read model and observational data and extract the value
along a trajectory. Since all the libraries used in the comparison store the data as a numpy
array, using a numpy.print statement to access the variable data array was the simplest
possible way to avoid lazy loading of the data.

To clarify this, the following sentence has been added to the manuscript on page 5, line 134:

“Initial timing tests using the VISION toolkit, identified reading of the model data as the
single, most time-consuming step compared to reading of the observational data, extracting
the values along a trajectory and writing the output. Therefore, the time required to read
model data using different Python libraries was investigated.”

4. Section 4: the examples only involve ozone concentration. Since the tool is presented
as a general-purpose interpolator/collocator, one would expect multiple variables to be
plotted for illustration.

In this paper, ozone was chosen as an example because it is a widely measured chemical
quantity with a large volume of data going further back in time. However, ISO_simulator can
easily produce any modelled chemical and dynamical variable along specified tracks. To
showcase this further, Fig 4 in the manuscript has been edited and the new figure contains
two new panels with UKESM carbon monoxide and temperature, as well as UKESM ozone,
along the FAAM flight track.

The Authors want to take this opportunity to thank the reviewer for their time and their help in
improving the manuscript.

Reviewer’s 2 Comments

(1) I believe that it would be worth mentioning the following tangential point. Another
scenario where the overall approach described can be beneficial is for the creation of
Nature Run (NR) simulations used for OSSEs. These will generally be much higher in
resolution than climate simulations, and therefore allow for an even higher
compression ratio. Further, practical limitations generally limit NR output to infrequent
snapshots, whereas there is great research value in sampling at the model time step.
However, to be practical, producing in-situ data in this configuration will generally
require online processing to avoid the costly intermediate step of dumping full states to
disk as the first step in the processing workflow. OTOH, online processing would
allow for improved scalability of the interpolation step. It would be nice if future
versions of VISION would allow for an online distributed interface for such scenarios.

We agree with the reviewer that the VISION toolkit (including the new Satellite_simulator
which is currently under development) could be of great benefit in a higher resolution Nature
Run (NR) for Observing System Simulation Experiments (OSSEs). If properly integrated into
the model’s workflow, the in-situ and Satellite simulators from the VISION toolkit would allow
full sampling of the NR simulation at the model timestep and it would achieve an even higher
data compression ratio compared to its use with climate models. As part of the NERC-
TWINE project that partly funds the further development of VISION, we are planning on
simpler code (in the form of Python libraries) which will be easier to interface with a variety of
different models and we also aim to provide training material and workshops to help users
integrate these tools into their own model workflow.

To highlight the possible future application of VISION to the OSSEs problem, we have added
the following sentence on page 3 line 71:

 “Another possible application of the VISION toolkit is for improving model comparison with
observations when conducting Observing System Simulation Experiments (OSSEs) (Zeng et
al., 2020). These experiments are typically performed using models with a high spatial and
time resolution; integrating the VISION tools into the workflow of such high resolution Nature
Runs (NR) would allow to efficiently sample data at the model timestep with much reduced
data storage requirements.”

(2) To a limited degree a similar approach has been used for field campaigns. E.g.,
https://github.com/GEOS-ESM/GMAOpyobs/blob/develop/src/pyobs/sampler.py

The interpolation of data for better comparison of model and observations is not new, as
evidenced in the introduction (line 53-56 and references therein). The VISION toolkit is
relatively fast to run (takes less than 5 minutes to process 1 month of hourly model data) and
can be automated to process large volumes of data at once, allowing for efficient data
analysis over a large number of years.

The Authors want to take this opportunity to thank the reviewer for their time and their help in
improving the manuscript.

Reviewer’s 3 Comments

 Regarding section 2.4 “Code optimization”: Could you give a rough estimate of how
much real time running ISO_simulator takes? Are you using any of the
parallel/distributed/out-of-core computing functionalities provided by cf-python or
Iris via Dask? This could potentially lead to large performance improvements.

ISO_simulator is a relatively fast code to run. Reading of the model data is the single, most
time-consuming step; therefore the number of variables in the model hourly output file will
also have an impact on the ISO_simulator run time. An estimate of the time required to run
ISO_simulator is added at line 149 with the following sentence:

“In practical tests, when run over a large number of years, ISO_simulator takes around 2-3
minutes to process one variable for one model year.”

VISION tools use Dask for reading of data with cf-python.

 Please consider publishing your code as a Python package on PyPI and/or conda-
forge to enable installing it via “pip install ” or “conda install ”. This will greatly
simplify the installation process, the dependency handling, and the inclusion of your
code into other software. For example, other software products could simply do a
“import <name_of_your_package” in their code.

We understand the reviewer’s point here. However, given that version 2 of the VISION toolkit
is currently under development and will soon replace version 1, we decided to include these
recommendations on the next version of the code release, which will be provided as a
Python package on PyPI as suggested and has already been minimally packaged such that
it is installable locally from the open GitHub repository.

 Specific Comments

1. 23: I think it would be helpful to also include the acronym “ISO_simulator” into the title.
You mention it very often in the paper, so I think it deserves to be there.

We have now added the acronym to the title.

2. 45: There are many models which also use unstructured grids (ICON, FESOM, etc.), so
it’s probably better to avoid the term “regular grid”, which really is the opposite of an
unstructured (or irregular) grid.

We have now replaced the text in lines 44-46 from:

“what makes such comparisons with model data inherently difficult is the difference between
the orderly model data (defined on a regular 3D grid and at regular time intervals) and the
unstructured observational data (with variable coverage in space and time).”

to:

“what makes such comparisons with model data inherently difficult is the difference between
the orderly model data, defined on the model grid at regular time intervals, and the
unstructured observational data, with variable coverage in space and time.”

3. 83-86: Mention what you need Iris for? Both other tools are mentioned here.

This sentence has now been added at the end of line 81:

“Iris libraries are used in some CIS functions to read gridded model data.”

4. Table 1: Please mention that input files can also be other formats than PP (like you do
in the next paragraph).

This has now been added.

5. Table 2: Could you please explain what you mean by “Iris + structured UM loading” and
why the difference is so big between “Iris” and that?

The following sentence has been added to the caption in Table 2:

“The structured UM loading1 method is a context manager which enables an alternative
loading mechanism for ‘structured’ UM files, providing much faster load times.”

With the footnote:
1https://scitools-
iris.readthedocs.io/en/stable/generated/api/iris.fileformats.um.html#iris.fileformats.um.structu
red_um_loading

6. 143: Iris 3.1.0 is very old (Sep. 2021), have you considered using a later version?

We agree with the referee and have decided that, for the purpose of Table 2, we will be
using more recent versions of the same Python libraries, specifically CIS v1.7.9, Iris v3.10.0
and cf-python v3.16.2.

7. 189-191: You already mentioned a lot of this in the paragraph l.180-185, maybe you can
unify this?

We have now removed the sentence in line 180-181:

“In this section, we show some examples of using ISO_simulator to co-locate UKESM data
to the same time and location as different types of observational datasets.”

 Technical Corrections

1. 35: “NERC” is not defined

Done

2. 114-115: “input variable” -> “command line argument”

Done

3. 188: “UAV” is undefined

Done

