
GNNWR: An Open-Source Package of Spatiotemporal
Intelligent Regression Methods for Modeling Spatial and
Temporal Non-Stationarity
Ziyu Yin1,*, Jiale Ding1,*, Yi Liu1, Ruoxu Wang1, Yige Wang1, Yijun Chen1, Jin Qi1, Sensen Wu1,
and Zhenhong Du1

1Zhejiang University, School of Earth Sciences
*These authors contributed equally to this work.
Correspondence: Sensen Wu (wesensengis@zju.edu.cn)

Abstract. Spatiotemporal regression is a crucial method in geography for discerning spatiotemporal non-stationarity
in geographical relationships, which has found widespread application across diverse research domains. This study im-
plements two innovative spatiotemporal intelligent regression models, namely geographically neural network weighted
regression

:::::::::::::
Geographically

::::::
Neural

::::::::
Network

:::::::::
Weighted

::::::::::
Regression (GNNWR) and geographically and temporally neural

network weighted regression
:::::::::::::
Geographically

::::
and

:::::::::::
Temporally

:::::::
Neural

::::::::
Network

:::::::::
Weighted

::::::::::
Regression

:
(GTNNWR),5

integrating the spatiotemporal weighted framework and neural networks . Demonstrating superior
:::::
which

::::::
using

:::::
neural

:::::::::
networks

:::
to

::::::::
estimate

::::
the

::::::::::::::
spatiotemporal

:::::::::::::::
non-stationarity.

::::
Due

:::
to

::::
the

::::::
higher

:
accuracy and generalization

capabilities in large-scale data environments compared to traditional methods
:::::
ability, these models have emerged

as prominent tools
::::
been

:::::::
widely

::::
used

:::
in

:::::::
various

:::::
fields

::
of

:::::::::
scientific

:::::::
research. To facilitate the seamless application of

GNNWR and GTNNWR in addressing spatiotemporal non-stationary processes, a Python-based package, GNNWR,10

has been developed. This article details the implementation of these models and introduces the GNNWR package,
enabling users to efficiently apply these cutting-edge techniques. Validation of the package is conducted through two
case studies. The first case involves the verification of GNNWR using air quality data from China, while the second
employs offshore dissolved silicate concentration data from Zhejiang Province to validate GTNNWR. The results of
the case studies underscore the effectiveness of the GNNWR package, yielding outcomes of notable accuracy. This15

contribution anticipates a significant role for the developed package in supporting future research that leverages big
data and spatiotemporal regression techniques.

1 Introduction

Spatiotemporal non-stationarity, denoting variations in geographical elements or structures across different temporal
and spatial contexts, constitutes an intrinsic attribute of nearly all kinds of geographical processes and phenomena.20

Geographically Weighted Regression (GWR), a classic methodology for delineating spatial non-stationarity in geo-
graphical relationships, facilitates the variations of parameter coefficients within the regression equation according to

1

spatial locations (Brunsdon et al., 1996). As a foundational algorithm within the domain of spatiotemporal regression
analysis, GWR has been widely used across diverse research domains, including environmental studies (Yang et al.,
2019; Shen et al., 2023), urban studies (Sisman and Aydinoglu, 2022; He et al., 2023), and the social sciences (Stein25

et al., 2015; Lewandowska-Gwarda, 2018; Ahadnejad Reveshty et al., 2023).
On the basis of GWR, various methods have been proposed that focus on optimizing the model ability to solve

spatiotemporal non-stationary relationships. The improvements mainly include the following aspects: the selection
of spatiotemporal distance metrics (Fotheringham et al., 2015; Lu et al., 2014), the choice of weight kernel func-
tions (Fotheringham et al., 2017), and the optimization of statistical diagnostic methods (Brunsdon et al., 1999;30

Leung et al., 2000). Notably, multi-scale geographically weighted regression (MGWR) extends the weight kernel
function to possess varying bandwidths for each independent variable and further enhances the model capacity to fit
spatial non-stationarity (Fotheringham et al., 2017). To deploy the MGWR model, researchers developed a Python-
based (van Rossum, 2011) software package MGWR

:::::::
software

::::::::
package

:::::
mgwr that focuses on multi-scale estimation

and efficient computation of spatial non-stationarity (Oshan et al., 2019). It supplements
::
the

:
R-language-based35

(Team, 2017) open-source tools(e.g., spgwr (Bivand and Yu, 2023), gwrr
:
,
::::
e.g.,

::::::
spgwr

::::::::::::::::::::
(Bivand and Yu, 2023)

:
,
:::::
gwrr

(Wheeler, 2022), and GWmodel (Lu et al., 2024))
::::::::
GWmodel

:::::::::::::::
(Lu et al., 2024), improving the overall accessibility of

GWR and MGWR methods.
Owing to the intricate linear interplay between spatial distance and non-stationary weights inherent in geograph-

ical processes, the precise computation of the weight matrix through simple kernel functions encounters notable40

challenges. In response to this, diverse methodologies within the domain of geospatial artificial intelligence (GeoAI)
have been proposed to effectively capture the non-linear spatial relationships among pertinent factors (Georganos and
Kalogirou, 2022; Hagenauer and Helbich, 2022). The majority of existing GeoAI approaches utilize neural networks
in an opaque manner for establishing spatial relationships, leading to a constrained spatial interpretability of the
estimated relationships. To address this, researchers have integrated a spatiotemporal weighted framework with neu-45

ral networks, leading to the formulation of spatiotemporal intelligent regression models. Notably, the geographically
neural network weighted

:::::::::::::
Geographically

::::::
Neural

::::::::
Network

::::::::
Weighted

:
regression (GNNWR) model has been introduced,

which employs neural networks to learn the non-linear relationship between spatial distance and non-stationary
weights (Du et al., 2020a). Taking inspiration from GWR, GNNWR employs a spatially weighted neural network

::::::::
Spatially

:::::::::
Weighted

:::::::
Neural

::::::::
Network

:
(SWNN) to accurately derive the spatial weight matrix. Subsequently, this50

SWNN is combined with an ordinary linear regression (OLR) model to estimate spatial non-stationarity.
In addition to space, time is another fundamental dimension associated with geographical processes. In recent years,

numerous studies have focused on incorporating temporal effects into GWR model to account for both temporal and
spatial non-stationarity (Huang et al., 2010; Fotheringham et al., 2015). Recognizing that time and space exhibit
distinct scale effects, Huang et al. (2010) proposed a straightforward approach to combine spatial and temporal55

distances into a unified space-time distance, leading to the development of the geographically and temporally weighted
regression

:::::::::::::
Geographically

::::
and

:::::::::::
Temporally

::::::::
Weighted

::::::::::
Regression

:
(GTWR) model. The GTWR model, along with its

2

extended methodologies, has been effectively applied across various domains, producing remarkable results and
offering satisfactory interpretability (Ma et al., 2018; He and Huang, 2018; Guo et al., 2021; Wang et al., 2022).

However, the form of space-time distance usually requires a priori assumption and should be assumed to be60

relatively simple (e.g., linear weighted function) so as to eliminate the estimation problem in the terminal model.
Considering that neural networks have the potential to capture the complex non-linear effects in space-time, Wu et al.
(2021) proposed a spatiotemporal proximity neural network

::::::::::::::
SpatioTemporal

:::::::::
Proximity

:::::::
Neural

:::::::
Network

:
(STPNN) to

accurately generate space-time distance and extended GNNWR with the STPNN to incorporate temporal effects into
spatial non-stationarity. Accordingly, a spatiotemporal intelligent regression model named geographically and tem-65

porally neural network weighted regression (GTNNWR) was developed to estimate spatiotemporal non-stationary
relationships.

In recent years, GNNWR and GTNNWR have been widely applied in various fields and have achieved excellent fit-
ting capabilities and geographical interpretability, such as atmospheric pollution (Chen et al., 2021; Ni et al., 2022; Liu
et al., 2023), environmental modeling (?Du et al., 2021; Wu et al., 2022; Qi et al., 2023)

::
(Wu et al., 2019; Du et al., 2021; Wu et al., 2022; Qi et al., 2023)70

and urban geography (Wang et al., 2022; Yang et al., 2022; Liang et al., 2023). To date, there has been a notable
absence of dedicated software pertaining specifically to the GNNWR and GTNNWR models. To

::::::::
However,

::::
the

::::::::
accessible

:::::::
version

::::
for

:::
the

:::::::
source

:::::
code

::
of

:::::::::
GNNWR

:::::::::::
(Du, 2019)

:::
and

:::::::::::
GTNNWR

:::::::::::
(Wu, 2020)

:::
are

::::::::::::
implemented

:::::
with

::::::::::
TensorFlow

::::
1.x,

:::::
which

::
is

:::
too

:::
old

:::
to

:::
run

::
in

:::
the

::::::
latest

::::::::
hardware

::::::::::::
environment.

::::
And

:::
the

::::::
codes

:::
are

:::
not

::::::
highly

::::::::::::
encapsulated,

:::::
which

::::::
makes

::::::::::
researchers

:::::::
harder

::
to

::::
use

::::
and

:::::::
develop

:::
the

:::::::
model.

:::::::::
Therefore,

::::::
there

::
is

:
a
:::::
need

::
to

::::::::
develop

:
a
:::
set

:::
of

::::::
model75

::::::::::::::
implementations

:::::
with

::
a

:::::
newer

::::::::::::
architecture,

:::::::
simpler

::::::
usage,

::::
and

::::::
clearer

:::::
code

:::::::::
structure

::
to

:
facilitate the utilization of

these spatiotemporal intelligent regression models by researchers across diverse domains
::
in

::::::::
different

::::::
fields, and to

solicit feedback
::::::::
feedbacks

:
for refinement and enhancement of the models, we have introduced

:::::
these

:::::::
models.

:

::::
This

::::::::
research

::::
has

:::::::::
developed

:
an open-source Python package, denoted as the GNNWR package. This package

is designed
:::::
GNNWR

:::::::
package,

:
to furnish a suite of spatiotemporal intelligent regression models, encompassing the80

GNNWR and GTNNWR variants, thereby serving as a resource for researchers seeking to address challenges within
their respective fields.

The GNNWR package offers a comprehensive workflow analysis capability, enabling users to create datasets,
instantiate models, conduct training, and generate output results, as well as perform model predictions and visual-
izations. The GNNWR package uses PyTorch as a deep learning framework (?)

::::::::::::::::::
(Paszke et al., 2019), and its dynamic85

computational graph makes model construction and debugging more intuitive. This package provides extended mod-
els as well as great flexibility, allowing advanced users to design custom models based on existing models using the
PyTorch framework.

:::
The

::::::::::
remainder

::
of

::::
this

::::::
article

:::
is

::::::::::
constructed

:::
as

:::::::
follows.

:::
In

:::::::
Section

::
2,

:::
we

:::::::
provide

:::
an

::::::
review

:::
for

::::
the

:::::::::
GNNWR

::::
and

::::::::::
GTNNWR

::::::
model

::::
that

:::
the

::::::::
package

::::
has

::::::::::::
implemented;

:::
in

:::::::
Section

::
3,

:::
we

::::::::
describe

:::
the

::::::::
package

:::::::::::
architecture

::::
and

:::::
offer90

:::::
usage

::::::::
example

:::
for

:::
the

::::::::
package;

:::::::
finally,

::
in

::::::
section

:::
4,

:::
we

::::::::
conclude

:
a
:::::::::
summary

::
of

::::
our

:::::::::
outcomes

::::
and

:::::::
suggests

:::::::::
potential

:::::::
avenues

:::
for

::::::
future

::::::::::::
development.

:

3

2 Model Review

This section offers a concise overview of the GNNWR family of models, which are accommodated by the GNNWR
package. The regression

::::::::
Detailed

:::::::::::
descriptions

::::
and

::::::::::::
performance

::::::::
analysis

::::
can

:::
be

:::::::
referred

:::
to

::::
the

::::::::
original

:::::::
articles95

:::::::::::::::::::::::::::::::
(Du et al., 2020a; Wu et al., 2021)

2.1
:::::
OLR

:::::
and

::::::
GWR

:::
For

::
a

:::::::::
regression

:::::::
relation

:::::
with

:
p
:::::::::::
independent

:::::::::
variables

::::
and

:
n
::::::::::::
observations,

::::
the

:::::::::
regression formula of the classic OLR

::::::::
Ordinary

:::::
Least

:::::::
squares

::::::::::
Regression

:::::::
(OLR)

:
model is expressed as:

yi = βOLR
::: 0 +

p∑
k=1

βOLR
::: kxik + εi for i = 1,2, . . . ,n (1)100

where yi and xi1,xi2, . . . ,xip ::
xik:

are the dependent variable and independent variables; β0,β1, . . . ,βp are the regressive
coefficients, and

::::
k-th

:::::::::::
independent

:::::::
variable

:::
at

::::::::::
observation

::
i;

:::::
βOLR

k ::
is

:::
the

:::::::::
regressive

:::::::::
coefficient

:::
for

:::
the

:::::
k-th

:::::::::::
independent

:::::::
variable

::::
and

:::::
βOLR

0 ::
is
::::
the

::::::::
intercept

:::::
term;

:
εi is the error term. The

::::::::::
Considering

::::
the

:::::::
spatial

:::::::::::::::
non-stationarity,

::::
the GWR model extends OLR approach to enable spatially localized

estimates, the formula is
::
by

::::::::
allowing

:::::
local

:::::::::
variations

::
in

:::::
rates

:::
of

:::::::
change.

:::::
Thus,

::::::::::
regression

:::
can

:::
be

:
represented as:105

yi = β0(ui,vi) +
p∑

k=1
βk(ui,vi)xik + ϵi for i = 1,2, . . . ,n (2)

Based on the geographically weighted idea similar to GWR, the GNNWR model considers the spatial non-stationarity
of the regression relationship as the fluctuation change as the fluctuation change at different locations on the OLR
levels (Du et al., 2020a). In the GNNWR model, the spatial non-stationarity can be represented as:

:::::
where

:::::::::
β0(ui,vi)

:::
and

:::::::::
βk(ui,vi)::::

are
:::
the

:::::::::
localized

:::::::::
regression

:::::::::
coefficient

::::
for

:::
the

:::::::::
constant

:::::
term

::::
and

:::
the

:::::
k-th

:::::::::::
independent

::::::::
variable

:::
at110

:::::::
location

:::::::
(ui,vi).:::::

Their
::::::::::
estimation

::::
can

:::
be

:::::::::
calculated

:::::
with

:
a
:::::::::
weighted

::::
least

:::::::
squares

::::::::
method:

:

yi = w0β̂(ui,vi)×βOLR
0 +

p∑
k=1

wk=
:

(X⊤W(
::::::

ui, vi)×βOLR
k xik + ϵX)−1X⊤W(u

::::::::::::
i for i = 1,2, . . . ,nvi)y

:::
(3)

where wk(ui,vi) represents the non-stationary weight of the OLR coefficient βOLR
k . Therefore, the calculation formula

for ŷi is:

ŷi =
p∑

k=0
β̂k(ui,vi)xik =

p∑
k=0

wk(ui,vi) × β̂kOLRxik115

The modeling capability of GWR for geographical relationships depends on the fitting and solving ability of
the weight kernel function for spatial non-stationarity. The kernelfunctions of GWR can be abstracted as follows:

4

::::::::
W(ui,vi)::

is
:::
the

:::::::
spatial

::::::::
weighting

::::::::
diagonal

:::::::
matrix

::
at

::
fit

:::::
point

::
i,
::
y

::::
and

::
X

:::
are

:::
the

::::::::::
dependent

:::
and

::::::::::::
independent

::::::::
variables

::
for

:::
all

:::
the

::::::::::::
observations.

::
A
::::::::::::::::
distance-decaying

::::::
kernel

::::::::
function

::::
(e.g.

:::::::::
Gaussian

:::::::
kernel)

:
is
:::::
then

:::::::::
employed

::
to

::::::::
calculate

::::
the

::::::
spatial

:::::::
weights

:::::
from

:::
the

:::
fit

:::::
point

::
to

:::
its

:::::::::::
neighboring

:::::::::::
observations

:::::::
within

:::
the

::::::::::
bandwidth

::
b:

:
120

wij = fkernel(dij , b)exp[−(dij/b)2]
::::::::::::

(4)

Where dij represents
:::::
where

:::
dij::

is
:

the distance between samples, and b represents the bandwidth
::
fit

:::::
point

::
i
::::
and

:::
its

::::::::
neighbor

:
j.

To accurately fit the complexrelationship between spatial proximity and non-stationary weights, the GNNWR
model designed a SWNN to realize the neural network expression of the weight kernel function125

2.2
::::::::::
GNNWR

:::::
Since

:
a
::::::::::
pre-defined

::::::
kernel

::::::::
function

::::::
might

:::
not

::::::::::
accurately

::::::::
estimate

:::
the

::::::::
complex,

::::::::::::
heterogenous

::::::::::::
geographical

:::::::::
processes.

:::
The

:::::::::
GNNWR

::::::
model

::::::::::
introduces

:
a
::::::::
spatially

:::::::::
weighted

::::::
neural

:::::::
network

::::::::
(SWNN)

:::
to

::::::::
represent

::::
the

::::::::::::
nonstationary

:::::::
weight

::::::
matrix

:
(Figure 1).

The spatial weight estimation for point i
:
i
:
is calculated as follows:130

Wi = WW (ui,vi) = SWNNSWNN
::::::

([dS
i1,dS

i2, . . . ,dS
in]T ⊤

:
) (5)

where [dS
i1,dS

i2, . . . ,dS
in] is the distances from location i to training samples.

::::
other

::::::::
training

::::::::
samples,

:::
and

::::
the

:::::::::
weighting

::::::
matrix

:::::::::
W (ui,vi) :

is
::
a
::::::::
diagonal

::::::
matrix,

::::::
whose

:::::::::
diagnostic

::::::::
elements

:::
are

::::
the

:::::::::::::
non-stationary

:::::::
weights

:::::::::::::::::::::::::::::
w0(ui,vi),w1(ui,vi), ...,wp(ui,vi)

::
for

::::
the

::::::::::
regression.

:::::::::::
Accordingly,

:::::::::
GNNWR

::::::
model

::::::::
describes

:::::::
spatial

::::::::::::::
non-stationarity

::::::::
through

::::::::::
fluctuating

:::::::
changes

:::
in

:::
the

::::::::::
coefficients

:::
of135

::::
OLR

:::
at

::::::::
different

::::::::
locations

::::::::::::::::
(Du et al., 2020a)

:
.
::::::::
Thereby

:::
the

:::::::
spatial

::::::::::::::
non-stationarity

::::
can

:::
be

::::::::::
represented

:::
as:

:

yi = w0(ui,vi)βOLR
0 +

p∑
k=1

wk(ui,vi)βOLR
k xik + ϵi for i = 1,2, . . . ,n.

::

(6)

:::::
Then,

::::
the

::::::::
estimates

:::
of

:::::::::
dependent

::::::::
variable

::
in

:::::::::
GNNWR

::::
can

::
be

::::::::::
calculated

:::
as:

ŷ =


ŷ1

ŷ2
...

ŷn

 =


x1

⊤W (u1,v1)(X⊤X)−1X⊤

x2
⊤W (u2,v2)(X⊤X)−1X⊤

...
xn

⊤W (un,vn)(X⊤X)−1X⊤

y =


x1

⊤SWNN([dS
i1,dS

i2, . . . ,dS
in]⊤)(X⊤X)−1X⊤

x2
⊤SWNN([dS

i1,dS
i2, . . . ,dS

in]⊤)(X⊤X)−1X⊤

...
xn

⊤SWNN([dS
i1,dS

i2, . . . ,dS
in]⊤)(X⊤X)−1X⊤

y = Sy

::

(7)

:::::
where

::
S

::
is
::::
the

:::
hat

:::::::
matrix

::
of

::::
the

::::::::
GNNWR

:::::::
model.140

2.3
:::::::::::
GTNNWR

Alongside space, time constitutes a fundamental dimension in the study of geographic phenomena. The GTNNWR
model extends the spatial form of the non-stationary relationship in Eq. (??)

::
(6)

:
to the following spatiotemporal

5

…
…

Locations

Estimated
Point

…
…

…
…

…
…

Spatial
distances Hidden layers Spatial

weights

Samples Spatial weighted neural network

…
…

…
…

OLR
coefficients

independent
variables

Fitted
value

Figure 1. The framework of the GNNWR model.

form:

yi = β0(ui,vi, ti) +
p∑

k=1
βk(ui,vi, ti)xik + εi, for i = 1,2, . . . ,n

= w0(ui,vi, ti)βOLR
0 +

p∑
k=1

wk(ui,vi, ti)βOLR
k xik + εi, for i = 1,2, . . . ,n

(8)145

where wk(ui,vi, ti) represents the spatiotemporal non-stationary weight of βOLR
k , which is determined by its

spatiotemporal location (ui,vi, ti) and influenced by other samples.
Similar to the SWNN of GNNWR, the GTNNWR model ,as shown in figure 2, designed a spatiotemporal weighted

neural network (STWNN) calculate the spatiotemporal weights as follows:

WW (ui,vi, ti) = STWNN
([

dST
i1 ,dST

i2 , . . . ,dST
in

]
T ⊤

:

)
(9)150

where
[
dST

i1 ,dST
i2 , . . . ,dST

in

]
are the spatiotemporal distances from point i to

:::::
other training samples. This expression

indicates that the spatiotemporal non-stationary weight is determined by the spatiotemporal distance. To quantify
the spatiotemporal distance, Huang et al. (2010) defined the distance as the following form:

dST
ij = dS

ij ⊗ dT
ij (10)

where dS
ij , dT

ij , and dST
ij respectively denote the spatial distance, temporal distance, and spatiotemporal distance ,155

and the symbol ⊗ represents the operator.
:::::::
symbol

::
⊗

:::::::::
represents

::
a
::::::
fusion

::::::::
operator

::::::
which

:::::::::
integrates

:::::::::
temporal

:::::
(dT

ij)

:::
and

:::::::
spatial

::::
(dS

ij)
::::::::
distance

::::
into

::
a
::::::::::::::
spatiotemporal

:::::::
distance

:::::
dST

ij .
:

To fully capture the nonlinear effects in spatiotemporal
::
the

::::::::::::::
spatiotemporal

::::::::::
dimension, Wu et al. (2021) proposed

an spatiotemporal proximity neural network(STPNN) based on the spatial distance dS
ij and temporal distance dT

ij

6

to generate the spatiotemporal distance dST
ij :160

dST
ij = STPNN

(
dS

ij ,dT
ij

)
where dST

ij is a vector that indicates the spatiotemporal proximity between points i and j. Therefore, Equation (5)
can be refined as:

W (ui,vi, ti) = STWNN
([

dST
i1 ,dST

i2 , . . . ,dST
in

]T
)

= STWNN
([

STPNN
(
dS

i1,dT
i1

)
, . . . ,STPNN

(
dS

in,dT
in

)]T
)

Therefore, the spatialtemporal
::
the

::::::::
STPNN

::
as

::::
the

::::::
fusion

::::::::
operator

:::
⊗.

:::::::::
Therefore,

::::
the

::::::::::::::
spatiotemporal weight matrix165

for any given point across time and space can be derived by merging the STPNN with the STWNN through Eq. (??)
(Figure 2). Through integrating

:
:
:

W (ui,vi, ti) = STWNN
([

dST
i1 ,dST

i2 , . . . ,dST
in

]T
)

= STWNN
([

STPNN
(
dS

i1,dT
i1

)
, . . . ,STPNN

(
dS

in,dT
in

)]T
)

.
::

(11)

:::
The

::::::::::::::
spatiotemporal

:::::::
weights

:::
are

:::::
then

:::::::::
integrated

:::::
with global OLR estimatesand the ,

::::::::::
generating

::::::::::
continuous space-

time weight matrix, the continuous spatial-temporal variable coefficientsis attained. Just like the GTWR model,170

we can use these coefficients to explain the estimated relationship and make spatiotemporal inference. Hence, the
fitted values ŷ = (ŷ1, ŷ2, . . . , ŷn) are computed

::::::
varying

:::::::::::
coefficients,

::::
and

:::
the

::::::::::
regression

:::::::::::
relationship

::
of

::::::::::
GTNNWR

::::
can

::
be

:::::::::
expressed

:::
as:

:

yi = w0(ui,vi, ti)βOLR
0 +

p∑
k=1

wk(ui,vi, ti)βOLR
k xik + ϵi for i = 1,2, . . . ,n

::

(12)

:::::
where

:::::::::::
wk(ui,vi, ti):::

are
::::

the
::::::::
diagonal

::::::::
elements

::
of

::::
the

::::::::::::::
spatiotemporal

::::::
weight

::::::
matrix

::::::::::::
W (ui,vi, ti).:175

::::
And

:::
the

:::::::::
estimated

::::::::::
dependent

::::::::
variables

::̂
y
::::
can

::
be

::::::::::
calculated as:

ŷ =


ŷ1

ŷ2
...

ŷn

 =


x1

⊤W (u1,v1, t1)(X⊤X)−1X⊤

x2
⊤W (u2,v2, t2)(X⊤X)−1X⊤

...
xn

⊤W (un,vn, tn)(X⊤X)−1X⊤

y = Sy (13)

where S
:::::
where

::
S

:
is the hat matrix of the GTNNWR model.

3 Usage Example
::::::::
Package

:::::::::::::
Descriptions

In this section, we present a comprehensive overview of the GNNWR package
:::::
gnnwr

:::::::
package

:::::::
(version

:::::::
0.1.11)

:
and180

the range of models it supports. We begin by introducing the fundamental architecture of the software package,

7

Figure 2. The framework of the GTNNWR model.
:::
dS

ij :::
and

:::
dT

ij::::::::
represent

:::
the

::::::
spatial

:::::::
distance

::::
and

:::::::
temporal

::::::::
distance

:::::::
between

:::
the

::::::::
estimated

:::::
points

:::
Pi :::

and
:::
Pj ,

:::::::::::
respectively.

:::
The

:::::::::::::
spatiotemporal

::::::::
proximity

::::
dST

ij ::
is

:::::::
obtained

::
by

::::::::::
integrating

:::
dS

ij :::
and

:::
dT

ij :::::::
through

:::
the

:::::::
STPNN.

delving into its essential components and functionalities. Following this, we outline the analysis process employed in
utilizing the package, showcasing its practical application through two case studies.

3.1 Package
:::::::::::::
Architecture

The GNNWR
:::::
gnnwr package is designed with a modular architecture, enabling the integration of diverse module185

strategies to facilitate a variety of task workflows. It comprises four primary modules: Dataset, Network, Utils,
and Model.

3.1.1 Dataset

The Dataset module specifies the data types employed throughout the package. It includes the BasicDataset

class for training and the PredictDataset class for prediction. This module also offers preprocessing functions190

that convert Pandas’ DataFrame data into the necessary formats (McKinney et al., 2010), handling tasks such as
normalization and dataset partitioning. Additionally, it provides methods for saving and loading datasets, enabling
users to directly work with processed data files and instantiate data objects.

8

3.1.2 Network

The Network module, extending PyTorch’s nn.Module class, defines the architectures for models such as SWNN and195

STPNN. It allows users with programming expertise to customize new network structures based on existing ones,
adapting to their specific research requirements.

3.1.3 Utils

The Utils module contains classes for statistical diagnostics and visualization techniques specific to spatial weighted
regression. These diagnostic classes offer a suite of methods to evaluate model performance, while the visualization200

classes employ map-based representations to enhance the analysis of spatial data and model outcomes.

3.1.4 Model

The Model module is the cornerstone of the package, providing two classes: GNNWR and GTNNWR. GNNWR acts as the
foundational class, with GTNNWR being its subclass. These classes encapsulate methods for model training, prediction,
diagnostics, and loading. Users can easily invoke these methods to employ the models for problem analysis and205

forecasting on unseen data.

Figure 3.
::::::::
Workflow

:::::::
diagram

:::
of

:::
the

::::::::
package.

:::::::
Dashed

:::::
boxes

::::::
denote

::::
the

:::
raw

:::::
data,

:::::
solid

:::::
boxes

::::::::
represent

::::
the

::::
code

:::::::
process

:::::::
modules,

::::
and

::::::
arrows

:::::::
indicate

:::
the

::::::::
direction

::
of

::::
data

::::
flow.

9

3.2
::::::
Usage

::::::::::
Example

:::
for

:
GNNWR

We commence our investigation by examining air quality modeling through the analysis of data gathered from
Chinese air monitoring stations (Du et al., 2020b). This analysis seeks to delineate the spatially non-stationary
associations between PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) concentrations and210

their environmental determinants. Given the pivotal role of PM2.5 as an indicator of air quality, elucidating its
spatial variability is crucial for comprehending the underlying spatial processes and environmental dynamics of
atmospheric contamination (Han et al., 2016). The objective of this study is to develop a predictive model for the
annual average PM2.5 concentrations in the study area at a 3 km x 3 km spatial resolution for the year 2017.
The model incorporates meteorological variables such as Aerosol Optical Depth (AOD), temperature (TEMP),215

precipitation (TP), wind speed (WS), and wind direction (WD), along with elevation data (DEM).

3.2.1
::::::::
Dataset

:::::::::::::
initialization

Upon loading the dataset as a Pandas’ DataFrame, the init_dataset function from the GNNWR package is utilized
to convert it into a suitable format for model input. This function proportionally allocates

::::::::
randomly

:::::::
divides

:
the

dataset into training, validation , and test subsets , and
::::::
testing

:::::::
subsets

:::::::::
according

::
to

::::
the

:::::
ratio

::::::::
specified

::
in

:::
the

::::::
input220

::::::::::
parameters;

::::
and

:
computes the distance vectors for each sample, which are crucial for both model training and

performance evaluation.
::
In

::::
this

:::::::
specific

:::::::::::
experiment,

::::
15%

::
of

::::
the

::::
data

::
is
:::::::::

allocated
::
to

::::
the

:::::::
testing

:::
set;

::::
and

::::
out

::
of

::::
the

:::::::::
remaining

:::::
85%,

::::
10%

::::
was

::::
used

:::
as

:::::::::
validation

:::
set

::::
and

:::
the

::::
rest

:::
as

:::::::
training

::::
set.

:

In this context, it is essential to specify the independent variables, dependent variables, and spatial position
variables, which correspond to the x_column, y_column, and spatial_column parameters of the init_dataset225

function, respectively.
When calculating the distance, the init_dataset function, by default, uses Euclidean distance to compute the

spatial distances between feature points. This process generates a spatial distance vector for each point, which
serves as input to the neural network component of the model. To accommodate various research requirements, the
spatial_fun parameter enables users to provide a custom method for calculating spatial distances.230

To optimize the speed of model training and enhance the precision of model outcomes, the function preprocesses
the independent and dependent variables by default. It typically employs normalization for preprocessing; however,
users have the option to adjust the process_fun parameter to utilize standardization instead.

1: >>> from gnnwr.datasets import init_dataset235

2: >>> train_set, val_set, test_set = init_dataset(data=data,

3: ... test_ratio=0.2,

4: ... valid_ratio=0.2,

5:
:::
...

::
test_ratio

::::::
=0.15,

6:
:::
...

:::
valid_ratio

:::::
=0.1,240

10

7: ... x_column=x_column,

8: ... y_column=y_column,

9: ... spatial_column=spatial_column)

3.2.2
::::::
Model

::::::::::::::
configuration

:::::
and

::::::::
running245

To continue, we need to create an instance of the GNNWR model. After importing the gnnwr.models module, we can do
so by invoking the GNNWR class. The dense_layers parameter allows us to specify the number of hidden layers in the
model’s neural network, with each layer consisting of a fully connected layer, a batch normalization layer, a dropout
layer, and an activation function. These hyperparameters are closely linked to the neural network’s architecture,
encompassing aspects such as the use of a batch normalization layer, the dropout rate, and the activation function’s250

type, among others. In this specific example, we have configured a neural network with a hidden layer that includes
three sub-layers, each with

:::::
1024,

:
512, 256, and 128 nodes, respectively. The activation function uses a PReLU

::::::::::
Parametric

::::::::
Rectified

::::::
Linear

:::::
Unit

:::::::::
(PReLU) function with an initial value of 0.1

:::
0.2, while all other settings are kept

at their default values.
The GNNWR class uses Adadelta as its default optimizer, with an initial learning rate of 0.2

:::
0.6, and employs cosine255

annealing warm restart as its learning rate adjustment strategy. The class also supports a range of optimizers,
including Stochastic Gradient Descent (SGD), Adam, Adagrad, RMSprop, and various learning rate adjustment
strategies, such as multistep and cosine annealing. These optimizers and strategies contribute to improving the
model’s training efficiency and performance, thereby enabling it to better accomplish its tasks.

:::::::::::
Additionally,

::::::
GNNWR

:::::::
involves

::::::::
dropout

:::
and

::::::
batch

::::::::::::
normalization

:::::::::
strategies

::
to

:::::
avoid

:::::::::
overfitting

::::
and

:::::::
improve

::::::::::::::
generalizability260

:::
and

::::::::::::
performance

::
of

:::
the

:::::::
model.

::::
The

::::::
default

::::::::
dropout

::::
rate

::
is

:::
0.2,

::::
and

::::
can

::
be

:::::::
altered

:::::::
through

::::
the

:::::::::
drop_out

::::::::::
parameter;

:::
and

::::
the

::::::
model

::::::
applies

::::::
batch

::::::::::::
normalization

:::
by

:::::::
default,

::::::
which

::::
can

::
be

::::::::
disabled

:::
by

:::::::
setting

:::
the

:::::::::::
batch_norm

:::::::::
parameter

:::
into

::::::
False

:
.
:

To streamline model training, we can utilize the run function to specify the number of iterations and the frequency
of printing training process information, allowing us to monitor the training progress and performance. Throughout265

the training process, we will retain the best-performing model within the validation set to prevent the GNNWR
model from overfitting. Selecting the optimal model helps minimize the expected error and guarantees that the
model possesses superior generalization ability. For storage convenience, the model repository will only retain a file
containing the neural network components of the model. This file encapsulates the structural configuration and
parameter information of the neural network.270

1: >>> from gnnwr import models

2: >>> from torch import nn

3: >>> gnnwr = models.GNNWR(train_dataset = train_set,

4: ... valid_dataset = val_set,275

11

5: ... test_dataset = test_set,

6: ... dense_layers = [1024, 256, 128],

7:
:::
...

::::::::::::::::::::::::::::::::::::
dense_layers

::
=
:::::::
[1024,

::::::
512,

:::::
256,

::::::
128],

8: ... activate_func = nn.PReLU(init=0.2),

9: ... start_lr = 0.1,280

10:
:::
...

::::::::::::::::::::::::::::::::
start_lr

::
=

:::::
0.6,

11: ... optimizer = "Adadelta",

12:
:::
...

::::::::::::::::::::::::::::::::
drop_out

::
=

:::::
0.2,

13:
:::
...

::::::::::::::::::::::::::::::::::
batch_norm

::
=
:::::
True

:
,

14: ... model_name = "GNNWR_PM25")285

15: >>> gnnwr.run(max_epoch = 4000, print_frequency = 500)

16:
:::
>>>

::::::
gnnwr

::
.

:::
run

:
(

:::::::::
max_epoch

::
=
:::::::

2000,
::::::::::::::::
print_frequency

::
=
::::::

500)

The GNNWR package uses Tensorboard to record the model training process, including the loss and R2 scores
on the training and validation sets for each epoch, as well as the learning rate and best R2 scores obtained on290

the validation set. By observing the changes in the model during the training process, targeted adjustments to the
training method can be made. To enhance users’ comprehension of the model architecture, we have incorporated the
add_graph function. When utilized, this function enables users to visualize the structure of the model within the
"Graphs" section of TensorBoard. This functionality not only clarifies the model’s architecture but also facilitates
the prompt identification of issues during model debugging and optimization, thereby substantially improving model295

performance.

3.2.3
:::::::
Result

::::
and

:::::::::::::
visualization

We can obtain the composition and results of the model through the result method, including the model structure,
optimizer structure, used variables, and the accuracy, complexity, and content of statistical tests performed on the
model. Among them, the R2 and RMSE(Root Mean Square Error) indicators summarize the model’s fitting ability,300

while the AIC and AICc indicators provide a deeper understanding of the model’s complexity. The F1, F2, and
F3 statistical data are used as sample diagnostic measures(?)

:::::::::::::::
(Wu et al., 2019). The first two values indicate the

presence of significant spatiotemporal non-stationarity in the model, while the last value evaluates the significance
of spatiotemporal non-stationarity in the regression parameters of each independent variable.

>>> gnnwr.result()305

1: --------------------Model Information-----------------

2: Model Name: | GNNWR_PM25

3: independent variable: | ['dem', 'w10', 'd10', 't2m', 'aod_sat', 'tp']

12

4: dependent variable: | ['PM2_5']310

5:

6: OLS coefficients:

7: x0: 7.20676

8: x1: -7.51571

9: x2: 0.00989315

10: x3: 21.75958

11: x4: 30.29816

12: x5: -26.90607

13: Intercept: 22.79182

14:
::
x0

:
:
:::::::::

7.12861320

15:
::
x1

:
:
::::::::::

-4.03670

16:
::
x2

:
:
::::::::::

-1.90988

17:
::
x3

:
:
::::::::::

21.29951

18:
::
x4

:
:
::::::::::

36.57638

19:
::
x5

:
:
:::::::::::

-24.50677325

20:
:::::::::
Intercept

::
:

:::::::::
19.16957

21:

22: --------------------Result Information----------------

23: Test Loss: | 33.63722

24: Test R2 : | 0.84065330

25: Train R2 : | 0.82611

26: Valid R2 : | 0.84560

27: RMSE: | 5.79976

28: AIC: | 1798.68992

29: AICc: | 1791.50793335

30: F1: | 0.19219

31: F2: | 2.40907

32: f3_param_0: | 10.68157

33: f3_param_1: | 1.81385

34: f3_param_2: | 3.81711340

35: f3_param_3: | 54.19521

36: f3_param_4: | 382.45236

37: f3_param_5: | 117.74578

38: f3_param_6: | 21.48253

13

39:
::::
Test

:::::
Loss

::
:

::
|

:::::::::::::::::::::::::::
33.42091345

40:
::::
Test

:::
R2

::::
:

::
|

:::::::::::::::::::::::::::
0.84280

41:
:::::
Train

:::
R2

:::
:

::
|

:::::::::::::::::::::::::::
0.84762

42:
:::::
Valid

:::
R2

:::
:

::
|

:::::::::::::::::::::::::::
0.84541

43:
::::
RMSE

:
:
::

|
:::::::::::::::::::::::::::::::::

5.78108

44:
:::
AIC

:
:
:::

|
:::::::::::::::::::::::::::::::::

1257.37056350

45:
::::
AICc

:
:
::

|
:::::::::::::::::::::::::::::::::

1254.68787

46:
::
F1

:
:
::::

|
:::::::::::::::::::::::::::::::::

0.11974

47:
::
F2

:
:
::::

|
:::::::::::::::::::::::::::::::::

3.52673

48:
:::::::::::
f3_param_0

:
:

::
|

::::::::::::::::::::::::::
1.81630

49:
:::::::::::
f3_param_1

:
:

::
|

::::::::::::::::::::::::::
19.05118355

50:
:::::::::::
f3_param_2

:
:

::
|

::::::::::::::::::::::::::
0.42682

51:
:::::::::::
f3_param_3

:
:

::
|

::::::::::::::::::::::::::
68.13538

52:
:::::::::::
f3_param_4

:
:

::
|

::::::::::::::::::::::::::
47.61187

53:
:::::::::::
f3_param_5

:
:

::
|

::::::::::::::::::::::::::
170.05663

54:
:::::::::::
f3_param_6

:
:

::
|

::::::::::::::::::::::::::
122.83797360

The empirical results reveal that the model exhibits robust performance in the reconstruction of PM2.5 dis-
tributions. Notably,

::::
and

::::
the

:::::::::
statistical

::::::::
analyses

:::::::
confirm

::::
the

::::::::
presence

::
of

::::::::::
significant

::::::
spatial

:::::::::::::
heterogeneity

::
in

:::::::
PM2.5

:::::::::::::
concentrations.

:::
In

:::::
terms

::
of

:::::::::
statistical

:::::::::
indicators, the model achieved R2 scores of 0.826

:::::
0.848 for the training dataset,

0.846
:::::
0.845 for the validation dataset, and 0.841

:::::
0.843 for the test dataset

:
,
:::::
which

::::
are

:::::
much

::::::
higher

:::::
than

::::::::::
traditional365

::::::
models

::::
like

::::
OLS

::::
and

::::::
GWR

::::::::::::
(implemented

:::::
with

:::
the

:::::
mgwr

:::::::
package

::
by

::::::::::::
Oshan et al.,

:::::::
version

::::::
2.2.1).

:::::
Also,

::::
the

::::::::
residuals

::
of

:::::::::
GNNWR

:::
are

:::::::::
generally

:::::::
smaller

:::::
than

:::::
those

:::
of

::::::::::
traditional

:::::::
models,

:::::
with

:::::
most

:::::::::
residuals

:::::
being

:::::
close

:::
to

:::::
zero

::::
and

:::::
rarely

::::::::
showing

::::
large

::::::::::
deviations

:::::::
(Figure

:::
4).

::::
Such

:::::::::::
outstanding

::::::::::::
performance

::::::
reflects

::::::::::
GNNWR’s

::::::::::
capability

::
of

:::::::::
capturing

:::::::
complex

::::::::
patterns

::
in

::::::::::::::
spatiotemporal

:::::
data,

:::::::::::::
demonstrating

::::
the

:::::::::::
effectiveness

::
of

:::::::::::
introducing

:::
the

:::::::::
nonlinear

::::::
fitting

::::::
ability

::
of

::::::
neural

::::::::
networks

:::
in

:::::::::
modelling

:::::::
spatial

::::::::::::::
non-stationarity. Additionally, statistical analyses confirm the presence of370

significant spatial heterogeneity in

::
It

:
is
:::::::::::
noteworthy

:::::
that,

::
as

:
a
:::::
deep

:::::::
learning

:::::::
model,

::::::::
GNNWR

:::::
does

::::::
require

:::::
more

:::::
time

::::
than

::::::::::
traditional

:::::::
models

::
to

::
fit

::::
the

:::::
given

:::::::
dataset.

::::
For

:::
the

::::::
above

::::::::::
experiment

:::
on

:
PM2.5 concentrations, which the model effectively elucidates

:::::::
dataset,

::
it

::::
takes

:::::
2000

::::::
epochs

:::
for

:::::::::
GNNWR

::
to

::::::::
optimize

:::
the

:::::::::
network’s

::::::::::
parameters

::::
and

::::::::
minimize

::::
the

::::
loss,

:::::
which

::
is
::::::
about

:
3
::::::::
minutes

::
in

:
a
:::::
CPU

::::::
(Intel

::::
Core

:::::::::
i5-12400)

::::::::::::
environment.

::::::::::::
Nevertheless,

:::::::::
compared

:::
to

:::
the

::::::::::
advantages

::
in

::::::
model

::::::::::::
performance,

:::::
such375

:
a
:::::::::::::::::
time-consumption

::
is

::::::::::
acceptable,

::::::::::
especially

::::::::::
considering

:::::
that

::
a
::::::::::::::
CUDA-enabled

::::::
GPU

::::
can

:::::::
further

:::::::::
accelerate

::::
the

::::::
process.

Owing to the intimate association between model analysis and spatial aspects, the GNNWR furnishes a range of
spatial visualization functionalities grounded in the folium. By instantiating the Visualize object, we can render

14

R2=0.346 R2=0.700 R2=0.848

-1
00

-5
0

0
50

10
0

re
si

du
al

OLS GWR GNNWR

Figure 4.
:::
The

:::::::
residual

:::::::::::
distributions

::::
and

::
R2

::::::::
indicator

:::
for

:::::
OLS,

:::::
GWR

::::
and

::::::::
GNNWR

::
on

::::::
PM2.5

:::::::
dataset.

various model variables within a spatial context. The Visualize object proffers multiple visualization techniques,380

encompassing the visualization of internal datasets within the model, heatmaps of coefficients, and the visualization
of spatial points. Figure 5 illustrates the spatial distribution of the dependent variable PM2.5 across the dataset.
Notably, PM2.5 concentrations are elevated in the North China and Xinjiang regions, in contrast to the relatively
lower levels observed in Yunnan and the northern reaches of Inner Mongolia.

>>> import gnnwr.utils as utils385

>>> visualizer = utils.Visualize(data=gnnwr,lon_lat_columns=['lng','lat'])

>>> visualizer.display_dataset(name='all',y_column='PM2_5')

The coefs_heatmap function facilitates the visual representation of the spatial distribution of independent variable
coefficients, thereby enriching our comprehension of the impact of individual independent variables on the dependent
variable across varying geographical contexts. Figure 6 depicts the distinctive spatial distribution patterns of AOD390

coefficients.

>>> visualizer.coefs_heatmap('coef_aod_sat')

Through these visualization techniques, we can perceptively comprehend the analysis outcomes of the model. They
offer abundant functionality that enables us to better understand the spatial behavior of the model and gain a more
profound insight into the model’s performance and spatial relationships.395

Concurrently, the visualization output of the Visualize object is in HTML format, permitting researchers to
manipulate the map via zooming, panning, and rotation. During the manipulation of the map, the visualization
of the data will alter according to the scale of the map. When the map scale is small, the points in the spatial

15

Figure 5. Schematic diagram
:::::::
Diagram

:
of the spatial distribution of PM2.5

:
.
::::::
Redder

::::::
points

::::::::
represent

:::::
higher

::::::
PM2.5

::::::
values.

Figure 6. Schematic diagram
:::::::
Diagram

:
of AOD coefficient distribution.

::::::
Darker

:::::
areas

:::::::
highlight

:::::::
regions

::::
with

::::::
strong

:::::::
positive

::::::::::
correlations,

:::::::::
indicating

::::
high

:::::
levels

::
of

:::::::::
particulate

:::::::
matter.

16

distribution are dense, necessitating the clustering and display of these points to preserve clarity. Conversely, when
the map scale is large, the information of the points at specific locations will be displayed. This facilitates detailed400

inspection and analysis of geographic data to cater to diverse research requirements.

3.2.4
:::::::
Saving

::::
and

::::::::
reusing

Upon the successful completion of training a model, the frequent need arises to reuse said model. To facilitate this
process, the model repository incorporates a dedicated load_model function, which is specifically purposed to reload
model files that were automatically saved during the training progression. Notably, the repository retains

:::::::::
maintains405

only the neural network-related components
:
,
::::::::::
specifically

:::
the

::::::
neural

::::::::
network

:::::::::::
architecture

:::
and

:::::::::::
parameters,

:
within the

model. Consequently, when reusing a model, the recommended sequence is as follows: initially, construct an instance
correspondent to the model’s architectural design, before subsequently calling the load_model method to import
the parameters and weights.

3.2.5
:::::::::::
Prediction410

Ultimately, we can employ the prediction method to forecast other datasets. Prior to generating predictions, it is
essential to transform the other datasets into the predictDataset class, which is integrated within the GNNWR
package. This transformation can be accomplished by utilizing the init_predict_dataset method. This method
computes the distance vectors between the features in the dataset to be predicted and the reference points, and
applies the identical scaling transformation to the independent variables as in the training dataset, guaranteeing the415

reliability of the prediction outcomes
:::
that

::::
the

:::::
input

:::
for

:::
the

::::::
model

::::::::
inference

:::::::
follows

:::
the

:::::
same

:::::::::
statistical

:::::::::::
distribution

::
of

:::
the

:::::::
training

:::::
data. The prediction method yields a Pandas’ DataFrame comprising the original data and the predicted

results. Moreover, when employing the GNNWR model for analysis, spatial weights are of paramount importance.
These weights signify the spatial variability of the influence of each independent variable on the dependent variable.
To acquire spatial weights, the predict_weight method can be utilized to output the pertinent information. Figure420

7 presents a geographical visualization of the GNNWR model’s predictive outcomes.

>>> from gnnwr.datasets import init_predict_dataset

>>> pred_dataset = init_predict_dataset(data = pred_data,

... train_dataset = train_set,

... x_column=x_column,425

... spatial_column=spatial_column)

>>> res = gnnwr.predict(pred_dataset)

17

Figure 7. Geospatial Visualization of GNNWR Model Predictions for PM2.5.
::::
Red

:::::
points

:::::::
indicate

::::::
higher

::::::
PM2.5

::::::::::
predictions;

:::
blue

::::::
points

:::::::
indicate

:::::
lower

::::::
PM2.5

::::::::::
predictions.

3.3
::::::
Usage

::::::::::
Example

:::
for

:
GTNNWR

The workflow of employing GTNNWR is largely akin to that of the GNNWR model. We exemplify this by utilizing
daily surface dissolved silicate (DSi) concentration data from the offshore waters of Zhejiang. This study utilized the430

GTNNWR approach to retrieve the distribution of coastal DSi concentrations, addressing the challenges posed by
spatiotemporal non-stationarity (Qi et al., 2023).

3.3.1
::::::::
Dataset

:::::::::::::
initialization

Similar to the GNNWR model, data preprocessing is essential when utilizing the GTNNWR model to acquire a data
format that the model can process as well. The GTNNWR model is specifically tailored for spatiotemporal data,435

wherein the regression coefficients perpetually vary in both space and time. Consequently, the data processed by the
model must possess spatiotemporal attributes. When employing the init_datasetfunction

::::::::
function, designating

the time data as the time dimension can generate valid input for the GTNNWR model. This function computes
the time distance vectors based on the distance calculation method specified by the temporal_fun parameter and
subsequently employs them as input features for each sampling point. The default time distance calculation method440

is the Manhattan distance.

>>> train_set, val_set, test_set = init_dataset(data=data,

18

... test_ratio=0.15,

... valid_ratio=0.1,

... x_column=x_column,445

... y_column=y_column,

... spatial_column=spatial_column,

... temp_column=temp_column)

3.3.2
::::::
Model

::::::::::::::
configuration

:::::
and

::::::::
running

GTNNWR is designed as a subclass incorporated within the the GNNWR package, inheriting from its foundational450

GNNWR class. As a result, it retains the same set of methods inherent to its superclass. The instantiation process
for the GTNNWR model closely mirrors that of GNNWR, with the primary difference lying in the input format
for hidden layers—a two-element two-dimensional list. This unique input configuration stems from GTNNWR’s
integration strategy, which involves employing a STPNN to compute spatiotemporal proximities and then feeding
these computations into a STWNN for determining spatiotemporal weights. Specifically, the first list in this input455

designates the hidden layer structure of STPNN, whereas the second list delineates the hidden layer architecture
pertaining to STWNN.

The GNNWR package features a novel learning rate adjustment mechanism that is employed by default in
conjunction with the SGD optimizer. The seminal paper on GTNNWR consistently utilizes this adjustment technique
throughout model training (Wu et al., 2021). The process commences with the minimum learning rate, progressively460

scaling in a stepwise fashion to the maximum learning rate, and then sustaining this peak rate for a designated
duration. Thereafter, the learning rate undergoes exponential decay until it reaches a predetermined threshold,
beyond which it is maintained at a lower fixed value . The adjustment mechanism’s hyperparameters encompass the
minimum and maximum learning rates, the decay rate, as well as the number of epochs dedicated to the growth,
stabilization, and the decay phase.465

The procedure for training an instantiated model with data, as well as the tasks of printing model metadata and
exhibiting the outcomes of training, aligns with the methodologies employed in the previous exemplar.

1: >>> gtnnwr = models.GTNNWR(train_set, val_set, test_set)

2: >>> gtnnwr.run(max_epoch = 5000,early_stop=200,print_frequency = 200)470

3:
:::
>>>

::::::::::::::::::
optimizer_params

::
=
::

{

4:
:::
...

::::::
"
::::::
maxlr

::
":

:::::::
0.025,

5:
:::
...

::::::
"
::::::
minlr

::
":

:::::::
0.010,

6:
:::
...

::::::
"
::::::::
upepoch

::
":

::::::
1000,

7:
:::
...

::::::
"
:::::::::::
decayepoch

::
":

::::::
2000,475

8:
:::
...

::::::
"
::::::::::
decayrate

::
":

:::::::
0.998,

9:
:::
...

::::::
"
::::::::::::::::::
stop_change_epoch

::
":

:::::::
5000,

19

10:
:::
...

::::::
"
::::::::
stop_lr

::
":

::::::
0.01,

11:
:::
...

::
}

12:
:::
>>>

::::::::
Layers

::
=

::::::
[[3],

:::::::
[1024,

::::::
512,

::::::::::::::::
256,128,64,32]]480

13:
:::
>>>

::::::::
gtnnwr

::
=

:::::::
models

:
.
::::::
GTNNWR

:
(
::::::::::
train_set

:
,
::::::::
val_set

:
,
::::::::::

test_set
:
,

14:
:::
...

::::::::::::::::::::::::::::::::
Layers

:
,

15:
:::
...

:::::::::::::::::::::::::::::::::::
optimizer

::
='

:::
SGD

::
',

16:
:::
...

::
optimizer_params

:
=
:::::::::::::::::
optimizer_params

:
,

17:
:::
...

::::::::::::::::::::::::::
#
::::::::::

drop_out
:::::
=0.3,485

18:
:::
...

::::::::::::::::::::::::::::::::::::
model_name

::
="

::::::::::
GTNNWR_DSi

:::
",

19:
:::
...

:::
model_save_path

::::
="./

::::::::::::
demo_result

:
/
::::::::::::::
gtnnwr_models

::
",

20:
:::
...

::::::::::::::::::::::::::::::::::
log_path

::::
="./

::::::::::::
demo_result

:
/

:::::::::::
gtnnwr_logs

:::
/",

21:
:::
...

::::::::::::::::::::::::::::::::::::
write_path

::::
="./

::
tf

:
-
::::
logs

:
/
::::::::::::
gtnnwr_runs

::
")

22:
:::
>>>

::::::::
gtnnwr

:
.

:::
run

:
(

:::::::::
max_epoch

::
=
:::::::

4000)490

23: >>> gtnnwr.result()

1: --------------------Model Information-----------------

2: Model Name: | GTNNWR_DSi495

3: independent variable: | ['refl_b01', 'refl_b02', 'refl_b03',

4: 'refl_b04', 'refl_b05', 'refl_b07']

5:
::::::::::::
independent

:::::::::
variable

:
:
::
|
:::

['
:::::::::
refl_b01

::
',

::
'
::::::::
refl_b02

::
',

:::
'

::::::::
refl_b03

::
',

::
'
:::::::::
refl_b04

::
',

::
'

::::::::
refl_b05

::
',

::
'
:::::::::
refl_b07

::
']

6: dependent variable: | ['SiO3']

7: %DIF >500

8: OLS coefficients:

9: x0: 6.84114

10: x1: 1.63606

11: x2: 0.11273

12: x3: -5.76276505

13: x4: 1.62136

14: x5: -2.69205

15: Intercept: 1.05858

16: %DIF >

17: --------------------Result Information----------------510

18: Test Loss: | 0.16295

19: Test R2 : | 0.69155

20: Train R2 : | 0.75372

20

21: Valid R2 : | 0.81317

22: RMSE: | 0.40367515

23: AIC: | 453.26982

24: AICc: | 453.26016

25: F1: | 0.19419

26: F2: | -8.26737

27: f3_param_0: | 27.48529520

28: f3_param_1: | 0.12909

29: f3_param_2: | 0.95790

30: f3_param_3: | 2.41443

31: f3_param_4: | 18.00247

32: f3_param_5: | 28.71637525

33: f3_param_6: | 271.65698

34:
::::
Test

:::::
Loss

::
:

::
|

:::::::::::::::::::::::::::
0.16574

35:
::::
Test

:::
R2

::::
:

::
|

:::::::::::::::::::::::::::
0.68628

36:
:::::
Train

:::
R2

:::
:

::
|

:::::::::::::::::::::::::::
0.71628

37:
:::::
Valid

:::
R2

:::
:

::
|

:::::::::::::::::::::::::::
0.75261530

38:
::::
RMSE

:
:
::

|
:::::::::::::::::::::::::::::::::

0.40711

39:
:::
AIC

:
:
:::

|
:::::::::::::::::::::::::::::::::

460.66438

40:
::::
AICc

:
:
::

|
:::::::::::::::::::::::::::::::::

463.34515

41:
::
F1

:
:
::::

|
:::::::::::::::::::::::::::::::::

0.22449

42:
::
F2

:
:
::::

|
:::::::::::::::::::::::::::::::::

-12.20421535

43:
:::::::::::
f3_param_0

:
:

::
|

::::::::::::::::::::::::::
27.02276

44:
:::::::::::
f3_param_1

:
:

::
|

::::::::::::::::::::::::::
0.12710

45:
:::::::::::
f3_param_2

:
:

::
|

::::::::::::::::::::::::::
0.94117

46:
:::::::::::
f3_param_3

:
:

::
|

::::::::::::::::::::::::::
2.37350

47:
:::::::::::
f3_param_4

:
:

::
|

::::::::::::::::::::::::::
17.69786540

48:
:::::::::::
f3_param_5

:
:

::
|

::::::::::::::::::::::::::
28.23304

49:
:::::::::::
f3_param_6

:
:

::
|

::::::::::::::::::::::::::
267.06781

According to various model indicators, utilizing neural networks to estimate the spatiotemporal non-stationarity
of DSi is indeed effective. The model successfully achieved an R2 value of 0.692 on the test set,

::::::
values

::
of

::::::
0.716,

:::::
0.752545

:::
and

:::::
0.686

:::
on

:::
the

::::::::
training,

:::::::::
validation

::::
and

::::::
testing

::::
set,

:::::::::::
respectively, effectively reconstructing the distribution of silicate

in the offshore waters of Zhejiang.
::
As

:::::::::
indicated

:::
by

::::::
Figure

::
8,

::::
such

:::::::::::
coefficients

::
of

:::::::::::::
determination

:::
are

:::::
much

::::::
higher

:::::
than

:::::
those

::
of

::::::::::
traditional

::::::
models

::::
like

::::
OLS

::::
and

:::::::
GTWR

:::::::::::::
(implemented

::::
with

::::
the

::::::
mgtwr

:::::::
package

:::
by

::::
Sun,

:::::::
version

::::::
2.0.5);

:::::
also,

21

:::
the

::::::::
residuals

::
of

::::::::::
GTNNWR

:::
are

::::::::
generally

:::::::
smaller

::::
than

:::::
OLS

::::
and

:::::::
GTWR.

::::::
These

::::::::::
outstanding

::::::::::::
performances

::::::::::::
demonstrate

:::::::::::
GTNNWR’s

::::::::
superior

:::::::::::
performance

::
in

:::::::::
capturing

::::
the

::::::::::::::
spatiotemporal

::::::::::::::
non-stationarity

:::
of

:::
DSi

::::::::::::::
concentrations.

:
550

R2=0.134 R2=0.635 R2=0.716

-4
-2

0
2

4
6

re
si

du
al

OLS GTWR GTNNWR

Figure 8.
:::
The

:::::::
residual

:::::::::::
distributions

::::
and

::
R2

::::::::
indicator

:::
for

:::::
OLS,

::::::
GTWR

::::
and

:::::::::
GTNNWR

:::
on

::::
DSi

:::::::
dataset.

3.3.3
:::::::
Result

::::
and

:::::::::::::
visualization

In order to investigate the variability of coefficients for distinct variables across different samples, one can leverage
the reg_result function to achieve this goal. The function computes and systematically arranges each sample’

:
’s

coefficient values into a Pandas’ DataFrame format, thereby outputting the results. With the resultant coefficient
matrix in hand, researchers can then conduct targeted analyses pertinent to specific spatial processes. For instance,555

we can visualize the coefficients of each variable by employing time and space as three-dimensional coordinate axes
(Figure 9). This enables us to directly observe the relationship between the bands of remote sensing images and
silicate concentrations at different spatial locations. By integrating relevant prior knowledge, we can interpret the
outcomes of the model.

4 Conclusions560

This study introduces the GNNWR package, a Python-based model repository designed to facilitate spatiotemporal
intelligent regression modeling. The package is constructed on PyTorch, a widely employed deep learning frame-
work, and affords a comprehensive workflow for simulating geographical processes characterized by spatiotemporal
non-stationarity. The GNNWR package optimizes intricate procedures encompassing data preprocessing, network
architecture formulation, model training, and result computation, thereby enhancing user accessibility. It enables in-565

22

Figure 9. Visualization results of model
:::::
Model

:
coefficients

::
in

::
a

:::
3D

:::::::::
space-time

:::::::::
coordinate

:::::::
system.

:::::
Blue

::::
dots

::::::::
represent

::
a

::::::
greater

:::::::
positive

::::
effect

::
of
::::

the
:::::::
variable

::
on

::::::
silicate

::::::::::::
concentration;

::::::
lighter

::::
dots

::::::::
represent

::
a
::::::
smaller

::::::
effect.

dividuals with limited programming expertise to quickly master the application of pertinent models such as GNNWR
and GTNNWR for the estimation of spatiotemporal non-stationary processes.

The GNNWR model family exhibits substantial promise in addressing spatiotemporal non-stationarity, effectively
capturing complex nonlinear relationships inherent in the interplay between spatiotemporal proximity and non-stationary
weights. Employing advanced neural network techniques, these models enhance the precision of discerning spatiotemporal570

non-stationary features. Additionally, the exploration of spatiotemporal non-stationarity facilitates an in-depth
examination of spatial analytical patterns and the underlying mechanisms governing geographical processes. The
GNNWR and GTNNWR models empower researchers to derive more accurate and reliable insights across diverse
domains within the context of geographical information

::::
The

:::::::::
integrated

::::::::::::
visualization

:::::::::::::
functionalities

:::::::
further

::::::::
augment

:::
the

:::::::::
package’s

::::::
utility,

::::::::
allowing

:::::
users

::
to

:::::::::
interpret

::::::
model

::::::::
outcomes

::::
and

:::::
their

:::::::
spatial

:::::::::::
relationships

:::::
more

::::::::::
effectively.

:
575

::::::::
However,

:::
the

:::::::::
GNNWR

:::::::
package

::
is

:::
not

:::::::
without

:::::::::::
limitations.

::::
The

::::::::
GNNWR

::::
and

::::::::::
GTNNWR

::::::
models

:::
are

:::::::::::::::
computationally

::::::::
intensive,

:::::::::::
particularly

:::
for

:::::
large

::::::::
datasets.

:::::
Also,

:::::::
training

::::::
neural

::::::::
networks

::::::::
requires

::::::::::
substantial

:::::::::::::
computational

:::::::::
resources,

:::::
which

::::
may

:::::
limit

:::::::::::
accessibility

:::
for

:::::
some

::::::
users.

::::::
Future

::::::
works

::::::
should

:::::
focus

:::
on

::::::::::
optimizing

::::
the

:::::::::::::
computational

:::::::::
efficiency,

::::::::::::
implementing

:::::::
parallel

::::::::::
processing

:::::::::
techniques

::::
and

::::::::::
optimizing

::::
the

::::::
model

:::::::::::
architecture

:::
are

:::::::::
potential

::::::::
methods

::::
that

::::
can

::::::::::
significantly

:::::::
reduce

:::::::::::
computation

::::::
times.

:::::
Data

::::::::
handling

:
is
::::::::
another

::::
area

::::
that

:::
can

:::
be

:::::::::
improved,

::::::::::::
incorporating

::::::::::
techniques580

23

::
for

::::::::::::::
spatiotemporal

::::
data

:::::::::::::
augmentation

:::
and

:::::::::::::
pre-processing

::::
can

:::::
make

:::
the

:::::::
models

:::::
more

::::::
robust

:::
and

::::::::::
applicable

::
to

:
a
::::::
wider

:::::
range

::
of

::::::::
datasets.

The
:::::::
Besides,

::::
the scholarly understanding of spatiotemporal non-stationarity is progressing, driving the continual

evolution of GNNWR-based models and the emergence of diverse derivatives, such as geographically convolutional
neural network weighted regression (?)

:::::::::::::::
(Dai et al., 2022) and directional geographically weighted neural network585

Regression (?)
::::::::::::::
(Wu et al., 2019). These model variants have substantially augmented the functionalities of GNNWR

across various dimensions. Moving forward, we are committed to enhancing the model library by leveraging the
current framework and integrating a variety of network and data architectures to create novel extension models. This
expansion will enhance the package’s capability to incorporate a wide range of modeling techniques for addressing
spatiotemporal non-stationarity. Consequently, this broadening of capabilities will extend the applicability of the590

models, encompassing a more comprehensive array of spatiotemporal analytical approaches.

Code and data availability. The GNNWR package version used in this article is 0.1.11, which can be found at https://pypi.
python.org/pypi/gnnwr. The project’s hosting and development are both ongoing on https://github.com/zjuwss/gnnwr (Yin
et al., 2024a)(https://doi.org/10.5281/zenodo.10890176), and the relevant documents can be found at https://gnnwr.github.
io.All the examples mentioned in this article, supported by research papers, can be retrieved from Yin et al. (2024b)(https:595
//doi.org/10.5281/zenodo.13270526). We strongly encourage readers to replicate, adapt, and undertake additional experiments
using this open-source package.

Author contributions. YZY, DJL, LY, QJ, and WSS initially developed the package and spearheaded its subsequent evolution.
Notably, substantial code enhancements were made by YZY, DJL, LY, WRX, WYG, QJ, CYJ, WSS, and DZH. Each author
actively participated in the design discourse and offered critical feedback on the evolving codebase. The manuscript was600
primarily composed by YZY, WRX, and WYG, with substantive input from all co-authors.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This work was supported by the National Natural Science Foundation of China (grant 42271466[
:::
No.

:::::::
42225605, 42001323, 423B1001)], National Key Research and Development Program of China (grant [

::
No.

:
2021YFB3900902)],

Provincial Key R&D Program of Zhejiang (grant [
:::
No. 2021C01031)], Fundamental Research Funds for the Central Universities605

(grant [
:::
No. 2022FZZX01-05)]. This work was also supported by the Deep-time Digital Earth (DDE) Big Science Program and

the Earth System Big Data Platform of the School of Earth Sciences, Zhejiang University.

24

https://pypi.python.org/pypi/gnnwr
https://pypi.python.org/pypi/gnnwr
https://pypi.python.org/pypi/gnnwr
https://github.com/zjuwss/gnnwr
https://doi.org/10.5281/zenodo.10890176
https://gnnwr.github.io
https://gnnwr.github.io
https://gnnwr.github.io
https://doi.org/10.5281/zenodo.13270526
https://doi.org/10.5281/zenodo.13270526
https://doi.org/10.5281/zenodo.13270526

References

Ahadnejad Reveshty, M., Heydari, M. T., and Tahmasebimoghaddam, H.: Spatial Analysis of the Factors Impacting on the
Spread of Covid-19 in the Neighborhoods of Zanjan, Iran, Spatial Information Research, https://doi.org/10.1007/s41324-610
023-00550-0, 2023.

Bivand, R. and Yu, D.: spgwr: Geographically Weighted Regression, https://cran.r-project.org/package=spgwr, 2023.
Brunsdon, C., Fotheringham, A. S., and Charlton, M. E.: Geographically Weighted Regression: A Method for Exploring Spatial

Nonstationarity, Geographical Analysis, 28, 281–298, https://doi.org/https://doi.org/10.1111/j.1538-4632.1996.tb00936.x,
1996.615

Brunsdon, C., Fotheringham, A. S., and Charlton, M.: Some Notes on Parametric Significance Tests for Geographically
Weighted Regression, Journal of Regional Science, 39, 497–524, https://doi.org/https://doi.org/10.1111/0022-4146.00146,
1999.

Chen, Y., Wu, S., Wang, Y., Zhang, F., Liu, R., and Du, Z.: Satellite-Based Mapping of High-Resolution Ground-Level
PM2.5 with VIIRS IP AOD in China through Spatially Neural Network Weighted Regression, Remote Sensing, 13,620
https://doi.org/10.3390/rs13101979, 2021.

Dai, Z., Wu, S., Wang, Y., Zhou, H., Zhang, F., Huang, B., and Du, Z.: Geographically Convolutional Neural Network Weighted
Regression: A Method for Modeling Spatially Non-Stationary Relationships Based on a Global Spatial Proximity Grid,
International Journal of Geographical Information Science, 36, 2248–2269, https://doi.org/10.1080/13658816.2022.2100892,
2022.625

Du, Z.: GNNWR Code and Simulated Data, https://doi.org/10.6084/m9.figshare.11375826, 2019.
Du, Z., Wang, Z., Wu, S., Zhang, F., and Liu, R.: Geographically neural network weighted regression for the ac-

curate estimation of spatial non-stationarity, International Journal of Geographical Information Science, 34, 1–25,
https://doi.org/10.1080/13658816.2019.1707834, 2020a.

Du, Z., Wu, S., Wang, Z., Wang, Y., Zhang, F., and Liu, R.: Estimating Ground-Level PM2.5 Concentrations Across630
China Using Geographically Neural Network Weighted Regression, Journal of Geo-information Science, 22, 122,
https://doi.org/10.12082/dqxxkx.2020.190533, 2020b.

Du, Z., Qi, J., Wu, S., Zhang, F., and Liu, R.: A Spatially Weighted Neural Network Based Water Qual-
ity Assessment Method for Large-Scale Coastal Areas, Environmental Science & Technology, 55, 2553–2563,
https://doi.org/10.1021/acs.est.0c05928, 2021.635

Fotheringham, A. S., Crespo, R., and Yao, J.: Geographical and Temporal Weighted Regression (GTWR), Geographical
Analysis, 47, 431–452, https://doi.org/https://doi.org/10.1111/gean.12071, 2015.

Fotheringham, A. S., Yang, W., and Kang, W.: Multiscale Geographically Weighted Regression (MGWR), Annals of the
American Association of Geographers, 107, 1247–1265, https://doi.org/10.1080/24694452.2017.1352480, 2017.

Georganos, S. and Kalogirou, S.: A Forest of Forests: A Spatially Weighted and Computationally Efficient Formulation of640
Geographical Random Forests, ISPRS International Journal of Geo-Information, 11, https://doi.org/10.3390/ijgi11090471,
2022.

25

https://doi.org/10.1007/s41324-023-00550-0
https://doi.org/10.1007/s41324-023-00550-0
https://doi.org/10.1007/s41324-023-00550-0
https://cran.r-project.org/package=spgwr
https://doi.org/https://doi.org/10.1111/j.1538-4632.1996.tb00936.x
https://doi.org/https://doi.org/10.1111/0022-4146.00146
https://doi.org/10.3390/rs13101979
https://doi.org/10.1080/13658816.2022.2100892
https://doi.org/10.6084/m9.figshare.11375826
https://doi.org/10.1080/13658816.2019.1707834
https://doi.org/10.12082/dqxxkx.2020.190533
https://doi.org/10.1021/acs.est.0c05928
https://doi.org/https://doi.org/10.1111/gean.12071
https://doi.org/10.1080/24694452.2017.1352480
https://doi.org/10.3390/ijgi11090471

Guo, B., Wang, X., Pei, L., Su, Y., Zhang, D., and Wang, Y.: Identifying the Spatiotemporal Dynamic of PM2.5 Concentrations
at Multiple Scales Using Geographically and Temporally Weighted Regression Model Across China During 2015-2018,
Science of The Total Environment, 751, https://doi.org/10.1016/j.scitotenv.2020.141765, 2021.645

Hagenauer, J. and Helbich, M.: A Geographically Weighted Artificial Neural Network, International Journal of Geographical
Information Science, 36, 215–235, https://doi.org/10.1080/13658816.2021.1871618, 2022.

Han, L., Zhou, W., and Li, W.: Fine Particulate PM 2.5 Dynamics During Rapid Urbanization in Beijing, 1973–2013, Scientific
Reports, 6, srep23 604, https://doi.org/10.1038/srep23604, 2016.

He, J., Wei, Y., and Yu, B.: Geographically Weighted Regression Based on a Network Weight Matrix: A Case Study Using650
Urbanization Driving Force Data in China, International Journal of Geographical Information Science, 37, 1209–1235,
https://doi.org/10.1080/13658816.2023.2192122, 2023.

He, Q. and Huang, B.: Satellite-Based Mapping of Daily High-Resolution Ground PM2.5 in China via Space-Time Regression
Modeling, Remote Sensing of Environment, 206, 72–83, https://doi.org/10.1016/j.rse.2017.12.018, 2018.

Huang, B., Wu, B., and Barry, M.: Geographically and Temporally Weighted Regression for Modeling Spatio-655
Temporal Variation in House Prices, International Journal of Geographical Information Science, 24, 383–401,
https://doi.org/10.1080/13658810802672469, 2010.

Leung, Y., Mei, C.-L., and Zhang, W.-X.: Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted
Regression Model, Environment and Planning A: Economy and Space, 32, 9–32, https://doi.org/10.1068/a3162, 2000.

Lewandowska-Gwarda, K.: Geographically Weighted Regression in the Analysis of Unemployment in Poland, ISPRS Interna-660
tional Journal of Geo-Information, 7, https://doi.org/10.3390/ijgi7010017, 2018.

Liang, M., Zhang, L., Wu, S., Zhu, Y., Dai, Z., Wang, Y., Qi, J., Chen, Y., and Du, Z.: A High-Resolution Land Surface
Temperature Downscaling Method Based on Geographically Weighted Neural Network Regression, Remote Sensing, 15,
https://doi.org/10.3390/rs15071740, 2023.

Liu, C., Wu, S., Dai, Z., Wang, Y., Du, Z., Liu, X., and Qiu, C.: High-Resolution Daily Spatiotemporal Distribution and665
Evaluation of Ground-Level Nitrogen Dioxide Concentration in the Beijing–Tianjin–Hebei Region Based on
TROPOMI Data, Remote Sensing, 15, https://doi.org/10.3390/rs15153878, 2023.

Lu, B., Charlton, M., Harris, P., and Fotheringham, A. S.: Geographically Weighted Regression with a Non-Euclidean Distance
Metric: A Case Study Using Hedonic House Price Data, International Journal of Geographical Information Science, 28,
660–681, https://doi.org/10.1080/13658816.2013.865739, 2014.670

Lu, B., Harris, P., Charlton, M., Brunsdon, C., Nakaya, T., Murakami, D., Gollini, I., Hu, Y., and Evans, F. H.: GWmodel:
Geographically-Weighted Models, http://gwr.nuim.ie/, 2024.

Ma, X., Zhang, J., Ding, C., and Wang, Y.: A Geographically and Temporally Weighted Regression Model to Explore the
Spatiotemporal Influence of Built Environment on Transit Ridership, Computers, Environment and Urban Systems, 70,
113–124, https://doi.org/10.1016/j.compenvurbsys.2018.03.001, 2018.675

McKinney, W. et al.: Data Structures for Statistical Computing in Python, Austin, TX, 2010.
Ni, S., Wang, Z., Wang, Y., Wang, M., Li, S., and Wang, N.: Spatial and Attribute Neural Network Weighted Regres-

sion for the Accurate Estimation of Spatial Non-Stationarity, ISPRS International Journal of Geo-Information, 11, 620,
https://doi.org/10.3390/ijgi11120620, 2022.

26

https://doi.org/10.1016/j.scitotenv.2020.141765
https://doi.org/10.1080/13658816.2021.1871618
https://doi.org/10.1038/srep23604
https://doi.org/10.1080/13658816.2023.2192122
https://doi.org/10.1016/j.rse.2017.12.018
https://doi.org/10.1080/13658810802672469
https://doi.org/10.1068/a3162
https://doi.org/10.3390/ijgi7010017
https://doi.org/10.3390/rs15071740
https://doi.org/10.3390/rs15153878
https://doi.org/10.1080/13658816.2013.865739
http://gwr.nuim.ie/
https://doi.org/10.1016/j.compenvurbsys.2018.03.001
https://doi.org/10.3390/ijgi11120620

Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., and Fotheringham, A. S.: mgwr: A Python Implementation of Multiscale680
Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale, https://pypi.org/project/
mgwr/, accessed from the ISPRS International Journal of Geo-Information, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: Advances in Neural685
Information Processing Systems, vol. 32, Curran Associates, Inc., https://papers.nips.cc/paper_files/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html, 2019.

Qi, J., Du, Z., Wu, S., Chen, Y., and Wang, Y.: A Spatiotemporally Weighted Intelligent Method for Exploring Fine-
Scale Distributions of Surface Dissolved Silicate in Coastal Seas, Science of The Total Environment, 886, 163 981,
https://doi.org/10.1016/j.scitotenv.2023.163981, 2023.690

Shen, Y., de Hoogh, K., Schmitz, O., Clinton, N., Tuxen-Bettman, K., Brandt, J., Christensen, J. H., Frohn, L. M., Geels, C.,
Karssenberg, D., Vermeulen, R., and Hoek, G.: Europe-Wide Air Pollution Modeling from 2000 to 2019 Using Geographically
Weighted Regression, Environment International, 178, https://doi.org/10.1016/j.envint.2023.108111, 2023.

Sisman, S. and Aydinoglu, A. C.: A Modelling Approach with Geographically Weighted Regression Methods for Deter-
mining Geographic Variation and Influencing Factors in Housing Price: A Case in Istanbul, Land Use Policy, 119,695
https://doi.org/10.1016/j.landusepol.2022.106183, 2022.

Stein, R. E., Conley, J. F., and Davis, C.: The Differential Impact of Physical Disorder and Collective Efficacy: A Geo-
graphically Weighted Regression on Violent Crime, GeoJournal, 81, 351–365, https://doi.org/10.1007/s10708-015-9626-6,
2015.

Sun, K.: mgtwr, https://pypi.org/project/mgtwr, 2024.700
Team, R. C.: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna,

Austria, https://www.R-project.org/, 2017.
van Rossum, G.: Python Programming Language, https://www.python.org/, 2011.
Wang, Y., Niu, Y., Li, M., Yu, Q., and Chen, W.: Spatial Structure and Carbon Emission of Urban Agglomerations: Spatiotem-

poral Characteristics and Driving Forces, Sustainable Cities and Society, 78, https://doi.org/10.1016/j.scs.2021.103600,705
2022.

Wheeler, D.: Fits Geographically Weighted Regression Models with Diagnostic Tools, https://cran.r-project.org/package=
gwrr, 2022.

Wu, J., Xia, L., Chan, T., Awange, J., and Zhong, B.: Downscaling Land Surface Temperature: A Framework Based on
Geographically and Temporally Neural Network Weighted Autoregressive Model with Spatio-Temporal Fused Scaling Fac-710
tors, ISPRS Journal of Photogrammetry and Remote Sensing, pp. 259–272, https://doi.org/10.1016/j.isprsjprs.2022.03.009,
2022.

Wu, S.: Simulated datasets and codes of GTNNWR, https://doi.org/10.6084/m9.figshare.12355472.v1, 2020.
Wu, S., Du, Z., Wang, Y., Lin, T., and Liu, R.: Modeling Spatially Anisotropic Nonstationary Processes in Coastal Envi-

ronments Based on a Directional Geographically Neural Network Weighted Regression, Science of The Total Environment,715
709, 136 097, https://doi.org/10.1016/j.scitotenv.2019.136097, 2019.

27

https://pypi.org/project/mgwr/
https://pypi.org/project/mgwr/
https://pypi.org/project/mgwr/
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1016/j.scitotenv.2023.163981
https://doi.org/10.1016/j.envint.2023.108111
https://doi.org/10.1016/j.landusepol.2022.106183
https://doi.org/10.1007/s10708-015-9626-6
https://pypi.org/project/mgtwr
https://www.R-project.org/
https://www.python.org/
https://doi.org/10.1016/j.scs.2021.103600
https://cran.r-project.org/package=gwrr
https://cran.r-project.org/package=gwrr
https://cran.r-project.org/package=gwrr
https://doi.org/10.1016/j.isprsjprs.2022.03.009
https://doi.org/10.6084/m9.figshare.12355472.v1
https://doi.org/10.1016/j.scitotenv.2019.136097

Wu, S., Wang, Z., Du, Z., Huang, B., Zhang, F., and Liu, R.: Geographically and Temporally Neural Network Weighted
Regression for Modeling Spatiotemporal Non-stationary Relationships, International Journal of Geographical Information
Science, 35, 582–608, https://doi.org/10.1080/13658816.2020.1775836, 2021.

Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., and Zhang, L.: The Relationships Between PM2.5 and Aerosol Optical Depth720
(AOD) in Mainland China: About and Behind the Spatio-Temporal Variations, Environmental Pollution, 248, 526–535,
https://doi.org/10.1016/j.envpol.2019.02.071, 2019.

Yang, Y., Wang, H., Qin, S., Li, X., Zhu, Y., and Wang, Y.: Analysis of Urban Vitality in Nanjing Based on a Plot
Boundary-Based Neural Network Weighted Regression Model, ISPRS International Journal of Geo-Information, 11, 624,
https://doi.org/10.3390/ijgi11120624, 2022.725

Yin, Z., Ding, J., Liu, Y., Wang, R., Wang, Y., Qi, J., Chen, Y., Wu, S., and Du, Z.: GNNWR v0.1.11: A Python package
for modeling spatial temporal non-stationary, https://doi.org/10.5281/zenodo.10890176, 2024a.

Yin, Z., Ding, J., Liu, Y., Wang, R., Wang, Y., Qi, J., Chen, Y., Wu, S., and Du, Z.: Replication package for GNNWR v0.1.11:
A Python package for modeling spatial temporal non- stationary, https://doi.org/10.5281/zenodo.13270526, 2024b.

28

https://doi.org/10.1080/13658816.2020.1775836
https://doi.org/10.1016/j.envpol.2019.02.071
https://doi.org/10.3390/ijgi11120624
https://doi.org/10.5281/zenodo.10890176
https://doi.org/10.5281/zenodo.13270526

