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Abstract: Events of extreme precipitation pose a hazard to many parts of Europe but are 15 

typically not well represented in climate models. Here, we evaluate daily extreme precipitation 16 

over Europe during 1982–2019 in observations (GPCC), reanalysis (ERA5) and a set of 17 

atmosphere-only simulations at low- (100 km), medium- (50 km) and high- (25 km) horizontal 18 

resolution and also at different time steps (i.e., 60, 30 and 15 min) using low resolution (100 19 

km) with identical vertical resolutions using OpenIFS (version 43r3). We find that both 20 

OpenIFS simulations and reanalysis underestimate the rates of extreme precipitation compared 21 

to observations. The biases are largest for the lowest resolution (100 km) and decrease with 22 

higher horizontal resolution (50 and 25 km) simulations in all seasons. The sensitivity to 23 

horizontal resolution is particularly high in mountain regions (such as the Alps, Scandinavia, 24 

Iberian Peninsula), likely linked to the sensitivity of vertical velocity to the representation of 25 

topography. The sensitivity of precipitation to model resolution increases dramatically with 26 

increasing percentiles, with modest biases in the 70th–80th percentile range and large biases 27 

above the 99th percentile range.  We also find that precipitation above the 99th percentile mostly 28 

consists of large-scale precipitation (~80 %) in winter, while in summer it is mostly large-scale 29 

precipitation in Northern Europe (~70 %) and convective precipitation in Southern Europe 30 

(~70 %). Convective precipitation is more sensitive to model time step than to horizontal 31 

resolution. Large-scale precipitation increases significantly with both higher horizontal 32 

resolution and shorter model time step. 33 

 34 

 35 
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 36 

1. Introduction 37 
 38 

Extreme precipitation events have severe impacts on our society and ecosystems. For example, 39 

extreme precipitation caused a devastating flood in Germany in 2021, in which around 180 40 

people died. The frequency and intensity of extreme precipitation are projected to increase over 41 

most regions in the future (Intergovernmental Panel on Climate Change, 2023; Li et al., 2021; 42 

Myhre et al., 2019). The increasing extreme precipitation poses a threat to society and must 43 

thus be realistically simulated and projected accurately for future climates. However, the 44 

climate models have large biases in simulating extreme precipitation events due to coarse 45 

horizontal resolution grid and long model time step etc. (Alexander et al., 2019; Avila et al., 46 

2015; Sillmann et al., 2013). The model biases are also hard to evaluate as we lack long-term 47 

observations. This study aims to understand the sensitivity of extreme precipitation to model 48 

horizontal resolution and model time step.  49 

Extreme precipitation events are usually underestimated in CMIP models (O’Gorman, 2015; 50 

Sillmann et al., 2013). Some studies found the simulated extreme precipitation at higher 51 

atmosphere horizontal resolutions is more realistic (Wehner et al., 2010, 2014). Jong et al. 52 

(2023) found that the characteristics of extreme precipitation at 25 km resolution configurations 53 

have smaller biases that at 50 and 100 km. While, Kopparla et al. (2013) found that the reduced 54 

extreme precipitation biases at higher horizontal resolution do not hold for all regions (e.g., 55 

Australia).  56 

Strandberg and Lind (2021) reported the effect of horizontal resolution on European extreme 57 

precipitation is largest in regions with complex topography and in the summer season when 58 

precipitation is mostly caused by convective processes using coupled models, in agreement 59 

with Iles et al. (2020). However, Li et al. (2011) demonstrated that the impact of horizontal 60 

resolution on global precipitation extremes is manifested mostly by its effects on large-scale 61 

precipitation, which could be due to the improved large-scale circulation (Hack et al., 2006). 62 

Other studies also found an increasing large-scale precipitation with higher resolution but the 63 

convective precipitation is rather insensitive to resolution (Bacmeister et al., 2014; Jung et al., 64 

2012; Kopparla et al., 2013). 65 

 66 
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Both the individual physical parameterization in models and their coupling to the dynamics 67 

can benefit from a shorter time step (Jung et al., 2012). Mishra and Sahany (2011) found a 68 

more realistic simulation of the heavy precipitation in the tropics when the time step was 69 

shortened from 60 to 5 minutes at a coarse (~300 km) resolution in a short-period (12 months) 70 

configuration. Jung et al. (2012) also reported that the biases in tropical circulation are smaller 71 

at 15 minutes than 60 minutes in the IFS model, which is related to tropical precipitation 72 

although they did not work on the precipitation in their study. However, Roberts et al. (2018) 73 

found a minimal impact on model biases when shortening the time step from 20 to 15 minutes 74 

at 25 km in the IFS model. They either did not investigate the multi-year precipitation extremes, 75 

or did not explore the extremes in IFS model. 76 

The sensitivity of climate model performance to horizontal resolution and model time step 77 

exists in many models, but the level of sensitivity varies considerably between models and 78 

studied regions. Most of the global atmosphere-models do not explicitly resolve all the physical 79 

processes and must therefore employ parametrizations to represent those unresolved processes 80 

(spatially or temporally), which shows a weakness in the models. A recent study by Savita et 81 

al. (2024) explored the sensitivity of global mean precipitation to the horizontal resolution and 82 

model time step in atmosphere-only simulations with OpenIFS. However, the extreme 83 

precipitation’s sensitivity to horizontal resolution and time step was not investigated. In this 84 

study, we investigated the impact of horizontal resolutions (~100 km, ~50 km, and ~25 km) 85 

and model time steps (60 minutes, 30 minutes, and 15 minutes) on daily extreme precipitation 86 

using OpenIFS simulations and compare them with observation. We also studied the 87 

convective and large-scale precipitation in all simulations. Precipitation extremes sensitivity to 88 

model time step is the first time explored in this work using 100 km in OpenIFS atmosphere 89 

model. Besides the extremes, we also explored multi-percentile precipitation’s sensitivity to 90 

horizontal resolution and time step.  This paper is structured as follows: section 2 describes the 91 

data and methodology, and section 3 discusses the results. The conclusion and discussion can 92 

be found in section 4.  93 

 94 
 95 
 96 
 97 
 98 
 99 
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2. Data and Methods 100 
 101 
2.1 Model, observation, and reanalysis data 102 

 103 

The OpenIFS is derived from the Integrated Forecasting System at the European Centre for 104 

Medium-range Weather Forecasting (ECMWF-IFS) cycle 43 release 3 (43r3) (ECMWF, 2017). 105 

We use the same AMIP simulations that were used in Savita et al. (2024) which cover the 106 

period 1979-2014 and are extended to 2019 using sea-surface temperature (SST) from ERA5 107 

and the Shared Socioeconomic Pathway 5 (SSP5-8.5) scenario from CMIP6. OpenIFS 108 

simulations use 91 vertical levels (L91) and the different horizontal resolutions: low resolution 109 

(Tco95, ~100 km), medium resolution (Tco199, ~50 km), and high resolution (Tco399, ~25 110 

km). For the low resolution, additional sensitivity experiments use different model time steps 111 

i.e., 60, 30, and 15 minutes and we refer to these experiments as LR60m, LR30m, and LR, 112 

respectively. For medium and high resolution, the same model time step is used (i.e., 15 113 

minutes), of which experiments refer to as MR and HR, respectively. While the OpenIFS uses 114 

a reduced octahedral grid (Malardel et al., 2016), the final output used in this study has been 115 

interpolated to a regular grid using the second-order conservative method (Kritsikis et al., 2017) 116 

by XIOS output server. The LR, LR30m and LR60m output were interpolated to a global 0.9° 117 

regular grid while the MR and HR output were interpolated to a global 0.45° regular grid, i.e., 118 

we are not investigating extreme precipitation in high resolution simulations in their native 119 

reduced octahedral grid, which will be investigated in future study. The simulations used here 120 

were used by Savita et al. (2024) who found improvements in the surface zonal wind, Rossby 121 

wave amplitude and phase speed, weather regime patterns, and surface-air temperature when 122 

shortening a model time step from 60 minutes to 30 and 15 minutes in low resolution or 123 

increasing the horizontal resolution from 100 km to 50 and 25 km. However, Savita et al. (2024) 124 

did not find such improvement in the mean precipitation bias by increasing horizontal 125 

resolution or shortening the model time step.   126 

To validate OpenIFS simulations, we use the gridded daily precipitation observational data 127 

from Global Precipitation Climatology Centre (GPCC) with resolution of 1° ́  1° for the period 128 

1982–2019 (Ziese et al., 2022) as well as the reanalysis data from the ECMWF Reanalysis v5 129 

(ERA5) for 1979–2019 (Hersbach et al., 2023). ERA5 is based on the IFS Cy41r2, with 31 km 130 

horizontal resolution and 137 levels (Hersbach et al., 2020). We analyzed total, large-scale, 131 

and convective precipitation in this study. The total precipitation (convective plus large-scale 132 



 5 

precipitation) in the IFS is the accumulated precipitation, comprising of rain and snow, that 133 

falls to the Earth’s surface, and it is not assimilated in the IFS. The convective precipitation is 134 

generated by the convection scheme in the IFS, which represents convection at spatial scales 135 

smaller than the grid box. The convection scheme follows Sundqvist (1978), which is also used 136 

in the OpenIFS. The large-scale precipitation is generated by the cloud scheme (Khairoutdinov 137 

and Kogan, 2000), which represents the formation and dissipation of clouds and large-scale 138 

precipitation due to changes in atmospheric quantities (such as pressure, temperature, and 139 

moisture) predicted directly by the IFS at spatial scales of the grid box or larger. The 140 

autoconversion/accretion parameterization is a non-linear function of the mass of both liquid 141 

cloud and rainwater. The calculation follows Khairoutdinov and Kogan (2000) which is derived 142 

from large eddy simulation studies of drizzling stratocumulus clouds, and this scheme is also 143 

used in OpenIFS. Several studies have evaluated the performance of ERA5 and found that the 144 

total precipitation in ERA5 is performing well over the US (Tarek et al., 2020; Xu et al., 2019). 145 

For global precipitation, the mean absolute difference over 50° S–50° N between ERA5 and 146 

TRMM/3B43 is 0.58 mm/d; the global-mean correlation with GPCP data is 0.77, which is 147 

better compared to ERA-Interim (0.63 mm/d and 0.67) (Hersbach et al., 2020). ERA5 also 148 

performs well in polar regions in representing wind, temperature and humidity (Graham et al., 149 

2019; Tetzner et al., 2019; Wang et al., 2019). 150 

Here we analyze daily ERA5 and the OpenIFS data over Europe (30° N–72° N, 10° W–40° E) 151 

for the period of 1982–2019 to be consistent with the GPCC dataset. For comparison, the ERA5, 152 

GPCC, MR, and HR data are remapped to LR (~0.9375° ´ 0.9375°) using the second-order 153 

conservative remapping method, which is consistent with the XIOS server used. The second-154 

order conservative method includes the gradient across the source cell, which is not included 155 

in the first-order conservative method. Therefore, it gives a smoother, more accurate 156 

representation of the source field (Jones, 1998). 157 

 158 
2.2 Methods 159 

Calculation of qth percentile value 160 

We calculated different percentile values using total precipitation from GPCC, ERA5, and 161 

OpenIFS simulations. When we calculated the qth percentile value, the normalized ranking 162 

usually did not match the location of the qth percentile exactly, which means the qth lies between 163 

two indices. Therefore, we determined the location first, then computed the qth value by 164 
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interpolating between the two nearest values based on the location. Here we used the formula 165 

below to find the location: 166 

                                                                j = q*(n-1)                                                              (1) 167 

n is the length of the sample, q is the desired percentile, j is the location which is the distance 168 

from the first value X1 (Xm are the sorted sample values, m=1, 2, …, n). Then we took i as the 169 

nearest (lower) integer of j to get the qth value P(q) by interpolating. 170 

                                                P (q) = Xi+( Xi+1 - Xi) * (j-i)                                                   (2) 171 

There are other methods to determine the location of qth percentile (Hyndman and Fan, 1996), 172 

but here we use the ‘linear’ one. 173 

 174 

The large-scale precipitation contribution to extreme precipitation 175 

To calculate the contribution of large-scale precipitation to total precipitation for a percentile 176 

range, at each grid point we accumulated the large-scale precipitation on all days when the total 177 

precipitation is in that percentile range, then divided it by the accumulated total precipitation 178 

on those days to get the fraction of large-scale precipitation. 179 

 180 

Calculation of RMSE values  181 

We used the root-mean-square error (RMSE) referenced to GPCC that measures the 182 

performance of ERA5 and OpenIFS simulations: 183 

                                                   RMSE = !∑ (#!"$##")$%
"&'

&
                                                   (3) 184 

𝑥'( is the value at i grid point for ERA5 or OpenIFS simulations, 𝑥)( is the value for GPCC, n 185 

is the number of land grid points over Europe. Using equation (3), we calculated the RMSE 186 

values for different percentile ranges. Smaller RMSE values mean the biases between OpenIFS 187 

(or ERA5) and GPCC are smaller i.e., the model simulations and ERA5 are performing better. 188 

The relative RMSE (RRMSE) is calculated by dividing the RMSE by GPCC precipitation at 189 

corresponding percentile range. 190 

 191 

Confidence intervals 192 

We calculated the 2.5 to 97.5th confidence intervals (CI) for the RMSE for each percentile with 193 

a bootstrap method. For example, to calculate the CI for the RMSE of HR (referenced to GPCC 194 

observation), we randomly chose n grid cell pairs from GPCC and HR over European land, 195 

then calculated their RMSE (n is the number of total land grid points over Europe). This process 196 

was repeated for 2000 times. We took the 2.5th and 97.5th percentiles of the distribution of the 197 
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2000 RMSEs as the 95 % CI. If the CI for different simulations do not overlap then we refer 198 

that they are significantly different. 199 

 200 
3. Results 201 
 202 
3.1 Extreme precipitation over Europe 203 
 204 
We show the time series of 99th percentile precipitation calculated from all grid points and all 205 

days in each year over the period 1982–2019 from GPCC, ERA5, and OpenIFS simulations 206 

over Europe (Fig. 1). The ERA5 simulates an inter-annual variability of the 99th percentile 207 

precipitation similar to that in GPCC. For example, the peak in 2010 and the low in 1994 are 208 

well reproduced in the ERA5. ERA5 is a reanalysis product that assimilates observation of 209 

precipitation, therefore, we expect it to do a better job of reproducing dry (1994) and wet (2010) 210 

years than OpenIFS simulations that do not reproduce the same inter-annual variability as in 211 

GPCC or ERA5. However, LR and HR do reproduce the 95 % significant positive trend 212 

observed in GPCC (0.03 mm/d/y, not shown), which are ~0.02 mm/d/y for both LR and HR, 213 

and it is not significant for MR. We note that the OpenIFS simulations use observed SST and 214 

sea-ice concentrations as boundary conditions, but ozone is taken from a photochemical 215 

equilibrium (Cariolle and Teyssèdre, 2007) and aerosol concentrations are taken from 216 

Copernicus Atmosphere Monitoring Service (CAMS) monthly climatology. Therefore, we do 217 

not expect LR, MR and HR to reproduce trends driven by ozone or aerosols forcing. We also 218 

find that both ERA5 and OpenIFS simulations have relatively lower 99th percentile 219 

precipitation rates compared to GPCC (Fig. 1). The RMSE for ERA5 (0.36 mm/d) is lower 220 

than for OpenIFS simulations which is largest for LR (2.03 mm/d) and decreases with higher 221 

horizontal resolution (i.e., 1.13 mm/d for MR and 0.69 mm/d for HR). Note that Fig. 1 does 222 

not contain any spatial information and that a mismatch between model data and observations 223 

can be due to the 99th percentile occurring in different regions and/or with different magnitudes. 224 

The RMSE analysis suggests that ERA5 and HR are close to GPCC and LR is far from GPCC. 225 

 226 

Figure 2a–e shows the spatial distribution of the 99th percentile precipitation over Europe for 227 

all days in each season for all years in GPCC, ERA5, and OpenIFS simulations, respectively. 228 

In general, the extreme precipitation is very low (~ 2 mm/d) in Northern Africa, which is to be 229 

expected since the mean precipitation is only 0.5 mm/d in those regions (Fig. S1). The extreme 230 

precipitation exceeds 30 mm/d over mountain areas (e.g., Scandinavian mountains, Alps, and 231 

Iberian Peninsula) and the north coast of the Mediterranean but is otherwise lower (~15 mm/d). 232 
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The spatial distribution of extreme precipitation matches that of the mean precipitation pattern 233 

(Fig. S1). The high 99th percentile precipitation near mountains is likely due to the forced ascent 234 

of westerly (Scandinavia, Iberian Peninsula, British Isles) and southerly (Alps) winds. The high 235 

99th percentile precipitation in the north of the Mediterranean is likely because of warm and 236 

moist southerly winds from the Mediterranean Sea. The ERA5 and OpenIFS simulations 237 

overall reproduce the spatial distribution of the 99th percentile precipitation from GPCC. 238 

However, the magnitudes are different, particularly over the Scandinavian mountains, the Alps, 239 

and central Europe near 50° N (Fig. 2a–e). Figure 2f–i show the regional biases for the 99th 240 

percentile precipitation referenced to GPCC. LR mostly underestimates the 99th percentile 241 

precipitation in mountainous areas and deserts by more than 25 % (Fig. 2g) and the biases are 242 

reduced when horizontal resolution is increased in MR and HR (Fig. 2h–i). We also notice that 243 

LR underestimates the 99th percentile precipitation south of the Alps but overestimates it to the 244 

north (Fig. 2 (g)), whereas this bias is negligible in higher-resolution simulations (Fig. 2h–i). 245 

This is due to the lower and gentler Alps region simulated in LR (Fig. S2), where the moist 246 

southerly winds do not ascend high enough, therefore there is less precipitation formed on the 247 

southern side and more moisture is advected over the mountain. The moist air descends more 248 

slowly over gentler leeward side in LR than MR (HR), thus the leeward region may get more 249 

precipitation. The reduced biases near mountain regions in the higher-resolution simulations 250 

are likely because higher resolution has a better representation of topography and vertical 251 

velocity. A cross section of the topography and annual-mean vertical velocity at 850 hPa and 252 

62° N (Fig. S3a&b) highlight that the higher-resolution simulations resolve steeper topography, 253 

which leads to more ascent and thus more precipitation.  254 

 255 

The 99th percentile precipitation over the Alps is more realistic with higher horizontal 256 

resolution compared to lower resolution. However, all simulations as well as ERA5 exhibit a 257 

negative bias over northeast Italy and west Slovenia (Fig. 2f–i). By analyzing the EOBS data, 258 

we find a similar negative bias as in GPCC, but a positive bias in GPCP (Fig. S4d-k). We notice 259 

that the extreme precipitation over the Alps (including Slovenia) in GPCP is lower than GPCC 260 

and EOBS (Fig. S4a-c), which is likely due to the different data sources and grid methods in 261 

different observation datasets (e.g., GPCC and EOBS are gauge-based gridded data on the land, 262 

but GPCP data combines microwave and infrared measurements, satellites and rain gauges). 263 

We do not know which observation dataset is more realistic, therefore, the cause of the negative 264 

bias near Slovenia could be a bias in GPCC or a persistent model bias in the ECMWF-IFS on 265 
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which both ERA5 and OpenIFS are based. In general, ERA5 has a lower RMSE (2.6 mm/d) 266 

for extreme total precipitation than OpenIFS simulations, i.e., ERA5 has overall lower biases 267 

than LR (4.0 mm/d) and is similar to MR (3.0 mm/d) and HR (2.9 mm/d). 268 

 269 

We next calculate the trend for the annual 99th percentile precipitation over Europe (Fig. 3 & 270 

4) and find that the 99th percentile precipitation has a large positive trend in central Europe and 271 

a negative trend to the north of the Alps in GPCC (Fig. 3a). The ERA5 reproduces the pattern 272 

of the trend found in GPCC but is not significant. However, OpenIFS simulations do not have 273 

consistent patterns with GPCC (Fig. 3d–f, Fig. 4d–f), with only LR30m reproducing the large 274 

positive trend in central Europe (Fig. 4d). Overall, the trend is largely underestimated over 275 

central Europe but overestimated over northern Europe in OpenIFS simulations. We have not 276 

found any consistent improvement across the horizontal resolution and model time step. 277 

 278 

In addition to the 99th percentile precipitation and the trend, we calculate annual total 279 

precipitation in different percentile ranges, such as 70th–80th, 80th–90th, 90th–95th, 95th–99th, 280 

99th–99.5th, 99.5th–99.9th and larger than 99.9th (i.e., >99.9th) percentile. The RMSEs for ERA5 281 

and OpenIFS simulations referenced to GPCC in each range are shown in Fig. 5. The RMSEs 282 

increase exponentially with increasing percentiles, from less than 1 mm/d at the 70th–80th 283 

percentile range to ~8 mm/d above the 99.9th percentile range. The largest RMSE is found for 284 

LR60m above the 99.9th percentile range which is around 12 mm/d [CI: 11.3–12.8 mm/d]. We 285 

also find that the RMSEs decrease with finer horizontal resolution for all percentile ranges. The 286 

CI of the RMSEs from LR do not overlap with those from higher horizontal resolutions for any 287 

percentile range, i.e., the biases from LR are significantly different from that at higher 288 

resolutions and thus clearly sensitive to the horizontal resolution. Notably, the RMSE 289 

differences between LR simulation and the higher-resolution simulations as well as ERA5 are 290 

larger at higher percentile ranges (>95th) than those at lower percentile ranges (<95th). This 291 

suggests that the extreme precipitation is more sensitive to horizontal resolution than 292 

precipitation at lower percentile ranges (<95th). ERA5 has the smallest RMSE of all datasets 293 

above the 95th percentile ranges, i.e., ERA5 has a better representation of the extreme 294 

precipitation than our OpenIFS simulations (Fig. 5). 295 

 296 

The RMSEs for LR60m, LR30m, and LR are smaller when the model time step is shorter. 297 

However, the CI of RMSE overlaps at all percentile ranges, i.e., the sensitivity of precipitation 298 
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to the model time step is not statistically significant in the low-resolution configurations. While 299 

the model time step may influence precipitation, especially convective precipitation, errors 300 

from poorly resolved topography probably have a large impact on the RMSE, which would 301 

explain the lack of sensitivity to the model time step. 302 

 303 

The above analysis is based on the RMSE values, which measure the absolute magnitude of 304 

biases. The exponential increase in RMSE with higher percentiles is due to the corresponding 305 

exponential increase in precipitation amounts across those percentiles. The relative biases are 306 

further explored by calculating the relative RMSE (RRMSE) (Fig. S5). For the precipitation 307 

above 90th percentile (> 6 mm/d), RRMSEs are larger at higher percentiles (>99.9th percentile) 308 

than lower percentiles (90-95th percentile).  A larger sensitivity to horizontal resolution at 309 

higher percentiles can be also seen, since the RRMSE differences between LR and MR (HR) 310 

slightly increase from 5.5% at 90-95th to 6.9% above 99.9th percentile. The above RRMSEs’ 311 

results are qualitatively consistent with the larger RMSE and sensitivity to horizontal resolution 312 

at higher percentiles shown in Fig. 5, but quantitatively RRMSE shows smaller variations 313 

across percentiles than RMSE does. However, the RRMSE at 70-90th percentile ranges show 314 

comparable magnitude and sensitivity to those above 99th percentile, which is related to the 315 

very low precipitation amounts at these percentiles (1.9 mm/d for 70-80th and 3.6 mm/d for 80-316 

90th percentile range).  317 

 318 

3.2 Relative roles of convective and large-scale precipitation 319 
 320 
Total precipitation is the sum of convective and large-scale precipitation. Convective 321 

precipitation is related to unresolved convective motions. It comes from the physical processes 322 

whose scales are smaller than the resolution of the model, therefore need to be parametrized. 323 

On the other hand, large-scale precipitation is related to large-scale processes larger than the 324 

model resolution, that can be resolved. When moving to higher horizontal resolutions, large-325 

scale precipitation is likely to increase, and the ratio between convective and large-scale 326 

precipitation may change.  In this section we split the extreme precipitation into convective and 327 

large-scale precipitation to see their sensitivities to horizontal resolution and model time step. 328 

The extreme precipitation is nearly 100 % large-scale precipitation over northern Europe, more 329 

than 90 % over central Europe, and more than 70 % over western and southern Europe in DJF 330 

(Fig. 6e–h). However, in JJA the extreme precipitation is mostly large-scale precipitation over 331 

northern Europe (>70 %) and convective precipitation in the Mediterranean region (>70 %) 332 
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(Fig. 6a–d). Due to the seasonal dependent large-scale precipitation contribution to extreme 333 

total precipitation, we discuss convective and large-scale precipitation’s sensitivities to 334 

horizontal resolution and time step in JJA and DJF separately. The ratios between convective 335 

and large-scale precipitation are also discussed here. Considering the ratios over parts of 336 

Mediterranean region are very large, which influence the results a lot, we remove that region 337 

and only include the region north than 40°N (i.e., 40° N–72° N, 10° W–40° E) in this section.  338 

 339 
During the extreme precipitation days, Europe has more convective precipitation in JJA (~10 340 

mm/d) than in DJF (~3.7 mm/d), and their distributions do not change much across horizontal 341 

resolution (Fig. 7a & b). While, from the significant test (Table 2a), we found JJA convective 342 

precipitation only increases significantly moving from MR to HR, and DJF convective 343 

precipitation significantly increases from LR to MR (HR). However, convective precipitation’s 344 

distributions vary noticeably across model time steps, as shown in Fig. 7 c & d. As the model 345 

time step reduces, the distributions of JJA convective precipitation move to the left, thus less 346 

convective precipitation are simulated in shorter time step simulations. DJF has similar results 347 

as in JJA. The changes are significant (Table 2a), that is, convective precipitation in OpenIFS 348 

is sensitive to model time step. 349 

 350 

The distributions of large-scale precipitation in MR and HR (Fig. 7e) shift to the right compared 351 

to LR in JJA, and MR and HR have significantly more large-scale precipitation (13.2 mm/d) 352 

than LR (11.4 mm/d). In DJF, the distribution peak of LR, MR and HR are similar (Fig. 7f), 353 

but MR and HR have bigger tails than LR. Thus, MR and HR have more large-scale 354 

precipitation than LR. The increase of large-scale precipitation is likely due to the better 355 

simulated topography at higher horizontal resolution, where more large-scale precipitation is 356 

resolved. The changes of large-scale precipitation in both JJA and DJF from LR to MR are 357 

significant, but not from MR to HR (Table 2b). That means, the large-scale precipitation is 358 

sensitive when horizontal resolution is increased from LR to MR, but not from MR to HR. 359 

Large-scale precipitation also significantly increases when the model time step is shorten from 360 

60 min to 30 min, and also from 30 min to 15 min in both JJA (Fig. 7g) and DJF (Fig. 7h), that 361 

is large-scale precipitation is also sensitive to the model time step. 362 

 363 

We further analyse the distribution of ratio between convective and large-scale precipitation in 364 

JJA and DJF, shown in Fig. 8. For different resolutions, the ratio distributions from MR and 365 

HR are narrower and slightly shift to the left compared to LR in JJA (Fig. 8a), which means 366 
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MR and HR have smaller mean ratios (1.5) than LR (~1.25). That is due to the large-scale 367 

precipitation increasing by 16% with finer horizontal resolution, whereas convective 368 

precipitation only increases by 6%. However, the ratio between convective and large-scale 369 

precipitation do not vary significantly with higher horizontal resolutions in DJF (Fig. 8b). 370 

When moving to shorter model time step, the ratios significantly decrease in JJA (from 2 to 371 

1.5) and DJF (Fig. 8c-d, Table 2c). It is related to the significant decreasing convective and 372 

increasing large-scale precipitation with shorter model time step. 373 

 374 

In summary, during extreme precipitation days, large-scale precipitation increases with higher 375 

horizontal resolution and shorter model time step, however, convective precipitation increases 376 

with higher horizontal resolution and decrease with shorter model time step. Convective 377 

precipitation is more sensitive to model time steps than to horizontal resolutions, while large-378 

scale precipitation is sensitive to both. Therefore, the extreme precipitation sensitivity to 379 

horizontal resolution is mostly from large-scale precipitation. 380 

 381 

We also analyse the mean state convective and large-scale precipitation’s sensitivity to 382 

horizontal resolution and model time step (Fig. S6 & S7). Convective precipitation decreases 383 

and large-scale precipitation increases with higher horizontal resolution and shorter model time 384 

step, therefore their ratio decreases. Their sensitivities to resolutions and time steps are less 385 

significant in mean state than in extreme state, especially for mean convective precipitation, 386 

which is only significantly sensitive when shortening model time step from 30 min to 15 min. 387 

The changes of mean convective precipitation with horizontal resolution are opposite with the 388 

extreme one (Fig. S6a & b, Fig. 7a & b), but these changes for both extreme and mean states 389 

are very little, and convective precipitation is more sensitive to model time steps in both states 390 

(Fig. S6c & d, Fig. 7c & d). 391 

 392 

4. Discussion and Conclusion 393 

We have investigated the sensitivity of extreme precipitation across different horizontal 394 

resolutions and model time steps in atmosphere-only experiments with the OpenIFS. 395 

Comparing extreme precipitation (defined as total daily precipitation at the 99th percentile) 396 

from OpenIFS simulations, reanalysis (ERA5), and observation (GPCC), we find that MR and 397 

HR mostly better represent the precipitation extremes compared to LR. We also found a more 398 

significant sensitivity to the horizontal resolution for the precipitation above the 95th percentile 399 

and less sensitivity for lower percentile ranges (<95th) (Fig. 5). These OpenIFS-based results 400 
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are similar to Kopparla et al. (2013), who found that the bias of extreme precipitation in the 401 

high-resolution simulation (25 km) is reduced compared to the lower-resolution simulations 402 

(100 km and 200 km) over Europe in their atmospheric model, but not for precipitation at lower 403 

percentiles (i.e., <95th). However, the sensitivity to the horizontal resolution found by Kopparla 404 

et al. (2013) was not significant over Europe which is rather different from our results as we 405 

have found a significant difference across the horizontal resolutions. In contrast to the extreme 406 

precipitation, the bias for global mean precipitation is not decreasing much with higher 407 

horizontal resolution in OpenIFS. Similar results are also found in other AGCMs (e.g., 408 

ECHAM6, OpenIFS, HadGEM1 and HadGEM3) (Hertwig et al., 2015; Savita et al., 2024; 409 

Schiemann et al., 2014; Demory et al., 2020;). However, Delworth et al. (2012) found an 410 

improvement in the global mean precipitation with higher horizontal resolution in a coupled 411 

model (GFDL). 412 

 413 

The improvements due to higher horizontal resolution for the extreme precipitation are mostly 414 

over the mountain areas, consistent with previous studies which found the effect of horizontal 415 

resolution being largest in areas with complex topography over Europe and also other regions 416 

for mean and extreme precipitation (Demory et al., 2020; Iles et al., 2020; Monerie et al., 2020; 417 

Prein et al., 2013; Torma et al., 2015). The sensitivity to the horizontal resolution comes from 418 

the large-scale precipitation, which is likely because of the better-resolved topography. 419 

However, the convective precipitation is more sensitive to the model time step than it is to the 420 

horizontal resolution. 421 

 422 

In our results, larger improvements are obtained when the horizontal resolution is increased 423 

from LR to MR, but relatively smaller improvements from MR to HR. This diminishing return 424 

is also found by Roberts et al. (2018) from ~50 km to ~25 km in ECMWF-IFS, but for 425 

climatological surface biases. The simulation of extratropical cyclones, tropospheric 426 

circulation and tropical mean precipitation in ECMWF-IFS also have smaller improvements 427 

from 39 km to 16 km than that from 126 km to 39 km (Jung et al., 2012). However, the tropical 428 

cyclone intensity and intense storm structure, which often cause extreme precipitation in tropics 429 

(Gori et al., 2022; Zhu and Quiring, 2022) are adequately simulated at 16 km, but not at 126 430 

and 39 km resolutions in ECMWF-IFS (Manganello et al., 2012). Therefore, the diminishing 431 

return in this study is valid for European extreme precipitation, but may not for tropical extreme 432 

precipitation. 433 

 434 
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Since the analysis of horizontal resolution’s impact is based on regridded data, may therefore 435 

be influenced by the regridding process. The native resolution of our model output is 192´384 436 

for LR, 400´800 for MR and 800´1600 for HR, however, only 400´800 for HR output is saved 437 

due to computational cost. Similar to the result of regridded data (Fig. 1), extreme 438 

precipitation on their native resolution is underestimated in OpenIFS compared to GPCC, and 439 

the biases decrease with higher horizontal resolution (Fig. 9). Extreme precipitation on native 440 

resolutions also has similar spatial distribution with that on regridded resolution (Fig. 10, Fig. 441 

2), such as more extreme precipitation in mountain areas. However, the extreme precipitation 442 

is larger (13% for GPCC, 7% for MR and 12% HR) on native resolution than on regridded 443 

resolution, because some extreme precipitation is smoothed when regridding to 0.9 ´ 0.9 444 

degree. The RMSEs of extreme precipitation against GPCC are also larger on native resolution 445 

(Fig. 9) than on regridded resolution (Fig. 1), which holds across different percentiles (Fig. S8). 446 

Moreover, the sensitivity of extreme precipitation to horizontal resolution is also greater on 447 

native resolution (Fig. S8). Convective and large-scale precipitation during extreme 448 

precipitation days increase with higher horizontal resolution (Fig. 11 a-d), consistent with 449 

regridded results. The convective-to-large-scale precipitation ratio significantly decreases from 450 

LR to MR in JJA (Fig. 11e), which is also consistent with regridded results. However, the ratio 451 

increases from MR to HR in JJA on native resolution, differing from regridded analysis, likely 452 

due to the dramatic increasing convective precipitation from MR to HR in JJA. Overall, 453 

regridding the model dataset does not change the conclusion qualitatively in this study but 454 

causes quantitative differences. 455 

 456 
Moreover, the choice of observation dataset is a key factor for assessing the impact of the 457 

horizontal resolution and model time step on extreme precipitation. Most observation 458 

precipitation data are from one of the three categories, gauge-based products, satellite products, 459 

and merged satellite-gauge products. Since the satellite products are constructed with satellite 460 

microwave and/ or infrared measurements, with/ without gauged-adjusted estimates, 461 

differences exist between these products. Besides, the gauge-based products are highly 462 

dependent on the choice of stations and interpolation schemes. It is hard to say which product 463 

is closer to reality, as different regions may have different observation datasets that suit best 464 

for the analysis. In particular, we note that not all products are suitable for extreme analysis. 465 

For example, GPCP’s main scope is to construct a reliable climate data record and has been 466 

developed with a priority of ensuring the long-term stability of data (Adler et al., 2017). 467 

Masunaga et al. (2019) found that the frequency of GPCP daily precipitation quickly drops 468 
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below all other datasets once the precipitation exceeds 30 mm/d. Also, the time series of GPCP 469 

extreme precipitation over the ocean exhibits a jump to lower 99th percentiles in late 2008/early 470 

2009 which is not present in all other datasets, coinciding with the change in utilization of 471 

SSM/I and SSMIS. The lower 99th precipitation suggests that the GPCP dataset might not be 472 

applied to extreme analysis (Masunaga et al., 2019). Therefore, we only use GPCC observation 473 

data as the reference to explore the model performance. In Fig. 2f–i the 99th percentile 474 

precipitation is largely underestimated in the eastern Alp region by ERA5 and all model 475 

simulations. The biases are insensitive to horizontal resolution. It is likely a persistent model 476 

bias in the ECMWF-IFS or a bias in GPCC. Comparing model output to multiple observational 477 

precipitation products instead of relying on a single one may be a good way to reduce these 478 

biases. Multiple observational products can be taken as an ensemble, which provide a spread 479 

of observational estimates and allow insights into whether and which model configurations sit 480 

within this observational spread.  481 

 482 

Code and data variability 483 

The OpenIFS model requires a software license agreement with ECMWF to use it, and 484 

OpenIFS’s license is easily given free of charge to any academic or research institute. The 485 

details of OpenIFS are available at 486 

https://confluence.ecmwf.int/display/OIFS/About+OpenIFS (ECMWF, 2018). We used the 487 

same simulation that used in Savita et al. (2024) and therefore do not provide the data needed 488 

to reproduce the simulations here. All data (runscripts, input data etc) needed to reproduce the 489 

simulations can be found in Savita et al. (2024) in code and data variability section. The jupyter 490 

notebook scripts used in this study to produce the plots can be found at 491 

https://doi.org/10.5281/zenodo.15497274. The raw model output is available from the authors 492 

upon reasonable request. The observation and reanalysis datasets used in this study can be 493 

downloaded from GPCC (https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-494 

daily_v2022_doi_download.html, Ziese et al., 2022) and ERA5 495 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form, 496 

Hersbach et al., 2023).  497 
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 726 

Figures 727 

 728 
 729 
Fig. 1 Annual time series of the 99th percentile precipitation using observations (GPCC, black 730 

solid line), reanalysis (ERA5, black dash line), and model simulations (LR: blue, MR: orange, 731 

HR: red) during 1982-2019 over Europe. RMSE values of 99th percentile precipitation are 732 

computed referenced to GPCC which are shown within the small bracket (unit: mm/d). 733 
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 757 
 758 

 759 
 760 

Fig. 2 The 99th percentile precipitation over Europe during 1982-2019 from (a) GPCC 761 

observations, (b) ERA5 reanalysis, (c) LR, (d) MR, (e) HR, and the corresponding biases and 762 

RMSEs in (f) ERA5, (g) LR, (h) MR, and (i) HR. 763 
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 787 
Fig. 3 The linear trends of annual 99th percentile precipitation over Europe during 1982-2019 788 

from (a) GPCC observations, (b) ERA5 reanalysis, (d) LR, (e) MR, (f) HR, and the 789 

corresponding biases and RMSEs in (c) ERA5, (g) LR, (h) MR, (i) HR. The shadings are trends 790 

at 95 % significance levels. 791 

 792 
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 793 
Fig. 4 The linear trends of annual 99th percentile precipitation over Europe during 1982-2019 794 

from (a) GPCC observations, (b) ERA5 reanalysis, (d) LR60m, (e) LR30m, (f) LR, and the 795 

corresponding biases and RMSEs in (c) ERA5, (g) LR60m, (h) LR30m, (i) LR. The shadings 796 

are trends at 95 % significance levels. 797 
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 813 
 814 

Fig. 5 European averaged precipitation amounts and RMSEs (referenced to GPCC) for 815 

European total precipitation at different percentile ranges (70th – 80th, 80th – 90th, 90th – 95th, 816 

95th – 99th, 99th – 99.5th, 99.5th – 99.9th and >99.9th percentile) in ERA5 (black) and OpenIFS 817 

simulations (LR60m: magenta, LR30m: orange, LR: red, MR: blue, HR: purple) during 1982-818 

2019. Cross marks are the precipitation amounts. Dots are the RMSE values, and error bars are 819 

the 95 % CI.  820 
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 831 
Fig. 6 Contribution of large-scale precipitation to extreme precipitation (>99th percentile) in 832 

ERA5 (a & e), LR (b & f), MR (c & g) and HR (d & h) over Europe in JJA (a-d) and DJF (e-833 

h) over the period 1982-2019. 834 
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 848 
Fig. 7 European convective (a-d) and large-scale precipitation (e-h) distribution across different 849 

horizontal resolutions (a, b, e and f) and model time steps (c, d, g and h) during extreme 850 

precipitation days in JJA and DJF (LR60m: magenta, LR30m: orange, LR: red, MR: blue, HR: 851 

purple). The time period is 1982-2019. The dash lines are the mean values of each distribution. 852 
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 854 
 855 
Fig. 8 The ratio between European convective and large-scale precipitation during extreme 856 

precipitation days across different horizontal resolutions (a & b) and model time steps (c & d) 857 

in JJA and DJF (LR60m: magenta, LR30m: orange, LR: red, MR: blue, HR: purple). The dash 858 

lines are the mean values of each distribution. 859 
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 863 

 864 
Fig. 9 Annual time series of the 99th percentile precipitation using observations (GPCC, black 865 

solid line) and model simulations on their native resolution (LR: blue, MR: orange, HR: red) 866 

during 1982-2019 over Europe. RMSE values of 99th percentile precipitation are computed 867 

referenced to GPCC which are shown within the small bracket (unit: mm/d). 868 
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 870 
 871 
Fig. 10 The 99th percentile precipitation over Europe during 1982-2019 from (a) GPCC 872 

observations, (b) LR, (c) MR, (d) HR on their native resolution. 873 

 874 

 875 
 876 
Fig. 11 European convective (a & b), large-scale precipitation (c & d) distribution and ratio 877 

(cp/lsp) on their native resolution across different horizontal resolutions during extreme 878 

precipitation days in JJA and DJF (LR: red, MR: blue, HR: purple). The time period is 1982-879 

2019. The dash lines are the mean values of each distribution. 880 
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 889 

Table 890 

Table 1: The experiment details of different horizontal resolutions and model time steps in 891 

OpenIFS. 892 

 LR60m LR30m LR MR HR 

Vertical 

resolution 
L91 L91 L91 

Horizontal 

Resolution 
100 km (Tco95) 50 km (Tco199) 25 km (Tco399) 

Native output 

resolution 
192´384 400´800 

800´1600 

(400´800 is 

used in the 

evaluation) 

Regridded 

resolution 
192´384 192´384 192´384 

Time steps 60 minutes 30 minutes 15 minutes 15 minutes 15 minutes 
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 910 

Table 2: The p-values of t-test for convective (Table 2a), large-scale precipitation (Table 2b) 911 

and their ratios (Table 2c) distribution across horizontal resolutions and model time steps. The 912 

bold means significant (p-value < 0.05).  913 

Table 2a 914 

cp JJA DJF 

LR ® MR 0.92 0.02 

MR ® HR 2.1 e-4 0.75 

LR60m ® LR30m 4.3 e-6 0.02 

LR30m ® LR 5.1 e-7 0.001 

 915 

Table 2b 916 

lsp JJA DJF 

LR ® MR 1.8 e-29 2.2 e-4 

MR ® HR 0.70 0.39 

LR60m ® LR30m 3.3 e-9 9.4 e-5 

LR30m ® LR 0.005 3.0 e-7 

 917 

Table 2c 918 

ratio JJA DJF 

LR ® MR 3.0 e-8 0.49 

MR ® HR 0.37 0.64 

LR60m ® LR30m 1.6 e-10 9.0 e-4 

LR30m ® LR 0.03 2.0 e-4 
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