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Abstract. Surface ozone (O3) is the primary air pollutant threatening global vegetation. It typically 

reduces photosynthetic rate and stomatal conductance, leading to changes in carbon, water, and energy 

cycles, vegetation structure and composition, and climate. Several parameterization schemes have been 

developed to integrate the photosynthetic and stomatal responses to O3 exposure in regional and global 

process-based models to simulate time- and space-varying O3 plant damage and its cascading dynamic 5 

influence. However, these schemes are calibrated based on limited observations and often fail to 

reproduce the response relationships in observations, impeding accurate assessments of the role of O3 

plant damage in the Earth system. This study proposes a new parameterization scheme to utilize the 
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extensive observations from O3 fumigation experiments to inform large-scale modeling. It is built on 

4210 paired data points of photosynthetic and stomatal responses compiled from peer-reviewed literature, 10 

over six times larger than those employed in earlier schemes. Functions of phytotoxic O3 dose (POD) are 

found to accurately reproduce the statistically significant linear or nonlinear relationships observed 

between POD and either relative leaf photosynthetic rate or relative stomatal conductance for needleleaf 

trees, broadleaf trees, shrubs, grasses, and crops. These eliminate the practice in earlier schemes of setting 

response functions as constants and applying the response function from one vegetation type to another. 15 

It outperforms the old scheme in the Community Land Model (CLM) which skillfully reproduces the 

observed response for crop photosynthetic rate only. The nonlinear response functions we developed 

depict decreasing plant sensitivity with increases in POD, enabling models to implicitly capture the 

variability in plant ozone tolerance and the shift among plant species for both intra- and inter-PFT within 

a vegetation type observed in the real world. Then, the new scheme is incorporated into the Community 20 

Earth System Model version 2.2 (CESM2.2), specifically its land component CLM5, to quantify the 

global impacts of present-day O3 plant damage by comparing the simulations with and without O3 plant 

damage. Results show that O3 exposure reduces the global leaf photosynthetic rate by 8.5% and stomatal 

conductance by 7.4%, around half the estimates using the old scheme. Furthermore, the new scheme 

improves global GPP simulations, decreasing RMSE by 11.1% relative to simulations without O3 plant 25 

damage and by 11.7% compared to the old scheme. These results underscore the importance of including 

O3 plant damage in large-scale process-based models and the effectiveness of the new scheme in global 

assessing and projecting the role of O3 plant damage in the Earth system. 

 

1 Introduction 30 

Surface ozone (O3) is a major air pollutant damaging natural and managed ecosystems worldwide 

(Reich 1987; Ainsworth et al., 2012; Gribacheva and Gecheva, 2019; Feng et al., 2021). It is mainly 

formed through complex photochemical reactions among nitrogen oxides (NOx), volatile organic 

compounds (VOCs), methane (CH4), and carbon monoxide (CO) (Chameides et al., 1988; Ainsworth et 

al., 2012). The rapid pace of industrialization and urbanization has led to increased emissions of these 35 

precursors and climate warming, both contributing to a dramatic surge in global O3 levels, with an 

increase of 32−71% since 1850 (Griffiths et al., 2021; Szopa et al., 2021; Tarasick et al., 2019). If 
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climate mitigation and pollutant control efforts remain weak, this alarming upward trend is projected to 

persist (Turnock et al., 2020; Griffiths et al., 2021). 

Over the past decades, extensive O3 fumigation experiments have been conducted across various 40 

plant species to quantify the harmful effects of ozone on plant physiological processes and to understand 

the underlying mechanisms (CLRTAP, 2017). They found that O3 generally reduces leaf photosynthetic 

rate, which occurs mainly by decreasing the Rubisco enzyme content and activity and chlorophyll content 

in the chloroplast, altering chloroplast structure, impairing the electron transport chain, and decreasing 

both mesophyll conductance and stomatal conductance (Lombardozzi et al., 2013; CLRTAP, 2017; Zhou 45 

et al., 2017; Xu et al., 2023). The O3-induced decrease in stomatal conductance is primarily due to 

abscisic acid-triggered Ca2+ entry into the guard cells (Pei et al., 2000; Wilkinson and Davies, 2010), 

inhibition of K+ channels (Tran et al., 2013), disruption of signal transduction pathways (Wilkinson and 

Davies, 2010;  Astier et al., 2017; Hassan et al., 2021), an increase in internal leaf CO2 (Herbinger et al., 

2007), and, over the long term, damage to the stomatal apparatus (Kangasjärvi et al., 2005; Reich, 1987). 50 

The changes in leaf photosynthetic rate and stomatal conductance have cascading biological, physical, 

and chemical effects on the carbon, water, and energy fluxes of terrestrial ecosystems (Sitch et al., 2007; 

Lombardozzi et al., 2015; Unger et al., 2020; Ma et al., 2023). These effects can further slow plant growth, 

alter vegetation structure and composition, and reduce crop yield and timber production (Mills et al., 

2013; Fuhrer et al., 2016; Tai et al., 2014, 2021; CLRTAP, 2017; Agathokleous et al., 2020; Sharps et al., 55 

2022; Feng et al., 2022), as well as modify surface climate and atmospheric composition (Ainsworth et 

al., 2012; Sadiq et al., 2017; Arnold et al., 2018; Zhu et al., 2022).  

Three major parameterization schemes (Felzer et al., 2004; Sitch et al., 2007; Lombardozzi et al., 

2015) have been proposed and used in process-based models for regional and global simulations of time- 

and space-varying O3 plant damage. These process-based models can be land surface models, Dynamic 60 

Global Vegetation Models (DGVMs), Global Gridded Crop Models (GGCMs), and Earth System 

Models (ESMs) (Tian et al., 2010; Clark et al., 2011; Lombardozzi et al., 2013; Val Martin et al., 2014; 

Lawrence et al., 2019; Emberson et al., 2022). To ensure inter-process harmonization and dynamic 

modeling of the downstream impacts resulting from the damage, these schemes consider O3 effects on 

photosynthetic rate and stomatal conductance. This is,  different from unlike Integrated Assessment 65 

Models (IAMs) (CLRTAP, 2017) that jump to estimate the influence of O3 on crop yield and timber 

production directly and bypass O3 impacts on all processes before harvest. In these schemes, the global 

https://www.researchgate.net/profile/Evgenios-Agathokleous?utm_content=businessCard&utm_source=publicationDetail&rgutm_meta1=AC%3A3569118&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InByb2ZpbGUiLCJwYWdlIjoicHVibGljYXRpb24iLCJwcmV2aW91c1BhZ2UiOiJwdWJsaWNhdGlvbiJ9fQ
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photosynthetic and stomatal responses are categorized by several vegetation types (needleleaf trees, 

broadleaf trees, grasses, shrubs, and crops) operating within a unified framework yet differentiated by 

parameters. The parameters are obtained from synthetic analysis of observations to ensure robustness 70 

and representativeness, aligning with utilizing big data to inform big ecology concepts in microsystems 

research (Reichman et al., 2011; Soranno and Schimel, 2014) and the construction principles of large-

scale process-based modeling (Bonan, 2019). 

Felzer et al. (2004) developed a parameterization scheme based on the O3 response relationships 

established by Reich (1987) for needleleaf trees and crops and Ollinger et al. (1997, 2002) for broadleaf 75 

trees, and applied it to the Terrestrial Ecosystem Model (TEM). In this scheme, the photosynthetic 

response for the current month was a function of the product of stomatal conductance and AOT40 

(accumulated ozone exposure in ppb-hr over an hourly concentration threshold of 40 ppb in daylight 

hours). To address the persistent damage resulting from past ozone exposure during the lifespan of a 

leaf, Felzer et al. (2004) compounded the current month's ozone effect with that of the previous month. 80 

This scheme was later incorporated into the Dynamic Land Ecosystem Model (DLEM), with 

adjustments made to the time step shifting from a monthly to a daily resolution (Ren et al., 2007; Tian 

et al., 2010). However, it should be noted that the product of stomatal conductance and AOT40 lacks 

quantitative physical interpretation and fails to account for the impact of chronic ozone exposure at O3 

concentrations below 40 ppb. 85 

PODY (phytotoxic O3 dose over a flux threshold of Y nmol O3 m−2 s−1) has become increasingly 

used in observational studies due to its clear biophysical interpretation (the cumulative stomatal uptake 

of ozone), comprehensive consideration of stomatal conductance, ozone concentration, and ozone 

exposure duration, as well as generally stronger correlation with ozone effects than AOT40 (Karlsson 

et al., 2004; Pleijel et al., 2004, 2022). Correspondingly, Sitch et al. (2007, hereafter S07) proposed a 90 

scheme in which upper and lower thresholds of photosynthetic response to O3 were a function of 

instantaneous ozone flux, and the photosynthetic response parameters were derived using an inverse 

method to fit the observed relationship of PODY with crop yield (Pleijel et al., 2004) and needleleaf and 

broadleaf tree biomass (Karlsson et al., 2004). The scheme was developed in the land surface model 

MOSES-TRIFFID (Met Office Surface Exchange Scheme-Top-down Representation of Interactive 95 

Foliage and Flora Including Dynamics) (Sitch et al., 2007), and subsequently used in JULES (Joint UK 

Land Environment Simulator, successor of MOSES-TRIFFID) (Clark et al., 2011; Oliver et al., 2018) 
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and the DGVM YIBs (Yale Interactive terrestrial Biosphere model) (Yue and Unger, 2015, developed 

based on TRIFFID and CASA). However, S07 has several limitations. First, due to a lack of 

observational data collection and analyses, S07 applied crop and broadleaf tree response functions to 100 

grasses and shrubs, respectively. Second, the photosynthetic response parameters derived through the 

inverse method based on an observed relationship of PODY with yield or biomass rather than with 

photosynthesis directly are likely biased, influenced by uncertainties in simulating the processes (e.g., 

respiration, allocation, and phenology) and environmental variables such as soil moisture between 

photosynthesis and harvest. Third, because the estimated parameters are model-dependent, applying 105 

them directly to non-TRIFFID models may reduce the accuracy of O3 damage simulations. Fourth, S07 

models the upper and lower response thresholds, rather than the optimal representation as other 

processes adopted. Lastly, S07 assumed the response function to be the same for photosynthetic rate 

and stomatal conductance, contradicting the increasing observations that chronic ozone exposure 

decouples stomatal conductance and photosynthetic rate (Tjoekler et al., 1995; Wittig et al., 2007; 110 

Lombardozzi et al., 2012; Kinose et al., 2020). 

To address these limitations, Lombardozzi et al. (2013, 2015) developed a scheme (hereafter L15) 

that adopted different functions of PODY for photosynthetic and stomatal response, based on 652 paired 

data points of PODY and relative photosynthetic rate/stomatal conductance compiled from the peer-

reviewed literature. The scheme was implemented in the land surface model CLM5 (Community Land 115 

Model), the land component of the Community Earth system model version 2.2 (CESM2.2) (Lawrence 

et al., 2019). However, since the response function was assumed to be linear, L15 found a skillful 

(regression statistically significant at the 0.05 level) response function for only crop photosynthetic rate 

and temperate evergreen tree stomatal conductance. For other vegetation types, a constant (intercept of 

the linear regression) was employed (see Appendix), resulting in a fixed simulated ozone effect 120 

regardless of PODY change. Furthermore, similar to S07, L15 applied the response functions of trees 

and crops to shrubs and grasses due to no observations collected and no significant linear fitting found, 

respectively.   

In this study, we propose a novel parameterization scheme, in which the photosynthetic and 

stomatal response functions are built upon 4210 paired data points collected from experimental 125 

measurements reported in peer-reviewed literature. The sample size is over six times that of L15 and 23 

times that of S07. Furthermore, we remove the linear assumption employed in prior schemes, and 
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identify 2-parameter linear or nonlinear functions of PODY to capture the statistically significant 

response relationship in observations for broadleaf trees, needleleaf trees, shrubs, grasses, and crops, 

respectively. We then apply this scheme to CESM2.2’s land component CLM5 to quantify the global 130 

impact of present-day ozone exposure on the total, spatial distribution, and seasonality of leaf 

photosynthetic rate and stomatal conductance. In addition, given the close relationship of gross primary 

productivity (GPP) of terrestrial ecosystems with leaf photosynthesis and stomatal conductance, and 

the availability of global GPP benchmark data, we evaluate global GPP simulations with and without 

ozone stress and with different parameterization schemes. 135 

 

2 Materials and methods  

 

Figure 1. Flowchart illustrating the construction of O3 plant damage parameterization scheme. PODY 

(phytotoxic ozone dose over an ozone flux threshold of Y) represents the cumulative leaf stomatal 140 

uptake of O3; An and gs are net photosynthetic rate and stomatal conductance without ozone plant 

damage, respectively, while An_O3 and gs_O3 are those modified by O3 plant damage; FO3_A and FO3_g are 

photosynthetic and stomatal response factors, respectively. 

 

The parameterization scheme construction involves two steps (Fig. 1). First, we establish a database via 145 
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data collection with quality control and preprocessing. Second, using the preprocessed data, we 

construct the parameterization scheme through regression analysis, response function selection, 

identification of the optimal threshold Y, and incorporation of photosynthetic and stomatal response 

functions into regional and global process-based models. After the scheme construction, we apply it to 

the CESM2.2’s land component CLM5 for quantifying the global impact of O3 plant damage. 150 

2.1  Construction of observational database 

2.1.1 Data collection with quality control 

A database of O3 effects on leaf photosynthetic rate and stomatal conductance is compiled by 

conducting a survey of the peer-reviewed literature using keyword searches in the Web of Science, 

Springer Nature, and China National Knowledge Infrastructure. A total of 298 articles published from 155 

January 1970 to December 2022 have been identified to report experimental measurements on the O3 

effect. Measurements within an article are considered independent data points if they were made for 

different species, distinct genotypes within a species, different ozone treatments, or on different dates, 

consistent with the approach taken by Wittig et al. (2007) and Lombardozzi et al. (2013). Otherwise, 

they are treated as a sample of one data point, and the sample mean is used as a data point for analysis. 160 

         

Table 1. Overview of experimental data collected from peer-reviewed literature about O3 effects on 

photosynthetic rate and stomatal conductance. The numbers in parentheses are the number of articles, 

species, and data points within each category.  BT and NT represent broadleaf trees and needle trees, 

respectively. 165 

Category Categorical level 

Plant type 
BT NT Crop Grass Shrub 

(81, 87, 3902) (21, 13, 669) (52, 117, 2293) (9, 18, 266) (4, 4, 256) 

Plant age <1 1 to 5 >5 N/A 
 

(year) (63, 135, 2733) (57, 54, 2735) (12, 8, 200) (40, 65, 1718) 

Control air 
Charcoal filtered Ambient Non-Filtered N/A 

 
(86, 145, 4399) (48, 71, 1927) (6, 7, 198) (23, 39, 862) 

Exposure 

system 

Growth 

chamber 

Free-Air 

enrichment 

Open top 

chamber 

Greenhouse Branch 

chamber 

(41, 57, 1738) (28, 33, 1583) (75, 139, 3240) (17, 30, 756) (2, 2, 69) 

Rooting 

environ. 

Pot Ground N/A 
  

(116, 183, 5178) (26, 36, 1083) (19, 33, 1125) 

Response 

variable  

Photosynthesis Stomatal conductance 
  

(140, 211, 3496) (158, 236, 3890) 
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Data quality control is then carried out. Data points are excluded (1) if PODY or variables for 

calculating PODY (see Eq. 1) cannot be extracted; that is, only data categorized as high and medium 

confidence defined by Lombardozzi et al. (2013) are considered in our study.; In Lombardozzi et al. 

(2013), data were assigned high confidence if POD was presented, medium confidence if the 170 

publication contained multiple stomatal conductance measurements throughout the course of the 

experiment and other enough information to calculate POD, and low confidence otherwise;  (2) if 

either photosynthetic rate or stomatal conductance, including their units, cannot be extracted or are 

unreasonable (incorrect units or numerical deviation exceeds an order of magnitude); (3) if the data are 

previously or more completely reported in another article; (4) if the photosynthetic rate is not reported 175 

in conjunction with stomatal conductance; (5) if other environmental interactions are included so that 

the effect of only O3 is unclear; or (6) if experiments are conducted for fewer than 7 days and thus not 

representative of chronic exposure. Following these criteria, data are collected from a total of 159 

articles (see Supplements), representing 238 species and providing 3496 data points for photosynthetic 

rate and 3890 data points for stomatal conductance (Table 1).  180 

Stomatal conductance and photosynthetic rate or their relative values to those without ozone 

stress, as well as PODY or variables to calculate it in the control and elevated O3 treatments are 

collected from tables, figures, and text in the articles and compiled into a database. In cases where data 

are presented graphically, PlotDigitizer v3 is employed for data extraction. When PODY needs to be 

calculated, but the light exposure of field experiments is not reported, sunlight duration is obtained 185 

from the website https://richurimo.bmcx.com/9.61__jw__45.69__time__2013_09__richurimo/ by 

entering the longitude, latitude, and date of the experiments. Additional information such as location, 

vegetation type, plant species, plant age, type of control air, O3 exposure system conditions, rooting 

environment, sample size, sample standard deviation (SD) or standard error (SE), and reference are 

also recorded for each data point, and summarized in Table 1.  190 

2.1.2 Data pre-processing 

For literature that does not provide PODY (mmol O3 m−2), we calculate it for various candidates of O3 

flux threshold Y (nmol O3 m−2 s−1), using data from the literature on O3 concentration at the leaf surface 

([O3]ls, ppb), leaf stomatal conductance (gs, mol H2O m−2 s−1), and the number of hours of plant 

exposure to O3 and light (h, hour), as: 195 
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6

Y 3 ls

O3

POD max([O ] ,0) 3600 10sg
Y h

k

− = − ,                                                                                      (1)  

where kO3=1.51 (=1/0.663) (mol H2O (mol O3) −1) is the ratio of leaf resistance for O3 to that for water 

vapor. Eq. (1) combines Eqs. (1) and (2) used in Lombardozzi et al. (2013) for preprocessing 

observations, but with three modifications: Y is not arbitrarily set to zero; a typo is corrected that kO3 

was incorrectly multiplied in Eq. (2) when it should have been divided; kO3 value is updated based on 200 

Massman et al. (1998) and CLRTAP (2017), instead of 1.67 used in Lombardozzi et al. (2013). The Y 

candidates considered in this study cover all the values used in earlier studies, including 0.5, 0.8, 1, 1.6, 

2, 3, 4, 5, and 6. Specifically, L15 used 0.8 for all plant types; S07 assigned 1.6 to needleleaf and 

broadleaf trees and shrubs, and 5 to crops and grasses; CLRTAP et al. (2017) applied 1 for natural 

plants and 6 for crops, followed by Oliver et al. (2018) and Ma et al. (2023). 205 

To achieve comparability of the O3 effect across different experiments, species, control air types, 

and dates within a given vegetation type, we need to calculate the relative photosynthetic rate and 

relative stomatal conductance to the values without ozone stress if the literature does not report them. 

Similar to Karlsson et al. (2004), Pleijel et al. (2004), and Hayes et al. (2021), for pairs of control and 

O3-elevated experimental measurements that differ solely in ozone concentration, we begin by 210 

performing a simple linear regression, using photosynthetic rate or stomatal conductance as the 

dependent variable and PODY as the independent variable. The regression enables us to obtain the 

intercept representing the photosynthetic rate or stomatal conductance at PODY=0. Next, we derive the 

relative values through dividing the photosynthetic rate or stomatal conductance by the intercept. Then, 

we conduct linear regression using the relative values and corresponding PODY for individual plant 215 

species in a study, and data with intercept falling outside the range of 0.9 to 1.1 are removed based on 

Hayes et al. (2021) and the LRTAP convention to ensure a usable response relationship. Finally, we 

exclude the paired data points at PODY=0. For literature that reports the relative photosynthetic rate or 

relative stomatal conductance in units of %, we convert it to a unitless fraction via dividing it by 100.  

Through the above data pre-processing, we obtain the paired data points of PODY and relative 220 

photosynthetic rate (or relative stomatal conductance), including 567−943 (or 486−1281) for broadleaf 

trees, 2−217 (or 3−232) for needleleaf trees, 0−153 (or 0−149) for shrubs, 20−40 (or 42−78) for grasses, 

and 380−605 (or 418−691) for crops (Tables S1−2). For a specific vegetation category, the values 

represent the ranges of the number of paired data points across different ozone flux thresholds Y. A higher 
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threshold Y often results in more PODY values equaling zero (Eq. 1), so more paired data points at 225 

PODY=0 are excluded during pre-processing to ensure a usable response relationship (refer to the last 

pre-processing step). The number of paired data points clearly varies with the threshold Y for a specific 

vegetation type. 

2.2 Construction of the parameterization scheme 

2.2.1 Regression analysis and selection of response function 230 

We use 2-parameter linear ( y ax b= + ) and nonlinear ( f ( )y x= ) regression  functions to fit the pre-

processed data, where y is the relative photosynthetic rate or relative stomatal conductance and x is 

PODY, and f denotes a nonlinear function. For nonlinear regression, we consider five commonly used 

linearizable function forms: (i) logarithm function ln( )y a x b= + , (ii) power function ay bx= , (iii) 

exponential function eaxy b= , (iv) hyperbolic tangent function tanh( )y a x b= + , and (v) reciprocal 235 

function a
y b

x
= + . When parameter a < 0, the first four nonlinear functions and the linear function all 

imply a decrease in y as x increases. We use the least squares principle to estimate the regression 

coefficients and F-test to test the statistical significance of regression (Huang et al., 2016).  

 For each vegetation type and each ozone flux threshold Y, the sample is the same, so we compare 

the residual sum of squares (RSS), which is the sum of the squared distances between observed versus 240 

predicted values, across different function forms. The function with the lowest RSS is identified as the 

optimal function.  

As shown in Fig. 2, the linear function is typically optimal for needleleaf tree and grass 

photosynthetic response as well as crop stomatal response. The exponential function is often optimal 

for broadleaf tree and crop photosynthetic response, while the logarithm for broadleaf tree stomatal 245 

response and for grass when Y is small.  
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Figure 2. P-value from regression analysis using a linear or nonlinear function corresponding to different 

ozone flux thresholds Y (0.5, 0.8, 1, 1.6, 2, 3, 4, 5, 6) in PODY for photosynthetic (upper triangle) and 250 

stomatal (lower triangle) responses across different vegetation types: broadleaf trees (BT), needleleaf 

trees (NT), crops, grasses, and shrubs. A lower P-value (deeper red) indicates a regression with greater 

statistical significance and higher accuracy, and a regression with P<0.05 is considered statistically 

significant. The letters within the triangles denote the optimal function forms for a given Y and vegetation 

type determined by the smallest residual sum of squares (RSS): linear function (L), logarithm function 255 

(ln), exponential function (E), hyperbolic tangent function (T), power function (P), and reciprocal 

function (R). Boxes with the optimal Y (required to be statistically significant for both photosynthetic 

and stomatal responses and have the highest significance) are outlined using a black frame. Triangles in 

gray indicate the number of observations less than 3.  

 260 

2.2.2 Selection of ozone flux threshold Y 

The optimal threshold Y for each vegetation type is selected based on two criteria: (i) the P-values of 

the optimal regression functions for both the photosynthetic rate and stomatal conductance are less than 

0.05 (i.e., regression is statistically significant) and (ii) the sum of the P-values for the Y is smallest 

(i.e., highest statistical significance).  265 

Because a smaller sample size leads to fewer degrees of freedom, a higher coefficient of 

determination (R²) is associated with a statistically significant regression model that is superior to a 

random prediction model. In our study, sample size obviously varies with threshold Y (Tables S1−2 and 

Sect. 2.1.2), and comparison R2 among different Y fails to account for the effect of sample size. 

Therefore, we use the P-value as the criterion, rather than R2.  270 

Consequently, the optimal threshold Y is identified as 1 for broadleaf trees, 0.8 for needleleaf 

trees, 6 for shrubs, 1.6 for grasses, and 0.5 for crops (Fig. 2). The number of paired data points 

corresponding to the selected Y is 2183 (=902 for photosynthetic response +1281 for stomatal 

response) for broadleaf trees, 326 (=140+186) for needleleaf trees, 302 (=153+149) for shrubs, 103 (= 

27+76) for grasses, and 1296 (=605+691) for crops, totally 4210 (Table 2). 275 

 

Table 2．The number of paired data points used to generate response functions of photosynthetic rate 
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and stomatal conductance for the new parameterization scheme, L15 (Lombardozzi et al., 2015), and S07 

(Sitch et al., 2007).  

Veg. type New L15 S07   

BT 2183 266 45   

NT 326 100 51   

Shrub 302  0 0   

Grass 103 16 0   

Crop 1296 270 80   

Total 4210 652 176   

2.3 Application for global simulations 280 

2.3.1 Model platform  

We test the new parameterization scheme using the CESM. CESM is a widely utilized Earth system 

model that enables the simulation of the global atmosphere, ocean, land, and sea ice, along with their 

interactions (Danabasoglu et al., 2020).  It is developed by the CESM community and hosted at the 

National Center for Atmospheric Research (NCAR). For our study, we adopt the latest version, 285 

CESM2.2, which incorporates CLM5 as its land component (Lawrence et al., 2019). 

CLM5 uses the Farquhar-Collatz model for photosynthesis and the Medlyn model for stomatal 

conductance. When calculating photosynthesis and stomatal conductance, it distinguishes between 

sunlit and shaded leaves, in which sunlit leaves absorb both direct and diffuse solar radiation, 

while shaded leaves only receive diffuse radiation. The L15 scheme (see Appendix A) is included in 290 

CLM5 as an option to account for ozone damage to vegetation, but it is inactive in default simulations. 

Like L15, we calculate the O3 uptake and its influence on the photosynthetic rate and stomatal 

conductance for sunlit and shaded leaves separately.  

2.3.2 Experimental design 

We use the component set I2000Clm50Sp (present-day offline simulations of land model CLM5.0 with 295 

prescribed vegetation) of CESM2.2 for present-day land offline simulations, similar to I2000Clm45Sp 

(present-day offline simulations of land model CLM4.5 with prescribed vegetation) used in 

Lombardozzi et al. (2015). In this component set, CLM5 includes one bare soil PFT and 16 vegetated 

PFTs (three needleleaf tree PFTs, five broadleaf tree PFTs, three shrub PFTs, three grass PFTs, and two 

crop PFTs). The component set uses prescribed present-day vegetation distribution and structure and 300 

keeps the biogeochemical module inactive, so the impacts of O3 plant damage on them and their 
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feedback are not considered. It is acceptable because this study aims to quantify the direct 

photosynthetic and stomatal responses to O3 exposure. 

Three experiments are performed: O3_New, O3_OFF, and O3_L15. The three simulations are 

identical except for applying the new scheme proposed in this study, no ozone plant damage, and the 305 

L15 scheme, respectively. We quantify the global impacts of O3 on leaf photosynthetic rate and 

stomatal conductance by calculating the difference between O3_New and O3_OFF and assess the impact 

of the different schemes by calculating the difference between O3_New and O3_L15.  

All simulations are conducted for 30 years with 2005–2014 atmospheric forcing and surface ozone 

concentration cycling 3 times. They are initialized from an equilibrium (spun-up) state of CLM5 310 

default present-day simulations provided by CESM2.2, similar to O3_OFF but employing a different 

length of atmospheric forcing. The last 20 years of the simulations are analyzed, and the first 10 years 

are discarded as spin-up. The simulations run at a spatial resolution of 1.8951.9° latitude by 2.5° 

longitude, with a model time step of 30 minutes.  

2.3.3 Input data 315 

The Global Soil Wetness Project (GSWP3.1) provides a 3-hourly 0.5ºglobal atmospheric reanalysis 

dataset for 2005–2014, which serves as the default atmospheric forcing for CLM5. It includes variables 

such as surface air temperature, wind speed, specific humidity, air pressure, incident longwave 

radiation, insolation, and precipitation. The input data of the prescribed present-day vegetation 

distribution and structure (LAI and canopy height) have no interannual variability, which isare based on 320 

MODIS satellite observations and have no interannual variability. The above-mentioned forcing and 

initial data, as well as atmospheric CO2 concentration and nitrogen and aerosol deposition for the year 

2000, are provided with CESM2.2.   

In our study, 2005–2014 time-varying surface air ozone concentration in ppb (i.e., volume mixing 

ratio, VMR) is derived based on the 3-hourly 0.75ºsurface ozone mass mixing ratio (MMR, kg kg-1) 325 

from CAMS global reanalysis EAC4 (ECMWF Atmospheric Composition Reanalysis 4, Inness et al., 

2019) through multiplying MMR by 28.9644/47.9982×109 (Guisti, 2019). It is better than a global 

constant ozone concentration set in CLM5 and time-step data from linear interpolation of monthly 

ozone concentration used in the ongoing CLM development version. The ozone concentration in ppb 

could convert to that in unit of nmol m−3 used in Eq. (7) through multiplying by Patm/(Ɵatm×R)×1000, 330 
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where Patm, Ɵatm, and R are atmospheric pressure (Pa), atmospheric potential temperature (K), and 

universal gas constant (J K–1 kmol–1), respectively. In CESM coupled land-atmosphere simulations (not 

performed here), ozone concentration can be simulated by the atmospheric model and transferred to the 

land model.  

2.3.4 Benchmark data 335 

 The FLUXCOM product is used as benchmark data to assess 2005–2014 averaged global GPP 

simulations. The 0.5° daily FLUXCOM RS + METEO GPP product is derived by using machine 

learning to integrate FLUXNET site-level observations, satellite remote sensing, and meteorological 

data (Jung et al., 2020).  It is commonly used to evaluate GPP simulations of regional and global 

process-based models. 340 

3 Parameterization scheme 

Following the processes detailed in Sects. 2.1 and 2.2, photosynthetic and stomatal response functions 

are generated (Figs. 3−4). The response factors of photosynthetic rate to O3 (FO3_A, unitless) for 

broadleaf trees (BT), needleleaf trees (NT), shrubs, grasses, and crops are given as
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and the response factors of stomatal conductance to O3 (FO3_g, unitless) are
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As shown in Figs. 3−4, the regression is statistically significant for all vegetation types, so each 

vegetation type has its own function based on observationsthere is no need to use a function from one 

vegetation type for another. This differs from earlier parameterization schemes that employed 350 

substitution when regressions were not statistically significant or observations were unavailable or 

collected for a specific vegetation type. When we evaluate the L15 scheme using our expanded 
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collected dataset, we find that the regression functions of L15 with POD0.8 as the independent variable 

are statistically significant for crop photosynthetic rate only. Even for the crop photosynthetic rate, our 

scheme improves the fitting skill (quantified by R2) by 8.1% (Table 3). As in L15, the response factors 355 

are required to range from 0 to 1 to avoid unwanted outcomes in any scenario when used in models. 

 

Figure 3. Relationship between PODY and relative photosynthetic rate from experimental measurements 

(dots). The line of best fit (line) represents the photosynthetic response function (FO3_A) used in our 

parameterization scheme. Sample size of measurements (N), correlation coefficient (R), root mean square 360 

error (RMSE) between measurements versus predicted values, and P-value of regression (P) are also 

shown. When P < 0.05, the regression analysis is considered statistically significant. A smaller P-value 

indicates that the regression analysis has a stronger statistical significance and higher skill than random 

prediction. 

 365 
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Figure 4. Same as Fig. 3, but for stomatal conductance.  

 

Table 3. Overview of improved ability from the L15 scheme to the new scheme in reproducing the 

observed relationship between PODY and either relative photosynthetic rate or relative stomatal 370 

conductance for various vegetation types, based on the database collected in our study. NS: non-

significant, *: P<0.05, **: P<0.01, ***: P<0.001. When both schemes are significant, we also list the 

relative changes in R2 of the new scheme to L15. 

Veg. type Photosynthetic rate   Stomatal conductance 

 BT NS→***      NS→*** 

 NT NS→***      NS→***     

 Shrub NS→*** NS→*** 

 Grass NS→** NS→*** 

 Crop Both ***, New: + 8.1% R2 NS→*** 

 



17 

 

PODY (mmol m−2) in Eqs. (2) and (3) represents the cumulative O3 uptake during the vegetation 375 

growing season. Its value in timestep t is calculated as: 

6

Y, Y, 1 Y, POD POD (1 ) 10t t t tD U −

−= − +  ,                                                                                                   (4) 

where PODY, t and PODY, t−1 are the PODY at timesteps t and t−1; Dt (0 to 1, unitless) is the decay 

fraction at timestep t given that leaves fall and emerge as well as PODY in process-based models 

represent the PFT average in a grid cell; UY, t (nmol O3 m−2 timestep−1) is the daytime O3 uptake at 380 

timestep t; 10−6 is the unit converter from nmol to mmol. The growing season is defined as leaf area 

index (LAI, m2 m−2) > 0.3 for temperate deciduous shrubs and LAI > 0.5 for other deciduous PFTs, and 

all year for evergreen PFTs. The LAI threshold of 0.5 is used by Lombardozzi et al. (2015). For the 

temperate deciduous shrubs, a threshold of 0.5 is too high and close to the observed peak month LAI 

according to CLM5 present-day surface data (generated from the MCD15A LAI product, Lawrence et 385 

al., 2019), so we use a lower value of 0.3 as the threshold. 

The decay fraction is set as: 

 leaf
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  ,                                                                                               (5)  

where Δt is timestep length (sec); lleaf is leaf longevity (yr); LAIt-1 and LAIt are leaf area index at 

timesteps t−1 and t, respectively. lleaf is set to 1.7, 3.2, 1.3, and 6.5 years for tropical broadleaf 390 

evergreen trees, temperate needleleaf evergreen trees, temperate broadleaf evergreen trees, and boreal 

needleleaf evergreen trees, respectively, according to Zhang et al. (2016) which assessed the leaf 

longevity based on 418 field measurements around the world. The leaf longevity value (1.3 years) of 

temperate broadleaf evergreen trees is used for temperate broadleaf evergreen shrubs. For evergreen 

PFTs, the function of Dt is typically used to calculate the leaf turnover rate in DGVMs. For deciduous 395 

PFTs, we consider the decay of cumulative O3 uptake during the green-up period. We prefer the 

function of LAI over leaf carbon pool for broader applications because (i) land surface models and 

ESMs often run with prescribed vegetation and inactive carbon cycle module (Dai et al., 2013, 2020; 

Lawrence et al., 2019; Song et al., 2021), and (ii) many DGVMs update carbon pools at the end of a 

year while updating LAI daily so they do not model the changes in leaf carbon during the growing 400 

season, e.g.,  LPJ-DGVM, CLM-DGVM, IAP-DGVM, and CoLM-DGVM (Sitch et al., 2003; Levis et 

al., 2004; Zeng et al., 2013; Ji et al., 2014). For models with carbon pools updated at a sub-hourly to 
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daily timestep, an alternative function of Dt for deciduous PFTs is to use leaf carbon to replace LAI.   

The O3 uptake at timestep t is calculated using： 

 O3,

Y,

max( ,0) daytime

0 else

t

t

t F Y
U

  −
= 


,                                                                                                  (6) 405 

where ozone flux threshold Y (nmol O3 m−2 s−1) is 3 for BT, 1 for NT, 5 for shrub, 2 for grass, and 0.5 

for crop based on Sect. 2.2.2; the instantaneous O3 flux to stomata at timestep t, FO3,t (nmol O3 m−2 s−1), 

is estimated  in analogy with Ohm’s law by: 

3
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[O ]t
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b t am t s t
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r r r k

=
+ +

,                                                                                                                           (7) 

where [O3] is the O3 concentration at reference level (nmol m−3); ram (s m−1), rb (s m−1), and rs (s m−1) 410 

are aerodynamical resistance, boundary layer resistance, and leaf stomatal resistance, respectively. Eq. 

(7) is similar to S07 and L15 but with the updated value of kO3.  

After response factors are calculated based on Eqs. (2) and (3), the leaf net photosynthetic rate 

(An,t, μmol m−2 s−1) and stomatal conductance (gs,t, μmol m−2 s−1) at timestep t are modified for ozone 

stress as 415 

_O3, , O3_A,t t tn nA A F=                                                                                                                                   (8) 

And 

_O3, , O3_g,s t s t tg g F=  .                                                                                                                                 

(9) 

In process-based models, net photosynthetic rate An is the photosynthetic rate minus dark respiration, 420 

where the photosynthetic rate is usually calculated using the Farquhar-Collatz model (Farquhar et al., 

1980; Collatz et al., 1992). Stomatal conductance gs is generally estimated according to the Medlyn 

(Medlyn et al., 2011) or Ball-Berry (Ball et al., 1987; Collatz et al., 1991) models. CO2 partial pressure 

at the leaf surface and in the leaf, vapor pressure at the leaf surface, stomatal resistance (the reciprocal 

of stomatal conductance), and net photosynthetic rate are solved iteratively. The impact of O3 plant 425 

damage is not considered during the iterations.  

 

4  Application 

4.1 O3 effect on global leaf photosynthetic rate and stomatal conductance 
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We integrate the new scheme into the CESM2.2’s land component CLM5, to quantify the impact of 430 

ozone exposure on global leaf photosynthetic rate and stomatal conductance for 2005–2014. The 

growing-season average of daytime O3 concentration is high mainly in the mid-latitudes (20–50° N) of 

the Northern Hemisphere (NH) (Fig. 5a).  The areas with the highest O3 concentrations are in the 

western United States, western and central Asia, and northern Africa, largely coinciding with the NH 

arid and semi-arid regions. O3 concentrations over boreal grasslands and shrublands as well as tropical 435 

savannas are higher than those in the tropical rainforests in South America (i.e., Amazon rainforest), 

Africa (i.e., Congo rainforest), and New Guinea, but lower than those in NH forests and croplands. The 

peak-month O3 concentrations during the growing season are much higher than the growing season 

average, overall exceeding 40 ppb across most vegetated regions (Fig. 5b).   

 440 

Figure 5. 2005−2014 average of (a) the growing season average of daytime O3 concentration and (b) the 

highest monthly concentration during the growing season. The O3 concentration data used as input for 

CLM5 are sourced from the ECMWF Atmospheric Composition Reanalysis 4 (EAC4). 

 

Annual cumulative O3 uptake for sunlit leaves is high over the temperate forests and croplands in 445 

East Asia, Southeast Asia, South Asia, United States, and Europe, as well as the boreal evergreen forest 

zone around 55 °N (Fig. 6a). Most of these regions are those with moderate to high O3 concentrations 

(Fig. 5a) or long growing season. Low-value regions are characterized by either low O3 concentrations, 

such as in the heart of the Amazon and Congo rainforests, or low stomatal conductance, such as in NH 
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temperate arid regions due to dry conditions and in boreal grasslands and shrublands due to the cold 450 

climate. The spatial pattern for shaded leaves is similar but with much lower values due to lower 

stomatal conductance (Fig. 6b). 

 

 

Figure 6. Annual average PODY (mmol m−2) for (a) sunlit and (b) shaded leaves in O3_New 455 

simulations.  

 

As shown in Fig. 7, O3 significantly reduces annual leaf photosynthetic rate and stomatal 

conductance over most vegetated areas, with a global average reduction of 8.5% for the former and 

7.4% for the latter, both significant at the 0.05 level according to the student’s t-test. The spatial pattern 460 

of O3-induced significant reduction in leaf photosynthetic rate (Fig. 7a) is similar to that of sunlit-leaf 

cumulative O3 uptake (Fig. 6a). O3-induced reduction in stomatal conductance is typically weaker, with 

the largest reductions located in East Asia, Southeast Asia, and South Asia (Fig. 7b).  

Compared to the new scheme, the L15 scheme generally simulates a stronger reduction in both 

photosynthetic rate and stomatal conductance (Figs. 7c–d), particularly in the tropical savannas across 465 

South America, Africa, and Australia and in the grasslands and shrublands over boreal Asia for 

photosynthesis (Fig. 7e) and the tropical savannas across Africa, South America, and Australia for 

stomatal conductance (Fig. 7f). The estimated global reduction is 20.4% for leaf photosynthesis and 

13.4% for stomatal conductance. Both reductions are statistically significant at the 0.05 level, and are 

2.4 and 1.8 times greater, respectively, than those estimated with the new scheme. 470 
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Figure 7. Relative impact (%) of O3 on net leaf photosynthetic rate (An) and stomatal conductance (gs) 

quantified using (a−b) the new and (c−d) L15 schemes, as well as (e−f) the difference between them. In 

(a−d), the relative impacts are calculated using O3_New or O3_L15 compared to O3_OFF; only areas 

where the O3 impact is statistically significant at the 0.05 level are shown; numbers in parentheses are 475 

the global average influence. * Indicates that the (a−d) global influence and (e−f) the difference 

between schemes are significant at the 0.05 level. 

 

The influence of O3 differs widely among PFTs, ranging from 0–17.1% for photosynthetic rate 

and 0–15.7% for stomatal conductance. Crops and trees are the most affected, followed by grasses, and 480 

shrubs are the least affected (Fig. 8).  Grasses and shrubs are less affected mainly due to their lower 

cumulative O3 uptakes. Among trees, evergreen PFTs are more responsive to O3 than their deciduous 

counterparts within needlefleaf or broadleaf types, attributable to their longer growing season and thus 

longer O3 exposure and higher cumulative O3 uptake. The photosynthetic rate of temperate broadleaf 

trees and boreal broadleaf deciduous trees is more affected than that of temperate needleleaf trees and 485 

boreal needleleaf deciduous trees (Fig. 8a) due to the higher sensitivity of broadleaf versus needleleaf 
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photosynthesis (Eq. 2 and Fig. 3). Broadleaf trees and grasses exhibit a greater photosynthetic response 

than stomatal response (Fig. 8), highlighting the importance of nonstomatal O3 response mechanisms 

for photosynthesis, e.g., O3 decreases photosynthesis by reducing the mesophyll conductance in 

observations (Xu et al., 2023). 490 

 

 

Figure 8. Global PFT-level relative impact (%) of 2005−2014 O3 exposure for (a) An and (b) gs, 

quantified by [(O3-New – O3_OFF) / O3_OFF] × 100%. Abbreviations: T: tree; S: shrub; N: needleleaf; 

B: broadleaf; E: evergreen; D: deciduous. CLM5 PFTs are used and their global distribution is shown 495 

in Fig. S1.  

 

On the seasonal cycle, the impact of O3 on the seasonal phase of both leaf photosynthetic rate and 

stomatal conductance is small, shifting the peak month by less than one month in most regions (Figs. 

9a–b). However, O3 exerts a strong influence on the magnitude of seasonal cycle (Figs. 9c–d). It 500 

decreases the seasonal amplitude of photosynthetic rate in mid- and low-latitude vegetated areas except 

in evergreen forests (Fig. 9c). For stomatal conductance, the reduction is even greater and more 

widespread (Fig. 9d). Areas with up to a 50% reduction in stomatal conductance include Eastern North 

America, Europe, East Asia, South Asia, and tropical savannas in North Africa. This dampening of 

seasonal variation is mainly due to the partial overlap between the peak periods of photosynthesis and 505 
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stomatal conductance and the peak period of cumulative O3 uptake, as the latter is influenced by 

stomatal conductance. 

Figure 9. O3 impact on (a−b) peak month and (c−d) seasonal amplitude quantified by the Coefficient of 

Variation.  510 

 

4.2 Effects on global GPP simulations 

 

Figure 10. 2005−2014 averaged (a) global total Gross Primary Production (GPP) of FLUXCOM (Obs) 

and simulations, and (b) global land average of Root Mean Square Error (RMSE) of GPP between 515 

FLUXCOM and simulations.  

 

O3 plant damage, as quantified using the new scheme, decreases the global GPP from 134.1 to 116.9 Pg 

C yr–1 (a 12.8% reduction) for the period 2005 to 2014 (Fig. 10a). The global total GPP simulated with 
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the new scheme aligns closely with the FLUXCOM benchmark (115.2 Pg C yr–1). The global average 520 

RMSE between simulations and FLUXCOM is reduced by 11.1% (Fig. 10b) compared to the 

simulations without O3 plant damage, justifying the significance of incorporating O3 plant damage into 

large-scale process-based models.  

In comparison, the L15 scheme estimates a very strong O3-induced decrease in GPP, up to 28.9%, 

yielding a global GPP estimate (95.4 Pg C yr–1) much lower than the FLUXCOM (Fig. 10a). 525 

Furthermore, the RMSE is 238.5 g C m–2 yr–1, which is close to the value of the simulation without O3 

plant damage.  The RMSE of the new scheme is 11.7% lower than that of the L15 scheme, 

demonstrating the superiority of the new scheme over the L15 scheme (Fig. 10b). 

Spatially, incorporating the new scheme improves simulations by reducing the overestimation of 

GPP over the boreal forest zone around 55 °N, tropical savannas, and American croplands (Figs. S2a 530 

and S3a–b). It also lessens the underestimation of GPP over Europe, East and West America, South 

America, African rainforests, East Asia, Southeast Asia, and South Asia in L15 simulations (Figs. S2b 

and S3b–c). 

 

5  Conclusions and discussion 535 

5.1  The new parameterization scheme 

5.1.1 Summary 

This study proposes a new parameterization scheme designed to integrate the response of leaf 

photosynthetic rate and stomatal conductance to O3 exposure into process-based models (e.g., land 

surface models, DGVMs, GGCMs, or ESMs), enabling regional and global simulations of O3 plant 540 

damage and its subsequent influence. The scheme is built using the most comprehensive compilation of 

observations gathered from peer-reviewed literature. Functions of flux-based ozone index PODY are 

found out to accurately reproduce the statistically significant linear and nonlinear relationships between 

PODY and either relative leaf photosynthetic rate or stomatal conductance in observations for 

needleleaf trees, broadleaf trees, shrubs, grasses, and crops.  545 

5.1.2 Advantages 

The new parameterization scheme exhibits obvious advantages over previous parameterization 
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schemes. First, it is built on 4210 paired data points from O3 fumigation experiments, over six times of 

those employed in earlier schemes. We extend data collection from peer-reviewed literature to 

December 2022, compared to June 2011 in L15 and before 2004 in Felzer et al. (2004) and S07. The 550 

comprehensive dataset enhances the representation of the new scheme and supports the response 

functions established for shrubs (and grasses) which previously used the observed responses for trees 

(and crops) in L15 (and S07) due to a lack of observations. Also, the data we compiled are observed 

photosynthetic and stomatal responses rather than biomass or yield responses which were the 

foundation of S07. This way we need not estimate the parameters of photosynthetic and stomatal 555 

responses through the inverse method used in S07 to fit the observed yield or biomass response, 

thereby the response functions and parameters in the new scheme are model- and bias-independent, 

which enhances the accuracy and applicability. 

Second, it accurately reproduces statistically significant linear or nonlinear photosynthetic and 

stomatal responses to O3 in observations for all the vegetation types, eliminating the need to apply the 560 

response function of one vegetation type to another or to use constants. The L15 scheme, which 

assumes a linear response, could only reproduce the observed relationship with PODY for only the crop 

photosynthetic rate and temperate evergreen tree stomatal conductance. When evaluated with our 

expanded observations, applying the response function of temperate evergreen tree stomatal 

conductance to needleleaf trees by L15 is found to be unsupported (Table 3). 565 

The nonlinear functions built for most vegetation types in the new scheme depict a decreasing 

plant sensitivity with increasing PODY, different from the constant sensitivity implied by linear 

functions. Our observation dataset aggregates data from diverse plant species into broader vegetation 

types and demonstrates the decreased sensitivity. This decrease in sensitivity reflects the plant 

adaptability or a transition from sensitivity to tolerance among plant species naturally (e.g., 570 

competition) or anthropogenic (e.g., genetic variation, breeding) in the real world (Fuhrer, 2003; Frei et 

al., 2014; Agathokleous et al., 2020). Current global process-based models do not simulate such 

adaptability and are limited to representing PFTs without differentiation among plant species (Bonan, 

2019). The nonlinear response functions we have developed will enable these models to capture the 

variability in plant ozone tolerance and the shift among plant species for both intra- and inter-PFT 575 

within a vegetation type, despite not directly modeling species-level responses. 

In addition, the new scheme sets the photosynthetic and stomatal responses as a function of PODY. 
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In contrast to the product of stomatal conductance and AOT40 used in Felzer et al. (2004), PODY has a 

clear physical interpretation, considering not only high O3 concentrations but also chronic ozone 

exposure at moderate or low O3 levels. Compared to S07, this scheme provides an optimal 580 

representation of O3 plant damage rather than upper and lower response thresholds, aligning with other 

processes represented in process-based models. Moreover, like L15, our scheme considers the 

decoupling of stomatal conductance and photosynthetic rate under ozone exposure, an observational 

fact not accounted for in Felzer et al. (2004) and S07. 

5.1.3 Implementation 585 

The new scheme has important potential for both academic research and practical implementation. 

First, it is important for the development of large-scale process-based models. Although S07 and L15 

have been integrated into JULES and CLM (the land components of UKESM and CESM, 

respectively), they are not active in default runs (Lawrence et al., 2019) partly due to limited 

representation of observations. Our scheme offers considerable improvements, detailed in Sect. 5.1.2, 590 

enabling process-based models to reasonably simulate the observed O3 plant damage. Our results also 

show that, when using CESM2.2’s CLM5, the new scheme reduces global GPP simulation bias by 

11.1% compared to simulations without O3 plant damage, and by 11.7% compared to the old scheme 

(i.e., L15), underscoring the necessity of incorporating O3 plant damage into large-scale process-based 

models and the utility of our new scheme.  595 

Second, it can improve our understanding and projection accuracy of the role of O3 plant damage 

in the Earth system on regional and global scales. Rising O3 is currently a critical environmental issue 

in the world. Even though many studies quantified its impacts using various models, they mainly 

focused on GPP, NPP or a specific region and their results are highly uncertain. We have already 

developed a new parameterization scheme in this study. Moving forward, we will comprehensively 600 

quantify the influence of O3 plant damage on ecosystems and climate using ESMs equipped with the 

new scheme, as we did for wildfires, another important form of terrestrial ecosystem disturbance (Li et 

al., 2014, 2017, 2019, 2021; Jiang et al., 2016; Li and Lawrence 2017; Lasslop et al., 2020). 

In addition, the new scheme aids in establishing an effective model platform to calculate the 

impact of proposed industrial developments, emissions standards, and land use changes on ecosystems, 605 

climate, and socioeconomics, guiding the formulation of effective policies for air quality control, 
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climate mitigation, and biodiversity conservation.  

5.1.4 Future development 

Even though the new scheme has advantages over earlier schemes, as listed in the previous 

section, there are still big variations in observations that cannot be explained by our response 610 

functions (fitting shown in Figs. 3 and 4). This limitation may introduce uncertainty in modeling 

carbon and water cycles, yield, biomass, and ecosystem structure and composition in large-scale 

process-based models, as well as in quantifying the role of ozone plant damage in the Earth system 

using these models to conduct numerical experiments.  

To address the limitation of the new scheme, we propose There are four potential directions for 615 

further development. First, besides the average of a sample (e.g., multiple measurements, 

measurements on different leaves or different individuals), the observation dataset we compiled 

contains sample size and standard deviation (SD) or standard error (SE) for most data points. 

Incorporating the additional information allows us to assign greater weight to data points that are more 

reliable, such as those with larger sample sizes and/or smaller SD or SE, thereby enhancing the 620 

representativeness of the response functions.  

Second, this study only tests the commonly used linearizable nonlinear functions. Other two-

parameter nonlinear functions may better capture the photosynthetic and stomatal responses.  

Third, introducing other explanatory variables may reduce the number of parameters that require 

estimation. Karlsson et al. (2007) and Bussotti (2008) found that plant sensitivity to O3 was linked to 625 

leaf morphological traits like leaf area, thickness, and leaf mass per area (LMA). Feng et al. (2018) 

further suggested using LMA to unify the response of woody species to O3 and proposed a function of 

trait-based ozone plant sensitivity. Ma et al. (2023) combined the function with S07, and testing results 

in a DGVM verified that using a unified sensitivity parameter for all PFTs, along with the observed 

global LMA map, could yield results similar to those of S07, which uses multiple vegetation-type-630 

dependent parameters. Yet, it is important to consider the inherent simulation uncertainty in the new 

explanatory variables and their influence, as well as whether the approach works for all vegetation 

types and species. Furthermore, earlier studies found that environmental factors (e.g., CO2 

concentration, nitrogen availability, drought, and temperature) can influence the O3 photosynthetic 

response through changing POD (e.g., Wittig et al. 2007; Hansen et al. 2019; Xu et al., 2020). 635 
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These factors may also affect the relationship between POD and O3 photosynthetic response, 

although there have been no analyses to verify this and identify the underlying mechanisms. Based 

on our dataset and by collecting data on environmental factors in corresponding experiments, we 

may be able to investigate this in the future. If the influence exists, introducing environmental 

factors will improve the fitting. 640 

In additionConversely, conducting PFT, biome, or regional fitting rather than the current broader 

vegetation type fitting may reduce the unexplained variation in observations. Ssome researchers strive 

to further subdivide vegetation or crop types for more accurate fitting (Singh et al., 2023; Guarin et al., 

2023). However, the current experimental data for C4 crops and tropical plants are limited and may not 

adequately support the detailed categorization from the perspective of big data for big ecology. 645 

Especially as the variety of vegetation and crop types continues to grow in process-based models, the 

demand for observations will likely grow.  

Our database offers the most comprehensive compilation of observations to date, supporting the 

above development directions and enabling their evaluation, selection, and integration. 

5.2 Global impact assessment using the new scheme 650 

As an application example, we integrate the new scheme into CESM2.2’s land component CLM5 to 

assess the global physiological impact of O3 exposure from 2005 to 2014. This is done by quantifying 

the difference between simulations with and without O3 plant damage. Our results indicate that present-

day O3 exposure leads to an 8.5% reduction in global leaf photosynthetic rate and a 7.4% reduction in 

stomatal conductance, and spatially with the largest reduction in eastern and southern Asia, Europe, the 655 

eastern United States, and the boreal evergreen forests zone for the former and in the eastern and southern 

Asia for the latter. OurThese results that O3 influence on photosynthetic rate and stomatal conductance 

differs, at a global scale, support the  experiment findingsresults of observational analyses that chronic 

O3 exposure decouples the photosynthetic rate and stomatal conductance partly due to O3 non-stomatal 

limitation to photosynthesis (Tjoekler et al., 1995; Wittig et al., 2007; Lombardozzi et al., 2012; Kinose 660 

et al., 2020).  

Our estimates of the O3-induced reduction in global average photosynthetic rate and stomatal 

conductance are around half of those calculated using the L15 (20.4% and 13.9%, Fig. 7). They are also 

lower than those estimated by Lombardozzi et al. (2013) (21% and 11%), which were derived from the 
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average differences between control and O3-fumigation experiments. Lombardozzi et al. (2013) used a 665 

smaller dataset than ours, did not differentiate between vegetation or control experiment types, and did 

not filter out low-confidence data. Furthermore, we estimate an 11.3% and 10.5% reduction in 

photosynthetic rate and stomatal conductance for trees, similar to the 11% and 13% estimated by Wittig 

et al. (2007) based on a meta-analysis of a smaller observational dataset. When examining the effects at 

the PFT level, we found that crops are most affected, followed by trees, with grasses intermediate and 670 

shrubs least affected. Ma et al. (2023) also reported that the crops were most affected under present-day 

O3 concentration quantified using YiBs with the S07-LMA scheme. The crops that are most sensitive to 

O3 are also supported by observational analyses of Reich (1987) and Wang et al. (2024). Interestingly, 

as far as we know, this study is the first to discover that O3 exposure generally leads to a decrease in 

seasonal amplitude over most vegetated areas, especially for stomatal conductance, while only causing 675 

limited changes in their seasonal pattern.  

In addition, using the new scheme, we estimate a global GPP reduction of 12.8% due to O3, which 

is less than half of the 28.9% reduction estimated using L15 in the CLM5. The discrepancy arises L15 

using lower flux thresholds Y for broadleaf trees, shrubs, and grasses, as well as functions representing 

an overall higher sensitivity to O3 for crops, needleleaf trees, and grasses, considering the nighttime O3 680 

uptake, and limiting the impact of leaf fall and emergence to the ozone uptake at a single time-step (i.e., 

UY, t) (See Appendix). Our estimate is higher than the quantification result of S07 (2-5%, Yue and 

Unger, 2015) and S07-LMA (4.8%, Ma et al., 2017) in YiBs, but lower than L15 in CLM4.5 (10.8%) 

(Lombardozzi et al., 2015) and in CLM5 (28.7%), the influence of O3 estimates by the new scheme 

likely lies between S07 and L15 if using the same model platform. The big disparity in the estimated 685 

influence of L15 between CLM5 and CLM4.5 suggests the potential benefit of employing multiple 

process-based models to quantify the uncertainty of O3 influence due to the different stomatal 

conductance across models which will affect the estimated PODY.  For example, including plant 

hydraulic stress in CLM5 increases stomatal conductance, leading to higher PODY and, thus, higher O3 

influence. 690 

5.3 Suggestions to the observational community 

Currently, an increasing number of O3 fumigation experiments are exploring the relationship between 

PODY and the crop yield or biomass of trees and grasses, which is beneficial for IAMs (CLRTAP, 
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2017). Nevertheless, modeling the dynamic responses of carbon, water, energy, and even climate is 

crucial for large-scale process-based models and for accurate projections of global change. Therefore, 695 

O3 fumigation experiments that quantify the sensitivity of photosynthetic rates and stomatal 

conductance are still necessary, particularly for C4 crops and tropical plants, which remain 

underrepresented in observations. Furthermore, this study objectively establishes the optimal flux 

threshold of Y based on extensive observations, rather than arbitrary assignment as in L15 or those 

based on a small number of observations as in CLRTAP (2017). The flux threshold of Y can serve as a 700 

reference for future observational analyses of leaf photosynthetic and stomatal responses. In addition, 

parameterization schemes (including ours) often assume that the response relationship of a specific 

plant is the same for shaded and sunlit leaves. The assumptions must be validated or adjusted to a more 

reasonable ratio based on additional observations. 
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Appendix A 

In the scheme proposed by Lombardozzi et al. (2015, L15) and used in CLM5, the response factor to 

O3 for photosynthetic rate is: 

O3_A

0.8752                                      Broadleaf tree & shrub

0.8390                                      Needleleaf tree & shrub
=

use Crop's                                                      
F

0.8

        Grass

.0009POD +0.8021           0                              Crop






 −

,                                                     (A1) 

and that for stomatal conductance is:710 

0.8

O3_g

   0.9125                                                     Broadleaf tree & shrub    

0.0048POD +0.7823                               Needleleaf tree & shrub
=

use Crop's                         
F

                                                   Grass

0.7511                                                                                 Crop








,                                          (A2) 

where POD0.8 is phytotoxic O3 dose over a threshold of 0.8 nmol O3 m−2 s−1 during the growing season 

(defined as leaf area index LAI > 0.5 m2 m−2). When used in CLM5, the response factors in Eqs. (A1-

2) are required to range from 0 to 1 to avoid unwanted outcomes in any scenario. Shrubs used the 

response functions of trees due to the unavailability of observations, while, for grasses, broadleaf trees, 715 

and needleleaf trees, L15 employs the functions of crops, temperate deciduous trees, and temperate 

evergreen trees, respectively, because significant linear regression functions were not found. 
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Figure A1. Response factors of (a) photosynthetic rate and (b) stomatal conductance to O3 in L15 720 

when used in CLM5. BT: broadleaf tree, BS: broadleaf shrub; NT: needleleaf tree; NS: needleleaf 

shrub. 

 

       The value of POD0.8 at time step t is: 

6

0.8, 0.8, 1 0.8, POD POD (1 ) 10t t t tD U −

−= − +  .                                                                                             (A3) 725 

In Eq. (A3), the decay factor (0 to 1, unitless) is: 

leaf

evergreen 
3600*24*365

0 else

t

t

lD




= 



,                                                                                              (A4) 

where Δt is the timestep length and lleaf (year) is the leaf longevity.  

The O3 uptake at timestep t is calculated using： 

0.8, O3,max( 0.8,0)(1 )t tU t F H=   − − .                                                                                                  (A5) 730 

Here, the instantaneous O3 flux to stomata at timestep t, FO3,t (nmol O3 m−2 s−1), is calculated as Eq. (4), 

and the healing factor H (0 to 1, unitless) is set as: 

1LAI
max(0,  1 )

LAI

t

t

H −= − ,                                                                                                                           (A6)     

where LAIt-1 and LAIt are leaf area index at timesteps t−1 and t, respectively. 
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Code and data availability. The code (including its license) for the new parameterization scheme for 

modeling ozone-caused damage to vegetation in process-based models is accessible at 

https://zenodo.org/records/11183913 (Li, 2024). The input data for ozone concentration, along with the 

observations and simulations utilized in this study, are available at https://zenodo.org/records/11185196 

(Li, 2024). The code of the Earth system model CESM2.2.0 is archived at 740 

https://zenodo.org/records/11229776 (CESM Team, 2024). 
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