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Abstract 

Decadal-scale oceanographic, environmental, and ecological changes have been reported in the 

Salish Sea, an ecologically productive inland sea in the northeast Pacific that supports the economies 15 

and cultures of millions of people. However, there are substantial data gaps related to physical water 

properties that make it difficult to evaluate trends and the pathways of effects between physical ocean 

water properties and the productivity of marine ecosystems. With the aim of addressing these gaps, 

we present the Hindcast of the Salish Sea (HOTSSea) v1, a 3D physical oceanographic model 

developed using the Nucleus for European Modelling of the Ocean (NEMO) ocean engine, with 20 

temporal coverage from 1980 – 2018. We used an experimental approach to incrementally assess 

sensitivity to atmospheric and ocean reanalysis products used for boundary forcings and to the 

horizontal discretisation of the model grid (~1.5 km). Biases inherited from forcings were quantified 

and a simple temperature bias correction factor applied at one ocean boundary was found to 

substantially improve model skill. Evaluation of salinity and temperature indicates performance is best 25 

in the Strait of Georgia. Relatively large biases occur in near-surface waters, especially in sub-

domains with topography narrower than the model grid’s horizontal resolution. We demonstrated that 

the model simulates temperature anomalies and a secular warming trend over the entire water 

column in general agreement with observations. HOTSSea v1 provided a first look at spatially and 

temporally heterogenous ocean temperature trends throughout the northern and central part of the 30 

domain where observations are sparse. Overall, despite the biases inherited from forcings and a 

relatively coarse horizontal discretisation, HOTSSea v1 performs well at representing temperature 

and salinity at the spatial-temporal scales needed to support research related to decadal-scale 

climate effects on marine ecosystems, fish, and fisheries. We conclude by underscoring the need to 

further extend the hindcast to capture a regime shift that occurred in the 1970s.  35 
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Non-Technical Summary 

We developed a 3D ocean model called the Hindcast of the Salish Sea (HOTSSea v1) that recreates 

physical conditions throughout the Salish Sea from 1980 to 2018. It was not clear that a model with 

sufficient accuracy could be developed because of computational and data limitations. However, 

HOTSSea v1 predicted physical ocean properties with enough skill to be highly useful. The model 40 

predictions generally agree with observed ocean temperature trends at the one rare station with 

observations and we therefore used it to examine areas that lack observations. Results indicate that 

some seasons and areas are warming faster than others. 

Copyright 

© Crown 2024. The works published in this journal are distributed under the Creative Commons 45 

Attribution 4.0 International License. This licence does not affect the Crown copyright work, which is 

re-usable under the Open Government Licence (OGL). The Creative Commons Attribution 4.0 

License and the OGL are interoperable and do not conflict with, reduce or limit each other. 

1. Introduction 

The Salish Sea is an inland sea in the northeast Pacific spanning Canadian and American waters 50 

with estuarine characteristics, fjords, and high marine biodiversity (Harrison et al., 1983; Pata et al., 

2022). The productive waters of the area support the economy and cultures of a rapidly growing 

coastal population of 8 – 10 million people including the port cities of Vancouver, British Columbia 

(BC, Canada), and Seattle, Washington (United States of America), and dozens of recreational, 

commercial, and indigenous fisheries (Georgia Strait Alliance, 2020). As global climate change 55 

unfolds and regional atmospheric and oceanographic regimes shift, within the Salish Sea there are 

seasonal, annual, and decadal-scale changes to physical oceanographic and atmospheric patterns 

that have been reported, including: changes in seasonal wind patterns (Collins et al., 2009; Masson & 

Cummins, 2007; Preikshot, 2007; Tuller, 2004), precipitation patterns (Beamish, 1993; Morrison et al., 

2002; Yin et al., 1997), ocean water temperatures (Beamish et al., 2010; Masson & Cummins, 2007), 60 

properties related to ocean acidification (Feely et al., 2009; Ianson et al., 2016; Jarníková et al., 

2022), and river discharge and temperatures (Islam et al., 2019; Martins et al., 2011; Riche et al., 

2014). Increasing seasonal stratification and warmer surface waters may have increased the 

frequency and duration of harmful algal blooms (Esenkulova et al., 2021; Moore et al., 2015). 

Changes to regional climate patterns appear to have increased the variability of the date of the spring 65 

phytoplankton bloom (Allen & Wolfe, 2013) which may have led to spatial-temporal mismatches 
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between predators and prey (Allen & Wolfe, 2013; Suchy et al., 2022) and affected the composition of 

larval fish assemblages (Guan, 2015). Changing ocean conditions in the Salish Sea are also 

hypothesised to be affecting the abundance, composition, and spatial-temporal availability of prey for 

Pacific salmon via various pathways of effects (Pearsall et al., 2021). Several correlative studies link 70 

sea surface temperature and stratification with declining survival of several salmon species in the 

Salish Sea, particularly juvenile coho salmon (Oncorhynchus kisutch), Chinook salmon (O. 

tshawytscha), and steelhead (O. mykiss; Beamish, 1995; Pearsall et al., 2021; Perry, 2021; Sharma 

et al., 2013; Sobocinski et al., 2020, 2021; Walters & Christensen, 2019).  

The patchy nature of oceanic data, particularly as we delve deeper into historical records within the 75 

Salish Sea, leads to uncertainty about the pace and spatial-temporal patterns of oceanographic 

change. Sparse observations also limit our ability to detect associations and evaluate mechanistic 

links between physical oceanographic changes and marine ecosystem dynamics. Physical 

oceanographic hindcasts are a pivotal tool for addressing such data gaps, offering a retrospective 

lens through which past oceanic conditions are reconstructed. Physical ocean models may also be 80 

coupled or linked to biogeochemical and ecosystem models using an ‘End-to-End’ approach useful 

for evaluating mechanistic drivers and dynamic pathways of effects between water properties, marine 

ecosystems, fisheries and other human uses (Libralato & Solidoro, 2009; Macias et al., 2014; Piroddi 

et al., 2021; Rose, 2012; Rose et al., 2010).  

Although several oceanographic and biogeochemical models have been developed for the Salish 85 

Sea, attributes of these models presently limit their suitability for a long hindcast, including: 

computational cost due to high resolution and a focus on shorter term simulations (Jarníková et al., 

2022; Khangaonkar et al., 2019; Olson et al., 2020; Soontiens et al., 2016; Soontiens & Allen, 2017), 

too coarse a resolution for use in the Salish Sea due to a focus on the wider BC coast (Peña et al., 

2016), or a particular focus on Puget Sound (Khangaonkar et al., 2012, 2019; Khangaonkar, 90 

Nugraha, Lakshitha, et al., 2021; MacCready et al., 2021; Moore et al., 2015). It is therefore one aim 

of this study to develop a physical hindcast with a particular focus on the central and northern portion 

of the Salish Sea (i.e., the Strait of Georgia) with adequate spatial-temporal resolution to enable a 

long hindcast and acceptable model skill for supporting marine ecological research and ecosystem 

management. Although the acceptable model error will depend on the specific research question, 95 

ecological patterns and associated processes related to plankton and fish are often orders of 

magnitude greater than those required to study physical and chemical processes in marine 

ecosystems (Fulton et al., 2019). As a local example, hindcasting the timing of the spring 

phytoplankton bloom in the Strait of Georgia within an error margin of several days to one week at 

sub-regional scales is useful for studying spatial-temporal mismatches in predators and prey (Allen & 100 

Wolfe, 2013; Gower et al., 2013; Suchy et al., 2022). Many factors hypothesised to be mechanistically 
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linked to growth and mortality of juvenile salmon exhibit variability on time scales of one week or more 

and at spatial scales of >10 km (Pearsall et al., 2021). Another hinderance to development of a long 

hindcast for the area has been a lack of atmospheric and oceanic data extending back to at least 

1980 to use as model forcings, and there are doubts about the adequacy of the few existing products 105 

with respect to spatial-temporal resolution. A second aim of this study is therefore to conduct 

experimental evaluation to identify biases inherited from external forcings (including some that only 

recently have been made available) to determine to what degree the available forcings limit the 

development of long oceanographic hindcasts in the area. 

Here, we present HOTSSea v1, developed using the Nucleus for European Modelling of the Ocean 110 

(NEMO) Ocean engine (Madec et al., 2017). We describe and give rationale for the model setup with 

attention to three aspects that are particularly important for developing a long hindcast for the domain: 

(1) the biases inherited by using various atmospheric and ocean reanalysis products as surface and 

boundary forcing, (2) the effect of applying temperature bias corrections to the open ocean boundary 

forcing, and (3) a preliminary assessment of model performance relevant to the aforementioned 115 

research applications, including decadal-scale trends. Priority areas for improvement and further 

evaluation are also highlighted and, finally, we use the model to provide a first look at decadal-scale 

trends in the central and northern portion of the domain where historical observations are especially 

sparse. 

2. Model Overview          120 

The NEMO ocean engine, version 3.6, supports simulations of ocean dynamics and thermodynamic 

processes in three dimensions (Madec et al., 2017). The physical model framework is governed by 

primitive equations under hydrostatic balance using the Boussinesq approximation where density 

variations are neglected except in their contribution to the buoyancy force (Bourdallé-Badie et al., 

2019). HOTSSea v1 was implemented in a high-performance computing cluster (Digital Research 125 

Alliance of Canada, 2022) and the model’s scope is limited to physics and hydrodynamics (e.g., tides, 

salinity, temperature) - biogeochemistry is not included in HOTSSea v1 due to computational cost. 

We used state variables of Practical Salinity (PSU) and Potential Temperature (℃), and the EOS-80 

equation of state (Millero, 2010). Sea ice is not included in HOTSSea v1 given that it occurs only 

occasionally in deep inland waters of fjords such as Jervis Inlet. To address issues of omitting ice, we 130 

applied NEMO’s ice-if option, where the water temperatures are limited to the local salinity-dependent 

freezing point.  
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2.1. Spatial-Temporal Configuration 

 135 

Figure 1: Map of model domain showing geographic features, extents of the HOTSSea NEMO model domain (medium 
grey), and bathymetry. 

The model domain of HOTSSea v1 includes several distinct geographic areas within the Salish Sea: 

the Juan de Fuca Strait, Strait of Georgia, Gulf Islands, and Puget Sound (Figure 1). A key 

application of the model will be to provide forcings for biogeochemical and ecosystem models 140 

developed to investigate decadal-scale change. The model’s spatial domain therefore fully 

encompasses the domain of an ecosystem model under parallel development that focuses on the 

Strait of Georgia and uses the Ecospace model framework (de Mutsert et al., 2023; Walters et al., 

1999). To ensure the dynamics of the Strait of Georgia were resolved, it was deemed important to 

resolve the broader Salish Sea, with the connection to the open ocean via the Gulf Islands and the 145 

Juan de Fuca Strait being particularly important for resolving tides and estuarine flow (Ebbesmeyer et 

al., 1989; MacCready et al., 2021). The horizontal grid used in NEMO is discretised on a curvilinear 

orthogonal Arakawa C-grid generalised to three dimensions (Arakawa & Lamb, 1977; Madec et al., 

2017). The basic spatial-temporal configuration of HOTSSea v1 began with a previous configuration, 
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SalishSeaCast, implemented at approximately 500 m horizontal resolution for the same domain 150 

(Olson et al., 2020; Soontiens et al., 2016; Soontiens & Allen, 2017). The ~500 m horizontal 

resolution grid and bathymetry used in the SalishSeaCast model was reduced by a factor of three in 

each horizontal direction, taking the mean depth of the neighbouring cells to assign the new depths. 

The new grid is approximately 1.5 km in horizontal resolution and has a width of ~200 km and length 

of ~450 km (132 cells x 299 cells; Figure 1), matching the grid and resolution of the Ecospace 155 

ecosystem model. The grid is rotated 29° counterclockwise to true north to align with the axis of the 

Strait of Georgia. The bathymetry was already processed for SalishSeaCast to avoid sudden changes 

in depths across grid cells and maintain open channels in narrow passages. We made additional 

manual edits to maintain channels between islands, maintain connectivity of the main Fraser River 

channel to the outflow, and avoid erroneously isolating bodies of water. Some narrow water bodies 160 

such as Sechelt Inlet, Salmon Inlet, Burrard Inlet, and the Indian Arm fjord are not resolved in this 

setup (outlines of these areas are visible in Figure 1). The depths of edited channel cells were 

approximated from depth averages taken from ~80 m resolution bathymetric data (Pacific Salmon 

Foundation, 2022). To ensure tidally-driven dynamics were not lost, the main channel of the Fraser 

River was extended inland by manually adding non-existent river channel cells approximately 150 km 165 

in total length, following Soontiens & Allen (2017).  

The vertical grid for HOTSSea v1 is divided into 40 vertical (z) levels that are gradually stretched to 

achieve higher resolution at the surface, ranging from 1 m vertical resolution in the upper 10 m to 

approximately 27 m widths at the deepest level (420 m). Partial steps were enabled to limit large 

changes in bathymetry between adjacent grid cells. The thickness of each layer is proportionally 170 

scaled at each time-step as sea surface height changes using a nonlinear free surface scheme 

referred to as the ‘variable volume option’ (Levier et al., 2007). HOTSSea v1 uses a non-linear free 

surface option to time-split the solving of the barotropic and baroclinic free surface. The barotropic 

and baroclinic time steps are set to 6 s and 120 s, respectively, and the vertical momentum and tracer 

advection time stepping set to 2 s. The model was run from 1979-01-01 to 2019-01-01, where the 175 

1980 atmospheric forcings were duplicated and applied to 1979, such that we treat 1979 as a model 

spin-up year and exclude it from evaluation. A one-year spin-up was based on a minimum estimate of 

deep water residency time which elsewhere has been reported to range between one and three years 

(Pawlowicz et al., 2019). Initial conditions for January, 1979, for temperature and salinity across the 

domain were generated using climatologies for December and January using SalishSeaCast outputs 180 

from 2007 to 2020. An experimental bias correction to the ORAS5 temperature fields was applied 

when running the final hindcast. 
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2.2. Boundary Conditions and Forcings 

 185 
Table 1: External forcing used in the model. 

Forcing Dataset Forcing Type Model Runs 

Temporal 
extent and 
resolution 

Horizontal 
Resolution Citation 

Regional 
Deterministic 

Reforecast System 
(RDRS v2.1) 

Surface / 
Atmospheric 

Final  1980 – 2018; 
hourly 

0.09°; ~10 km) Gasset et al., 2021 

European Centre for 
Medium-Range 

Weather Forecast 
(ECMWF) Ocean and 
Sea Ice Re-analysis 

v5 (ORAS5) 

Open ocean 
boundary 
conditions 

Final  1975 – 2018; 
monthly 

0.25°; ~18 km Tietsche et al., 2017; Zuo 
et al., 2019 

Runoff / River 
Climatology and 

Gauge Data 

Runoff Final 1979 – 2018; 
hourly and 

daily 

n/a Morrison et al., 2012; 
Soontiens et al., 2016 

Tidal Constituents Tidal forcing 
at open 

boundaries 

Final n/a n/a Soontiens et al., 2016 

Coastal Ice Ocean 
Prediction System 

(CIOPS) West 

Open ocean 
boundary 
conditions 

Evaluation 2007 – 2019; 
hourly 

 

1/36°; ~2.5 km Paquin et al., 2020 

ECMWF ERA v5 
(ERA5) 

Surface / 
Atmospheric 

Evaluation 1979 – 
present; 
hourly 

0.28° ; ~31 km Dee et al., 2011; Hersbach 
et al., 2020 

High Resolution 
Deterministic 

Prediction System 
(HRDPS) 

Surface / 
Atmospheric 

Evaluation 2014 – 2020; 
hourly 

0.0225°; ~2.5 
km 

Environment and Climate 
Change Canada, 2020 

2.2.1. Atmospheric  

The Regional Deterministic Reforecast System (RDRS v2.1; Gasset et al., 2021) supplied the 

atmospheric conditions for forcing the full HOTSSea v1 hindcast. RDRS v2.1 is currently the highest 

resolution atmospheric reanalysis product available extending back to 1980 (0.09°; ~10 km 190 

horizontal).  Two additional atmospheric forcings (Table 1) were evaluated as part of an experimental 

design: the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5, a global 

reanalysis product extending back to 1979 (hourly, at approximately 31 km horizontal resolution; Dee 

et al., 2011; Hersbach et al., 2020) and the High Resolution Deterministic Prediction System 

(HRDPS), with spatial coverage of the northern part of North America (Canada and northern United 195 

States) with hourly coverage at ~2.5 km horizontal resolution for 2014 - 2020 (Environment and 

Climate Change Canada, 2020). The RDRS v2.1 product occupies an intermediate horizontal 

resolution between ERA5 and HRDPS, and the three together offered an opportunity to explore the 

effect of horizontal resolution of atmospheric forcing on model performance in the Salish Sea. 



9 

2.2.2. Open Boundaries  200 

There are two boundaries that connect the Salish Sea to the Pacific Ocean: the mouth of Juan de 

Fuca Strait in the southwest and Johnstone Strait in the north (Figure 1). To first evaluate the effects 

of using different ocean boundary forcings at the mouth of the Juan de Fuca Strait, a higher resolution 

model, CIOPS-West (Paquin et al., 2020), was used in shorter evaluation runs (horizontal resolution 2 

- 2.5 km; 1/36°; Table 1,Table 2). The Ocean Reanalysis System 5 (ORAS5; Tietsche et al., 2017; 205 

Zuo et al., 2019) was the only available reanalysis product with coverage for the full model hindcast 

and was used to supply ocean open boundary conditions in the final model. ORAS5 has a horizontal 

resolution at the latitude of the Salish Sea of approximately 18 km (0.25°). At the northern boundary 

(Johnstone Strait), we used a monthly climatology of temperature and salinity (Dosser et al., 2020, 

2021).  210 

2.2.3. River Discharge and Runoff 

River input into the Salish Sea periodically creates a brackish layer extending across the Strait of 

Georgia and drives strong estuarine circulation via Juan de Fuca Strait (Harrison et al., 1983). The 

Fraser River is the largest single source of freshwater influx into the domain and supplies 

approximately two thirds of the total annual freshwater input (Pawlowicz et al., 2019). Fraser River 215 

discharge is monitored as part of a long-term program (Morrison et al., 2012). Following Soontiens & 

Allen (2017), we used available flow records for the Fraser River from gauges approximately 150 km 

inland at the city of Hope, BC (Water Survey of Canada, 2015), and supplemented the Fraser River 

flow data with climatological data for additional freshwater input downstream of the station. A 

climatology was used for Fraser River runoff temperatures (Morrison et al., 2002) due to a lack of 220 

long-term measurements from the lower Fraser. The location of river outflow for the Fraser River was 

placed in the main channel before the river branches into a delta (at the town of Delta, BC). All other 

river outflows were assigned to the grid cell closest to the river mouth. Many rivers other than the 

Fraser are not monitored, so climatological patterns for discharge and temperature for 150 rivers 

flowing into the Salish Sea were used (Morrison et al., 2012). We adapted the input file containing 225 

these river input data from the ~500 m horizontal resolution model grid used by Soontiens et al. 

(2016) to the ~1.5 km horizontal resolution used here and adjusted the outflow locations as required. 

2.2.4. Tides 

At the two open boundaries, tides were forced with eight tidal constituents (K1, O1, P1, Q1, M2, K2, 

N2, and S2). Tidal heights and currents at the Juan de Fuca boundary were originally taken from 230 

WebTide (Foreman et al., 2000) and then manually tuned (Soontiens et al., 2016). At the northern 
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open boundary sea surface height and tidal harmonics were forced for the major M2 and K1 

constituents and SSH harmonics for the O1 and S2 harmonics were configured using calculations 

from Thomson & Huggett (1980) with remaining constituents taken from WebTide and subsequently 

tuned.  235 

3. Model Evaluation 

Observations were collated from various instruments and sources (Table 2) and used to do a 

preliminary evaluation of the model’s performance with respect to sea surface temperature (SST), 

sea surface salinity (SSS) and temperature and salinity over depths. To understand the trade-offs 

between spatial-temporal resolution, tractability, and model skill we used an experimental approach 240 

where forcings were incrementally swapped to help with isolating the most likely source of model 

error and bias. The NEMO-based SalishSeaCast model (v201905) outputs were used for comparison 

when evaluating the effect on overall model performance of changing the spatial-temporal setup, as 

we used this model as a foundation for the HOTSSea v1 model. As such, HOTSSea v1 shares 

limitations of the SalishSeaCast model, such as no wetting and drying capability in inter-tidal areas, 245 

climatologies used for river flow for all rivers except for the Fraser River, and biases in temperature 

and salinity. Aspects of SalishSeaCast’s model skill with respect to physical properties have been 

previously reported (Olson et al., 2020; Soontiens et al., 2016; Soontiens & Allen, 2017). The mean 

temperature biases over all depths ranged from -0.21 to 0.13 °C and for depths less than 15 m were -

0.34 to 0.36 °C, respectively (Olson et al., 2020). The mean salinity bias over the same two depth 250 

strata ranged from -0.74 to +0.23 PSU and -1.62 to 0.23 PSU, respectively (Olson et al., 2020). Our 

results may differ because the previous study did not necessarily use the same observational data 

nor did it use the subdomain definitions we used. For evaluation of temperature trends in the final 

hindcast, we used the modelled long-term temperature trend against observations at Nanoose 

station, the only long-term dataset with at least biweekly depth profiles done in the model domain 255 

extending back to the beginning of the hindcast (Table 2). 
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 Table 2: Summary of data used for model evaluation. 

Instrument 

Type Dataset Title Variables 

Observations 

(N) Description Source 

Conductivity, 

Temperature, 

and Depths 

(CTD) Casts 

Fisheries and Oceans 

Canada's (DFO) 

Institute for Ocean 

Science (IOS) CTD 

casts dataset 

Conductivity, 

Temperature, 

Depth, Pressure, 

Oxygen and 

Salinity 

24,810 

Contains CTD measurements collected in the 

Central Strait of Georgia, British Columbia, 

Canada using rosette mounted CTDs.  DFO, 2022c 

 
DFO IOS (including 

Nanoose Station) 

Salinity, 

Temperature, 

Depth, Pressure 
3,942 

Surveys conducted from 1965 to present 

including Nanoose Bay station, a Canadian 

military CTD dataset which were provided 

upon request from DFO. 

Personal 

communication 

(DFO) and 

WaterProperties.ca 

 Hakai Institute 

Salinity, 

Temperature, 

Depth, Pressure 2,871 

CTD data collected from 2012 to present by 

the Hakai Institute in waters surrounding 

Calvert Island, Johnstone Strait, and Quadra 

Island areas. 

Jackson et al., 2021 

 

 
Pacific Salmon 

Foundation (PSF) 

Salinity, 

Temperature, 

Depth, Pressure 3,437 
CTD casts collected by PSF for Strait of 

Georgia. 

Pacific Salmon 

Foundation, 2023 

Lightstation 

(LS) Near-

Surface Water 

Properties 

Environment and 

Climate Change 

Canada (ECCC) 

Temperature, 

Salinity 
7 

Observations from lightstations where daily 

sea-surface temperature and salinity 

measurements have been collected from 1914 

to present. Measurements were made daily 

using seawater collected in a bucket lowered 

into the surface water at or near the daytime 

high tide. 

 DFO, 2022a; 

Treasury Board 

Secretariat, 2023 

Buoys ECCC via DFO 

Sea Surface 

Temperature 

(SST) 

5 

Wave and temperature data from buoys. Sea 

surface temperature data have undergone 

automated quality control. Historical data are 

merged with real-time acquisition. 

Fisheries and 

Oceans Canada 

(DFO), 2024 

 260 
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3.1. Experimental Evaluation  

The years chosen for running preliminary experimental evaluations were 2016 – 2018. The available 

forcing data and models had coverage for those years and generally a larger volume of evaluation 

data is available for the most recent years (Table 3). Experimental runs of the HOTSSea model were 265 

given run codes. The first was HOTSSea v0.1, which used the highest resolution atmospheric and 

ocean boundary forcings available. This run was used to do a comparative evaluation with 

SalishSeaCast v201905 which has a higher horizontal resolution (~500 m versus ~1500 m). The 

LiveOcean model (Fatland et al., 2016) forcings used in SalishSeaCast at the JFS open ocean 

boundary were not available for the 2016 – 2018 period so in HOTSSea v0.1 we used CIOPS-W 270 

BC12, a model also developed using the NEMO v3.6 ocean engine covering the northeast Pacific at 

an approximate horizontal resolution of 2.0 - 2.5 km (Paquin et al., 2020). The HOTSSea v0.12 

experiment was used to evaluate the effect of swapping from HRDPS to the ERA5 atmospheric 

forcings (~31 km horizontal; Dee et al., 2011; Hersbach et al., 2020). At the time HOTSSea 

development began in 2021, ERA5 was the only climate reanalysis product available for the entirety 275 

of the hindcast period. At the time of writing, it is still the only reanalysis extending back to the 1940s 

and therefore evaluation of this product for use for atmospheric forcing was a priority. The v0.14 and 

v0.16 experiments jointly helped evaluate the effect of using the ORAS5 (~18 km horizontal; Tietsche 

et al., 2017; Zuo et al., 2019) dataset for ocean boundary conditions at the mouth of Juan de Fuca 

Strait, which will be used in the final hindcast; the two experiments used the lowest resolution 280 

atmospheric forcings (v0.14; ERA5) and the highest resolution atmospheric forcings (v0.16; HRDPS) 

to assist with isolating the effects on model performance of ORAS5 versus the atmospheric forcings. 

The HOTSSea v0.18 experiment used the RDRS v2.1 atmospheric outputs for forcing, which have an 

intermediate horizontal resolution of ~10 km (Gasset et al., 2021). To evaluate each experiment, we 

used data, methods, and statistics as described in the next section. Model performance was 285 

evaluated using results aggregated over the 2016 - 2018 period - analyses were also carried out on 

model results grouped by month and year, though only results aggregated for the entire period are 

presented here and only the results using CTD measurements are highlighted here for brevity. 
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Table 3: Experimental evaluation run codes and forcings. 290 

Model 

Version or 

Run Code Evaluation Purpose Years 

Surface 

Forcing 

Ocean Boundary 

Forcing Reference 

SalishSeaCast (~ 0.5 km) v201905 

Comparison of model 

performance at higher 

horizontal resolution 

2016 – 

2018 
HRDPS 

LiveOcean at JFS 

boundary, 

climatology at 

northern 

boundary 

Soontiens et al., 

2016; Soontiens 

& Allen, 2017; 

Olson et al., 

2020 

CIOPS-W  BC12 

Comparison of model 

performance at lower 

horizontal resolution 

2016 - 

2018 

HRDPS & 

RDPSa (~10 

km) 

Regional Ice 

Ocean 

Prediction 

System (RIOPS) 

v2 

Paquin et al., 

2020 

HOTSSea (~1.5 km) v0.1 

Comparison with two models 

listed above using ~1.5 km2 

horizontal resolution 

2016 - 

2018 
HRDPS  CIOPS-West This study 

HOTSSea  v0.12 

Evaluate sensitivity to lower 

resolution atmospheric 

forcing 

2016 - 

2018 
ERA5  CIOPS-West This study 

HOTSSea v0.14 

Evaluate sensitivity to lower 

resolution ocean boundary 

and atmospheric forcings 

2016 - 

2018 
ERA5  

ORAS5 (western 

boundary), 

climatology 

(northern 

boundary) 

This study 

HOTSSea v0.16 

Uses highest resolution 

atmospheric forcings 

available; evaluates 

sensitivity to lower 

resolution ocean boundary 

forcings 

2016 - 

2018 
HRDPS 

ORAS5 (western 

boundary), 

climatology 

(northern 

boundary) 

This study 

HOTSSea v0.18 

Uses the forcings used in the 

final model; evaluates 

sensitivity to intermediate 

resolution atmospheric and 

lower resolution boundary 

forcings 

2016 - 

2018 
RDRS v2.1 

ORAS5 (western 

boundary) and 

climatology 

(northern 

boundary) 

This study 

HOTSSea v1.01 First full hindcast run 
1979 - 

2018 
RDRS v2.1 

ORAS5 (western 

boundary) and 

climatology 

(northern 

boundary) 

This study 

HOTSSea v1.02 
Full hindcast run with bias  

correction  

1979 - 

2018 
RDRS v2.1 

ORAS5 - 

temperature 

bias correction 

(western 

boundary) and 

climatology 

(northern 

boundary) 

This study 

* Approximate horizontal resolutions are included in brackets where not otherwise included in Tab. 1 
a  RDPS = Regional Deterministic Prediction System (used by  CIOPS-W, not used herein)
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3.2. Model-Observations Evaluation Methods 

 

 295 

 

 
 
Figure 2: Map of HOTSSea v1 model domain (red rectangle) and subdomains used for analysis (black polygons; DI = 
Discovery Islands, SGN = Strait of Georgia North, SGS = Strait of Georgia South, HS = Haro Strait, GI = Gulf Islands, JFS = 300 
Juan de Fuca Strait, PS = Puget Sound). Locations of CTD casts are indicated by orange stippling (darker denotes higher 
density), and Nanoose station is indicated by the black star. 
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The final hindcast was evaluated using the datasets grouped by subdomains (Table 2, Figure 2). 

Subdomains were selected based on distinct geographic features, data availability, and physical 

characteristics. 305 

3.2.1. Vertical Profiles 

CTD casts were acquired from various sources (Table 2). After quality control, 27,272 CTD casts 

were used in the analysis of the final hindcast. These data have heterogeneous spatial coverage 

when aggregated by subdomain (Figure 2; Table 4). For the model intercomparison and experimental 

evaluation only CTD data from 2016 - 2018 were used (N = 8,012), which also had spatially 310 

heterogenous coverage across subdomain.  

 

Table 4: Spatial distribution of CTD data used for evaluation of entire hindcast (1980 - 2018) and shorter experiments (2016 
- 2018). 

 CTD count 

Subdomain 1980 - 2018 2016 – 2018 

Discovery Islands (DI) 3,649 (2.3 km-2) 1,884 (1.2 km-2) 

Strait of Georgia North (SGN) 12,365 (2.9 km-2) 3,080 (0.7 km-2) 

Strait of Georgia South (SGS) 4,140 (1.5 km-2) 1,517 (0.5 km-2) 

Gulf Islands (GI) 2,512 (1.4 km-2) 871 (0.5 km-2) 

Haro Strait (HS) 800 (2.0 km-2) 184 (0.5 km-2) 

Puget Sound (PS) 99 (0.04 km-2) 23 (0.01 km-2) 

Juan de Fuca Strait (JFS) 3,707 (0.9 km-2) 453 (0.1 km-2) 

Total : 27,272 (1.5 km-2) 8,012 (0.4 km-2) 

* brackets indicate spatial density of measurements 315 

The closest model grid cell and time index was found for each CTD measurement and the 

measurements over depths for each CTD cast were vertically interpolated to the model depth levels. 

To calculate the statistics described below, CTD data were first grouped by subdomain, period, and 

depth strata during analysis. We highlight in the subsequent sections only the results of grouping the 

data first by subdomain and model depth level and second by subdomain and selected depth strata 320 

(0 -> 30 m; 30 -> 150 m; > 150 m; and over all depths). For statistics grouped by depth strata, the 

depth-integrated mean from individual CTD casts within each depth grouping were first calculated. 

These values were treated as a single measurement (oi) in the set of CTD casts, N, across each 

subdomain with o representing the mean of depth-integrated means. Model results were extracted for 

each observation and depth-integrated in the same manner.  325 

The model error was calculated for each model-observation pair (m, o) of time series (Error = m – o) 

with the bias being the mean error. The Root Mean Square Error (RMSE) was also calculated for 

each depth stratum, time frame, and subdomain. The bias and RMSE is often used to infer the 

accuracy of a model whereas the Centred Root Mean Square Error (CRMSE) quantifies the precision 

(Walther & Moore, 2005), as the variability of the model as compared with observations as: 330 
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CRMSE  =  √
1

𝑁
∑((𝑚𝑖 −𝑚) − (𝑜𝑖 − o))

2
𝑁

𝑖=1

 (1) 

where oi denotes a single observation out of a set of observations, N, with the corresponding model 

output denoted by mi. The Willmott Skill Score (WSS) was also used, a dimensionless measure of 

model skill ranging from zero denoting poor agreement between model and observations to one 

denoting perfect agreement (Willmott, 1981): 

 335 

𝑊𝑆𝑆 =  1 −
∑ (𝑚𝑖 − 𝑜𝑖)

2𝑁
𝑖 = 1

∑ (|𝑚𝑖 − o| + |𝑜𝑖 − o|)
2𝑁

𝑖=1

 (2) 

 

3.2.2. Sea Surface Temperature and Salinity 

Sea surface temperature (SST) and salinity (SSS) were evaluated using measurements collected at 

high tide during daylight hours by lighthouse staff at seven lighthouses throughout the domain (Figure 

2; Treasury Board Secretariat, 2023). Lightstation data (LS) were available for the entirety of the 340 

hindcast period for Chrome Island, Entrance Island, and Race Rocks lighthouses whereas others had 

partial coverage (Table 5). The time of day when samples were taken was not always provided in the 

dataset. As such, the closest tidal gauge each day was found for each lighthouse and the high tide 

time was extracted and then matched to the lighthouse sample data as required.  

 345 

Table 5: Lightstation data summary used for evaluation of SST and SSS. 

Lightstation ID Years 
Location 

(subdomain) 

Active Pass 1980 – 2011 SGS 

Cape Mudge 1980 – 1985 SGN 

Chrome Island 1980 – 2019 SGN 

Entrance Island 1980 – 2018 SGN 

Race Rocks 1980 – 2018 JFS 

Sheringham Point 1980 – 1988 JFS 

Sisters Islets 1980 - 2008 SGN 

 

Sea surface temperature measurements were also available from buoys within the model domain 

(Figure 2). Canadian buoy data were downloaded from online repositories (Fisheries and Oceans 

Canada (DFO), 2024; NOAA National Buoy Data Centre, 2023). The buoy data we prepared had 350 

heterogeneous temporal coverage of the hindcast period (Table 6). For the evaluation of the full 

hindcast we only used buoys with ten or more years of data (buoy IDs: 46146, 46131, 46134).  
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Table 6: Buoy data summary used for evaluation of SST. 

Buoy ID Years 
Location 

(subdomain) 

46131 1992 - 2019 SGN 

46134 2001 - 2019 GI 

46146 1992 - 2019 SGN 

 355 

The statistics used for evaluation of SST and SSS include the standard deviation, 𝜎, and Pearson’s R 

(i.e., the corelation coefficient): 

𝑅 =
1

𝜎𝑜𝜎𝑚

1

𝑁
∑(𝑚𝑖 −m)(𝑜𝑖

𝑁

𝑖=1

− o) (3) 

 

For plotting of results using Taylor diagrams, the 𝜎m and CRMSE statistics were normalised by 

scaling to the standard deviation of the observations to allow display of evaluation results for multiple 360 

stations on the same plots. The Normalised Centred Root Mean Square Error (NCRMSE) is 

computed using the relationship between 𝜎, R, and CRMSE:  

 

𝐶𝑅𝑀𝑆𝐸 =  √𝜎𝑜
2 + 𝜎𝑚

2 − 2𝜎𝑜𝜎𝑚𝑅 (4) 

thus, 

𝑁𝐶𝑅𝑀𝑆𝐸 =  𝐶𝑅𝑀𝑆𝐸 / 𝜎𝑜 (5) 

and, 365 

𝜎𝑚
′  =  

𝜎𝑚
𝜎𝑜

 (6) 

where 𝜎𝑚
′  denotes the normalised standard deviation. Note that in target plots, the NCRMSE has 

been modified by the sign of 𝜎m - 𝜎o (Kärnä et al., 2021).  
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3.3. Ocean Boundary Temperature Bias Correction 

 
Figure 3: Monthly climatology of ORAS5 temperature bias over depths at Juan de Fuca open ocean boundary.  370 

 

The ORAS5 global ocean reanalysis extends back to 1958 (Copernicus Climate Change Service, 

2021) and it would be ideal to extend the model back to 1958, too; however, the magnitude of biases 

that would be inherited from ORAS5 was hitherto unknown. Based on the results of experiments 

(Table 3), we suspected biases could be substantial. To investigate, we collated observations from 375 

CTD instruments sampled between 1980 and 2018 from the mouth of the Juan de Fuca Strait (N = 

2,162) and compared these observations to temperatures in the ORAS5 data. We chose to do this for 

the entire hindcast period rather than using the experiments for only 2016 - 2018 given the 

observational data available at this location for the experimental period were relatively limited. 

ORAS5 outputs were interpolated from monthly to daily using the cdo toolset (Schulzweida, 2022), 380 

which is the same procedure done by NEMO internal routines during model runs. Each CTD 

measurement was then matched to the closest ORAS5 grid point. Both the observations and the 

ORAS5 model data were interpolated vertically to the HOTSSea model depth levels. The ORAS5 

model bias was calculated using monthly mean bias at each depth level.  

 385 

The analysis indicated that ORAS5 at the JFS boundary is biased warm most depths and months 

except January with the mean summer bias near the surface approaching +4 °C (Figure 3). Surface 

waters in the ORAS5 model were biased fresh in the spring and summer, especially in the top 10 m 

where the mean bias approached -4 PSU. As a first step towards a more comprehensive bias 

correction, the mean monthly temperature bias for each depth level was used as a correction factor 390 

applied to the boundary conditions. We chose to prioritise temperature to isolate a single variable and 

because applying a bias correction factor to salinity would run a risk of introducing dynamic instability. 

The temperature bias correction method is acknowledged here to be a crude approach compared to 

various alternatives (Adachi & Tomita, 2020). The model run with ocean boundary temperature bias 
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correction factor applied to ORAS5 is referred to as HOTSSea v1.02. We then evaluated the change 395 

in model performance versus with no temperature bias correction (HOTSSea v1.01). 

3.4. Trend Analysis 

The ability of the HOTSSea model to recreate observed long-term ocean temperature trends is one of 

the most important tests of the utility of the model. The only station in the model domain where 

measurements over the entire water column were collected with bi-weekly regularity for the entirety of 400 

the hindcast is the Nanoose station, located in the central Strait of Georgia (Figure 2). At this location, 

CTD casts have been sampled approximately every two weeks since 1979 and with less regularity 

back to the late 1960s. Trends in water temperature at Nanoose station were previously analysed and 

estimated to be 0.24 +/- 0.1 ℃ decade-1 between 1970 and 2005 (Masson & Cummins, 2007; MC07). 

We acquired the same Nanoose station data as analysed by MC07 with updates for recent years 405 

from a digital archive at DFO Institute of Ocean Sciences (IOS) and in the DFO IOS Water Properties 

Database in August, 2022. To cross-check our analysis with MC07, we also calculated the slope for 

the same period as that study (1970 – 2005) similarly using ordinary least squares linear regression 

and found a similar result: a warming trend over the water column (4.5 – 400 m) of 0.257 ℃ / decade 

was assessed here versus 0.24 ℃ / decade in MC07. We attribute the difference to the application of 410 

a boxcar filter in MC07 to the anomalies in the previous study. 

To compare temperature anomalies and trends observed at Nanoose station with those predicted by 

the model, first obviously erroneous measurements (e.g., with coordinates on land or depths 

exceeding the maximum depth of ~400 m at Nanoose station) were removed and units were 

converted to match those used in HOTSSea. The number of CTD casts ultimately used was 5,692. 415 

Measurements taken in each CTD cast were interpolated to match the model depth levels of the 

closest HOTSSea grid cell. The mean for each depth level grouped in two-week time intervals was 

calculated for the hindcast period. A climatology over depth and time was generated for the hindcast 

period by taking the mean across years for each depth level and two-week block. Time series of 

temperature and salinity anomalies were calculated by differencing the depth-binned data and the 420 

climatology. A ‘blind’ approach was then used to match each CTD cast to HOTSSea outputs where 

model data were only extracted for dates, times, and locations corresponding to each CTD 

measurement (i.e., gaps in the Nanoose time series also were present in the extracted model 

results). The same procedure as above was then used for the model results to generate climatologies 

and anomalies. 425 

Analysis of temperature trends was conducted using the Nanoose station data and model results 

drawn from the same area to examine the performance of HOTSSea v1.0x at simulating long-term 

trends. Depths shallower than 4.5 m were omitted because the first depth at which measurements 
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were taken was inconsistent (following MC07). The analysis of the depth integrated anomaly trend 

over the entire water column (4.5 – 400 m) was first done, followed by analysis of the trend at each 430 

model depth. To quantify the magnitude of a linear trend, the Theil-Sen slope was used (TS; Sen, 

1968; Theil, 1950). The TS approach is more robust to data gaps, outliers, and non-normal and 

heteroscedastic residuals than ordinary least squares linear regression (LR; Wilcox, 1998). To 

calculate TS, the median slope of all data pairs is found: 

𝑇𝑆 = 𝑚𝑒𝑑𝑖𝑎𝑛 [
𝑥𝑖 − 𝑥𝑗

𝑗 − 𝑖
] for all i < j (7) 

where (xi, xj) is a pair of values in the ordered time series (j > i). The LR method used in MC07 and 435 

the TS method were compared and we estimated the trend for the 1970 – 2005 period using TS to be 

0.256 ℃ / decade, effectively the same as the LR method after accounting for measurement precision 

(see above). The similarity between trends estimated between the LR and TS method is consistent 

with findings in a previous analysis of SST in the same region (Amos et al., 2015).  

Detrended residuals were analysed for periodicity, autocorrelation, non-normal distribution, and 440 

heteroskedasticity prior to choosing the test used for determining statistical significance. The data 

were first ‘deseasoned’ using the climatological mean to produce anomalies, as described above. The 

deseasoned anomalies were detrended by removing the secular trend calculated using the TS 

method and fast Fourier transform (FFT) was used to detect any remaining periodicities in the 

detrended and deseasoned residuals by examining the top five peaks in the power spectrum 445 

(Bluestein, 1970; Cooley & Tukey, 1965) using scipy (Virtanen et al., 2020) and numpy Python 

packages (Harris et al., 2020). The presence of autocorrelation was evaluated by modelling the 

residuals as a first order autoregressive process (AR-1) and computing the autocorrelation function 

(ACF) using Bartlett’s method for computing the 95% confidence interval (Brockwell & Davis, 2016; 

Parzen, 1964) with the statsmodels package in Python (Seabold & Perktold, 2010). The residuals 450 

were tested for normality using the Shapiro-Wilk test where p value of <=0.9 was interpreted as 

insufficient evidence to reject a non-normal distribution (Shapiro & Wilk, 1965) using scipy. 

Heteroskedacity was evaluated using White’s test (White, 1980) and the Goldfeld-Quandt test 

(Goldfeld & Quandt, 1965) using statsmodels.  

The analysis using FFT revealed the presence of periodicity in residuals of frequencies of 5.1 and 455 

17.7 years, confirming that the data were de-seasoned at the sub-annual scale but suggesting 

climate modes operating at longer time scales may limit the ability of accurate secular trend 

estimation, a similar result to previous studies (Amos et al., 2015). The 17.7 periodicity detected is 

consistent with the PDO, the NPGO, or a combination of the two. The 5 year period is approximately 

consistent with the ENSO cycle (Andres Araujo et al., 2013; McPhaden et al., 2006).  460 
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Analysis of the data revealed that the residuals of the detrended anomalies (both model and 

observation) had significant autocorrelation, were not normally distributed, and with some 

heteroskedasticity detected at some depths. The Mann-Kendall (MK) method (Kendall, 1948; Mann, 

1945), a non-parametric method, was chosen for evaluating trend significance. This method is widely 

used in climatological and meteorological applications (Amos et al., 2015; Gocic & Trajkovic, 2013) 465 

and has the advantage of being relatively robust to non-normal data distributions and the data gaps 

present in the Nanoose time series. To check for statistical significance using MK, first the ‘S’ statistic 

is calculated:  

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

  (8) 

where n is the number of data points in the time series and sgn(xj - xi) representing the sign function:  

𝑠𝑔𝑛(𝜃)  =  {

+1, 𝑖𝑓 𝜃 >  0;  
0, 𝑖𝑓 𝜃 =  0; 
−1, 𝑖𝑓 𝜃 <  0

} (9) 

When the S statistic is greater than 0, it indicates that values earlier in the time series tend to be 470 

lower than those later and the trend therefore tends positive. Next, the variance of the test statistic is 

required, which accounts for ties in the data:   

𝑉𝐴𝑅(𝑆)  =
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) −∑ 𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝

𝑚

𝑝=1

+ 5) ] (10) 

where n is the length of the time series, m is the number of tied values, and tp is the number of ties in 

the pth tied value. Using S and VAR(S), one computes the standardised normal variate Z:  

𝑍𝑀𝐾  =  

{
 
 

 
 

𝑆 − 1

√𝑉𝐴𝑅(𝑆)
, 𝑖𝑓 𝑆 >  0;  

0, 𝑖𝑓 𝑆 =  0; 
𝑆 + 1

√𝑉𝐴𝑅(𝑆)
, 𝑖𝑓 𝑆 <  0

}
 
 

 
 

 (11) 
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The standardised statistic, ZMK, follows the normal distribution with E(Z) = 0 and V(Z) = 1. The null 475 

hypothesis – that there is no trend – may be rejected if the absolute value of Z is larger than the 

theoretical value of Z1-α/2 for a one-tailed test or Z1-α for a two-tailed test (used here), where α is a 

chosen statistical significance level, which here was 95%. The Z values were also used for lower 

confidence limits (LCL) and upper confidence limits (UCL). The MK test, similar to LR with t-test, 

requires the data be independent and therefore serial autocorrelation must be dealt with in advance 480 

(Helsel & Hirsch, 1992). Yue et al., (2002) proposed a ‘pre-whitening’ procedure to remove the effect 

of serial autocorrelation prior to estimating the trend significance using MK. When autocorrelation was 

present, we used the ‘3PW’ algorithm (Collaud Coen et al., 2020) which combines three pre-

whitening methods to minimise risks of type I and type II errors which we applied using the 

mannkendall (v1.1.1) Python code.  485 

After comparing the model with the measurements from the Nanoose dataset, we evaluated the trend 

in temperature and salinity for several depth strata (< 30 m, 30 - 150 m, > 150 m, and all depths) in 

each grid cell in the subdomain using the same statistical methods described above, though the 3PW 

method was not applied due to computational cost. The analysis was limited to the Strait of Georgia 

and surrounding waters for several reasons: (i) preliminary results indicated that model performance 490 

was best in this part of the domain, (ii) observations collated have relatively more coverage in this 

area, (iii) and it is the focus of an ecosystem model under development in parallel. Mean weekly 

water temperatures were calculated for each grid cell, season (‘winter’ = December, January, 

February; ‘spring’ = March, April, May, ‘summer’ = June, July, August; ‘fall’ = September, October, 

November), and for each depth group. When generating plots, grid cells were masked that were 495 

shallower than a threshold set for each depth strata (thresholds: 20 m for 0->30 m; 150 m for 30->150 

m; 200 m for >150 m) and coloured grey.  
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4. Results 

4.1. Experimental Evaluation 

 500 
Figure 4: Model bias (model - observations) over depths using CTD data for short (2016 - 2018) experimental runs, 
highlighting temperature (top row) and salinity (second row) bias and CRMSE over depths (shading). HOTSSea v0.18 
corresponds to the setup used in the final model run without bias correction (v1.01). v0.12 was omitted from the plots as 
results were nearly identical to v0.14. See Fig. 2 for map of subdomains. 

In the first model experiment (years 2016 – 2018), HOTSSea v0.1 experiment was compared with the 505 

higher resolution SalishSeaCast model. A notable difference was that v0.1 had a mean bias taken 

over all depths of 0.14 °C in the SGS subdomain versus -0.017 ˚C in SalishSeaCast (Figure 4c). 

Large differences were noted in the northernmost DI subdomain where near-surface (0 - 1.5 m) 

biases were larger in v0.1 relative to SalishSeaCast, approaching +2 °C and -4 PSU at 0.5 m (Figure 

4a,d). We attribute the warm bias in the DI subdomain to the 3x coarsened HOTSSea model grid 510 

relative to SalishSeaCast, limiting the model’s ability to resolve the relatively narrow topography in the 

DI. At depths > 1.5 m HOTSSea v0.1 performed well, even in the DI, with mean biases over the water 

column of -0.12 °C and -0.4 PSU. In the JFS subdomain, HOTSSea v0.1 performed similarly to 

SalishSeaCast except for the introduction of a temperature bias of 0.3 - 0.5 ˚C at depths > 2 m, with 

the bias most pronounced at depths > 20 m (Figure 4b). A similar bias was also present in the Strait 515 

of Georgia South (SGS) subdomain (Figure 4c). The boundary forcings were hypothesised to be the 
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main culprit, since different boundary forcings were used here (CIOPS-W) than in SalishSeaCast 

(LiveOcean).  

 

The v0.12 and v0.14 experiments were designed to evaluate the effect on the model’s performance of 520 

using relatively coarse atmospheric forcings from ERA5 (~31 km horiz. res.) versus the relatively 

highly resolved HRDPS (~2.5 km horizontal) forcings used in v0.1. The v0.12 and v0.14 experiments 

used different ocean boundary forcings, though the resulting salinity and temperature biases over 

depths were indistinguishable between the two (which prompted us to remove v0.12 from Figure 4). 

The similarities suggest that any performance impacts of using ORAS5 (~18 km horiz.) versus 525 

CIOPS-W (~2.5 km horiz. res.) were masked by the relatively greater impacts of using coarse ERA5 

atmospheric forcings. Among all experimental runs, v0.12 and v0.14 had the greatest near-surface 

biases in temperature and salinity in the northern part of the model domain (i.e., DI subdomain; 

Figure 4a,d). and in the central part of the domain (i.e., SGS domain; Figure 4c,f). We investigated 

possible reasons and diagnosed that winds in ERA5 are generally weak and less variable throughout 530 

the domain relative to the higher resolution HRDPS winds.  

 

The HOTSSea v0.16 experiment helped isolate and evaluate the effect of using ORAS5 for boundary 

conditions at the Juan de Fuca Strait open ocean boundary versus the relatively highly resolved 

CIOPS-W. In the northern-most subdomain, the Discovery Islands (DI), v0.16 showed similar biases 535 

to v0.14 with respect to salinity and temperature over depths (Figure 4a,d). Looking to the SGS 

subdomain in the central part of the model domain, a relatively large warm bias appeared in v0.16 at 

depths greater than 10 m (approximately +0.3 °C at 10 m depth, increasing to +0.5 °C at 100+ m 

depths; Figure 4c). In the JFS subdomain closest to the open ocean boundary, the biases in 

temperature at depths > 5 m were greater in v0.16 than in the other subdomains and greater relative 540 

to previous experimental runs, with biases of > 1 °C near the surface and +0.4 to +0.75 °C at greater 

depths (Figure 4b). The v0.16 experiment’s performance with respect to salinity in JFS were 

comparable to v0.14 (Figure 4e). Our interpretation of these results is that in v0.16 the model 

inherited a warm bias in mid and deep waters from the ORAS5 boundary conditions, evidenced by 

decreasing temperature bias with increasing distance from the open ocean boundary. Contrary to 545 

expectations, using the lower resolution ERA5 atmospheric forcings in the HOTSSea v0.14 

experiment resulted in less of a warm temperature bias across all depths in the JFS subdomain at 

depths up to 100 m and had little discernible effect on salinity as compared with results of using the 

higher resolution HRDPS outputs for atmospheric conditions in the v0.16 experiment. The better 

performance of v0.14 in JFS was unexpected because the model domain is relatively poorly resolved 550 

by ERA5 versus HRDPS. We suspect that wind-driven vertical mixing is biased low when using ERA5 

and therefore ERA5 masks the effect of a near-surface warm bias introduced by ORAS5 by keeping 
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the biased-warm water closer to the surface. Further investigation is warranted and understanding the 

sources of biases is a priority. 

 555 

In the final experimental run, HOTSSea v0.18, the RDRS v2.1 (~10 km horizontal) atmospheric 

conditions were used, representing an intermediate between the highest resolution HRDPS forcings 

available only for 2014 - 2020 and the lower resolution ERA5 forcings available for the entire hindcast 

period. The run performed similarly or better than the previous two runs with respect to temperature 

and salinity in most subdomains. The JFS subdomain was an exception where the warm temperature 560 

bias was greater than in v0.14 (Figure 4b). As above, the increased temperature bias was 

unexpected since v0.14 used the relatively weak and poorly resolved ERA5 atmospheric conditions. 

Thus, using both higher resolution and presumably more accurate atmospheric products (RDRS and 

HRDPS) resulted in greater temperature bias over depths up to ~80 m in the JFS subdomain. This 

result is consistent with the diagnosis we reached earlier that the ERA5 atmospheric forcing fields 565 

used in the v0.14 experiment masked the effects of a warm temperature bias in the JFS subdomain 

up to depths of ~10 m due to weaker winds and a shallower mixing as compared to the more powerful 

HRDPS and RDRS winds in the v0.14 and v0.18 experiments, respectively. 

 

The preliminary experiments illuminated several important factors affecting model performance 570 

related to atmospheric and ocean boundary forcings. Coarsening the model bathymetry from 500 m 

to 1.5 km horizontally has especially impacted model performance in areas with narrow topography 

when compared with SalishSeaCast, but otherwise has had only a minor effect on the evaluated 

aspects of model performance. Puget Sound (PS) remains essentially unevaluated (though see 

Tables S1, S2) due to a lack of collated data for the area but we suspect similar issues to the DI 575 

subdomain due to narrow topography; expanding our evaluation to PS remains a priority for future 

work. An important takeaway was an apparent systemic temperature bias present in ORAS5, the only 

reanalysis for hindcasting the ocean boundary conditions to 1980 and prior available at the time of 

writing. The ERA5 product similarly was deemed to be inadequate for the present purposes due to 

underpowered winds throughout the domain (RDRS v2.1 was used instead). The experiments 580 

prompted us to verify and quantify the bias introduced at the ocean boundary and to determine if 

simple bias correction could hold potential to reduce or eliminate inherited biases (results below).  
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4.2. Bias Correction of Open Ocean Boundary Conditions 

 
 585 
Figure 5: Results of analysis using CTD data, aggregated by subdomain, showing mean temperature and salinity over 
depths (solid line = observations, dashed black line = HOTSSea v1.01 without bias correction, dashed red line = HOTSSea 
v1.02 with bias correction) 
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Figure 6: Target plots of the model’s temperature bias and normalised centred root mean squared error (NCRMSE) using 590 
CTD data grouped by depth strata (panels a - d) and by subdomain. Results without bias correction to western open ocean 
boundary conditions (HOTSSea v1.01) are shown in grey and results with temperature bias correction (HOTSSea v1.02) are 

shown in red. 

The effect of the temperature bias corrections applied in HOTSSea v1.02 substantially improved 

model skill versus v1.01 (Figure 5Figure 6; Tables S1,S2). In the JFS subdomain, for example, 595 

temperature bias calculated over all depths was reduced from +0.66 to +0.12 ℃. The HOTSSea 

v1.01 run without bias correction had mean temperature biases calculated over all depths of +0.21 to 

+0.66 ℃ (excluding the PS subdomain with sparse observations) versus -0.14 to +0.2 ℃ in HOTSSea 

v1.02 (Table S1). Applying the temperature bias correction improved the model’s performance in the 

most distant subdomain from JFS, the DI subdomain – an unexpected result that emphasises the 600 

importance of accurate ocean boundary forcings.  
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4.3. Model-Observation Evaluation 

4.3.1. Vertical Profiles 

Overall, the full hindcast (HOTSSea v1.02) performs best in the central and northern portion of the 605 

domain (Figure 5). The southernmost PS subdomain was omitted from analysis due to relatively few 

observations collated. Preparing data for this area is a priority for future work. In the SGN subdomain 

where the most CTD casts were available (N = 12,288), the temperature bias over all depths over the 

hindcast period was –0.08 ℃ (0 - 30 m = -0.39 ℃, 30 - 150 m = -0.14 ℃, > 150 m = +0.13 ℃) with 

overall WSS of 0.97 and correlation coefficient (R) of 0.94 (Tables S1, S2). Performance was similar 610 

in the SGS subdomain. The normalised target and Taylor diagrams (Figure 6, S1-S3) indicate the 

model captures the seasonal ocean temperature variability well, though NCRMSE was > 0.5 for JFS 

in the west and DI subdomains in the north. Model standard deviation is generally higher than 

observations in shallow depths and lower in deep water. Except for JFS and DI subdomains, the 

mean correlation coefficient with respect to temperature taken over all depths was >0.9 (Figure S1a; 615 

Table S1). As depths increase, correlation generally decreases. At depths greater than 150 m, the 

model underestimates temperature variability and the correlation coefficient was <0.8 for DI, JFS, and 

SGN. All metrics are tabulated by subdomain and depth strata in Tabs. S1 and S2 for reference. 

 

HOTSSea v1.02 model skill was relatively poor with respect to salinity compared with temperature, 620 

especially in the DI and JFS subdomains (Table S2; Figures S2-S3). However, performance was 

better in the Strait of Georgia where mean bias taken over all depths in the SGS subdomain was 

+0.38 PSU (WSS =0.98 and R=0.96; Table S2). The narrow topography in the DI combined with the 

1.5 km horizontal resolution is likely leading to the observed error, as evidenced by experiments 

(Figure 4). Another reason for salinity biases to increase in subdomains farther from the Fraser River 625 

could be that a climatology is used for estimating input from other rivers in the domain, whereas 

measurements are available for the Fraser River (Morrison et al., 2012). The open ocean boundary 

conditions are forced using a climatology at the northern boundary in the DI subdomain and this 

would be affecting model skill. However, the latter two explanations are considered less likely given 

the same boundary climatology and river forcings were used here as were used in SalishSeaCast 630 

which performs well in the DI subdomain (Figure 4). 
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4.3.2. Sea surface temperature and salinity 

 

Figure 7: Taylor (top) and target (bottom) plots evaluating HOTSSea v1.02 sea surface temperature (SST; left) and salinity 
(SSS; right). SST was evaluated using data from buoys (numbered) and lightstations (named) and SSS was evaluated using 635 
lightstation data only. Standard deviation (solid grey contours in Taylor diagrams) and centred root mean square error 
(dashed grey contours in Taylor diagram) have been normalised to enable comparison on the same plot. Perfect agreement 
between model and observations on the Taylor plot would correspond to normalised standard deviation = 1, correlation  = 1, 
and NCRMSE = 0. Perfect agreement between model and observations on the target plot would be at the centre. Arrows 
depict the change after applying a one month moving average on both the model and observation time series. 640 

Time series of SST and SSS taken at lightstations in the region are some of the longest in existence 

and present a valuable opportunity to evaluate model performance. SST and SSS were evaluated for 

the full hindcast using data from sampling at lightstations and buoys with temporal coverage of at 

least ten years. The Taylor plots indicate the model reproduces the variability in SST well (Figure 7a). 

Most stations have NCRMSE < 0.5 with a correlation coefficient greater than 0.9. HOTSSea v1.02 645 

performs well at stations within the Strait of Georgia and relatively poorly Sheringham Pt in the Juan 

de Fuca Strait where the standard deviation of the model is approximately 20% higher than 

observations. The normalised target diagram (Figure 7c), shows that the model is typically biased 
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cold with the mean bias typically < 0.75 ℃. The one lightstation with >1 ℃ bias was Chrome Island 

which is located on an island close to shore where bathymetry is poorly resolved.  650 

The evaluation of SSS indicates that HOTSSea v1.02 typically overestimates variability in SSS 

across the domain, as the normalised standard deviation of the model is greater than the 

observations at all stations except Chrome Island (Figure 7b). Although the model’s performance with 

respect to SST is better than SSS, the model’s normalised standard deviation for SSS at all stations 

except Cape Mudge deviated by less than +/- 30% of the observations. The correlation coefficient for 655 

SSS at most stations was relatively poor (0.4 - 0.7) compared to SST (>0.85). The target plot 

indicates that the model is biased fresh at the surface by approximately -1 PSU at Cape Mudge in the 

northern part of the domain and -2 PSU at Entrance Island in the central Strait of Georgia, whereas at 

other stations the fresh bias was relatively small (< -1 PSU; Figure 7d).  

Many applications of HOTSSea v1 in support of ecosystem modelling and research related to Pacific 660 

salmon are anticipated to require accuracy at weekly, monthly, or seasonal time scales rather than 

daily or hourly. To investigate whether the lower SSS performance was due to difficulty capturing 

dynamics over hourly or daily time scales versus longer time scales, we applied a monthly moving 

average to both the model and observations after which statistics were recalculated. Applying the 

moving average improved the evaluated statistics at all stations except Sheringham Point (Figure 7, 665 

arrows). The improvement leads us to conclude that if research applications require bias < 0.5 ℃ or < 

1.0 PSU then averaging results to monthly may be ensure the accuracy is acceptable with respect to 

SST and SSS. As shown in Sect. 4.3.1, the model performance generally improves with depth.   
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4.4. Decadal temperature trend evaluation 

4.4.1. Nanoose station 670 

 
Figure 8: Biweekly climatologies and model-observation bias over depths over the hindcast period using measurements 
taken at Nanoose station between 1980 and 2018 (N = 5,692). The four panels to the left show salinity (top row) extracted 
from observations (first column) and the model (second column). Temperatures are similarly represented from observations 
and the model in the bottom plots. The two plots on the right show the model bias (i.e., model - observations) over depth. 675 
Data were binned bimonthly. 

The model represents seasonal changes in salinity and temperature over depths well. Both the 

modelled and observed biweekly climatologies at Nanoose station depict a characteristic intrusion of 

cold water and a temperature inversion that occurs in the area in the spring and late summer or fall 

(Figure 8d,e), typically associated with upwelling events and neap tides (Johannessen et al., 2014; 680 

Masson, 2002; Riche et al., 2014). Strongly stratified and warm surface layers are shown in the 

shallower layers in the summer in both climatologies from the observations and from the model. The 

model-observation biases are generally largest at depths less than 3 m for both temperature and 

salinity. Although at depths >10 m there is only minor bias with respect to salinity (< 0.5 PSU), salinity 

is biased fresh in depths <3 m, especially in the summer when it approaches -3 PSU (Figure 8c). The 685 

fresh bias observed here is not surprising; it was also apparent in the higher resolution SalishSeaCast 

model (e.g., Figure 4f; Soontiens & Allen, 2017) which formed the basis for HOTSSea; however, it 

remains an important area for improvement in the future and may be affecting model skill with respect 

to circulation patterns. The modelled temperatures are biased warm in the summer and cool in the 
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winter by a maximum of approximately 1 °C at depths less than 3 m. In contrast, the modelled 690 

temperatures are consistently biased slightly high (~0.5 ℃) at depths over 100 m. 

After truncating the Nanoose station time series to match the model hindcast period, the monotonic 

temperature trend across depths 4 – 400 m was calculated using the MK test and the TS slope 

estimator. Significant autocorrelation was detected in the detrended biweekly time series so the 3PW 

algorithm was used to adjust for this (see Sect. 3.4). The trend from observations at Nanoose station 695 

evaluated to be 0.031°C per decade (LCL: -0.018, UCL: 0.08; p <= 0.12). HOTSSea v1.01 without 

ocean boundary temperature bias correction detected no trend (0.00 °C / decade; LCL: -0.06, UCL: 

0.06; p <= 0.73). The HOTSSea v1.02 with ocean temperature bias correction predicted a non-zero 

but insignificant trend of 0.012 °C per decade (LCL: -0.052, UCL: 0.075; p <= 0.3). Although trends 

over the water column for the 1980 – 2018 hindcast period were not significant at the 95% confidence 700 

level, results suggested that HOTSSea v1.02 with ocean boundary temperature bias correction 

performs better than HOTSSea v1.01 with respect to long term-trends. 

 
Figure 9: Temperature anomalies (seasonal) from observations (black, solid) at Nanoose station in the central Strait of 
Georgia versus those derived from HOTSSea v1.02 model outputs (red, dashed), depth integrated over 4.5 m - 400. The 705 
grey area represents the model bias. Observations from the 1970 – 1980 period at Nanoose are included to illustrate the 
cooler period, a multiyear swing in temperature anomalies (1977,1978), followed by a regime shift occurring circa 1977 
(Beamish et al., 1999; Hare & Mantua, 2000). 

The observed inter-annual and intra-annual variability over the hindcast period is well captured by the 

model (Figure 9). The largest deviations between modelled (HOTSSea v1.02) and observed 710 

temperature anomalies over the whole water column were < 0.5 °C. Relatively large deviations from 

observations in the 1980 – 1983 period suggest that the one-year spin-up may be too short and this 

remains a priority area to investigate in the future. Warm anomalies as a result of a documented 
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oceanic heat wave circa 2015-2016 (Gruber et al., 2021; Khangaonkar, Nugraha, Yun, et al., 2021) 

are generally well represented, suggesting the model is capable of reproducing extreme events. The 715 

evaluation of the trends at Nanoose station also indicate the model does not incur a detectable drift in 

temperature bias at this location, despite being run with no data assimilation.  

 

The secular trend previously calculated for the 1970 to 2005 period of 0.24 °C per decade (95% CI 

±0.1 °C; Masson & Cummins, 2007) was over 6-fold greater than calculated here for the 1980 to 2018 720 

hindcast period. We verified that the difference was not attributable to the methods (TS vs. LR for 

slope estimation) by re-estimating the trend from the observations using LR for the same 1980 – 2018 

period, finding a similar result using LR (0.038 °C / decade). The weaker secular trend calculated for 

the 1980 – 2018 period is in part due to the omission of the 1970s, a period with cold water 

temperature anomalies observed at Nanoose station (Figures 9, S4). The late 1970s corresponds 725 

approximately to a polarity shift in the Pacific Decadal Oscillation (PDO; Mantua et al., 1997; Mantua 

& Hare, 2002), a trough in the North Pacific Gyre Oscillation (NPGO; Di Lorenzo et al., 2008), which 

oscillate on decadal or multi-decadal time scales. The late 1970s also corresponds to a trough in a 

multi-regime index circa 1977 that correlates with a reduction in Northern Pacific fisheries catches 

(Beamish et al., 1999). Overall, the analysis reveals a key limitation of HOTSSea v1 – omission of the 730 

1970s – which is thus a priority area for subsequent iterations. Our analysis also serves as an update 

to the MC07 analysis and confirms ocean temperatures have not subsequently reverted. 

 

 
Figure 10: Seasonal and annual trends (1980-2018) over depths observed at Nanoose station compared with HOTSSea 735 
v1.02 outputs. Shading represents upper and lower 95% confidence limits. 

Analysis of trends at each depth at Nanoose station indicate that the modelled trends are in generally 

good agreement with observed trends (Figure 10). Both the modelled and observed seasonal trends 

in the upper water column in the summer, fall, and annually were statistically significant whereas the 
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trends in the winter and spring were not. A deviation between the modelled and observed trends is 740 

apparent, especially in the summer, between approximately 20 m and 100 m. The reason for the 

deviation is yet to be determined but a similar deviation is also apparent in the analysis using CTDs in 

the GI subdomain (Figure 5). The seasonal trend patterns over depth at Nanoose station indicate that 

trends vary seasonally and spatially (over depths) at this location.  

4.4.2. Strait of Georgia 745 

 
Figure 11: Mean ocean temperature trends in the Strait of Georgia computed as seasonal mean trends (columns) for two 

depth strata (rows): 0 – 30 m depth stratum and over all depths (‘all z’), from HOTSSea v1.02 model outputs. Mask (grey) 

has been applied to grid cells that are shallower than the depth stratum. Grey hatching has been applied to grid cells where 

trend was not statistically significant. Star symbol denotes approximate location of Nanoose station. 750 

 

Modelled trends from HOTSSea v1.02 were evaluated in each grid cell in the central and northern 

part of the model domain (Strait of Georgia and surrounding waters) over the 1980 – 2018 hindcast 

period (Figure 11). The 0 – 30 m depth stratum was selected given that the evaluation of the 
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modelled versus observed trends showed generally good agreement in approximately the top 30 m of 755 

the water column. This stratum also has special relevance for phytoplankton bloom dynamics (Allen & 

Wolfe, 2013). The model indicates the top 30 m are generally warming in the Strait of Georgia, with 

some areas experiencing statistically significant warming over the entire water column. Despite 

finding that the mean trend computed across all depths at Nanoose station in the winter was not 

statistically significant (Figure 10a, 11f), a statistically significant warming trend in the winter was 760 

detected in the 0-30 m depth stratum in the northeastern Strait of Georgia and in Jervis Inlet (Figure 

11a). The rapid warming of Jervis Inlet is a finding consistent with trends reported for other fjords in 

the region (Jackson, Bianucci, et al., 2021). The analysis of temperature trends in the spring revealed 

no significant warming trend (Figure 11b), similar to the analysis of the Nanoose data (Figure 10b). In 

the summer, only the waters in the central and northern Strait of Georgia generally showed a 765 

statistically significant warming trend whereas the southern Gulf islands and surrounding waters 

showed no statistically significant trend (Figure 11c). The fall season may also have experienced the 

most spatially consistent secular ocean temperature warming since 1980 over the 0 – 30 m depth 

range - significant trends in the fall were generally widespread apart from Howe Sound (Figure 11d). 

Annualised trends were relatively low but generally statistically significant throughout the Strait of 770 

Georgia (Figure 11e). Note that the magnitude of all modelled trends throughout the domain are likely 

biased low, as the analysis of the modelled secular trend at Nanoose was weak relative to observed 

(see above).  

 

5. Discussion and Conclusion 775 

To our knowledge, HOTSSea v1 represents the first 3D physical oceanographic model for the Salish 

Sea to be extended back to 1980, as well as the first model to use recently available forcing products 

to do so (e.g., RDRS v2.1, ORAS5). A highlight of the results of our evaluation of HOTSSea v1 was 

the skill with which the model represents observed decadal-scale ocean temperature trends at 

Nanoose station - without incurring any detectable drift despite being a free run with no data 780 

assimilation (Figure 9, 10). After confirming the model’s skill at recreating the trend at Nanoose 

station, we used the model to further our understanding trends in areas within the central and 

northern part of the domain with sparse observations, offering a first glimpse at the spatial-temporal 

heterogeneity of ocean temperature trends in the area (Figure 11). The 0 – 30 m depth range was of 

particular interest because changes occurring at these depths may particularly affect dynamics of 785 

spring and fall phytoplankton blooms (Masson & Peña, 2009). Most importantly, HOTSSea v1 outputs 

indicate that the warming trend apparent at Nanoose station is not an isolated phenomenon within the 

Salish Sea. Gradual ocean temperature changes such as those quantified by our analyses have the 

potential to affect the growth, body mass, and marine distributions of fish (Pauly, 2021; Pauly & 
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Cheung, 2018) and support research related to the ‘velocity’ of climate change (Burrows et al., 2014; 790 

Loarie et al., 2009). Anomalous events such as marine heatwaves are expected to occur more 

frequently due to climate change and these events can lead to key biophysical thresholds being 

surpassed, impacting marine organisms (Gruber et al., 2021). Given that HOTSSea v1 generally 

replicates observed ocean temperature anomalies and extremes it therefore shows promise for 

investigating climate-related pathways of effects from physical ocean properties to marine 795 

ecosystems. 

Overall, our evaluation quantifies the biases of the model at several spatial-temporal scales with 

special attention to those scales and variables anticipated to be relevant for marine ecosystem model 

development, marine ecosystem research, and ecosystem-based fisheries management. Although 

variability in physical conditions at fine spatial-temporal scales (i.e., minutes to days, metres to 800 

kilometres) is an important determinant of the structure and dynamics of marine ecosystems (e.g., 

Jones et al., 2014), many research applications related to marine ecosystems focus on processes 

and mechanisms that exhibit variability on weekly or greater time scales and at spatial scales of 10’s 

of km (Fulton et al., 2019). Locally, juvenile salmon enter the marine environment from natal rivers 

over a protracted period of weeks to months (Groot & Margolis, L., 1991; Healey, 1980), migrate at 805 

rates of 1.5 - 20 km day-1 (Melnychuk et al., 2010, 2013; Trudel et al., 2009; Tucker et al., 2009; 

Welch et al., 2011), are widely distributed throughout the pelagic zone (Beamish et al., 2011; Riddell 

et al., 2018; Trudel & Tucker, 2013), and exhibit weekly, monthly, and seasonal variability in growth 

and mortality. We therefore expect that hindcasting physical ocean water properties at the spatial-

temporal resolution used here will be of value for many studies related to Pacific salmon. 810 

A contemporary challenge to achieving a long hindcast for the Salish Sea is related to the quality of 

the available products to use for boundary and atmospheric forcing. The experimental approach we 

used helped us isolate the effect of forcings and our model’s horizontal resolution from other factors 

affecting model performance, revealing substantial biases inherited from both atmospheric and 

oceanic boundary forcings. What we learned using this approach will guide future efforts to improve 815 

and extend HOTSSea v1 and possibly other models for the domain. Using the RDRS v2.1 forcings in 

the final hindcast led to substantially better model performance versus using ERA5 (Sect. 4.1) - 

presently the only alternative to our knowledge with coverage of the full hindcast period. Wind speed 

biases in ERA5 have been noted in other coastal and mountainous areas (Potisomporn et al., 2023). 

The results of our experiments also indicated that locally weak winds in ERA5 resulted in reduced 820 

mixing and increased near-surface biases, leading to especially poor model performance in areas 

with complex and narrow topography (e.g., the Discovery Islands). Winds are an important factor 

determining total productivity of the Strait of Georgia (Collins et al., 2009; Johannessen et al., 2020) 

and thus it was fortunate that the RDRS v2.1 atmospheric reanalysis was recently made available. 
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The experiments also revealed that the global ocean reanalysis ORAS5 outputs exhibit temperature 825 

and salinity biases at the mouth of the Juan de Fuca Strait which were inherited to some extent by 

our model. We suspect the main issue is that the Salish Sea is poorly resolved in ORAS5, leading to 

poor representation of estuarine flow and physical dynamics at the mouth of Juan de Fuca Strait. The 

temperature bias correction we applied here to ORAS5 at the Juan de Fuca boundary improved 

model performance substantially, even in areas of the domain far from the ocean boundary (Figures 830 

5, 6). The success of our crude bias correction serves to highlight the potential benefit of relatively 

advanced techniques such as statistical downscaling using machine learning or the application of 

data assimilation techniques to produce a re-analysis (Adachi & Tomita, 2020). Another avenue worth 

exploring would be to use outputs from other regional ocean hindcasts as boundary forcings, should 

they become available (e.g., Paquin et al., 2020; Peña et al., 2016). Applying bias correction to 835 

salinity at the boundary could also be of benefit and may help with improving the model’s near-

surface fresh bias.  

Next steps include several improvements, extensions, and applications. Our preliminary evaluation of 

the model prioritised the Juan de Fuca Strait and the central part of the Salish Sea (i.e., the Strait of 

Georgia and surrounding waters) whereas Puget Sound remains essentially unevaluated (though see 840 

Tables S1,S2). Collated Canadian observations had relatively sparse coverage of Puget Sound 

(Figure 2, Table 2) and adding more observations from American institutions therefore is a near-term 

priority. The reported biases in the final model are also a priority to diagnose and correct, especially 

near-surface fresh biases in summer months (e.g., Figure 8c), a bias that HOTSSea v1 shares with 

its predecessor, SalishSeaCast (Fig 4; Olson et al., 2020; Soontiens & Allen, 2017). The salinity bias 845 

is of particular concern as it may hinder the model’s capability of representing circulation patterns. 

Evaluation of tides and the estuarine circulation is a particularly important task, as these are primary 

factors affecting deepwater renewal in the Salish Sea (Ebbesmeyer et al., 1989; MacCready et al., 

2021). Once circulation is evaluated, one potentially promising application would be to use velocity 

fields from HOTSSea v1 for Lagrangian particle simulations (Hernández-Carrasco et al., 2020; 850 

Snauffer et al., 2014). Changes to regional scale atmospheric patterns may have affected sea surface 

height and circulation patterns which in turn may affect important ecosystem processes such as larval 

dispersal. A logical next step is to use data assimilation to combine information from dynamical 

simulation with observations to produce a reanalyses, with estimates for the oceanic fields that are 

maximally consistent with observations (Zaron, 2011). Data assimilation techniques are developing 855 

rapidly and show great promise for helping minimize model error. Finally, upgrading from NEMO v3.6 

to NEMO v4.x is a priority, as new vertical mixing options and a wetting-and-drying scheme for 

intertidal areas hold potential for improving model skill in this domain (Madec et al., 2023). 
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Ultimately, we hope to extend HOTSSea further back in time, motivated by a need to capture the 

period prior to an oceanic regime shift that occurred circa 1977 that can be seen in the Nanoose 860 

station time series (Figure 9, S4). The regime shift is of particular interest for fisheries related 

research in the area (Beamish et al., 1999; Di Lorenzo et al., 2008; Mantua et al., 1997; Mantua & 

Hare, 2002; MC07). Despite various climate regime indices subsequently reverting in polarity, ocean 

temperatures may not have reverted. Coupling the physical model with a biogeochemical module is 

another potentially valuable avenue to explore, as integrating biogeochemistry into the hindcast would 865 

provide retrospective details of oxygen, nutrients, carbonate chemistry, aragonite saturation, and pH 

– all of which have changed since pre-industrial times in the Salish Sea (Jarníková et al., 2022). 

Secular ocean warming and increased seasonal variability have also had a quantifiable effect on 

oxygenation of deep fjord waters in the region (Jackson, Bianucci, et al., 2021) which may have 

affected the productivity or community composition of lower trophic levels (Johannessen et al., 2020). 870 

However, computational cost associated with traditional biogeochemical models are currently a 

challenge that would need to be overcome. The HOTSSea v1 reconstruction of temperature fields 

over depths should also prove useful for investigating the relative impact of pathogens and predation 

on fish. Warming ocean temperatures lead to greater vulnerability to pathogens and disease and thus 

to greater vulnerability to predation (Miller et al., 2014; Teffer et al., 2018), but concurrent increases in 875 

predator abundances make it difficult to determine whether predation is a primary or secondary 

mortality factor (Walters & Christensen, 2019). Available observational time series are mainly limited 

to surface waters and HOTSSea v1 can help address this gap by providing ocean temperature fields 

at specific depths and areas occupied by fish.  

In conclusion, HOTSSea v1 shows promise for improving our understanding of long-term physical 880 

changes occurring in the Salish Sea with relevance for fish, fisheries, and marine ecosystems. The 

model’s performance with respect to salinity, temperature, decadal scale trends, and temperature 

anomalies indicates HOTSSea v1 can support ecosystem research focused on dynamics that unfold 

over months, seasons, years, or decades. The model addresses significant gaps in historical 

observations and can help drive biogeochemical and ecosystem models aimed at revealing dominant 885 

drivers of ecological productivity (Hermann et al., 2023; Macias et al., 2014; Piroddi et al., 2021).  
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