
GNNWR: An Open-Source Package of Spatiotemporal
Intelligent Regression Methods for Modeling Spatial and
Temporal Non-Stationarity
Ziyu Yin1,*, Jiale Ding1,*, Yi Liu1, Ruoxu Wang1, Yige Wang1, Yijun Chen1, Jin Qi1, Sensen Wu1,
and Zhenhong Du1

1School of Earth Sciences, Zhejiang University, Hangzhou, China
*These authors contributed equally to this work.
Correspondence: Sensen Wu (wusensengis@zju.edu.cn)

Abstract. Spatiotemporal regression is a crucial method in geography for discerning spatiotemporal non-stationarity
in geographical relationships, which has found widespread application across diverse research domains. This study
implements two innovative spatiotemporal intelligent regression models, namely Geographically Neural Network
Weighted Regression (GNNWR) and Geographically and Temporally Neural Network Weighted Regression (GTNNWR),
which using neural networks to estimate the spatiotemporal non-stationarity. Due to the higher accuracy and general-5

ization ability, these models have been widely used in various fields of scientific research. To facilitate the application
of GNNWR and GTNNWR in addressing spatiotemporal non-stationary processes, a Python-based package, GN-
NWR, has been developed. This article details the implementation of these models and introduces the GNNWR
package, enabling users to efficiently apply these cutting-edge techniques. Validation of the package is conducted
through two case studies. The first case involves the verification of GNNWR using air quality data from China, while10

the second employs offshore dissolved silicate concentration data from Zhejiang Province to validate GTNNWR. The
results of the case studies underscore the effectiveness of the GNNWR package, yielding outcomes of notable accu-
racy. This contribution anticipates a significant role for the developed package in supporting future research that
leverages big data and spatiotemporal regression techniques.

1 Introduction15

Spatiotemporal non-stationarity, denoting variations in geographical elements or structures across different temporal
and spatial contexts, constitutes an intrinsic attribute of nearly all kinds of geographical processes and phenomena.
Geographically Weighted Regression (GWR), a classic methodology for delineating spatial non-stationarity in geo-
graphical relationships, facilitates the variations of parameter coefficients within the regression equation according to
spatial locations (Brunsdon et al., 1996). As a foundational algorithm within the domain of spatiotemporal regression20

analysis, GWR has been widely used across diverse research domains, including environmental studies (Yang et al.,

1

2019; Shen et al., 2023), urban studies (Sisman and Aydinoglu, 2022; He et al., 2023), and the social sciences (Stein
et al., 2015; Lewandowska-Gwarda, 2018; Ahadnejad Reveshty et al., 2023).

On the basis of GWR, various methods have been proposed that focus on optimizing the model ability to solve
spatiotemporal non-stationary relationships. The improvements mainly include the following aspects: the selection25

of spatiotemporal distance metrics (Fotheringham et al., 2015; Lu et al., 2014), the choice of weight kernel functions
(Fotheringham et al., 2017), and the optimization of statistical diagnostic methods (Brunsdon et al., 1999; Leung
et al., 2000). Notably, multi-scale geographically weighted regression (MGWR) extends the weight kernel function
to possess varying bandwidths for each independent variable and further enhances the model capacity to fit spatial
non-stationarity (Fotheringham et al., 2017). To deploy the MGWR model, researchers developed a Python-based30

software package mgwr that focuses on multi-scale estimation and efficient computation of spatial non-stationarity
(Oshan et al., 2019). It supplements the R-language-based open-source tools, e.g., spgwr (Bivand and Yu, 2023),
gwrr (Wheeler, 2022), and GWmodel (Lu et al., 2024), improving the overall accessibility of GWR and MGWR
methods.

Owing to the intricate linear interplay between spatial distance and non-stationary weights inherent in geograph-35

ical processes, the precise computation of the weight matrix through simple kernel functions encounters notable
challenges. In response to this, diverse methodologies within the domain of geospatial artificial intelligence (GeoAI)
have been proposed to effectively capture the non-linear spatial relationships among pertinent factors (Georganos
and Kalogirou, 2022; Hagenauer and Helbich, 2022). The majority of existing GeoAI approaches utilize neural net-
works in an opaque manner for establishing spatial relationships, leading to a constrained spatial interpretability of40

the estimated relationships. To address this, researchers have integrated a spatiotemporal weighted framework with
neural networks, leading to the formulation of spatiotemporal intelligent regression models. Notably, the Geograph-
ically Neural Network Weighted regression (GNNWR) model has been introduced, which employs neural networks
to learn the non-linear relationship between spatial distance and non-stationary weights (Du et al., 2020a). Taking
inspiration from GWR, GNNWR employs a Spatially Weighted Neural Network (SWNN) to accurately derive the45

spatial weight matrix. Subsequently, this SWNN is combined with an ordinary linear regression (OLR) model to
estimate spatial non-stationarity.

In addition to space, time is another fundamental dimension associated with geographical processes. In recent years,
numerous studies have focused on incorporating temporal effects into GWR model to account for both temporal and
spatial non-stationarity (Huang et al., 2010; Fotheringham et al., 2015). Recognizing that time and space exhibit50

distinct scale effects, Huang et al. (2010) proposed a straightforward approach to combine spatial and temporal
distances into a unified space-time distance, leading to the development of the Geographically and Temporally
Weighted Regression (GTWR) model. The GTWR model, along with its extended methodologies, has been effectively
applied across various domains, producing remarkable results and offering satisfactory interpretability (Ma et al.,
2018; He and Huang, 2018; Guo et al., 2021; Wang et al., 2022).55

2

However, the form of space-time distance usually requires a priori assumption and should be assumed to be
relatively simple (e.g., linear weighted function) so as to eliminate the estimation problem in the terminal model.
Considering that neural networks have the potential to capture the complex non-linear effects in space-time, Wu et al.
(2021) proposed a SpatioTemporal Proximity Neural Network (STPNN) to accurately generate space-time distance
and extended GNNWR with the STPNN to incorporate temporal effects into spatial non-stationarity. Accordingly, a60

spatiotemporal intelligent regression model named geographically and temporally neural network weighted regression
(GTNNWR) was developed to estimate spatiotemporal non-stationary relationships.

In recent years, GNNWR and GTNNWR have been widely applied in various fields and have achieved excellent
fitting capabilities and geographical interpretability, such as atmospheric pollution (Chen et al., 2021; Ni et al., 2022;
Liu et al., 2023), environmental modeling (Wu et al., 2019; Du et al., 2021; Wu et al., 2022; Qi et al., 2023) and urban65

geography (Wang et al., 2022; Yang et al., 2022; Liang et al., 2023). However, the accessible version for the source
code of GNNWR (Du, 2019) and GTNNWR (Wu, 2020) are implemented with TensorFlow 1.x, which is too old to
run in the latest hardware environment. And the codes are not highly encapsulated, which makes researchers harder
to use and develop the model. Therefore, there is a need to develop a set of model implementations with a newer
architecture, simpler usage, and clearer code structure to facilitate the utilization of these spatiotemporal intelligent70

regression models by researchers in different fields, and to solicit feedbacks for refinement and enhancement of these
models.

This research has developed an open-source Python package, denoted as the GNNWR package, to furnish a suite of
spatiotemporal intelligent regression models, encompassing the GNNWR and GTNNWR variants, thereby serving
as a resource for researchers seeking to address challenges within their respective fields. The GNNWR package offers75

a comprehensive workflow analysis capability, enabling users to create datasets, instantiate models, conduct training,
and generate output results, as well as perform model predictions and visualizations. The GNNWR package uses
PyTorch as a deep learning framework (Paszke et al., 2019), and its dynamic computational graph makes model
construction and debugging more intuitive. This package provides extended models as well as great flexibility,
allowing advanced users to design custom models based on existing models using the PyTorch framework.80

The remainder of this article is constructed as follows. In Section 2, we provide an review for the GNNWR and
GTNNWR model that the package has implemented; in Section 3, we describe the package architecture and offer
usage example for the package; finally, in section 4, we conclude a summary of our outcomes and suggests potential
avenues for future development.

2 Model Review85

This section offers a concise overview of the GNNWR family of models, which are accommodated by the GNNWR
package. Detailed descriptions and performance analysis can be referred to the original articles (Du et al., 2020a;
Wu et al., 2021)

3

2.1 OLR and GWR

For a regression relation with p independent variables and n observations, the regression formula of the classic90

Ordinary Least squares Regression (OLR) model is expressed as:

yi = βOLR
0 +

p∑
k=1

βOLR
k xik + εi for i = 1,2, . . . ,n (1)

where yi and xik are the dependent variable and k-th independent variable at observation i; βOLR
k is the regressive

coefficient for the k-th independent variable and βOLR
0 is the intercept term; εi is the error term.

Considering the spatial non-stationarity, the GWR model extends OLR approach to enable spatially localized95

estimates, by allowing local variations in rates of change. Thus, regression can be represented as:

yi = β0(ui,vi) +
p∑

k=1
βk(ui,vi)xik + ϵi for i = 1,2, . . . ,n (2)

where β0(ui,vi) and βk(ui,vi) are the localized regression coefficient for the constant term and the k-th independent
variable at location (ui,vi). Their estimation can be calculated with a weighted least squares method:

β̂(ui,vi) = (X⊤W(ui, vi)X)−1X⊤W(ui,vi)y (3)100

where W(ui,vi) is the spatial weighting diagonal matrix at fit point i, y and X are the dependent and independent
variables for all the observations. A distance-decaying kernel function (e.g. Gaussian kernel) is then employed to
calculate the spatial weights from the fit point to its neighboring observations within the bandwidth b:

wij = exp[−(dij/b)2] (4)

where dij is the distance between fit point i and its neighbor j.105

2.2 GNNWR

Since a pre-defined kernel function might not accurately estimate the complex, heterogenous geographical processes.
The GNNWR model introduces a spatially weighted neural network (SWNN) to represent the nonstationary weight
matrix (Figure 1).

The spatial weight estimation for point i is calculated as follows:110

W (ui,vi) = SWNN([dS
i1,dS

i2, . . . ,dS
in]⊤) (5)

where [dS
i1,dS

i2, . . . ,dS
in] is the distances from location i to other training samples, and the weighting matrix W (ui,vi)

is a diagonal matrix, whose diagnostic elements are the non-stationary weights w0(ui,vi),w1(ui,vi), ...,wp(ui,vi) for
the regression.

4

Accordingly, GNNWR model describes spatial non-stationarity through fluctuating changes in the coefficients of115

OLR at different locations (Du et al., 2020a). Thereby the spatial non-stationarity can be represented as:

yi = w0(ui,vi)βOLR
0 +

p∑
k=1

wk(ui,vi)βOLR
k xik + ϵi for i = 1,2, . . . ,n. (6)

Then, the estimates of dependent variable in GNNWR can be calculated as:

ŷ =

ŷ1

ŷ2
...

ŷn

 =

x1

⊤W (u1,v1)(X⊤X)−1X⊤

x2
⊤W (u2,v2)(X⊤X)−1X⊤

...
xn

⊤W (un,vn)(X⊤X)−1X⊤

y =

x1

⊤SWNN([dS
i1,dS

i2, . . . ,dS
in]⊤)(X⊤X)−1X⊤

x2
⊤SWNN([dS

i1,dS
i2, . . . ,dS

in]⊤)(X⊤X)−1X⊤

...
xn

⊤SWNN([dS
i1,dS

i2, . . . ,dS
in]⊤)(X⊤X)−1X⊤

y = Sy (7)

where S is the hat matrix of the GNNWR model.120

…
…

Locations

Estimated
Point

…
…

…
…

…
…

Spatial
distances Hidden layers Spatial

weights

Samples Spatial weighted neural network

…
…

…
…

OLR
coefficients

independent
variables

Fitted
value

Figure 1. The framework of the GNNWR model.

2.3 GTNNWR

Alongside space, time constitutes a fundamental dimension in the study of geographic phenomena. The GTNNWR
model extends the spatial form of the non-stationary relationship in Eq. (6) to the following spatiotemporal form:

yi = β0(ui,vi, ti) +
p∑

k=1
βk(ui,vi, ti)xik + εi, for i = 1,2, . . . ,n

= w0(ui,vi, ti)βOLR
0 +

p∑
k=1

wk(ui,vi, ti)βOLR
k xik + εi, for i = 1,2, . . . ,n

(8)

where wk(ui,vi, ti) represents the spatiotemporal non-stationary weight of βOLR
k , which is determined by its spa-125

tiotemporal location (ui,vi, ti) and influenced by other samples.

5

Similar to the SWNN of GNNWR, the GTNNWR model designed a spatiotemporal weighted neural network
(STWNN) calculate the spatiotemporal weights as follows:

W (ui,vi, ti) = STWNN
([

dST
i1 ,dST

i2 , . . . ,dST
in

]⊤)
(9)

where
[
dST

i1 ,dST
i2 , . . . ,dST

in

]
are the spatiotemporal distances from point i to other training samples. This expression130

indicates that the spatiotemporal non-stationary weight is determined by the spatiotemporal distance. To quantify
the spatiotemporal distance, Huang et al. (2010) defined the distance as the following form:

dST
ij = dS

ij ⊗ dT
ij (10)

where symbol ⊗ represents a fusion operator which integrates temporal (dT
ij) and spatial (dS

ij) distance into a
spatiotemporal distance dST

ij .135

To fully capture the nonlinear effects in the spatiotemporal dimension, Wu et al. (2021) proposed the STPNN as
the fusion operator ⊗. Therefore, the spatiotemporal weight matrix for any given point across time and space can
be derived by merging the STPNN with the STWNN (Figure 2):

W (ui,vi, ti) = STWNN
([

dST
i1 ,dST

i2 , . . . ,dST
in

]T
)

= STWNN
([

STPNN
(
dS

i1,dT
i1

)
, . . . ,STPNN

(
dS

in,dT
in

)]T
)

.
(11)

The spatiotemporal weights are then integrated with global OLR estimates, generating continuous space-time140

varying coefficients, and the regression relationship of GTNNWR can be expressed as:

yi = w0(ui,vi, ti)βOLR
0 +

p∑
k=1

wk(ui,vi, ti)βOLR
k xik + ϵi for i = 1,2, . . . ,n (12)

where wk(ui,vi, ti) are the diagonal elements of the spatiotemporal weight matrix W (ui,vi, ti).
And the estimated dependent variables ŷ can be calculated as:

ŷ =

ŷ1

ŷ2
...

ŷn

 =

x1

⊤W (u1,v1, t1)(X⊤X)−1X⊤

x2
⊤W (u2,v2, t2)(X⊤X)−1X⊤

...
xn

⊤W (un,vn, tn)(X⊤X)−1X⊤

y = Sy (13)145

where S is the hat matrix of the GTNNWR model.

3 Package Descriptions

In this section, we present a comprehensive overview of the gnnwr package (version 0.1.11) and the range of models
it supports. We begin by introducing the fundamental architecture of the software package, delving into its essential
components and functionalities. Following this, we outline the analysis process employed in utilizing the package,150

showcasing its practical application through two case studies.

6

Figure 2. The framework of the GTNNWR model. dS
ij and dT

ij represent the spatial distance and temporal distance between
the estimated points Pi and Pj , respectively. The spatiotemporal proximity dST

ij is obtained by integrating dS
ij and dT

ij through
the STPNN.

3.1 Package Architecture

The gnnwr package is designed with a modular architecture, enabling the integration of diverse module strategies
to facilitate a variety of task workflows. It comprises four primary modules: Dataset, Network, Utils, and Model.

3.1.1 Dataset155

The Dataset module specifies the data types employed throughout the package. It includes the BasicDataset

class for training and the PredictDataset class for prediction. This module also offers preprocessing functions
that convert Pandas’ DataFrame data into the necessary formats (McKinney et al., 2010), handling tasks such as
normalization and dataset partitioning. Additionally, it provides methods for saving and loading datasets, enabling
users to directly work with processed data files and instantiate data objects.160

3.1.2 Network

The Network module, extending PyTorch’s nn.Module class, defines the architectures for models such as SWNN and
STPNN. It allows users with programming expertise to customize new network structures based on existing ones,
adapting to their specific research requirements.

7

3.1.3 Utils165

The Utils module contains classes for statistical diagnostics and visualization techniques specific to spatial weighted
regression. These diagnostic classes offer a suite of methods to evaluate model performance, while the visualization
classes employ map-based representations to enhance the analysis of spatial data and model outcomes.

3.1.4 Model

The Model module is the cornerstone of the package, providing two classes: GNNWR and GTNNWR. GNNWR acts as the170

foundational class, with GTNNWR being its subclass. These classes encapsulate methods for model training, prediction,
diagnostics, and loading. Users can easily invoke these methods to employ the models for problem analysis and
forecasting on unseen data.

Figure 3. Workflow diagram of the package. Dashed boxes denote the raw data, solid boxes represent the code process
modules, and arrows indicate the direction of data flow.

3.2 Usage Example for GNNWR

We commence our investigation by examining air quality modeling through the analysis of data gathered from175

Chinese air monitoring stations (Du et al., 2020b). This analysis seeks to delineate the spatially non-stationary
associations between PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) concentrations and
their environmental determinants. Given the pivotal role of PM2.5 as an indicator of air quality, elucidating its

8

spatial variability is crucial for comprehending the underlying spatial processes and environmental dynamics of
atmospheric contamination (Han et al., 2016). The objective of this study is to develop a predictive model for the180

annual average PM2.5 concentrations in the study area at a 3 km x 3 km spatial resolution for the year 2017.
The model incorporates meteorological variables such as Aerosol Optical Depth (AOD), temperature (TEMP),
precipitation (TP), wind speed (WS), and wind direction (WD), along with elevation data (DEM).

3.2.1 Dataset initialization

Upon loading the dataset as a Pandas’ DataFrame, the init_dataset function from the GNNWR package is utilized185

to convert it into a suitable format for model input. This function randomly divides the dataset into training,
validation and testing subsets according to the ratio specified in the input parameters; and computes the distance
vectors for each sample, which are crucial for both model training and performance evaluation. In this specific
experiment, 15% of the data is allocated to the testing set; and out of the remaining 85%, 10% was used as validation
set and the rest as training set.190

In this context, it is essential to specify the independent variables, dependent variables, and spatial position
variables, which correspond to the x_column, y_column, and spatial_column parameters of the init_dataset

function, respectively.
When calculating the distance, the init_dataset function, by default, uses Euclidean distance to compute the

spatial distances between feature points. This process generates a spatial distance vector for each point, which195

serves as input to the neural network component of the model. To accommodate various research requirements, the
spatial_fun parameter enables users to provide a custom method for calculating spatial distances.

To optimize the speed of model training and enhance the precision of model outcomes, the function preprocesses
the independent and dependent variables by default. It typically employs normalization for preprocessing; however,
users have the option to adjust the process_fun parameter to utilize standardization instead.200

>>> from gnnwr.datasets import init_dataset

>>> train_set, val_set, test_set = init_dataset(data=data,

... test_ratio=0.15,

... valid_ratio=0.1,

... x_column=x_column,205

... y_column=y_column,

... spatial_column=spatial_column)

3.2.2 Model configuration and running

To continue, we need to create an instance of the GNNWR model. After importing the gnnwr.models module, we can do
so by invoking the GNNWR class. The dense_layers parameter allows us to specify the number of hidden layers in the210

9

model’s neural network, with each layer consisting of a fully connected layer, a batch normalization layer, a dropout
layer, and an activation function. These hyperparameters are closely linked to the neural network’s architecture,
encompassing aspects such as the use of a batch normalization layer, the dropout rate, and the activation function’s
type, among others. In this specific example, we have configured a neural network with a hidden layer that includes
three sub-layers, each with 1024, 512, 256, and 128 nodes, respectively. The activation function uses a Parametric215

Rectified Linear Unit (PReLU) function with an initial value of 0.2, while all other settings are kept at their default
values.

The GNNWR class uses Adadelta as its default optimizer, with an initial learning rate of 0.6, and employs cosine
annealing warm restart as its learning rate adjustment strategy. The class also supports a range of optimizers,
including Stochastic Gradient Descent (SGD), Adam, Adagrad, RMSprop, and various learning rate adjustment220

strategies, such as multistep and cosine annealing. These optimizers and strategies contribute to improving the
model’s training efficiency and performance, thereby enabling it to better accomplish its tasks.

Additionally, GNNWR involves dropout and batch normalization strategies to avoid overfitting and improve gener-
alizability and performance of the model. The default dropout rate is 0.2, and can be altered through the drop_out

parameter; and the model applies batch normalization by default, which can be disabled by setting the batch_norm225

parameter into False.
To streamline model training, we can utilize the run function to specify the number of iterations and the frequency

of printing training process information, allowing us to monitor the training progress and performance. Throughout
the training process, we will retain the best-performing model within the validation set to prevent the GNNWR
model from overfitting. Selecting the optimal model helps minimize the expected error and guarantees that the230

model possesses superior generalization ability. For storage convenience, the model repository will only retain a file
containing the neural network components of the model. This file encapsulates the structural configuration and
parameter information of the neural network.

>>> from gnnwr import models

>>> from torch import nn235

>>> gnnwr = models.GNNWR(train_dataset = train_set,

... valid_dataset = val_set,

... test_dataset = test_set,

... dense_layers = [1024, 512, 256, 128],

... activate_func = nn.PReLU(init=0.2),240

... start_lr = 0.6,

... optimizer = "Adadelta",

... drop_out = 0.2,

... batch_norm = True,

... model_name = "GNNWR_PM25")245

10

>>> gnnwr.run(max_epoch = 2000, print_frequency = 500)

The GNNWR package uses Tensorboard to record the model training process, including the loss and R2 scores
on the training and validation sets for each epoch, as well as the learning rate and best R2 scores obtained on
the validation set. By observing the changes in the model during the training process, targeted adjustments to the
training method can be made. To enhance users’ comprehension of the model architecture, we have incorporated the250

add_graph function. When utilized, this function enables users to visualize the structure of the model within the
"Graphs" section of TensorBoard. This functionality not only clarifies the model’s architecture but also facilitates
the prompt identification of issues during model debugging and optimization, thereby substantially improving model
performance.

3.2.3 Result and visualization255

We can obtain the composition and results of the model through the result method, including the model structure,
optimizer structure, used variables, and the accuracy, complexity, and content of statistical tests performed on
the model. Among them, the R2 and RMSE(Root Mean Square Error) indicators summarize the model’s fitting
ability, while the AIC and AICc indicators provide a deeper understanding of the model’s complexity. The F1, F2,
and F3 statistical data are used as sample diagnostic measures(Wu et al., 2019). The first two values indicate the260

presence of significant spatiotemporal non-stationarity in the model, while the last value evaluates the significance
of spatiotemporal non-stationarity in the regression parameters of each independent variable.

>>> gnnwr.result()

--------------------Model Information-----------------

Model Name: | GNNWR_PM25265

independent variable: | ['dem', 'w10', 'd10', 't2m', 'aod_sat', 'tp']

dependent variable: | ['PM2_5']

OLS coefficients:

x0: 7.12861270

x1: -4.03670

x2: -1.90988

x3: 21.29951

x4: 36.57638

x5: -24.50677275

Intercept: 19.16957

11

--------------------Result Information----------------

Test Loss: | 33.42091

Test R2 : | 0.84280280

Train R2 : | 0.84762

Valid R2 : | 0.84541

RMSE: | 5.78108

AIC: | 1257.37056

AICc: | 1254.68787285

F1: | 0.11974

F2: | 3.52673

f3_param_0: | 1.81630

f3_param_1: | 19.05118

f3_param_2: | 0.42682290

f3_param_3: | 68.13538

f3_param_4: | 47.61187

f3_param_5: | 170.05663

f3_param_6: | 122.83797

The empirical results reveal that the model exhibits robust performance in the reconstruction of PM2.5 distribu-295

tions, and the statistical analyses confirm the presence of significant spatial heterogeneity in PM2.5 concentrations.
In terms of statistical indicators, the model achieved R2 scores of 0.848 for the training dataset, 0.845 for the
validation dataset, and 0.843 for the test dataset, which are much higher than traditional models like OLS and
GWR (implemented with the mgwr package by Oshan et al., version 2.2.1). Also, the residuals of GNNWR are
generally smaller than those of traditional models, with most residuals being close to zero and rarely showing large300

deviations (Figure 4). Such outstanding performance reflects GNNWR’s capability of capturing complex patterns in
spatiotemporal data, demonstrating the effectiveness of introducing the nonlinear fitting ability of neural networks
in modelling spatial non-stationarity.

It is noteworthy that, as a deep learning model, GNNWR does require more time than traditional models to fit
the given dataset. For the above experiment on PM2.5 dataset, it takes 2000 epochs for GNNWR to optimize the305

network’s parameters and minimize the loss, which is about 3 minutes in a CPU (Intel Core i5-12400) environment.
Nevertheless, compared to the advantages in model performance, such a time-consumption is acceptable, especially
considering that a CUDA-enabled GPU can further accelerate the process.

Owing to the intimate association between model analysis and spatial aspects, the GNNWR furnishes a range of
spatial visualization functionalities grounded in the folium. By instantiating the Visualize object, we can render310

various model variables within a spatial context. The Visualize object proffers multiple visualization techniques,
encompassing the visualization of internal datasets within the model, heatmaps of coefficients, and the visualization

12

R2=0.346 R2=0.700 R2=0.848

-1
00

-5
0

0
50

10
0

re
si

du
al

OLS GWR GNNWR

Figure 4. The residual distributions and R2 indicator for OLS, GWR and GNNWR on PM2.5 dataset.

of spatial points. Figure 5 illustrates the spatial distribution of the dependent variable PM2.5 across the dataset.
Notably, PM2.5 concentrations are elevated in the North China and Xinjiang regions, in contrast to the relatively
lower levels observed in Yunnan and the northern reaches of Inner Mongolia.315

>>> import gnnwr.utils as utils

>>> visualizer = utils.Visualize(data=gnnwr,lon_lat_columns=['lng','lat'])

>>> visualizer.display_dataset(name='all',y_column='PM2_5')

The coefs_heatmap function facilitates the visual representation of the spatial distribution of independent variable
coefficients, thereby enriching our comprehension of the impact of individual independent variables on the dependent320

variable across varying geographical contexts. Figure 6 depicts the distinctive spatial distribution patterns of AOD
coefficients.

>>> visualizer.coefs_heatmap('coef_aod_sat')

Through these visualization techniques, we can perceptively comprehend the analysis outcomes of the model. They
offer abundant functionality that enables us to better understand the spatial behavior of the model and gain a more325

profound insight into the model’s performance and spatial relationships.
Concurrently, the visualization output of the Visualize object is in HTML format, permitting researchers to

manipulate the map via zooming, panning, and rotation. During the manipulation of the map, the visualization
of the data will alter according to the scale of the map. When the map scale is small, the points in the spatial
distribution are dense, necessitating the clustering and display of these points to preserve clarity. Conversely, when330

the map scale is large, the information of the points at specific locations will be displayed. This facilitates detailed
inspection and analysis of geographic data to cater to diverse research requirements.

13

Figure 5. Diagram of the spatial distribution of PM2.5. Redder points represent higher PM2.5 values. Map crafted using
Python’s folium library with Gaode basemap.

Figure 6. Diagram of AOD coefficient distribution. Darker areas highlight regions with strong positive correlations, indicating
high levels of particulate matter. Map crafted using Python’s folium library with Gaode basemap.

14

3.2.4 Saving and reusing

Upon the successful completion of training a model, the frequent need arises to reuse said model. To facilitate
this process, the model repository incorporates a dedicated load_model function, which is specifically purposed to335

reload model files that were automatically saved during the training progression. Notably, the repository maintains
only the neural network-related components, specifically the neural network architecture and parameters, within the
model. Consequently, when reusing a model, the recommended sequence is as follows: initially, construct an instance
correspondent to the model’s architectural design, before subsequently calling the load_model method to import
the parameters and weights.340

3.2.5 Prediction

Ultimately, we can employ the prediction method to forecast other datasets. Prior to generating predictions, it is
essential to transform the other datasets into the predictDataset class, which is integrated within the GNNWR
package. This transformation can be accomplished by utilizing the init_predict_dataset method. This method
computes the distance vectors between the features in the dataset to be predicted and the reference points, and applies345

the identical scaling transformation to the independent variables as in the training dataset, guaranteeing that the
input for the model inference follows the same statistical distribution of the training data. The prediction method
yields a Pandas’ DataFrame comprising the original data and the predicted results. Moreover, when employing
the GNNWR model for analysis, spatial weights are of paramount importance. These weights signify the spatial
variability of the influence of each independent variable on the dependent variable. To acquire spatial weights, the350

predict_weight method can be utilized to output the pertinent information. Figure 7 presents a geographical
visualization of the GNNWR model’s predictive outcomes.

>>> from gnnwr.datasets import init_predict_dataset

>>> pred_dataset = init_predict_dataset(data = pred_data,

... train_dataset = train_set,355

... x_column=x_column,

... spatial_column=spatial_column)

>>> res = gnnwr.predict(pred_dataset)

3.3 Usage Example for GTNNWR

The workflow of employing GTNNWR is largely akin to that of the GNNWR model. We exemplify this by utilizing360

daily surface dissolved silicate (DSi) concentration data from the offshore waters of Zhejiang. This study utilized the
GTNNWR approach to retrieve the distribution of coastal DSi concentrations, addressing the challenges posed by
spatiotemporal non-stationarity (Qi et al., 2023).

15

Figure 7. Geospatial Visualization of GNNWR Model Predictions for PM2.5. Red points indicate higher PM2.5 predictions;
blue points indicate lower PM2.5 predictions. Map crafted using Python’s folium library with Gaode basemap.

3.3.1 Dataset initialization

Similar to the GNNWR model, data preprocessing is essential when utilizing the GTNNWR model to acquire a365

data format that the model can process as well. The GTNNWR model is specifically tailored for spatiotemporal
data, wherein the regression coefficients perpetually vary in both space and time. Consequently, the data processed
by the model must possess spatiotemporal attributes. When employing the init_dataset function, designating
the time data as the time dimension can generate valid input for the GTNNWR model. This function computes
the time distance vectors based on the distance calculation method specified by the temporal_fun parameter and370

subsequently employs them as input features for each sampling point. The default time distance calculation method
is the Manhattan distance.

>>> train_set, val_set, test_set = init_dataset(data=data,

... test_ratio=0.15,

... valid_ratio=0.1,375

... x_column=x_column,

... y_column=y_column,

... spatial_column=spatial_column,

... temp_column=temp_column)

16

3.3.2 Model configuration and running380

GTNNWR is designed as a subclass incorporated within the the GNNWR package, inheriting from its foundational
GNNWR class. As a result, it retains the same set of methods inherent to its superclass. The instantiation process
for the GTNNWR model closely mirrors that of GNNWR, with the primary difference lying in the input format
for hidden layers—a two-element two-dimensional list. This unique input configuration stems from GTNNWR’s
integration strategy, which involves employing a STPNN to compute spatiotemporal proximities and then feeding385

these computations into a STWNN for determining spatiotemporal weights. Specifically, the first list in this input
designates the hidden layer structure of STPNN, whereas the second list delineates the hidden layer architecture
pertaining to STWNN.

The procedure for training an instantiated model with data, as well as the tasks of printing model metadata and
exhibiting the outcomes of training, aligns with the methodologies employed in the previous exemplar.390

>>> optimizer_params = {

... "maxlr": 0.025,

... "minlr": 0.010,

... "upepoch": 1000,

... "decayepoch": 2000,395

... "decayrate": 0.998,

... "stop_change_epoch": 5000,

... "stop_lr": 0.01,

... }

>>> Layers = [[3], [1024, 512, 256,128,64,32]]400

>>> gtnnwr = models.GTNNWR(train_set, val_set, test_set,

... Layers,

... optimizer='SGD',

... optimizer_params=optimizer_params,

... # drop_out=0.3,405

... model_name="GTNNWR_DSi",

... model_save_path="./demo_result/gtnnwr_models",

... log_path="./demo_result/gtnnwr_logs/",

... write_path="./tf-logs/gtnnwr_runs")

>>> gtnnwr.run(max_epoch = 4000)410

>>> gtnnwr.result()

--------------------Model Information-----------------

Model Name: | GTNNWR_DSi

17

independent variable: | ['refl_b01', 'refl_b02', 'refl_b03', 'refl_b04', 'refl_b05', 'refl_b07']

dependent variable: | ['SiO3']415

OLS coefficients:

x0: 6.84114

x1: 1.63606

x2: 0.11273420

x3: -5.76276

x4: 1.62136

x5: -2.69205

Intercept: 1.05858

425

--------------------Result Information----------------

Test Loss: | 0.16574

Test R2 : | 0.68628

Train R2 : | 0.71628

Valid R2 : | 0.75261430

RMSE: | 0.40711

AIC: | 460.66438

AICc: | 463.34515

F1: | 0.22449

F2: | -12.20421435

f3_param_0: | 27.02276

f3_param_1: | 0.12710

f3_param_2: | 0.94117

f3_param_3: | 2.37350

f3_param_4: | 17.69786440

f3_param_5: | 28.23304

f3_param_6: | 267.06781

According to various model indicators, utilizing neural networks to estimate the spatiotemporal non-stationarity
of DSi is indeed effective. The model successfully achieved R2 values of 0.716, 0.752 and 0.686 on the training,
validation and testing set, respectively, effectively reconstructing the distribution of silicate in the offshore waters445

of Zhejiang. As indicated by Figure 8, such coefficients of determination are much higher than those of traditional
models like OLS and GTWR (implemented with the mgtwr package by Sun, version 2.0.5); also, the residuals of

18

GTNNWR are generally smaller than OLS and GTWR. These outstanding performances demonstrate GTNNWR’s
superior performance in capturing the spatiotemporal non-stationarity of DSi concentrations.

R2=0.134 R2=0.635 R2=0.716

-4
-2

0
2

4
6

re
si

du
al

OLS GTWR GTNNWR

Figure 8. The residual distributions and R2 indicator for OLS, GTWR and GTNNWR on DSi dataset.

3.3.3 Result and visualization450

In order to investigate the variability of coefficients for distinct variables across different samples, one can leverage
the reg_result function to achieve this goal. The function computes and systematically arranges each sample’s
coefficient values into a Pandas’ DataFrame format, thereby outputting the results. With the resultant coefficient
matrix in hand, researchers can then conduct targeted analyses pertinent to specific spatial processes. For instance,
we can visualize the coefficients of each variable by employing time and space as three-dimensional coordinate axes455

(Figure 9). This enables us to directly observe the relationship between the bands of remote sensing images and
silicate concentrations at different spatial locations. By integrating relevant prior knowledge, we can interpret the
outcomes of the model.

4 Conclusions

This study introduces the GNNWR package, a Python-based model repository designed to facilitate spatiotemporal460

intelligent regression modeling. The package is constructed on PyTorch, a widely employed deep learning frame-
work, and affords a comprehensive workflow for simulating geographical processes characterized by spatiotemporal
non-stationarity. The GNNWR package optimizes intricate procedures encompassing data preprocessing, network
architecture formulation, model training, and result computation, thereby enhancing user accessibility. It enables
individuals with limited programming expertise to quickly master the application of pertinent models such as GN-465

19

Figure 9. Model coefficients in a 3D space-time coordinate system. Blue dots represent a greater positive effect of the variable
on silicate concentration; lighter dots represent a smaller effect.

NWR and GTNNWR for the estimation of spatiotemporal non-stationary processes. The integrated visualization
functionalities further augment the package’s utility, allowing users to interpret model outcomes and their spatial
relationships more effectively.

However, the GNNWR package is not without limitations. The GNNWR and GTNNWR models are computa-
tionally intensive, particularly for large datasets. Also, training neural networks requires substantial computational470

resources, which may limit accessibility for some users. Future works should focus on optimizing the computational
efficiency, implementing parallel processing techniques and optimizing the model architecture are potential methods
that can significantly reduce computation times. Data handling is another area that can be improved, incorporat-
ing techniques for spatiotemporal data augmentation and pre-processing can make the models more robust and
applicable to a wider range of datasets.475

Besides, the scholarly understanding of spatiotemporal non-stationarity is progressing, driving the continual evolu-
tion of GNNWR-based models and the emergence of diverse derivatives, such as geographically convolutional neural
network weighted regression (Dai et al., 2022) and directional geographically weighted neural network Regression
(Wu et al., 2019). These model variants have substantially augmented the functionalities of GNNWR across various
dimensions. Moving forward, we are committed to enhancing the model library by leveraging the current framework480

and integrating a variety of network and data architectures to create novel extension models. This expansion will

20

enhance the package’s capability to incorporate a wide range of modeling techniques for addressing spatiotemporal
non-stationarity. Consequently, this broadening of capabilities will extend the applicability of the models, encom-
passing a more comprehensive array of spatiotemporal analytical approaches.

Code and data availability. The GNNWR package version used in this article is 0.1.11, which can be found at https://pypi.485
python.org/pypi/gnnwr. The project’s hosting and development are both ongoing on https://github.com/zjuwss/gnnwr (Yin
et al., 2024a)(https://doi.org/10.5281/zenodo.10890176), and the relevant documents can be found at https://gnnwr.github.
io.All the examples mentioned in this article, supported by research papers, can be retrieved from Yin et al. (2024b)(https:
//doi.org/10.5281/zenodo.13270526). We strongly encourage readers to replicate, adapt, and undertake additional experiments
using this open-source package.490

Author contributions. YZY, DJL, LY, QJ, and WSS initially developed the package and spearheaded its subsequent evolution.
Notably, substantial code enhancements were made by YZY, DJL, LY, WRX, WYG, QJ, CYJ, WSS, and DZH. Each author
actively participated in the design discourse and offered critical feedback on the evolving codebase. The manuscript was
primarily composed by YZY, DJL, WRX, and WYG, with substantive input from all co-authors.

Competing interests. The authors declare that they have no conflict of interest.495

Acknowledgements. This work was supported by the National Natural Science Foundation of China [No. 42225605, 42001323,
423B1001], National Key Research and Development Program of China [No. 2021YFB3900902], Provincial Key R&D Program
of Zhejiang [No. 2021C01031], Fundamental Research Funds for the Central Universities [No. 2022FZZX01-05]. This work
was also supported by the Deep-time Digital Earth (DDE) Big Science Program and the Earth System Big Data Platform of
the School of Earth Sciences, Zhejiang University.500

21

https://pypi.python.org/pypi/gnnwr
https://pypi.python.org/pypi/gnnwr
https://pypi.python.org/pypi/gnnwr
https://github.com/zjuwss/gnnwr
https://doi.org/10.5281/zenodo.10890176
https://gnnwr.github.io
https://gnnwr.github.io
https://gnnwr.github.io
https://doi.org/10.5281/zenodo.13270526
https://doi.org/10.5281/zenodo.13270526
https://doi.org/10.5281/zenodo.13270526

References

Ahadnejad Reveshty, M., Heydari, M. T., and Tahmasebimoghaddam, H.: Spatial Analysis of the Factors Impacting on the
Spread of Covid-19 in the Neighborhoods of Zanjan, Iran, Spatial Information Research, https://doi.org/10.1007/s41324-
023-00550-0, 2023.

Bivand, R. and Yu, D.: spgwr: Geographically Weighted Regression, https://cran.r-project.org/package=spgwr, 2023.505
Brunsdon, C., Fotheringham, A. S., and Charlton, M. E.: Geographically Weighted Regression: A Method for Exploring Spatial

Nonstationarity, Geographical Analysis, 28, 281–298, https://doi.org/https://doi.org/10.1111/j.1538-4632.1996.tb00936.x,
1996.

Brunsdon, C., Fotheringham, A. S., and Charlton, M.: Some Notes on Parametric Significance Tests for Geographically
Weighted Regression, Journal of Regional Science, 39, 497–524, https://doi.org/https://doi.org/10.1111/0022-4146.00146,510
1999.

Chen, Y., Wu, S., Wang, Y., Zhang, F., Liu, R., and Du, Z.: Satellite-Based Mapping of High-Resolution Ground-Level
PM2.5 with VIIRS IP AOD in China through Spatially Neural Network Weighted Regression, Remote Sensing, 13,
https://doi.org/10.3390/rs13101979, 2021.

Dai, Z., Wu, S., Wang, Y., Zhou, H., Zhang, F., Huang, B., and Du, Z.: Geographically Convolutional Neural Network Weighted515
Regression: A Method for Modeling Spatially Non-Stationary Relationships Based on a Global Spatial Proximity Grid,
International Journal of Geographical Information Science, 36, 2248–2269, https://doi.org/10.1080/13658816.2022.2100892,
2022.

Du, Z.: GNNWR Code and Simulated Data, https://doi.org/10.6084/m9.figshare.11375826, 2019.
Du, Z., Wang, Z., Wu, S., Zhang, F., and Liu, R.: Geographically neural network weighted regression for the ac-520

curate estimation of spatial non-stationarity, International Journal of Geographical Information Science, 34, 1–25,
https://doi.org/10.1080/13658816.2019.1707834, 2020a.

Du, Z., Wu, S., Wang, Z., Wang, Y., Zhang, F., and Liu, R.: Estimating Ground-Level PM2.5 Concentrations Across
China Using Geographically Neural Network Weighted Regression, Journal of Geo-information Science, 22, 122,
https://doi.org/10.12082/dqxxkx.2020.190533, 2020b.525

Du, Z., Qi, J., Wu, S., Zhang, F., and Liu, R.: A Spatially Weighted Neural Network Based Water Qual-
ity Assessment Method for Large-Scale Coastal Areas, Environmental Science & Technology, 55, 2553–2563,
https://doi.org/10.1021/acs.est.0c05928, 2021.

Fotheringham, A. S., Crespo, R., and Yao, J.: Geographical and Temporal Weighted Regression (GTWR), Geographical
Analysis, 47, 431–452, https://doi.org/https://doi.org/10.1111/gean.12071, 2015.530

Fotheringham, A. S., Yang, W., and Kang, W.: Multiscale Geographically Weighted Regression (MGWR), Annals of the
American Association of Geographers, 107, 1247–1265, https://doi.org/10.1080/24694452.2017.1352480, 2017.

Georganos, S. and Kalogirou, S.: A Forest of Forests: A Spatially Weighted and Computationally Efficient Formulation of
Geographical Random Forests, ISPRS International Journal of Geo-Information, 11, https://doi.org/10.3390/ijgi11090471,
2022.535

22

https://doi.org/10.1007/s41324-023-00550-0
https://doi.org/10.1007/s41324-023-00550-0
https://doi.org/10.1007/s41324-023-00550-0
https://cran.r-project.org/package=spgwr
https://doi.org/https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
https://doi.org/https://doi.org/10.1111/0022-4146.00146
https://doi.org/10.3390/rs13101979
https://doi.org/10.1080/13658816.2022.2100892
https://doi.org/10.6084/m9.figshare.11375826
https://doi.org/10.1080/13658816.2019.1707834
https://doi.org/10.12082/dqxxkx.2020.190533
https://doi.org/10.1021/acs.est.0c05928
https://doi.org/https://doi.org/10.1111/gean.12071
https://doi.org/10.1080/24694452.2017.1352480
https://doi.org/10.3390/ijgi11090471

Guo, B., Wang, X., Pei, L., Su, Y., Zhang, D., and Wang, Y.: Identifying the Spatiotemporal Dynamic of PM2.5 Concentrations
at Multiple Scales Using Geographically and Temporally Weighted Regression Model Across China During 2015-2018,
Science of The Total Environment, 751, https://doi.org/10.1016/j.scitotenv.2020.141765, 2021.

Hagenauer, J. and Helbich, M.: A Geographically Weighted Artificial Neural Network, International Journal of Geographical
Information Science, 36, 215–235, https://doi.org/10.1080/13658816.2021.1871618, 2022.540

Han, L., Zhou, W., and Li, W.: Fine Particulate PM 2.5 Dynamics During Rapid Urbanization in Beijing, 1973–2013, Scientific
Reports, 6, srep23 604, https://doi.org/10.1038/srep23604, 2016.

He, J., Wei, Y., and Yu, B.: Geographically Weighted Regression Based on a Network Weight Matrix: A Case Study Using
Urbanization Driving Force Data in China, International Journal of Geographical Information Science, 37, 1209–1235,
https://doi.org/10.1080/13658816.2023.2192122, 2023.545

He, Q. and Huang, B.: Satellite-Based Mapping of Daily High-Resolution Ground PM2.5 in China via Space-Time Regression
Modeling, Remote Sensing of Environment, 206, 72–83, https://doi.org/10.1016/j.rse.2017.12.018, 2018.

Huang, B., Wu, B., and Barry, M.: Geographically and Temporally Weighted Regression for Modeling Spatio-
Temporal Variation in House Prices, International Journal of Geographical Information Science, 24, 383–401,
https://doi.org/10.1080/13658810802672469, 2010.550

Leung, Y., Mei, C.-L., and Zhang, W.-X.: Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted
Regression Model, Environment and Planning A: Economy and Space, 32, 9–32, https://doi.org/10.1068/a3162, 2000.

Lewandowska-Gwarda, K.: Geographically Weighted Regression in the Analysis of Unemployment in Poland, ISPRS Interna-
tional Journal of Geo-Information, 7, https://doi.org/10.3390/ijgi7010017, 2018.

Liang, M., Zhang, L., Wu, S., Zhu, Y., Dai, Z., Wang, Y., Qi, J., Chen, Y., and Du, Z.: A High-Resolution Land Surface555
Temperature Downscaling Method Based on Geographically Weighted Neural Network Regression, Remote Sensing, 15,
https://doi.org/10.3390/rs15071740, 2023.

Liu, C., Wu, S., Dai, Z., Wang, Y., Du, Z., Liu, X., and Qiu, C.: High-Resolution Daily Spatiotemporal Distribution and
Evaluation of Ground-Level Nitrogen Dioxide Concentration in the Beijing–Tianjin–Hebei Region Based on
TROPOMI Data, Remote Sensing, 15, https://doi.org/10.3390/rs15153878, 2023.560

Lu, B., Charlton, M., Harris, P., and Fotheringham, A. S.: Geographically Weighted Regression with a Non-Euclidean Distance
Metric: A Case Study Using Hedonic House Price Data, International Journal of Geographical Information Science, 28,
660–681, https://doi.org/10.1080/13658816.2013.865739, 2014.

Lu, B., Harris, P., Charlton, M., Brunsdon, C., Nakaya, T., Murakami, D., Gollini, I., Hu, Y., and Evans, F. H.: GWmodel:
Geographically-Weighted Models, http://gwr.nuim.ie/, 2024.565

Ma, X., Zhang, J., Ding, C., and Wang, Y.: A Geographically and Temporally Weighted Regression Model to Explore the
Spatiotemporal Influence of Built Environment on Transit Ridership, Computers, Environment and Urban Systems, 70,
113–124, https://doi.org/10.1016/j.compenvurbsys.2018.03.001, 2018.

McKinney, W. et al.: Data Structures for Statistical Computing in Python, Austin, TX, 2010.
Ni, S., Wang, Z., Wang, Y., Wang, M., Li, S., and Wang, N.: Spatial and Attribute Neural Network Weighted Regres-570

sion for the Accurate Estimation of Spatial Non-Stationarity, ISPRS International Journal of Geo-Information, 11, 620,
https://doi.org/10.3390/ijgi11120620, 2022.

23

https://doi.org/10.1016/j.scitotenv.2020.141765
https://doi.org/10.1080/13658816.2021.1871618
https://doi.org/10.1038/srep23604
https://doi.org/10.1080/13658816.2023.2192122
https://doi.org/10.1016/j.rse.2017.12.018
https://doi.org/10.1080/13658810802672469
https://doi.org/10.1068/a3162
https://doi.org/10.3390/ijgi7010017
https://doi.org/10.3390/rs15071740
https://doi.org/10.3390/rs15153878
https://doi.org/10.1080/13658816.2013.865739
http://gwr.nuim.ie/
https://doi.org/10.1016/j.compenvurbsys.2018.03.001
https://doi.org/10.3390/ijgi11120620

Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., and Fotheringham, A. S.: mgwr: A Python Implementation of Multiscale
Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale, https://pypi.org/project/
mgwr/, accessed from the ISPRS International Journal of Geo-Information, 2019.575

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: Advances in Neural
Information Processing Systems, vol. 32, Curran Associates, Inc., https://papers.nips.cc/paper_files/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html, 2019.580

Qi, J., Du, Z., Wu, S., Chen, Y., and Wang, Y.: A Spatiotemporally Weighted Intelligent Method for Exploring Fine-
Scale Distributions of Surface Dissolved Silicate in Coastal Seas, Science of The Total Environment, 886, 163 981,
https://doi.org/10.1016/j.scitotenv.2023.163981, 2023.

Shen, Y., de Hoogh, K., Schmitz, O., Clinton, N., Tuxen-Bettman, K., Brandt, J., Christensen, J. H., Frohn, L. M., Geels, C.,
Karssenberg, D., Vermeulen, R., and Hoek, G.: Europe-Wide Air Pollution Modeling from 2000 to 2019 Using Geographically585
Weighted Regression, Environment International, 178, https://doi.org/10.1016/j.envint.2023.108111, 2023.

Sisman, S. and Aydinoglu, A. C.: A Modelling Approach with Geographically Weighted Regression Methods for Deter-
mining Geographic Variation and Influencing Factors in Housing Price: A Case in Istanbul, Land Use Policy, 119,
https://doi.org/10.1016/j.landusepol.2022.106183, 2022.

Stein, R. E., Conley, J. F., and Davis, C.: The Differential Impact of Physical Disorder and Collective Efficacy: A Geo-590
graphically Weighted Regression on Violent Crime, GeoJournal, 81, 351–365, https://doi.org/10.1007/s10708-015-9626-6,
2015.

Sun, K.: mgtwr, https://pypi.org/project/mgtwr, 2024.
Wang, Y., Niu, Y., Li, M., Yu, Q., and Chen, W.: Spatial Structure and Carbon Emission of Urban Agglomerations: Spatiotem-

poral Characteristics and Driving Forces, Sustainable Cities and Society, 78, https://doi.org/10.1016/j.scs.2021.103600,595
2022.

Wheeler, D.: Fits Geographically Weighted Regression Models with Diagnostic Tools, https://cran.r-project.org/package=
gwrr, 2022.

Wu, J., Xia, L., Chan, T., Awange, J., and Zhong, B.: Downscaling Land Surface Temperature: A Framework Based on
Geographically and Temporally Neural Network Weighted Autoregressive Model with Spatio-Temporal Fused Scaling Fac-600
tors, ISPRS Journal of Photogrammetry and Remote Sensing, pp. 259–272, https://doi.org/10.1016/j.isprsjprs.2022.03.009,
2022.

Wu, S.: Simulated datasets and codes of GTNNWR, https://doi.org/10.6084/m9.figshare.12355472.v1, 2020.
Wu, S., Du, Z., Wang, Y., Lin, T., and Liu, R.: Modeling Spatially Anisotropic Nonstationary Processes in Coastal Envi-

ronments Based on a Directional Geographically Neural Network Weighted Regression, Science of The Total Environment,605
709, 136 097, https://doi.org/10.1016/j.scitotenv.2019.136097, 2019.

Wu, S., Wang, Z., Du, Z., Huang, B., Zhang, F., and Liu, R.: Geographically and Temporally Neural Network Weighted
Regression for Modeling Spatiotemporal Non-stationary Relationships, International Journal of Geographical Information
Science, 35, 582–608, https://doi.org/10.1080/13658816.2020.1775836, 2021.

24

https://pypi.org/project/mgwr/
https://pypi.org/project/mgwr/
https://pypi.org/project/mgwr/
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1016/j.scitotenv.2023.163981
https://doi.org/10.1016/j.envint.2023.108111
https://doi.org/10.1016/j.landusepol.2022.106183
https://doi.org/10.1007/s10708-015-9626-6
https://pypi.org/project/mgtwr
https://doi.org/10.1016/j.scs.2021.103600
https://cran.r-project.org/package=gwrr
https://cran.r-project.org/package=gwrr
https://cran.r-project.org/package=gwrr
https://doi.org/10.1016/j.isprsjprs.2022.03.009
https://doi.org/10.6084/m9.figshare.12355472.v1
https://doi.org/10.1016/j.scitotenv.2019.136097
https://doi.org/10.1080/13658816.2020.1775836

Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., and Zhang, L.: The Relationships Between PM2.5 and Aerosol Optical Depth610
(AOD) in Mainland China: About and Behind the Spatio-Temporal Variations, Environmental Pollution, 248, 526–535,
https://doi.org/10.1016/j.envpol.2019.02.071, 2019.

Yang, Y., Wang, H., Qin, S., Li, X., Zhu, Y., and Wang, Y.: Analysis of Urban Vitality in Nanjing Based on a Plot
Boundary-Based Neural Network Weighted Regression Model, ISPRS International Journal of Geo-Information, 11, 624,
https://doi.org/10.3390/ijgi11120624, 2022.615

Yin, Z., Ding, J., Liu, Y., Wang, R., Wang, Y., Qi, J., Chen, Y., Wu, S., and Du, Z.: GNNWR v0.1.11: A Python package
for modeling spatial temporal non-stationary, https://doi.org/10.5281/zenodo.10890176, 2024a.

Yin, Z., Ding, J., Liu, Y., Wang, R., Wang, Y., Qi, J., Chen, Y., Wu, S., and Du, Z.: Replication package for GNNWR v0.1.11:
A Python package for modeling spatial temporal non- stationary, https://doi.org/10.5281/zenodo.13270526, 2024b.

25

https://doi.org/10.1016/j.envpol.2019.02.071
https://doi.org/10.3390/ijgi11120624
https://doi.org/10.5281/zenodo.10890176
https://doi.org/10.5281/zenodo.13270526

