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Abstract. When nutrient level in the soil surpasses vegetation demand, nutrient losses due to 

surface runoff and subsurface leaching are the major reasons for the deterioration of water 

quality. The Lower Mississippi river basin (LMRB) is one of the sub-basins that deliver the 

highest nitrogen loads to the Gulf of Mexico. Potential changes in episodic events induced by 

hurricanes may exacerbate water quality issue in the future. However, uncertainties in modeling 15 

the hydrologic response to hurricanes may limit the modeling of nutrient losses during such 

events. Using a machine learning approach, we calibrated the land component of the Energy 

Exascale Earth System model (E3SM), or ELM, version 2.1, based on the water table depth 

(WTD) of a calibrated 3D subsurface hydrology model. While the overall performance of the 

calibrated ELM is satisfactory, some discrepancies in WTD remain in slope areas with low 20 

precipitation due to the missing lateral flow process in ELM. Simulations including 

biogeochemistry performed using ELM with and without model calibration showed important 

influences of soil hydrology, precipitation intensity, and runoff parameterization on the 

magnitude of nitrogen runoff loss and leaching pathway. Despite such sensitivities, both ELM 

simulations produced reduced WTD and increased runoff and accelerated nitrate-nitrogen runoff 25 

loading during Hurricane Ida in August 2021, consistent with the observations. With 

observations suggesting more pronounced effects of Hurricane Ida on nitrogen runoff than the 

simulations, we identified factors for model improvement to provide a useful tool for studying 

hurricane-induced nutrient losses in the LMRB region.  
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1. Introduction 30 

Tropical cyclones are projected to be more intense and potentially make more frequent 

landfall in some coastal regions in the future due to global warming (Knutson et al., 2020; Pérez-

Alarcón et al., 2023; Balaguru et al., 2023). Hurricanes can cause wide-spread, acute 

disturbances for coastal aquatic and terrestrial ecosystems (Valiela et al., 1998). Besides 

catastrophic flooding, enhanced nutrient input coupled with increased runoff were often observed 35 

as a result of the heavy precipitation associated with landfalling hurricanes in coastal regions. 

For instance, five days after Hurricane Katrina made landfall in August 2005, the mean bay-wide 

nitrate concentration increased by 5.2-fold over the pre-hurricane levels in Biscayne Bay, Florida 

(Zhang et al., 2009). In a forested watershed draining into Chesapeake Bay, Hurricane Irene in 

August 2011 caused an increase of total nitrogen on the rising limb of the storm compared to the 40 

baseflow levels (Vidon et al., 2018). High discharge due to Hurricane Irene in 2011 also resulted 

in high nutrients loading to Newark Bay in northern New Jersey (Nie et al., 2023). The loss of 

vegetation, attributed to Hurricane Hugo, led to a 108-154% increase in exported nutrients 

primarily due to increased outflow during the hurricane (Wilson et al., 2006). In coastal North 

Carolina, nutrient loadings coincided with the increases of freshwater discharge associated with 45 

recent tropical storms (Paerl et al., 2020). Additionally, a model simulation suggests that 

immediate surges of heavy precipitation associated with hurricanes accelerate nitrogen export 

more than the long-term average (Sun et al., 2022).  

Besides the episodic influence of hurricanes in coastal regions, riverine nitrogen (N) loading 

from agricultural lands upstream can lead to significant soil fertility depletion and degradation of 50 

water quality in downstream aquatic ecosystems (Li et al., 2022). Excessive nutrient loads can 

contribute to eutrophication, leading to adverse effects on aquatic ecosystems and water quality 

(Carpenter et al., 1998). For instance, excessive nutrient loading from cropland in the Mississippi 

River Basin is a significant contributing factor to the formation of the hypoxic zone in the 

northern Gulf of Mexico (Ritter and Chitikela, 2020). Assessing the immediate and long-term 55 

impact of hurricanes on water quality in the affected ecosystems is challenging due to logistical 

constraints associated with sampling during these events (Filippino et al., 2017). A thorough 

understanding of the mechanisms governing nutrient export from agricultural watersheds will be 

crucial in managing nutrient pollution, especially in light of the expected hydrological 

modifications due to a shifting climate (Speir et al., 2021).  60 
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Earth system models have the capability to simulate the coupled carbon and nitrogen cycles 

and river nitrogen (Nevison et al., 2016). However, there remains a research gap regarding the 

Earth system model’s capability to accurately predict the impact of hurricanes on nitrogen river 

loading, particularly considering the spatial heterogeneity and temporal variability of 

precipitation patterns associated with hurricanes. Understanding the driving mechanism behind 65 

excessive riverine N loading during hurricanes, i.e., through surface runoff or groundwater flow, 

is also lacking. Addressing these gaps is critical for improving our understanding of nutrient 

transport dynamics and enhancing the capabilities of Earth system models in regions affected by 

storms. This study investigates the short-time effect of hurricanes on nitrogen loading in runoff, 

with an emphasis on how such effect is influenced by soil hydrology and its representations in 70 

Earth system models. Using Hurricane Ida as an example, we simulate its impact on nitrate-

nitrogen runoff loading in the Lower Mississippi River basin (LMRB) using the land model of 

the Energy Exascale Earth System (E3SM) (Golaz et al., 2019). We will first describe the model 

and calibration of the runoff parameterizations using a machine learning approach. The model is 

used to assess the transient effects of Hurricane Ida on hydrological and nitrogen river loading in 75 

the LMRB, which extends into the Gulf of Mexico. Comparison of model simulations with and 

without calibration provides insights on the sensitivity of the hydrologic response and nutrient 

losses to soil hydrology and its representations in models to inform future development needs.   

2. Methods 

 80 

2.1 Study area 

The LMRB, with almost 4 million hectares of irrigated cropland spanning six southern U.S. 

states, plays a crucial role in the economic landscape. The LMRB is characterized by a humid 

subtropical climate and significant soil and precipitation variations (Reba and Massey, 2020). 

For example, the LMRB experiences varying annual average rainfall ranging from 85 

approximately 1143 mm in the north to about 1524 mm in the southern coastal region (Nelson et 

al., 2022). Cropland is the dominant land cover type in the LMRB. Agriculture relies heavily on 

the Mississippi River Valley alluvial aquifer to provide over 90% of the irrigation water because 

a majority of precipitation falls during the winter and spring (Reba and Massey, 2020). 

Furthermore, within the last 20 years, the LMRB has been subjected to cyclical flooding events 90 
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and declines in groundwater levels due to extreme climate events, leading to the degradation of 

surface water quality during flooding (Ouyang et al., 2020). The strongest hurricanes to hit the 

LMRB on record is Hurricane Ida, which formed on 26 August 2021 and made landfall on 29 

August 2021 (Fig. 1). Ida had a weak post landfall decay rate, retaining hurricane intensity even 

12 h after landfall, potentially due to high soil moisture content ahead of Ida that provided a 95 

source of atmospheric moisture and latent energy to fuel the storm (Zhu et al., 2022). 

  

 

Figure 1. (a) Average precipitation rate in August 2021 in the Lower Mississippi River Basin and 

the locations of observation stations along the path of Hurricane Ida (blue line). The red numbers 100 
along the path represent the timing of the 6-hourly locations of Ida along its track. Dots are water 

table stations, and stars are stream water quality stations. Note that stations 302614091083001, 

302642091083401, and 07374000 are in close proximity to each other as shown in (b), a zoomed-in 

view of the southeastern subregion in (a). 

2.2 Data from measurements and the model simulation 105 

In the LMRB, hydrologic data (streamflow, groundwater level) are provided by the U.S. 

Geological Survey's (USGS) National Water Information System (NWIS), while water quality 

data are obtained from the Water Quality Portal (WQP). WQP currently houses data from the 

USGS, Environmental Protection Agency (EPA), and U.S. Department of Agriculture (USDA). 

Groundwater levels are from monitoring wells including stations 302614091083001 and 110 

302642091083401 in East Baton Rouge Parish, and station 305519090481801 in St. Helena 

Parish, Louisiana. Water quality monitoring locations include 07374000 associated with a stream 

in West Baton Rouge Parish, Louisiana, 07381600 associated with a stream in St. Mary Parish, 
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Louisiana, 292800090060000 associated with an impoundment in Jefferson Parish, Louisiana, 

07380255 associated with a stream in Jefferson Parish, Louisiana, and station 07380330 115 

associated with an Estuary in Lafourche Parish, Louisiana. The locations of these monitoring 

stations are shown in Figure 1. 

We also make use of groundwater level simulated by an integrated surface-subsurface 

hydrologic model from our previous effort to investigate the impacts of land cover change on the 

hydrologic response to Hurricane Ida in the LMRB (Tran et al., 2024). The integrated surface-120 

subsurface hydrologic model, ELM-ParFlow, couples the Energy Exascale Earth System Model 

(E3SM) land model (ELM) and the three-dimensional subsurface hydrology model ParFlow 

(Fang et al., 2022). ParFlow integrates three-dimensional subsurface flow with overland flow 

using physics-based equations (Kollet & Maxwell, 2006; Maxwell, 2013; Maxwell & Miller, 

2005).  ELM-ParFlow was developed to address the subsurface lateral flow, or the movement of 125 

water through soils and bedrock on hillslopes, which is often missing in Earth system models 

that adopt one-dimensional land surface models. The study conducted by Tran et al. (2024) 

employed ELM-ParFlow to investigate the relative influence of the changes in surface runoff 

versus evapotranspiration due to land cover change on streamflow in inland areas during 

hurricane events. Changes in soil hydrology due to land cover change, as examined by Tran et al. 130 

(2024), or due to model representations of soil hydrology, as to be investigated below, can lead 

to significant alterations in soil water, with important implications for soil biogeochemistry and 

nitrogen river loading. 

2.3 Energy Exascale Earth System Model (E3SM) land model (ELM) (v2.1) 

Derived from the Community Land Model CLM4.5 (Oleson et al., 2013), ELM has been 135 

enhanced with additional features, specifically addressing soil hydrology and biogeochemistry, 

as described in Golaz et al., (2019) and Burrows et al., (2020). Operating at the grid-cell level, 

ELM delineates the land surface into multiple soil layers and plant functional types. Relevant 

hydrological processes in ELM for this study include changes in surface water, canopy water, 

soil water, and snow water through interception, throughfall, canopy drip, snow accumulation 140 

and melt, infiltration, evapotranspiration, runoff, redistribution of water within the soil column, 

as well as groundwater discharge and recharge. Similar to other global land surface and Earth 

system models, soil hydrology in ELM is simulated through 1D columns, with no interaction 
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between grid cells. The runoff generation in ELM is based on the simple TOPMODEL-based 

runoff parameterization (Niu et al., 2005).  145 

The biogeochemical configuration of ELM, or ELM-BGC, is designed to simulate various 

biogeochemical processes (Burrows et al., 2020). The model simulates active plant phenology 

and incorporates nutrient controls on vegetation photosynthesis and includes multiple prognostic 

pools for carbon, nitrogen, and phosphorus within vegetation, litter, and soil organic matter. Two 

representations of terrestrial carbon-nitrogen-phosphorus coupling are incorporated into the 150 

model: the conceptual Convergent Trophic Cascade (CTC) approach (Yang et al., 2016; Duarte 

et al., 2017) and the mechanistic Equilibrium Chemistry Approximation (ECA) approach (Tang, 

2015; Medvigy et al., 2019). Details of the approaches can be found in Burrows et al. (2020) and 

the citations therein. The CTC representation is the default option in the model, which is used in 

this study.  155 

In ELM-BGC, mineral nitrogen transformations include competition among plant uptake for 

growth, nitrogen mineralization, microbial immobilization (nitrogen taken up by soil organisms, 

limited by the availability of mineral nitrogen), denitrification and nitrification (Oleson et al., 

2013). Mineral nitrogen that remained in the soil is subject to loss due to leaching from land to 

rivers and oceans. The leaching is assumed to act only on nitrate-nitrogen pools. Total nitrogen 160 

leaching includes soil nitrogen loss by surface runoff and leaching by subsurface drainage, which 

is represented by the equation below as a general form: 

 
𝐹𝑁 =

𝑄𝑁𝑠𝑚𝑖𝑛𝑛

𝑊𝑆𝑠𝑜𝑖𝑙
 

(1) 

 

where FN is the soil nitrogen runoff or leaching, Q is the surface runoff or subsurface drainage, 

Nsminn is the soil mineral nitrogen, and WSsoil is the water storage in soil. The subsurface nitrogen 165 

leaching is limited on each time step to not exceed that in the soil.  

2.4 ELM Calibration 

Because groundwater depths can significantly influence soil nutrient concentrations in 

various ecosystems (Hefting et al., 2004; Miao et al., 2013; Jasinski et al., 2022; Zhang et al., 

2022), we first calibrated ELM based on the groundwater table depth (WTD) simulated by ELM-170 

ParFlow (Fang et al., 2022; Tran et al., 2024) in which lateral hydrological flow was simulated 
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explicitly by the 3D subsurface flow and overland flow. The ELM-ParFlow simulation at 90-m 

grid resolution was reported in Tran et al. (2024), hence referred to as Tran2024 hereafter, and 

corresponds to the simulation with current land cover which has been evaluated using observed 

streamflow data. To capture the ELM grid-level groundwater table dynamics due to both vertical 175 

and lateral hydrological flow processes represented in Tran2024 using ELM-ParFlow, we 

calibrated the parameter values of the ELM parameterizations of surface and subsurface runoff 

as shown in the equations below.  

 𝑅𝑜𝑣𝑒𝑟 = 𝑞𝑙𝑖𝑞𝑓𝑚𝑎𝑥𝑒
(−0.5𝑓𝑜𝑣𝑒𝑟𝑧∇) (2) 

where Rover is the surface runoff, qliq is the flux of water reaching the soil surface from the top, 

fmax is the maximum saturation fraction at a given grid cell. fover is a decay factor, z is the 180 

groundwater table depth. 

 𝑅𝑑𝑟𝑎𝑖𝑛 = 𝑞𝑑𝑟𝑎𝑖𝑛,𝑚𝑎𝑥𝑒
(−0.5𝑓𝑑𝑟𝑎𝑖𝑧∇) (3) 

where Rdrain is the subsurface runoff, qdrain,max is the maximum drainage rate, fdrai is the decay 

factor. For a given z, the larger fdrai results in lower Rdrain and vice versa. By default, fmax ranges 

from 0.23 to 0.58, and fdrai = 2.5. 

To match the groundwater table depth (WTD) in Tran2024, the total runoff is adjusted by 185 

estimating the maximum saturation fraction, fmax, and the decay factor, fdrai, for each ELM grid 

cell. The calibration is performed using machine learning, in particular, neural network, where 

atmospheric forcing, topography, grid-level average of the WTD of Tran2024 are the predictors, 

and fmax and fdrai are the targets. The initial training dataset of WTD was from an ELM simulation 

in which the values of fmax and fdrai are randomly assigned to each grid, assuming uniform 190 

distributions of fmax within the range between 0 to 1 and fdrai within the range of 1e-5 to 100. To 

estimate fmax and fdrai given the grid-level temporal average of WTD in Tran2024 at each ELM 

grid, the following procedures are taken to iteratively improve the parameter estimation by 

updating the training dataset at each iteration:  

1) Construct a neural network using the initial training dataset of ELM WTD, atmospheric 195 

forcing, and topography as the predictors to train the model to predict fmax and fdrai corresponding 

to the ELM WTD as the targets. The root mean square error (RMSE) between the predicted and 

randomly prescribed values of fmax and fdrai within the simulation domain serves as the loss 

function in this training process. 
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2) Use the trained neural network model by replacing the ELM WTD with the Tran2024 WTD as 200 

the predictors to predict new fmax and fdrai, and use the predicted fmax and fdrai to update the ELM 

WTD by running ELM with the new fmax and fdrai.  

3) Combine the updated ELM WTD values with the atmospheric forcing and topography as 

predictors, and the new fmax and fdrain predicted in step 2) as targets. Merge this combined dataset 

with the previous dataset in steps 1) and 2), retrain the neural network model using the updated 205 

dataset. Combining the improved data from the previous iterations can increase the model’s 

training dataset size, enable the model to learn and adapt to the more complex patterns to better 

represent the underlying relationship in the data.   

4) Continuously refine the neural network model by repeating steps 2 and 3 iteratively until the 

predicted fmax and fdrai converge to a point where the correlation between ELM WTD and 210 

Tran2024 WTD cannot be significantly improved from the previous iteration. When the 

iterations steps exceed four, only the newest five datasets are included to refine the model. 

The neural network model includes two hidden layers with 128 neurons each, and an output layer 

with 2 neurons. ReLU activation function is used to introduce nonlinearity. A dropout layer with 

a dropout rate of 25% is inserted to mitigate overfitting by randomly deactivating neurons during 215 

training. The Adam optimizer with a learning rate of 1e-5 is used for optimization. 80% of the 

dataset is used as training data and processed in batches of size 128 over 3000 epochs. 

2.5 ELM-BGC simulations 

The atmospheric forcing, including precipitation, air temperature, shortwave and longwave 

radiation, wind speed, specific humidity, and atmospheric pressure, used to drive the ELM 220 

simulations is from the North American Land Data Assimilation System (NLDAS) project at 

1/8th-degree grid spacing. The resolution of the ELM simulation domain is also set at 1/8th-

degree. The ELM hydrology simulation was driven by forcing data spanning from 1980 to 2022. 

The forcing from year 1980 was used repeatedly for the 600-year spin-up of ELM-BGC for the 

default model. Transient simulation of ELM-BGC was then conducted from 1980 to 2020. The 225 

result at the end of 2019 was used as initial condition for the model comparison between the 

default and calibrated ELM. Land cover information was derived from the Land Use 

Harmonized version 2 (LUH2) (Hurtt et al., 2021).    
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In this study, we only consider nitrate-nitrogen loading in runoff due to natural terrestrial N 

inputs during Hurricane Ida, and crop management (e.g., fertilization and irrigation) are not 230 

considered. The impacted regions from Hurricane Ida will be examined. The selection criteria of 

the impacted regions include grids with accumulated precipitation exceeding 17.3 mm d-1 in the 

eastern part of the domain from the time of Ida's landfall until the end of August. 

3. Results 

 235 

3.1 Calibration of ELM parameter values 

A satisfactory match between the WTD from the ELM simulation and Tran2024 is achieved 

within 10 iterations of parameter estimation using the machine learning and ELM simulations, as 

described in Section 2.4. Figure 2 shows a comparison of the fmax and fdrai used to perform ELM 

simulation before the last iteration and those estimated using machine learning during the last 240 

iteration to match the WTD from the ELM simulation with the WTD from Tran2024, with R2 

values of 0.87 and 0.93, respectively. The machine learning model has a decent performance 

considering the heterogeneity in topography and precipitation (Figs. 3a and 3d) within the 

simulated domain. 

 245 

Figure 2. Scatter plot of estimated and prescribed decay factor, fdrai (a) and the maximum 

saturation fraction, fmax (b) in the last iteration. 

In a majority of the domain, the estimated fmax values are nearly 0 (Fig. 3b) and fdrai (Fig. 3c) 

follows the pattern of the elevation (Fig. 3a). In the midwestern part of the domain, high 

elevation and precipitation lead to large fmax and low fdrai, consequently large runoff based on 250 

Eqs. 2 and 3 in those grid cells. In the western slope area with low precipitation (indicated by the 
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red colored area in Fig. 3d), ELM WTD is deeper than in Tran2024 (Fig. 3e). This occurs even 

when fmax is approximately 0 and fdrai is high, favoring nearly no runoff. This result suggests that 

these areas receive water from wetter areas at high elevations through lateral flow represented by 

ELM-ParFlow in Tran2024, which cannot be represented in the 1D ELM through simple 255 

calibration of the parameters related to the runoff parameterizations. The overpredictions of 

WTD in other areas (Figs. 3e and 3f) are primarily due to the same reason.  

 

 
Figure 3. Spatial distribution of surface elevation (a), fmax (b), fdrai (c), precipitation (d), and ELM 260 
simulated water table depth compared to Tran2024 (e and f) in year 2015. Orange color in (d) 

represents less precipitation. 

3.2 Observation from the measurements 

To examine the impact of Hurricane Ida on the soil hydrology and nitrogen in the LMRB 

region, we first analyze observations from measurements that are available within the region. 265 
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There are significant differences in the observed WTD at stations 302614091083001 and 

302642091083401, although they are in close proximity to each other. However, Hurricane Ida 

influenced the observed water table depth at all selected monitoring stations (Fig. 4a), although 

with a weak signal. The river stage increased by more than 3 m after Ida made landfall at stations 

07374000, 07380330, and 07380255 (Fig. 4b). The near shore stations 07381600 and 270 

292800090060000 experienced less impact from Ida on the river stage. Water quality was also 

affected, with an increase in nitrogen concentration observed after Ida's landfall at both the 

inland station (07374000) and the nearshore station (07381600) (Fig. 4c). The diurnal variation 

of nitrogen concentration at station 07381600 disappeared during Ida, indicating a direct impact 

from the elevated loss of nitrogen due to inland runoff. The rise in total N runoff at station 275 

07374000 intensified following the landfall of Hurricane Ida (Fig. 4d), but gradually diminished 

as Ida progressed northeastward.  The rise in total N runoff at 07381600 is weak. An increase in 

chlorophyll fluorescence was also observed during Ida near the estuary (Fig. 4e), which peaked 

at station 2928000090060000 shortly after Ida formed on August 26, and peaked at station 

07380255 at Ida’s landfall on August 29. Overall, observations revealed that Hurricane Ida 280 

reduced the water table depth and increased the river stage, the nitrogen concentration in the 

stream, the nitrogen runoff loading, and chlorophyll fluorescence in the estuary.   
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 285 

Figure 4. Observed water table depth (a), river stage (b), nitrogen concentration (c), nitrogen 

runoff loading (d), and chlorophyll fluorescence (fChl) (e) at selected station locations shown in 

Figure 1. The numbers in the parentheses in (a) are the minimum and maximum values of WTD at 

each location in August 2021. The colors match station colors in Figure 1 for convenience. The 

three y-axes in (a) display the range of WTD at each station, with a corresponding legend color. The 290 
vertical grey dashed line represents the time Hurricane Ida formed. The vertical black dashed line 

represents the time Hurricane Ida made landfall.  

3.3 Impact of hurricane on modeled nitrogen loading in runoff 

We examined water and nitrogen runoff loading related to Hurricane Ida simulated by ELM 

with the default and calibrated parameters (fmax and fdrai) in the area affected by Ida. After Ida 295 
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formed, lower temperatures happened concurrently with abundant precipitation (Fig. 5a and Fig. 

5b).  The WTD from the calibrated model shows more pronounced response to changes in 

precipitation than the WTD from the model with default parameter values (Fig. 5c). By the end 

of August, after Hurricane Ida's landfall, WTD is reduced by 0.05 m and 0.31 m for the default 

model and calibrated model, respectively (Fig. 5c). As crop irrigation from groundwater 300 

pumping is not considered in the modeling, the simulated WTD shown in Figure 5c is much 

shallower compared to the observations at the USGS stations (Fig. 4a) within the domain. 

Consistent with the rising water table, there is a notable increase in topsoil moisture evident in 

both models induced by the precipitation two days before and following the landfall of Hurricane 

Ida (Fig. 5d).  305 

During the whole period of August, the calibrated model has shallower water table and 

higher soil moisture compared to the default model, which results in higher total runoff 

consistently in August except after Ida’s landfall (Fig. 5e). The two models noticeably respond 

differently to the heavy rainfall produced by Ida – the default model produced a larger increase 

in soil moisture and higher runoff while the calibrated model produced a larger response in WTD 310 

and a more muted response in soil moisture and runoff. These differences are also reflected in a 

change in the surface runoff ratio before and after Ida’s landfall (Fig. 5f). The calibrated model 

generally shows a higher surface runoff ratio than that of the default model in August until 

August 28 with the arrival of the first heavy rainfall event related to Ida, this ratio drastically 

drops in the calibrated model while it remains about the same in the default model. Combining 315 

the changes in the total runoff and the surface runoff ratio suggest that the much smaller total 

runoff in the calibrated model compared to the default model shortly before and after Ida’s 

landfall is mainly due to a much smaller surface runoff response to heavy rainfall in the 

calibrated model. Notably, the calibrated model has much smaller fmax values compared to the 

default model, which limit the surface runoff response to heavy rainfall while for smaller rain 320 

events, the calibrated model can still produce more surface runoff than the default model despite 

the smaller fmax values due to its shallower groundwater table.        

Differences in the soil hydrology response between the calibrated and default models may 

result in differences in the nitrogen response to Hurricane Ida. Corresponding to the increase in 

soil moisture (Fig. 5d) and the total runoff generation (Fig. 5e) two days before Ida’s landfall, the 325 

cumulative nitrogen (N) loss increased sharply on August 28, followed by smaller increases as 
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rainfall continued in the next few days (Fig. 6a). The larger increase in cumulative N loss in the 

default model is consistent with its higher total runoff compared to the calibrated model (Fig. 

5e). Overall, nitrogen loss due to surface runoff constitutes a dominant portion of the total 

nitrogen loss in both models (Fig. 6b) in majority of the time in August, especially between 330 

August 28 – 30 under the influence of rainfall associated with Ida. Although the surface runoff 

ratio drops significantly in the calibrated model after August 28, the fraction of surface N loss 

does not drop until after August 30, indicating a delayed N loss response relative to the runoff 

changes.  

During low precipitation periods, nitrogen loss due to surface runoff constitutes a more 335 

dominant portion of total nitrogen leaching in the default model compared to the calibrated 

model (Fig. 6b), because of more concentrated surface soil mineral nitrogen due to drier soil in 

the default model. The total nitrogen leaching in August in the calibrated model is 80% of that in 

the default model, largely because the calibrated model has smaller N loss during Ida’s heavy 

rainfall events as limited by the smaller surface runoff response. Nitrogen leaching during Ida 340 

accounts for 38% and 31% of total nitrogen leaching in August for the default model and 

calibrated model, respectively.  

Compared to the calibrated model, plant nitrogen uptake (Fig. 6c) and denitrification (occurs 

only in the anoxic fraction of soils) (Fig. 6d) in the default model are limited more by soil water, 

as reflected by the drier soil in the default model (Fig. 5d), resulting in higher accumulation rate 345 

of nitrate in the soil (Fig. 6e), even though the default model simulates more runoff N loss (Fig. 

6b). Denitrification declines more rapidly in the calibrated model than in the default model 

during Ida due to increased soil saturation. This results in a reduction of the anoxic fraction of 

soil, leading to a faster decrease in denitrification rates. As the cumulative nitrogen lost to runoff 

exhibits a notable increase two days after Ida formed on August 26, the soil mineral nitrate-350 

nitrogen drops sharply after August 26 (Fig. 6e).  
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Figure 5. Model inputs and comparison of simulations with default and calibrated 

parameters in August 2021 averaged within the Ida affected area, including: (a) 

precipitation, (b) air temperature, (c) water table depth (WTD), (d) average soil moisture 355 

of the topsoil layers, (e) total runoff, and (f) fraction of surface runoff in total runoff. 

Dashed grey line represents when Ida formed, and dashed black line is when Ida made 

landfall. 

The total nitrogen leaching (Fig. 6a) does not strongly correlate with precipitation (Fig. 5a) or 

runoff (Fig. 5e). There is a high leaching spike on August 24th in the calibrated model two days 360 

before Ida formed (Fig. 5e). On the previous day or August 23rd, air temperature reached a 

maximum in August after a relatively dry period (Fig. 5b, 5d). Compared to the calibrated model 

prior to Ida formed, the dry stress (Figs. 5d and 6f) simulated by the default model caused a 

relatively faster increase in soil mineral nitrate-nitrogen (Fig. 6e) mainly due to lower plant 

nitrogen uptake and denitrification under stress (Fig. 6c).  365 
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Figure 6. Comparison between the default (blue) and calibrated (red) model results in 

August 2021 averaged within the Ida affected area: (a) cumulative sum of total nitrogen 

loss, (b) fraction of surface runoff, (c) total plant nitrogen uptake, (d) total denitrification 

flux, (e) soil mineral nitrogen, and (f) soil water stress factor, non-stressed when BTRAN 370 

=1. Dashed grey line represents when Ida formed, and dashed black line is when Ida made 

landfall. 

A notable increase in nitrogen leaching loss from the simulations was observed on August 

24th (Fig. 6a). A spatial examination of the variables for the calibrated model on August 23rd and 

24th revealed a shift of abundant precipitation towards the southeastern region near the Gulf 375 

Coast on the 24th (Figs. 7a, 7b). The increased runoff on the 24th (Fig. 7e), triggered by heavy 

precipitation, mobilized the accumulated nitrate (Fig. 7d) in the previously dry soil (Fig. 7c). 

This led to concentrated leaching in that area (Fig. 7f), explaining the spike in total nitrogen loss 

on August 24th shown in Figure 6a. Although this event occurred before hurricane Ida, these 

findings underscore the significance of considering preceding environmental conditions in 380 

understanding the hurricane impact on nitrogen leaching loss.  
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Figure 7. Comparison of variables between August 23rd and 24th for the calibrated model: 

(a) precipitation (mm/d) on August 23rd, (b) precipitation (mm/d) on August 24th, positive 385 

increase of soil moisture (m3/m3)(c), soil nitrate-nitrogen (gN/m2) on August 23rd (d), 

positive increase in runoff (mm/d) (e), and positive increase in nitrate-nitrogen leaching 

loss (gN/m2/d) (f) from August 23rd. 

To understand the driving mechanism of nitrogen leaching loss under different soil water 

conditions, we selected a nearshore grid in the subdomain affected by Ida from the two 390 

simulations which have different level of soil water as an example. At this selected grid, unlike 

the conditions averaged over the Ida affected area discussed in Fig. 5 and Fig. 6, the calibrated 

model happens to have drier soil (Fig. 8b) compared to the default model (Fig. 8a). As a result of 

the smaller rate of denitrification and plant uptake as soil nitrate-nitrogen sink and the reduced 

source from nitrogen fixation due to water stress, there is more soil nitrate accumulation in the 395 

calibrated model (Fig. 8d). Soil water not only affects the competition for nitrogen between the 

plant and soil microbes, but also the vertical transport of soil mineral nitrogen. Compared to the 

default model, drier soil from the calibrated model due to larger fmax at this grid favors higher 

surface runoff before Hurricane Ida formed. Drier soil also causes slightly warmer temperature. 

It is not shown because the contrast is not visually discernible. This warmer temperature can 400 
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partially offset the deceleration of soil organic matter decomposition caused by dry soil 

conditions. After Ida induced precipitation in the area, infiltration pushed the accumulated 

nitrogen further down to the deeper soil layers (Fig. 8d). More nitrogen from the calibrated 

model leached through the pathway of subsurface runoff (Fig. 8f) during Ida even though the 

subsurface runoff is far less than that from the default model.  405 

 

 

Figure 8. Heatmap comparison of soil moisture, soil temperature, and soil mineral nitrate-

nitrogen between the default model (a,c,e), the calibrated model (b,d,f), and nitrogen 

leaching loss (g) at a selected nearshore grid. 410 

https://doi.org/10.5194/gmd-2024-70
Preprint. Discussion started: 5 June 2024
c© Author(s) 2024. CC BY 4.0 License.



19 
 

4. Discussions 

 

4.1 Importance of soil hydrology on nitrogen leaching 

By conducting two simulations with the ELM model using default and calibrated parameters 

that influence surface and subsurface runoff processes, our results revealed that soil hydrology 415 

can have a large impact on nitrate-nitrogen riverine loading through surface and subsurface 

runoff when there is a significant concentration of nitrogen in soil water and sufficient recharge 

through rainfall or irrigation (Meisinger and Delgado, 2002). The dynamics of nitrogen riverine 

loading is linked to the movement of water through the soil profile. Adequate soil moisture levels 

promote microbial decomposition of organic matter and subsequent release of nitrogen into the 420 

soil. Different parameterizations of subsurface and surface runoff can have a significant impact 

on the nitrogen dynamics in the soil and consequently loss through the runoff.  

The interplay between soil moisture dynamics and nitrogen transport is critical for 

understanding riverine nitrogen loading, especially in the context of short-term impacts from 

hurricane events when soil moisture can experience high-frequency variability. When surface 425 

runoff dominates, nitrogen can be rapidly transported to surface water, leading to spikes in the 

riverine. On the other hand, nitrogen is slowly leached through the soil profile and into 

groundwater systems before eventually reaching rivers, showing a delayed response compared to 

the surface runoff loss. Both model simulations in this study suggest dominant nitrogen loss 

through surface runoff, and the response to hurricane in WTD and nitrogen runoff loading is 430 

approximately consistent with the observations. This suggests ELM can provide some valuable 

insights into the mechanisms driving nitrogen runoff loading during hurricanes. 

While the focus of this study is primarily on analyzing the response of nitrogen runoff 

loading during hurricane Ida using ELM, it is also important to consider the pre-existing 

conditions of soil water for water quality management. This is particularly crucial for nearshore 435 

areas which are dry prior to hurricane landfall, as the potential harm to water quality can be 

particularly acute. By understanding both aspects (prior and during the hurricane), we can better 

anticipate and mitigate the adverse effects of hurricane in the vulnerable regions. 

4.2 Model limitations 

Although the models successfully captured the groundwater table response to Hurricane Ida's 440 

landfall, consistent with observations from the monitoring wells that show a rising water table, 
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our findings revealed faster diminishing of nitrogen runoff after Ida’s landfall on August 29th in 

the area affected by Hurricane Ida. The model indicated significantly higher nitrogen leaching 

before Ida's landfall, earlier than the water quality observations at monitoring stations. The early 

nitrogen runoff was attributed to the abundant precipitation in southern LMRB in late August 445 

2021 before and after Hurricane Ida formed on August 26th, leading to elevated soil moisture 

levels prior to Ida's landfall. This precipitation mobilized nitrogen in the previously dry and 

warm soil, as indicated by the model results, leaving less soil mineral for leaching after Ida’s 

landfall. 

Apart from the heterogeneity in precipitation both in time and space, the discrepancy in 450 

WTD and nitrogen leaching between the simulations and observations largely stem from the 

omission of crop management factors in the model. As one of the largest agricultural crop-

producing areas in the U.S. (Tiwari et al., 2023), the LMRB experiences significant agricultural 

activities that contribute to nitrogen dynamics. Over 90% of the groundwater used for irrigation 

in the LMRB comes from the Mississippi River Valley Alluvial Aquifer (Reba and Massey, 455 

2020). The absence of accounting for these agricultural practices could be a factor influencing 

the observation-model inconsistencies in nitrogen leaching patterns, as evidenced from the 

results between our two model simulations with distinct WTDs.  

Another important overlooked process in the model is the lateral transport of nitrogen 

by advection and diffusion induced by hydrologic connectivity and strong nitrogen gradient 460 

between neighboring grid cells. The timing of hydrologic connectivity and nutrient gradients 

may affect a range of downslope nutrient transport and biogeochemical transformation along the 

topo sequence (Stieglitz et al., 2003; Kelly et al., 2021).  

5. Conclusions 

In conclusion, we calibrated two parameters associated with surface and subsurface runoff in 465 

the ELM using the water table depth (WTD) obtained from a previous 3D hydrology simulation 

in the Lower Mississippi River Basin (LMRB). We then compared the nitrogen runoff leaching 

results from the calibrated ELM model with those from the default ELM model. Our analysis of 

WTD in the calibrated model and the 3D model revealed that despite model calibration to match 

the ELM WTD with that simulated by the 3D model, neglecting lateral flow in ELM can still 470 

result in noticeable difference between the WTD in the two models, particularly in slope areas 
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with limited precipitation. The calibrated ELM was able to simulate the increased nitrate-

nitrogen runoff leaching during Hurricane Ida, as evidenced by water quality and hydrologic 

observations within the affected region. However, the timing of peak leaching and the leaching 

pathways can be influenced by factors such as soil moisture, soil temperature, precipitation, and 475 

lateral transport. Thus differences between the calibrated and default models as well as 

differences between the models and observations (e.g., WTD, crop management) can result in 

differences between the observed and simulated nitrogen response to Hurricane Ida. Even though 

the model captures the N runoff loading signal in the affected area by Hurricane Ida, the current 

lack of lateral transport of nitrogen within the soil and in the river in ELM hinders the realistic 480 

prediction of nitrogen runoff loading in response to hurricanes. 
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