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Abstract: Events of extreme precipitation pose a hazard to many parts of Europe but are 14 

typically not well represented in climate models. Here, we evaluate daily extreme precipitation 15 

over Europe during 1982–2019 in observations (GPCC), reanalysis (ERA5) and a set of 16 

atmosphere-only simulations at low- (100 km), medium- (50 km) and high- (25 km) horizontal 17 

resolution with identical vertical resolutions using OpenIFS (version 43r3). We find that both 18 

OpenIFS simulations and reanalysis underestimate the rates of extreme precipitation compared 19 

to observations. The biases are largest for the lowest resolution (100 km) and decrease with 20 

increasing horizontal resolution (50 and 25 km) simulations in all seasons. The sensitivity to 21 

horizontal resolution is particularly high in mountain regions (such as the Alps, Scandinavia, 22 

Iberian Peninsula), likely linked to the sensitivity of vertical velocity to the representation of 23 

topography. The sensitivity of precipitation to model resolution increases dramatically with 24 

increasing percentiles, with modest biases in the 70th–80th percentile range and large biases 25 

above the 99th percentile range.  We also find that precipitation above the 99th percentile mostly 26 

consists of large-scale precipitation (~80 %) in winter, while in summer it is mostly large-scale 27 

precipitation in Northern Europe (~70 %) and convective precipitation in Southern Europe 28 

(~70 %). Compared to ERA5, the OpenIFS overestimates large-scale precipitation extremes in 29 

winter, but underestimates in summer. The discrepancy between OpenIFS and ERA5 decreases 30 

with increasing horizontal resolutions. We also examine the sensitivity of extreme precipitation 31 

to model time step and find that the convective contribution to extreme precipitation is more 32 

sensitive to the model time step than the horizontal resolution. This is likely due to the 33 

sensitivity of convective activity to model time step. On the other hand, the large-scale 34 

contribution to extreme precipitation is more sensitive to horizontal resolution than the model 35 
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time step, which may be due to sharper fronts and steeper topography at higher horizontal 36 

resolution.  37 

 38 

1. Introduction 39 
 40 

Extreme precipitation events have severe impacts on human society and ecosystems. For 41 

example, Germany experienced extreme precipitation during mid-July 2021, which exceeded 42 

100 mm/d over a large area resulting in a devastating flood. The recent flood is one of the most 43 

serious natural disasters for Germany since 1962, in which around 180 people died as a result 44 

of the flood. Coupled Model Intercomparison Project (CMIP) models are used to understand 45 

the present and future climate. The CMIP5 models project that the frequency of the most 46 

intense precipitation observed today in Europe would be almost double in the future at each 47 

1°C of warming (Myhre et al., 2019). Recently the CMIP6 models also projected an increase 48 

in extreme precipitation over most of the regions under global warming (Intergovernmental 49 

Panel on Climate Change, 2023; Li et al., 2021). The increasing extreme precipitation poses a 50 

threat for society and must thus be realistically simulated and projected accurately for future 51 

climates. However, the climate models have large uncertainties in simulating extreme 52 

precipitation events due to lack of observations, coarse horizontal resolution grid, long model 53 

time step etc. (Alexander et al., 2019; Avila et al., 2015; Sillmann et al., 2013). This study aims 54 

to understand the sensitivity of extreme precipitation to model resolution and time step. 55 

The CMIP models can simulate time-mean precipitation very well but usually underestimate 56 

the intensity and frequency of extreme precipitation (O’Gorman, 2015; Sillmann et al., 2013). 57 

The intensity of simulated extreme precipitation often increases with increased horizontal 58 

resolution in atmosphere models (Caldwell, 2010; Rauscher et al., 2016; Wehner et al., 2010, 59 

2014). Jong et al. (2023) analyzed the extreme precipitation in Northeastern United States (US) 60 

using the Seamless system for Prediction and EArth system Research (SPEAR) and Large 61 

Ensemble of Community Earth System Model version 1 (CESM-LE) model simulations at 62 

different horizontal resolutions, and they found that a model with 25 km horizontal resolution 63 

simulates much more realistic frequency, amplitude, temporal variability and trends in extreme 64 

precipitation than 50 and 100 km model resolution. However, Kopparla et al. (2013) found that 65 

the reduced biases at higher horizontal resolution do not hold for all regions. They concluded 66 

that extreme precipitation with finer model resolutions in Community Atmospheric Model 67 
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version 4 (CAM4) has better agreement with observational datasets in Europe and the US, but 68 

not in Australia. 69 

Considering the time and computational cost, climate simulations of more than 100 years are 70 

generally not feasible with high-resolution (25 km or higher) models. Instead, regional climate 71 

models (RCMs) are developed by focusing on a particular region, where higher-resolution 72 

model simulations can be conducted with reduced cost (Laprise, 2008). Strandberg & Lind 73 

(2021) compared the precipitation using both global (CMIP5, CMIP6 and HighResMIP) and 74 

regional (CORDEX RCMs) model simulations at different resolutions (~300–12.5 km) and 75 

found that high-resolution models reduce the biases for extreme precipitation. They also found 76 

that the effect of horizontal resolutions for extreme precipitation is mostly in regions with 77 

complex topography and in the summer season when precipitation is mostly caused by 78 

convective processes, in agreement with Iles et al. (2020). The reduced biases in extreme 79 

precipitation near topography in high-resolution models is mostly due to an improved 80 

representation of topography, coastlines, and small-scale processes such as convection and 81 

diffusion. However, Strandberg & Lind (2021) showed that models with higher horizontal 82 

resolution overestimate the intensity of extreme precipitation in some regions over Europe. 83 

Moreover, once reaching 50 km, the improvement is smaller for further higher resolution, 84 

which is consistent with Demory et al. (2020), as they found the effect of increasing resolution 85 

from 50 to 12 km grid on the daily precipitation distributions is smaller outside the mountainous 86 

and coastal regions. However, Chan et al. (2013) investigated the precipitation in regional 87 

models with 50, 12 and 1.5 km grid spacing over the southern UK and found that the 88 

representation of daily orographic precipitation improved when increasing horizontal 89 

resolution from 50 km to 12 km, but not from 12 km to 1.5 km. Chan et al. (2013) found that 90 

1.5 km simulations (convection-permitting) predominantly improve the representation of 91 

extreme precipitation on sub-daily timescales but not for daily timescales, which is further 92 

consistent with Prein et al. (2013). The small improvements for extreme precipitation in higher 93 

horizontal resolution simulations indicate that although the bias of daily extreme precipitation 94 

is reduced with finer horizontal resolution, there is also a “diminishing return”. 95 

No global atmosphere-model simulations in the Atmosphere Model Intercomparison Project 96 

(AMIP) in CMIP6 explicitly resolve convection and all must therefore employ 97 

parametrizations of such motions and users must carefully choose the associated parameters. 98 

The cloud microphysics is sensitive to the model time step in an idealized convection-99 
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permitting model, e.g., the precipitation is reduced 53 % when the time step was lengthened 100 

from 1s to 15 s (Barrett et al., 2019). Mishra & Sahany (2011) also found a more realistic 101 

simulation of the precipitation pattern in the tropics when the time step was shortened from 60 102 

min to 5 min. Wan et al. (2021) found that 10-year mean zonal averages change when the time 103 

step is reduced by a factor of 6, such as the temperature, cloud fraction, and the relative 104 

humidity in the troposphere. Bador et al. (2020) showed that models at higher horizontal 105 

versions (50 km or 25 km) where convection parameters were not re-tuned to the increased 106 

resolution often exhibit larger biases than corresponding model versions at lower horizontal 107 

resolution. 108 

A recent study by Savita et al. (2024) explored the sensitivity of global mean precipitation to 109 

the horizontal resolution and model time step in atmosphere-only simulations with OpenIFS. 110 

However, the extreme precipitation sensitivity to horizontal resolution and time step was not 111 

investigated. In this study, we investigate the impact of horizontal resolutions (~100 km, ~50 112 

km, and ~25 km) and model time steps (60 minutes, 30 minutes, and 15 minutes) on daily 113 

extreme precipitation using OpenIFS simulations and compare them with observation.  This 114 

paper is structured as follows: section 2 describes the data and methodology, and section 3 115 

discusses the results. The conclusion and discussion can be found in section 4.  116 

 117 
2. Data and Methods 118 
 119 
2.1 Model, observation, and reanalysis data 120 

 121 

The OpenIFS is derived from the Integrated Forecasting System at the European Centre for 122 

Medium-range Weather Forecasting (ECMWF-IFS) cycle 43 release 3 (43r3) (ECMWF, 2017). 123 

We use the same AMIP simulations that were used in Savita et al. (2024) which cover the 124 

period 1979-2014 and are extended to 2019 using sea-surface temperature (SST) from ERA5 125 

and the Shared Socioeconomic Pathway 5 (SSP5-8.5) scenario from CMIP6. OpenIFS 126 

simulations use 91 vertical levels (L91) and the different horizontal resolutions: low resolution 127 

(Tco95, ~100 km), medium resolution (Tco199, ~50 km), and high resolution (Tco399, ~25 128 

km). For the low resolution, additional sensitivity experiments use different model time steps 129 

i.e., 60, 30, and 15 minutes and we refer to these experiments as LR60m, LR30m, and LR, 130 

respectively. For medium and high resolution, the same model time step is used (i.e., 15 131 

minutes), of which experiments refer to as MR and HR, respectively. While the OpenIFS uses 132 
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a reduced octahedral grid (Malardel et al., 2016), the final output used in this study has been 133 

interpolated to a regular grid using the XIOS output server. The LR, LR30m and LR60m data 134 

were interpolated to a global 0.9° grid while the MR and HR data were interpolated to a global 135 

0.45° grid, i.e., we are not investigating extreme precipitation in high resolution simulations in 136 

their native grid, which will be investigated in future study. The simulations used here were 137 

used by Savita et al. (2024) who found improvements in the surface zonal wind, Rossby wave 138 

amplitude and phase speed, weather regime patterns, and surface-air temperature when 139 

reducing a model time step from 60 minutes to 30 and 15 minutes in low resolution or 140 

increasing the horizontal resolution from 100 km to 50 and 25 km. However, Savita et al. (2024) 141 

did not find such improvement in the mean precipitation bias by increasing horizontal 142 

resolution or reducing the model time step.   143 

To validate OpenIFS simulations, we use the gridded daily precipitation observational data 144 

from Global Precipitation Climatology Centre (GPCC) with resolution of 1° ́  1° for the period 145 

1982–2019 (Ziese et al., 2022) as well as the reanalysis data from the ECMWF Reanalysis v5 146 

(ERA5) for 1979–2019 (Hersbach et al., 2023). ERA5 is based on the IFS Cy41r2, with 31 km 147 

horizontal resolution and 137 levels (Hersbach et al., 2020). We analyzed total, large-scale, 148 

and convective precipitation in this study. The total precipitation (convective plus large-scale 149 

precipitation) in the IFS is the accumulated precipitation, comprising of rain and snow, that 150 

falls to the Earth’s surface, and it is not assimilated in the IFS. The convective precipitation is 151 

generated by the convection scheme in the IFS, which represents convection at spatial scales 152 

smaller than the grid box. The convection scheme follows Sundqvist (1978), which is also used 153 

in the OpenIFS. The large-scale precipitation is generated by the cloud scheme (Khairoutdinov 154 

& Kogan, 2000), which represents the formation and dissipation of clouds and large-scale 155 

precipitation due to changes in atmospheric quantities (such as pressure, temperature, and 156 

moisture) predicted directly by the IFS at spatial scales of the grid box or larger. The 157 

autoconversion/accretion parameterization is a non-linear function of the mass of both liquid 158 

cloud and rainwater. The calculation follows Khairoutdinov & Kogan (2000) which is derived 159 

from large eddy simulation studies of drizzling stratocumulus clouds, and this scheme is also 160 

used in OpenIFS. Several studies have evaluated the performance of ERA5 and found that the 161 

total precipitation in ERA5 is performing well over the US (Tarek et al., 2020; Xu et al., 2019). 162 

For global precipitation, the mean absolute difference over 50° S–50° N between ERA5 and 163 

TRMM/3B43 is 0.58 mm/d; the global-mean correlation with GPCP data is 0.77, which is 164 
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better compared to ERA-Interim (0.63 mm/d and 0.67) (Hersbach et al., 2020). ERA5 also 165 

performs well in polar regions in representing wind, temperature and humidity (Graham et al., 166 

2019; Tetzner et al., 2019; Wang et al., 2019). 167 

Here we analyze daily ERA5 and the OpenIFS data over Europe (30° N–72° N, 10° W–40° E) 168 

for the period of 1982–2019 to be consistent with GPCC dataset. For comparison, the ERA5, 169 

GPCC, MR, and HR data are remapped to LR (~0.9375° ´ 0.9375°) using the second-order 170 

conservative remapping method. The second-order conservative method includes the gradient 171 

across the source cell, which is not included in the first-order conservative method. Therefore, 172 

it gives a smoother, more accurate representation of the source field (Jones, 1998). 173 

 174 
2.2 Methods 175 

Calculation of qth percentile value 176 

We calculated different percentile values using total precipitation from GPCC, ERA5, and 177 

OpenIFS simulations. When we calculated the qth percentile value, the normalized ranking 178 

usually did not match the location of the qth percentile exactly, which means the qth lies between 179 

two indices. Therefore, we determined the location first, then computed the qth value by 180 

interpolating between the two nearest values based on the location. Here we used the formula 181 

below to find the location: 182 

                                                                j = q*(n-1)                                                              (1) 183 

n is the length of the sample, q is the desired percentile, j is the location which is the distance 184 

from the first value X1 (Xm are the sorted sample values, m=1, 2, …, n). Then we took i as the 185 

nearest (lower) integer of j to get the qth value P(q) by interpolating. 186 

                                                P (q) = Xi+( Xi+1 - Xi) * (j-i)                                                   (2) 187 

There are other methods to determine the location of qth percentile (Hyndman & Fan, 1996), 188 

but here we use the ‘linear’ one. 189 

 190 

The convective contribution to extreme precipitation 191 

To calculate the contribution of convective precipitation to total precipitation for a percentile 192 

range, at each grid point we accumulated the convective precipitation on all days when the total 193 

precipitation is in that percentile range, then divided it by the accumulated total precipitation 194 

on those days to get the fraction of convective precipitation. 195 

 196 

 197 
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Calculation of RMSE values  198 

We used the root-mean-square error (RMSE) referenced to GPCC that measures the 199 

performance of ERA5 and OpenIFS simulations: 200 

                                                   RMSE = !∑ (#!"$##")$%
"&'

&
                                                   (3) 201 

𝑥'( is the value at i grid point for ERA5 or OpenIFS simulations, 𝑥)( is the value for GPCC, n 202 

is the number of land grid points over Europe. Using equation (3), we calculated the RMSE 203 

values for different percentile ranges. Smaller RMSE values mean the biases between OpenIFS 204 

(or ERA5) and GPCC are smaller i.e., the model simulations and ERA5 are performing better. 205 

 206 

Confidence intervals 207 

We calculated the 2.5 to 97.5th confidence intervals (CI) for the RMSE for each percentile with 208 

a bootstrap method. For example, to calculate the CI for the RMSE of HR (referenced to GPCC 209 

observation), we randomly chose n grid cell pairs from GPCC and HR over European land, 210 

then calculated their RMSE (n is the number of total land grid points over Europe). This process 211 

was repeated for 2000 times. We took the 2.5th and 97.5th percentiles of the distribution of the 212 

2000 RMSEs as the 95 % CI. If the CI for different simulations do not overlap then we refer 213 

that they are significantly different. 214 

 215 
3. Results 216 
 217 
3.1 Extreme precipitation over Europe 218 
 219 
We show the time series of 99th percentile precipitation calculated from all grid points and all 220 

days in each year over the period 1982–2019 from GPCC, ERA5, and OpenIFS simulations 221 

over Europe (Fig. 1). The ERA5 simulates an inter-annual variability of the 99th percentile 222 

precipitation similar to that in GPCC. For example, the peak in 2010 and the low in 1994 are 223 

well reproduced in the ERA5. OpenIFS simulations do not reproduce the same inter-annual 224 

variability as in GPCC or ERA5 but LR and HR do reproduce the 95 % significant positive 225 

trend observed in GPCC (0.03 mm/d/y, not shown), which are ~0.2 mm/d/y for both LR and 226 

HR, and it is not significant for MR. We note that the OpenIFS simulations use observed SST 227 

and sea-ice concentrations as boundary conditions, but ozone is taken from a photochemical 228 

equilibrium (Cariolle & Teyssèdre, 2007) and aerosol concentrations are taken from 229 

Copernicus Atmosphere Monitoring Service (CAMS) monthly climatology. Therefore, we do 230 

not expect LR, MR and HR to reproduce trends driven by ozone or aerosols forcing. We also 231 
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find that both ERA5 and OpenIFS simulations have relatively lower 99th percentile 232 

precipitation rates compared to GPCC (Fig. 1). The RMSE for ERA5 (0.36 mm/d) is lower 233 

than for OpenIFS simulations which is largest for LR (2.03 mm/d) and decreases with 234 

increasing horizontal resolution (i.e., 1.13 mm/d for MR and 0.69 mm/d for HR). Note that Fig. 235 

1 does not contain any spatial information and that a mismatch between model data and 236 

observations can be due to the 99th percentile occurring in different regions and/or with 237 

different magnitudes. The RMSE analysis suggests that ERA5 and HR are close to GPCC and 238 

LR is far from GPCC. 239 

 240 

Figure 2a–e shows the spatial distribution of the 99th percentile precipitation over Europe for 241 

all days in each season for all years in GPCC, ERA5, and OpenIFS simulations, respectively. 242 

In general, the extreme precipitation is very low (~ 2 mm/d) in Northern Africa, which is to be 243 

expected since the mean precipitation is only 0.5 mm/d in those regions (Fig. S1). The extreme 244 

precipitation exceeds 30 mm/d over mountain areas (e.g., Scandinavian mountains, Alps, and 245 

Iberian Peninsula) and the north coast of the Mediterranean but is otherwise lower (~15 mm/d). 246 

The spatial distribution of extreme precipitation matches that of the mean precipitation pattern 247 

(Fig. S1). The high 99th percentile precipitation near mountains is likely due to the forced ascent 248 

of westerly (Scandinavia, Iberian Peninsula, British Isles) and southerly (Alps) winds. The high 249 

99th precipitation in the north of the Mediterranean is likely because of warm and moist 250 

southerly winds from the Mediterranean Sea. The ERA5 and OpenIFS simulations overall 251 

reproduce the spatial distribution of the 99th percentile precipitation from GPCC. However, the 252 

magnitudes are different, particularly over the Scandinavian mountains, the Alps, and central 253 

Europe near 50° N (Fig. 2a–e). Figure 2f–i show the regional biases for the 99th percentile 254 

precipitation referenced to GPCC. LR mostly underestimates the 99th percentile precipitation 255 

in mountainous areas and deserts by more than 25 % (Fig. 2g) and the biases are reduced when 256 

horizontal resolution is increased in MR and HR (Fig. 2h–i). We also notice that LR 257 

underestimates the 99th percentile precipitation south of the Alps but overestimates it to the 258 

north (Fig. 2 (g)), whereas this bias is negligible in higher-resolution simulations (Fig. 2h–i). 259 

Lavers et al. (2022) also found too much extreme precipitation on the north side of the Alps in 260 

ERA5 during a storm. This could be because the moist southerly winds do not ascend high 261 

enough with LR, therefore there is less precipitation formed on the southern side and more 262 

moisture is advected over the mountain. The reduced biases near mountain regions in the 263 

higher-resolution simulations are likely because higher resolution has a better representation 264 
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of topography and vertical velocity. A cross section of the topography and annual-mean vertical 265 

velocity at 850 hPa and 62° N (Fig. S2 and S3) highlight that the higher-resolution simulations 266 

resolve steeper topography, which leads to more ascent and thus more precipitation.  267 

 268 

The 99th percentile precipitation over the Alps is more realistic with higher horizontal 269 

resolution compared to lower resolution. However, all simulations as well as ERA5 exhibit a 270 

negative bias over northeast Italy and west Slovenia (Fig. 2f–i). The cause could be a bias in 271 

GPCC or a persistent model bias in the ECMWF-IFS on which both ERA5 and OpenIFS are 272 

based. In general, ERA5 has a lower RMSE (2.6 mm/d) for extreme total precipitation than 273 

OpenIFS simulations, i.e., ERA5 has overall lower biases than LR (4.0 mm/d) and is similar to 274 

MR (3.0 mm/d) and HR (2.9 mm/d). 275 

 276 

We next calculate the trend for the annual 99th percentile precipitation over Europe (Fig. S4 & 277 

S5) and find that the 99th percentile precipitation has a large positive trend in central Europe 278 

and a negative trend to the north of the Alps in GPCC (Fig. S4a). The ERA5 reproduces the 279 

pattern of the trend found in GPCC but not significant. However, OpenIFS simulations do not 280 

have consistent patterns with GPCC (Fig. S4c–e, Fig. S5c–e), with only LR60m reproducing 281 

the large positive trend in central Europe (Fig. S5c). Overall, the trend is largely underestimated 282 

over central Europe but overestimated over northern Europe in OpenIFS simulations. We have 283 

not found any consistent improvement across the horizontal resolution and model time step. 284 

 285 

In addition to the 99th percentile precipitation, we calculate annual total precipitation in 286 

different percentile ranges, such as 70th–80th, 80th–90th, 90th–95th, 95th–99th, 99th–99.5th, 99.5th–287 

99.9th and larger than 99.9th (i.e., >99.9th) percentile. We calculate the RMSEs for ERA5 and 288 

OpenIFS simulations referenced to GPCC in each range and find that the RMSEs for ERA5 289 

and OpenIFS simulations vary strongly across percentile ranges (Fig. 3). The RMSEs increase 290 

exponentially with increasing percentiles, from less than 1 mm/d at the 70th–80th percentile 291 

range to ~8 mm/d above the 99.9th percentile range. The largest RMSE is found for LR60m 292 

above the 99.9th percentile range which is around 12 mm/d [CI: 11.3–12.8 mm/d]. We also find 293 

that the RMSEs decrease with finer horizontal resolution for all percentile ranges. The CI of 294 

the RMSEs from LR do not overlap with those from higher horizontal resolutions for any 295 

percentile range, i.e., the biases from LR are significantly different from that at higher 296 

resolutions and thus clearly sensitive to the horizontal resolution. We also find that the RMSE 297 
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differences between LR simulation and the higher-resolution simulations as well as ERA5 are 298 

larger at higher percentile ranges (>95th) than those at lower percentile ranges (<95th). Thus, 299 

we conclude that extreme precipitation is more sensitive to horizontal resolution than 300 

precipitation at lower percentile ranges (<95th). ERA5 has the smallest RMSE of all datasets 301 

above the 95th percentile ranges, i.e., ERA5 has a better representation of the extreme 302 

precipitation than our OpenIFS simulations (Fig 3). 303 

 304 

The RMSEs for LR60m, LR30m, and LR are increasing with increasing model time steps. 305 

However, the CI of RMSE overlap at all percentile ranges, i.e., the sensitivity of precipitation 306 

to the model time step is not statistically significant in the low-resolution configurations. While 307 

the model time step may influence precipitation, especially convective precipitation, errors 308 

from poorly resolved topography probably have a large impact on the RMSE, which would 309 

explain the lack of sensitivity to the model time step. 310 

 311 

3.2 Relative roles of convective and large-scale precipitation 312 
 313 
We calculate the fractions of convective and large-scale precipitation in total precipitation for 314 

days when the total precipitation exceeds the 99th percentile in all model simulations and ERA5 315 

(Fig. 4 & 5). Note that, GPCC does not provide convective and large-scale precipitation 316 

separately, therefore we compare our OpenIFS simulations to the ERA5 dataset to assess the 317 

realism of the model simulations. We note that ERA5 is a reanalysis dataset where precipitation 318 

is a parametrized variable, and observations of which are not assimilated over Europe. ERA5 319 

monthly precipitation has a good agreement with GPCC on the land, with correlations above 320 

90 % for most of Europe, and above 70 % for Australia, Asia, and North America (Bell et al., 321 

2021). ERA5 also shows smaller biases for mean precipitation than other reanalysis datasets in 322 

the tropics compared to the Global Precipitation Climatology Project (GPCP), with relative 323 

biases of 13 % for ERA5, 17 % for MERRA-2 and 36 % for JRA-55 (Hassler & Lauer, 2021). 324 

The biases for mean precipitation are found smaller over extra-tropics than the tropics 325 

compared to the gauge-based precipitation observations, particularly agreeing well with 326 

observations over central Europe and South Asia (Lavers et al., 2022). Moreover, ERA5 can 327 

capture the locations and patterns of highest precipitations in observations, but cannot simulate 328 

the magnitude (Lavers et al., 2022). We also find that the extreme precipitation over Europe in 329 

ERA5 is closer to observations than models (Fig. 1, 2, and 3), therefore, we use ERA5 for the 330 

benching mark here although it has some known biases. 331 
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 332 

The ERA5 data and OpenIFS simulations show that, in DJF, the extreme precipitation is nearly 333 

100 % large-scale precipitation over northern Europe, more than 90 % over central Europe, 334 

and more than 70 % over western and southern Europe (Fig. 5a–d). However, in JJA, large-335 

scale precipitation makes up most of the extreme precipitation over northern Europe (>70 %) 336 

while convective precipitation makes up most of the extreme precipitation in the Mediterranean 337 

region (>70 %) (Fig. 4a–d). The OpenIFS simulations largely reproduce the pattern of the 338 

fraction of convective precipitation found in ERA5, but we note differences in magnitudes (Fig. 339 

4e–g, and Fig. 5e–g)). In JJA, the OpenIFS simulates the contribution of the convective 340 

precipitation quite well over Scandinavia where the extreme precipitation is mostly large-scale 341 

precipitation, but overestimates that for other areas over Europe (Fig. 4e–g). The RMSEs from 342 

MR (0.10 mm/d [CI: 0.09–0.10 mm/d]) and HR (~0.09 mm/d [CI: 0.09–0.10 mm/d]) are not 343 

significantly different, while LR (~0.12 mm/d [CI: 0.12–0.13 mm/d]) is significantly larger 344 

than those in MR and HR. In DJF, the OpenIFS underestimates the contribution from 345 

convective precipitation except for near-coastal areas (Fig. 5e–f). That is, the contribution from 346 

large-scale precipitation is overestimated, and the bias is reduced with higher horizontal 347 

resolution, i.e., in MR and HR.  348 

 349 

Further, we explore the relative roles of horizontal resolution and time step for the large-scale 350 

and convective precipitation at different percentile ranges (Fig. 6). In general, the RMSEs 351 

increase with increasing percentiles, but also decrease with increasing horizontal resolution and 352 

shorter model time step. The RMSE reduces for higher percentile in higher resolution due to 353 

better representation of topography, and in smaller model time step due to enhanced convection. 354 

The exceptions are the total precipitation above the 99.5th percentile in JJA where the RMSEs 355 

from LR are larger than LR30m (Fig. 6a), and the convective precipitation above the 99th 356 

percentile in JJA and DJF where the RMSEs from HR are larger than MR (Fig. 6c & f). 357 

 358 

The CI for RMSEs of total precipitation from LR, MR and HR in DJF and JJA do not overlap 359 

for all percentile ranges, thus there is a significant sensitivity of the total precipitation to the 360 

horizontal resolution, particularly for extreme total precipitation. The exceptions are the total 361 

precipitation below the 90th percentile ranges and above the 99.9th percentile range in JJA 362 

where the CI for RMSEs in MR and HR overlap (Fig. 6a). However, the sensitivity is not found 363 

for the global-mean total precipitation by increasing horizontal resolution (Savita et al., 2024). 364 
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For the large-scale precipitation in JJA, the CI for RMSEs from LR do not overlap with those 365 

from MR and HR at higher percentile ranges (>95th), but overlap at lower percentile ranges 366 

(<95th) (Fig. 6b). That is, the large-scale precipitation from the extreme precipitation is 367 

sensitive to the horizontal resolution. We note that a reduced bias is not found for the 368 

convective precipitation in JJA (Fig. 6c), and we conclude that the horizontal resolution 369 

dependence of extreme total precipitation in JJA comes from the large-scale precipitation. For 370 

DJF, the large-scale precipitation is sensitive to the horizontal resolution for all percentile 371 

ranges, where the CI for RMSEs in LR do not overlap with those from MR and HR (Fig. 6e). 372 

The convective precipitation in DJF is also sensitive to the horizontal resolution (Fig. 6f), 373 

however there is little convection precipitation in DJF, thus the sensitivity for convective 374 

precipitation in DJF is not important. Therefore, the resolution dependence of extreme total 375 

precipitation is mostly dominated by the large-scale precipitation in DJF. 376 

 377 

For the model time step, the CI for RMSEs of total precipitation from LR60m, LR30m, and 378 

LR overlap at all percentile ranges in both JJA and DJF (Fig. 6a & d), i.e., the extreme total 379 

precipitation is not sensitive to the model time step in a significant way in the low-resolution 380 

simulations. Similarly, the mean total precipitation is also found insensitive to the model time 381 

step (Savita et al., 2024). Both the large-scale and convective precipitation are sensitive to the 382 

model time step particularly above the 95th percentile ranges in JJA (Fig. 6b & c). The 383 

convective precipitation is more sensitive to the model time step than the large-scale 384 

precipitation in JJA, but in DJF the sensitivity is found only for the large-scale precipitation 385 

(Fig. 6e). Also, the lack of sensitivity for convective precipitation in DJF may be because there 386 

is almost no convective precipitation in DJF. 387 

 388 

4. Discussion and Conclusion 389 

We have investigated the sensitivity of extreme precipitation across different horizontal 390 

resolutions and model time steps in atmosphere-only experiments with the OpenIFS. 391 

Comparing extreme precipitation (defined as total daily precipitation at the 99th percentile) 392 

from OpenIFS simulations, reanalysis (ERA5), and observation (GPCC), we find that MR and 393 

HR mostly better represent the precipitation extremes compared to LR. We also found a more 394 

significant sensitivity to the horizontal resolution for the precipitation above the 95th percentile 395 

and less sensitivity for lower percentile ranges (<95th) (Fig. 3). These OpenIFS-based results 396 

are similar to Kopparla et al. (2013), who found that the bias of extreme precipitation in the 397 

high-resolution simulation (25 km) is reduced compared to the lower-resolution simulations 398 
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(100 km and 200 km) over Europe in their atmospheric model, but not for precipitation at lower 399 

percentiles (i.e., <95th). However, the sensitivity to the horizontal resolution found by Kopparla 400 

et al. (2013) was not significant over Europe which is rather different from our results as we 401 

have found a significant difference across the horizontal resolutions. In contrast to the extreme 402 

precipitation, the bias for global mean precipitation is not decreasing when increasing 403 

horizontal resolution from ~200 km to ~100 km or ~50 km in the ECHAM6-AMIP simulations 404 

(Hertwig et al., 2015), and also in other GCMs (e.g., OpenIFS, HadGEM1 and HadGEM3) 405 

(Demory et al., 2020; Savita et al., 2024; Schiemann et al., 2014). However, Delworth et al. 406 

(2012) found an improvement in the global mean precipitation with increasing horizontal 407 

resolution in a coupled model (GFDL). 408 

 409 

The improvements due to increasing horizontal resolution for the extreme precipitation are 410 

mostly over the mountain areas, consistent with previous studies which found the effect of 411 

horizontal resolution being largest in areas with complex topography over Europe and also 412 

other regions for mean and extreme precipitation (Demory et al., 2020; Iles et al., 2020; 413 

Monerie et al., 2020; Prein et al., 2013; Torma et al., 2015). The sensitivity to the horizontal 414 

resolution comes from the large-scale precipitation, which is likely because of the better-415 

resolved topography. However, the convective precipitation in JJA is more sensitive to the 416 

model time step than it is to the horizontal resolution, likely because there is an increase in 417 

shallow and mid-level convection with a shorter time step in the OpenIFS (Savita et al., 2024), 418 

thus we get more convective precipitation.  419 

 420 

In our results, larger improvements are obtained when the horizontal resolution is increased 421 

from LR to MR, but relatively smaller improvements from MR to HR. Similar results are also 422 

found in Roberts et al. (2018), where the climatological surface biases are relatively insensitive 423 

when increasing the atmospheric resolution from ~50 km to ~25 km in the ECMWF-IFS. Jung 424 

et al. (2012) also showed that the largest improvements in extratropical cyclones, Euro-Atlantic 425 

blocking, tropical mean precipitation, and tropospheric circulation are found when increasing 426 

horizontal resolution from 126 km to 39 km with relatively small further changes from 39 km 427 

to 16 and to 10 km in ECMWF atmosphere model. Kopparla et al. (2013) and Bacmeister et al. 428 

(2014) found much improvement for the mean precipitation and extreme precipitation with the 429 

increasing atmospheric resolution from ~200 km to 100 km, but less improvement from ~100 430 

km to ~25 km. It is likely due to a lack of tuning with the changing horizontal resolution. The 431 

above conclusions are valid over Europe, but also valid for other regions such as the tropics 432 
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and subtropics. For example, the predictions of tropical cyclone intensity are markedly 433 

improved when the horizontal resolution of the atmosphere model is increased from 120 km to 434 

40 km, but not for 15 to 10 km (Jung et al., 2012), which often triggers extreme precipitation 435 

(Gori et al., 2022; Zhu & Quiring, 2022). 436 

 437 
Moreover, the choice of observation dataset is a key factor for assessing the impact of the 438 

horizontal resolution and model time step on extreme precipitation. Most observation 439 

precipitation data are from one of the three categories, gauge-based products, satellite products, 440 

and merged satellite-gauge products. Since the satellite products are constructed with satellite 441 

microwave and/ or infrared measurements, with/ without gauged-adjusted estimates, 442 

differences exist between these products. Besides, the gauge-based products are highly 443 

dependent on the choice of stations and interpolation schemes. It is hard to say which product 444 

is closer to reality, as different regions may have different observation datasets that suit best 445 

for the analysis. In particular, we note that not all products are suitable for extreme analysis. 446 

For example, GPCP’s main scope is to construct a reliable climate data record and has been 447 

developed with a priority of ensuring the long-term stability of data (Adler et al., 2017). 448 

Masunaga et al. (2019) found that the frequency of GPCP daily precipitation quickly drops 449 

below all other datasets once the precipitation exceeds 30 mm/d. Also, the time series of GPCP 450 

extreme precipitation over the ocean exhibits a jump to lower 99th percentiles in late 2008/early 451 

2009 which is not present in all other datasets, coinciding with the change in utilization of 452 

SSM/I and SSMIS. The lower 99th precipitation suggests that the GPCP dataset might not be 453 

applied to extreme analysis (Masunaga et al., 2019). Therefore, we only use GPCC observation 454 

data as the reference to explore the model performance. In Fig. 2f–i the 99th percentile 455 

precipitation is largely underestimated in the eastern Alp region by ERA5 and all model 456 

simulations. The biases are insensitive to horizontal resolution. It is likely a persistent model 457 

bias in the ECMWF-IFS or a bias in GPCC. Analyzing multiple precipitation products instead 458 

of relying on a single one may be a good way to reduce these biases. 459 

 460 

Code and data variability 461 

The OpenIFS model requires a software license agreement with ECMWF to use it, and 462 

OpenIFS’s license is easily given free of charge to any academic or research institute. The 463 

details of OpenIFS are available at 464 

https://confluence.ecmwf.int/display/OIFS/About+OpenIFS (ECMWF, 2018). We used the 465 

same simulation that used in Savita et al. (2024) and therefore do not provide the data needed 466 
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to reproduce the simulations here. All data (runscripts, input data etc) needed to reproduce the 467 

simulations can be found in Savita et al. (2024) in code and data variability section. The jupyter 468 

notebook scripts used in this study to produce the plots can be found at 469 

https://doi.org/10.5281/zenodo.10887652. The raw model output is available from the authors 470 

upon reasonable request. The observation and reanalysis datasets used in this study can be 471 

downloaded from GPCC (https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-472 

daily_v2022_doi_download.html, Ziese et al., 2022) and ERA5 473 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form, 474 

Hersbach et al., 2023).  475 
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Figures 694 

 695 
 696 
Fig. 1 Annual time series of the 99th percentile precipitation using observations (GPCC, green), 697 

reanalysis (ERA5, black), and model simulations (LR: blue, MR: orange, HR: red) during 698 

1982-2019 over Europe. RMSE values of 99th percentile precipitation are computed referenced 699 

to GPCC which are shown within the small bracket. 700 
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 725 

 726 

 727 
Fig. 2 The 99th percentile precipitation over Europe during 1982-2019 from (a) GPCC 728 

observations, (b) ERA5 reanalysis, (c) LR, (d) MR, (e) HR, and the corresponding biases and 729 

RMSEs in (f) ERA5, (g) LR, (h) MR, and (i) HR. 730 
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 756 
 757 

Fig. 3 RMSEs for annual total precipitation at different percentile ranges (70th – 80th, 80th – 758 

90th, 90th – 95th, 95th – 99th, 99th – 99.5th, 99.5th – 99.9th and >99.9th percentile) in ERA5 (black) 759 

and OpenIFS simulations (LR60m: magenta, LR30m: orange, LR: red, MR: green, HR: blue) 760 

referenced to GPCC during 1982-2019 over Europe. Dots are the RMSE values, and error bars 761 

are the 95 % CI.  762 
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 780 
 781 

Fig. 4 Contribution of convective precipitation to extreme precipitation (>99th percentile) in (a) 782 

ERA5, (b) LR, (c) MR and (d) HR over Europe in JJA, and (e)– (g) their biases and RMSEs 783 

compared to ERA5 over the period 1982-2019.  784 
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 786 
 787 
Fig. 5 The same as Fig. 4 but for DJF. 788 
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 798 

 799 
 800 

Fig. 6 RMSEs of total precipitation (a & d) at different percentile ranges (70th – 80th, 80th – 801 

90th, 90th – 95th, 95th – 99th, 99th – 99.5th, 99.5th – 99.9th and >99.9th) and the corresponding 802 

large-scale precipitation (b & e) and convective precipitation (c & f) in OpenIFS simulations 803 

(LR60m: magenta, LR30m: orange, LR: red, MR: green, HR: blue) against ERA5 over Europe 804 

during 1982-2019. (a) – (c) are for JJA, and (d) – (f) for DJF. Dots are the RMSE values, and 805 

error bars are the 95 % confidence intervals.  Unit is mm/d. 806 
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 824 
Table 825 

Table 1: The experiment details of different horizontal resolutions and model time steps in 826 

OpenIFS. 827 

 LR60m LR30m LR MR HR 

Vertical 

resolution 
L91 L91 L91 

Horizontal 

Resolution 
100 km (Tco95) 50 km (Tco199) 25 km (Tco399) 

Time steps 60 minutes 30 minutes 15 minutes 15 minutes 15 minutes 
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