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Abstract. Engaging ecological resource users in intervention to protect the resource is challenging for governments due to 

self-interest of users and uncertainty about intervention consequences. Focusing on a case of forest insect infestations, we 

addressed questions of resource protection and environmentally responsible behavior promotion with a conceptual model. We 

coupled a forest infestation model with a social model in which a governing agent applies a mechanism for recognition and 

promotion of environmentally responsible behavior among several user agents. We ran the coupled model in various scenarios 15 

with a Reinforcement Learning algorithm for the governing agent as well as best-case, worst-case, and random baselines. 

Results showed that a proper recognition policy facilitates emergence of environmentally responsible behavior. However, 

ecosystem health may deteriorate due to temporal differences between the social and ecological systems. Our work shows it 

is possible to gain insight about complexities of social-ecological systems with conceptual models through scenario analysis. 

Keywords: Social-ecological system, Agent Based Model, Reinforcement Learning, conceptual model, emergence 20 

1 Introduction 

1.1 A governance problem in sustainable development 

Sustainable development is defined as a development that provides the needs of the present time, without sacrificing the ability 

of future generations to provide their needs (Brundtland, 1987). The criteria for such development are known to have social, 

ecological, and economic dimensions (Brown et al., 1987; Barbier, 1987). In the present study we are interested in a group of 25 

sustainable development problems wherein a government seeks help from users of a natural resource, which is at risk, to 

protect that resource. From the government’s viewpoint it is ideal that the users find the motivation to cooperate with the 

government. However, such motivation may not come out of the users’ sense of altruism (Kaplan, 2000). One possible way to 

build that sense of cooperation may be to offer a financial incentive, but that may not be enough to create a long-lasting 

motivation for environmentally responsible behavior, either (de Young, 2000; Katzev & Johnson, 1987). Moreover, experience 30 
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shows that using authority to enforce environmentally responsible behavior may fail (Blundell & Gullison, 2003; Feeny et al., 

1990; Wagner, 2004; Wittemyer et al., 2011). Therefore, in the ideal situation in the government’s view, users should 

voluntarily adopt a behavior that implies costs to them, without the governing entity needing to use force or financial incentives. 

In addition, in that ideal situation, the said behavior successfully protects the natural resource. These considerations give rise 

to a question: is such an ideal situation possible? 35 

In this paper, our interest is in a particular type of the above-mentioned sustainability problems, where the ecological system 

is a forest resource that is attacked by a pest, and the social system includes users of the resource and a governing entity.  We 

assume a case where the users are logging companies and the government wants them to cut specific parts of the forest and 

create buffer zones to control the spread of the pest. This problem is multi-disciplinary: it involves land change science (Lambin 

et al., 2006) in the study of changes in the ecological system; it relates to the domains of collective action (Nyborg et al., 2016; 40 

Ostrom, 2009) and social norms (Farrow et al., 2017; Nyborg et al., 2016) in the analysis of formation of a common behavior 

among users; it entails the field of social-ecological systems (Liu et al., 2007; Ostrom, 2009) in the endeavor to understand the 

dynamics that emerge through coupling the society with the forest; and, in a broader view, this problem and the question of 

how to address it are in the realm of complex systems (Cosens et al., 2021; Filotas et al., 2014). 

1.2 Background from multiple disciplines 45 

Complex systems are entities composed of elements and interactions that make the system behave as a whole, with such 

characteristics as self organization, non-linearity, emergence, feedback, and path-dependence (O’Sullivan, 2004). Because of 

these characteristics, the dynamics of complex systems involve novelty and surprise (Batty and Torrens, 2005). This causes a 

concern in problems of sustainable development, as they typically involve intervention in or experimentation with complex 

systems, and particularly social-ecological systems. Due to the uncertainty and complexity that is inherent in these systems, it 50 

is not always ethically and logistically justifiable to perform trial-and-error experiments on them (Kriebel et al., 2001), as 

intervention in these systems may have unanticipated, irreversible and adverse effects. This concern justifies learning by 

modeling and simulation (Janssen and Ostrom, 2006a). 

Societies and ecosystems are complex systems. When a society uses a natural resource, the link between the two systems 

creates a larger complex system, referred to as a social-ecological system (Berkes and Folke, 2000). Social-ecological systems 55 

(SES) demonstrate complexities that cannot be understood through the lens of sociology or ecology alone (Liu et al., 2007). 

In a typical SES, the society receives ecosystem services (Daily, 2000; Millennium Ecosystem Assessment, 2003) and makes 

changes in the ecosystem. To combine social and ecological knowledge in the analysis of the complexity of SES, a framework 

has been developed, which accounts for governance and resource systems at larger scales, as well as users and resource uni ts 

at smaller scales (Ostrom, 2009). This framework has been implicit in sustainability studies in a variety of domains such as 60 

sustainable navigation (Parrott et al., 2011), fishery (Schlüter et al., 2014), and forest management (Wimolsakcharoen et al., 

2021). 
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Many studies of complex systems involve building and using models that replicate some aspects of those systems (Railsback 

& Grimm, 2012; Wolfram, 2002). Simulations of complex systems are often built with a bottom-up approach, using methods 

such as Agent-Based Models (ABM) and Cellular Automata (CA) models (Grimm et al., 2005). An ABM is made up of several 65 

computer programmed agents that interact with each other and their environment, and act upon their decision rules (Castle and 

Crooks, 2006). A CA model is composed of a grid of cells, where the state of each cell is defined by a rule based on the 

previous states of that cell and its neighbors (White and Engelen, 1993). ABMs have been used in a wide variety of complex 

systems studies, such as epidemiology (Perez and Dragicevic, 2009), animal movement (Bonnell et al., 2013), land 

development (Pooyandeh and Marceau, 2013) and forest disturbance (Perez and Dragicevic, 2010; Katan and Perez, 2021). 70 

Likewise, CA have been used in research works within fields such as land change (National Research Council, 2014; Lambin 

and Geist, 2006), urban growth (Batty et al., 1999; Clarke et al., 1997; de Almeida et al., 2003) and forest disturbance (Bone 

et al., 2006; Gaudreau et al., 2016), among others. 

Emergence of behavior in a society is a subject of study in the field of social norms. Several definitions of norms have been 

stated in social sciences literature. In one definition, norms are cultural rules that guide people in their behavior (Ross, 1973). 75 

In another definition, norms are social rules that govern the encouragement or condemnation of certain behaviors (Savarimuthu 

and Cranefield, 2011). Norms have also been defined in the context of institutions (Ostrom, 1990; Crawford and Ostrom, 1995) 

as valuations of actions regardless of the immediate consequences of the actions. Institutions can formalize norms by 

converting them to regulations (North, 1990). In yet another view, norms are classified as descriptive and injunctive. 

Descriptive norms show what others do, whereas injunctive norms show what others approve of (Cialdini et al., 1990). A 80 

review of literature on SES governance indicates that social norms largely influence environmentally responsible behavior 

(Bourceret et al., 2021). Literature also highlights that emergence of environmentally responsible behavior in a society depends 

on what the individuals do and what they favor (Nyborg et al., 2016), which, by the above definitions, are the equivalents of 

descriptive and injunctive norms, respectively. 

1.3 Setting, questions and objectives 85 

In this study we are interested in a SES governance problem. We consider a setting where the government needs the 

participation of users of a forest in a management action with the aim of protecting the forest against infestation outbreaks. To 

clarify the scope of the problem we state the following assumptions: 

• The forest is at risk, and the state of health of the forest urges the government to act towards its protection. 

• The expected action to protect the forest can only be performed by the users but is costly for them. 90 

• The users are driven by self-interest, and not by altruism.  

• The government cannot offer financial incentives for the purpose of enticing the cooperation of the users.  

• The government cannot enforce its authority and oblige the users to cooperate with it. 
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• Users have a desire for good reputation, which motivates them to perform environmentally responsible 

behavior. However, there is no social sanction or punishment for individuals who do not demonstrate 95 

responsible behavior.  

• The government’s knowledge of the social system is limited. It does not know the decision criteria of the 

users. 

• The government’s knowledge of the ecosystem is limited. Although the government wishes to intervene and 

protect the forest, the government is not certain about the consequences of its desired intervention. 100 

In previous works we developed an ecological model of outbreaks of a forest insect infestation (Harati et al., 2020, 2021b) and 

a social model of promotion of a new behavior norm (Harati et al., 2021a). In the present work we combine the above two 

models to gain insight about a particular intervention measure to control the spread of infestations. The intended measure is to 

encourage forest users to voluntarily create buffer zones in vicinity of newly observed infestations. 

In a SES, the ecological and social systems are each the variable environment of the other. This matter creates complexities, 105 

which, in the particular case of our study, give rise to the following questions: If forest users fully cooperate with the governing 

entity, will creation of buffer zones be effective in suppressing the spread of infestations in the forest? Will forest users 

cooperate with the governing entity? In case of partial cooperation of users with the governing entity, how will the infestat ions 

spread in the forest? Considering these questions, the objectives of this study are: 

• To build a SES model by coupling the above mentioned social and ecological models; 110 

• To perform hypothetical experiments by implementing management scenarios in simulations of the SES; 

• To interpret the outcome of the hypothetical experiments. Subsequently, to gain insight about (1) the above-said 

recognition scheme and its potential for promotion of environmentally responsible behavior, and (2) the state of health 

of the ecological resource in response to the social dynamics that emerge from the recognition scheme. 

2 Methods 115 

To answer the questions raised in introduction, we take a conceptual modelling and scenario analysis approach. SES 

governance literature highlights the use of conceptual models for gaining insight about complex SES problems (Janssen and 

Ostrom, 2006b). The environment in which we run hypothetical experiments is a conceptual model, which is constructed by 

coupling two previously developed base models. In this section we introduce the base models, the mechanism for coupling the 

base models, and the scenarios for testing the coupled model. Appendix A presents further details of the models according to 120 

the ODD+D protocol, which is an extension of the ODD protocol particularly adapted for describing human decisions in ABMs 

(Müller et al., 2013). The ODD (Overview, Design concepts, Details) protocol is a standard for communication of information 

about ABMs (Grimm et al., 2006, 2010, 2020). 
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2.1 Ecological model 

This model (Harati et al., 2020, 2021b) simulates the spread of a forest insect infestation. The model is built based on observed 

data of the Mountain Pine Beetle outbreaks in the province of British Columbia in western Canada. In this model, the study 135 

area is represented as a grid with each cell containing geospatial information as well as binary data on presence or absence of 

infestation. For each cell, based on its geographic variables and distance weighted sums of infestations in its neighborhood,  

the model predicts the state of infestation in the next time step. This model uses logistic regression because this machine 

learning algorithm is fast and suitable for applications with binary response variable. Model calibration is dependent on the  

study area. In this work, the study area is a division of Kamloops timber supply area in British Columbia, Canada, with extents 140 

from 120°19’59”W 50°45’22”N to 119°6’0”W 51°32’40”N. Figure 1 shows the study area.  

 

Figure 1: Study area of forest insect infestations simulation in British Columbia, Canada. Locations of active infestations at the 

beginning of the simulation period are marked as ‘Insects at start’. Locations that were infested before the start of simulations are 

marked as ‘Previously infested’. 145 

2.2 Social model 

This conceptual model simulates interactions between individuals in a problem known as Principal-Agent and provides insight 

on the emergence of social norms. In the Principal-Agent problem the goal of one or more Principals is that one or more Agents 

perform a certain behavior (Braun and Guston, 2003). In our social model, the desire for good reputation is used as a motivation 

for Agents to perform the behavior that the Principal desires. In this conceptual setting, the Principal grants recognition to 150 

Agents who act as the Principal requests. The model runs in discrete time steps. In each time step the Principal chooses the 

cost of its request from the Agents. Specifically, the Principal makes a binary choice between a costly request and a no-cost 
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request. The Agents, on the other hand, compare the cost of the requested action with the benefit of receiving recognition, and 

decide whether or not to cooperate with the Principal. Agents assess the benefit of recognition as a function of (1) the existing 

awareness in their society of such recognition, and (2) expectation of uniqueness among their peers if they obtain recognition 155 

in the next time step. This design is inspired by existing literature, which underscores the importance of personal motivations 

such as good reputation in voluntary action (Omoto and Snyder, 1995; Stern et al., 1993) and the importance of visibility of 

one’s actions in one’s behavioral choices in society (Mosler, 1993; Nyborg et al., 2016). Our approach is based on the theory 

of normative conduct (Cialdini et al., 1990). 

The model uses a Temporal Difference Reinforcement Learning algorithm named Double Expected SARSA to develop a 160 

decision making guideline for the Principal. Input to this decision guideline is the behavior of Agents, and output is the binary 

choice of action to request, i.e. costly or no-cost. The objective of the algorithm is that by the end of simulations, an acceptable 

proportion of Agents cooperate with the Principal in its costly request. Such acceptable proportion is assumed 0.5 in this study 

in order to represent the choice of the majority. In Reinforcement Learning literature, the decision making guideline developed 

and used through the algorithm is called policy. In the study presenting the social model (Harati et al., 2021a) three levels of 165 

low, medium and high were assumed for the cost of the Principal’s costly request. Note that each of these levels is contrasted 

with a no-cost action in the binary decisions of the Principal. For each of the above three levels the model was run and 

corresponding policy was calculated. 

A remark on the use of terms is necessary. The word Agent from the Principal-Agent literature should not be confused with 

the same word in Agent-Based Modelling literature. Our social model is agent-based and we inevitably use ABM terminology 170 

when describing and referring to our model. Therefore, in order to avoid confusion, in our model description we use the terms 

governing agent for Principal, and user agent for Agent. 

Decisions of user agents are based on simple if-statements. User agents seek uniqueness and value in their actions. To that 

end, they assess scores for expected uniqueness and value associated with performing the governing agent’s request. Then user 

agents multiply the uniqueness and value scores. Assessment of uniqueness is based on the immediate past. For example, if no 175 

other user showed responsible behavior in the previous time step, a full score of uniqueness is assumed for the respective 

action in the present time step. Assessment of value is based on the cumulative past. It represents the total number of times 

responsible users have been recognized in the society. For example, if in all previous time steps, responsible behavior was 

observed and rewarded in the society, a full score of value is assumed for responsible behavior in the present time step. In each 

time step, each user agent compares the product of uniqueness and value scores with a threshold that is a private property of 180 

that user agent. Based on that comparison, the user agent decides whether to cooperate with the governing agent or not. 

2.3 Coupled social-ecological model 

In this work we added a coupling mechanism to the above two models and built a conceptual social-ecological model to 

simulate a hypothetical setting. In this setting, in the ecological model, the forest is attacked by MPB. These attacks spread in 

each iteration of the model, which represents one year. In the conceptual social model, there is a governing agent whose goal 185 
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is to stop the spread of infestations, and several user agents, which represent logging companies. The governing agent intends 

to create a buffer zone between insects and healthy forest by cutting the forest in vicinity of newly observed infestations. This 

intervention measure is difficult and costly, and the governing agent intends to use the social model’s recognition mechanism  

(Harati et al., 2021a) and encourage user agents to voluntarily perform the intervention action. Each user agent of the social 

model is assigned to a part of the simulated forest of the ecological model. Decisions of the user agents are implemented in 190 

their respective forest areas in simulations. 

A feature of our simulations was the definition of the management action. Cutting neighborhoods of infestations is only one 

of the possible actions to control infestations (Maclauchlan and Brooks, 1994). Our inspiration for choosing this action came 

from a previous work, in which we performed spatial analyses of spread of MPB infestations and validation tests on our land 

change model (Harati et al., 2021b). In that work, we noted that most of the new MPB infestations occur in the vicinity of 195 

previous locations of attacked trees. Therefore, in the present study we defined neighborhoods of management action around 

newly observed infestations. The action was to cut the cells in these neighborhoods. Our choice of neighborhood size was also 

inspired by distance analysis in that previous work (Harati et al., 2021b) as well as the consideration that the governing agent 

cannot detect new infestations in the first time step after their occurrence. This is due to the fact that infested trees do not 

change color in the first year after attack. It follows that infestations spread further in a larger neighborhood before the 200 

governing agent realizes their previous locations. 

Through the course of MPB infestations, BC eventually adopted the policy of increasing the allowable annual cut, first in order 

to suppress the infestations, and later to facilitate salvage harvest in infested areas (Forest Practices Board, 2007, 2009). Such 

increase was smaller than the simulations of the present study. In severely infested areas of the province, the allowable annual 

cut was increased by 80 percent of the pre-infestation levels (idem), which was less than one third of a percent of the forest 205 

area (BC Ministry of Forests, 2003). 

Cutting trees in large scale can be a practical challenge. According to an analysis of data of year 2008, with that year’s rate of 

harvesting, it would take 22 years to cut the pine trees that were killed by infestations up to 2008 (Forest Practices Board, 

2009). Moreover, although the government wanted the added harvesting to be concentrated in severely infested areas to control 

the pest, the forest industry prefered to harvest from other locations and especially from forest stands with mixed species 210 

(Forest Practices Board, 2007). Furthermore, the decision to increase the allowable annual cut raised concerns about possible 

ecological impacts (Forest Practices Board, 2007, 2009), which is beyond the scope of the present work and can be studied in 

future research. 

In each iteration of the model, the governing agent decides whether or not to ask the user agents to do its intended action, that 

is, cutting trees around newly observed infestations. In case the governing agent asks for that action, it grants recognition to 215 

cooperating users. Such recognition is a responsible user label. In case the governing agent does not ask for cooperation in the 

intervention measure, the governing agent grants recognition labels to all user agents. On the other hand, each user agent, when 

requested to perform the intervention measure in exchange for the recognition label, makes a decision by comparing the cost 

of the requested action versus the benefit of recognition. The cost of action is assessed based on the forest area to be cut by the 
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user, and the value of the recognition label is assessed based on the society’s knowledge of that label as well as the expectation 220 

of being unique in having that label in the next time step. 

In the making of the model, we noticed that before the emergence of cooperative behavior in the social model, the forest would 

be largely infested in the ecological model. While this observation was insightful, it also showed that our simulations were 

reduced to runs of the ecological model alone. In other words, in absence of intervention from the social model, the ecological 

model would simulate spread of infestations as if the two models are not connected.  Because our interest was to study the 225 

complexities that arise from the interactions between the two models, we added a new feature in our setup. We defined 

preparation steps, during which the social model runs alone before being coupled to the ecological model. The preparation 

steps can be considered as awareness campaigns in the society. Through these steps, the governing agent and user agents 

interact according to the rules of the social model (Harati et al., 2021a). Consequently, user agents become familiar with the 

recognition mechanism and the responsible user label. 230 

To implement the idea of coupling the two models, we defined a mechanism which we named flip-flop. Recall that the 

ecological and social models run in R and Java environments, respectively. To each model we allocated a directory, named 

Inbox, in computer hard disk. Each iteration of the coupled model begins with the ecological model simulating spread of 

infestations and while the social model waits in a loop, constantly checking its inbox for a new message. Based on newly 

observable infestations in the simulation, the ecological model produces a report indicating the size of intervention buffer zone 235 

in each user agent’s designated forest area. This report, which is a text file, is then copied in the Inbox directory of the social 

model. At this point, the social model notices the new file in the Inbox folder, exits the waiting loop, reads the file and proceeds 

to simulate interactions between governing and user agents. Contents of the received file are needed in the cost-benefit analyses 

done by user agents. The social model, in turn, produces a report indicating the user agents who intend to cut trees in the 

intervention buffer zone of their respective forest areas. This report, also a text file, is copied in the Inbox folder of the 240 

ecological model, which by this time has been waiting in a loop and constantly checking its Inbox for a new message. The 

ecological model then exits its waiting loop, reads the file sent by the social model, and accordingly changes the landscspe of 

simulations by eliminating forest cover in buffer zones in areas associated with indicated user agents. Such updated landscape 

will be the basis for simulations of the next time step. Figure 2 depicts the concept of the flip-flop mechanism for coupling the 

two models, and Fig. 3 shows a more detailed view of the coupled model. 245 

 

Figure 2: The flip-flop mechanism. Each of the two models requires input from the other model. The models communicate with each 

other via inbox directories. Arrows show direction of data transfer. Numbers beside arrows show the order of operations. 
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Figure 3: The coupled model. In each time step, the ecological model begins with reading previous infestation maps and ends with 250 
writing a newly simulated infestation map; the social model begins with waiting for a message from the ecological model and ends 

with sending and message to the ecological model. 

2.4 Simulation scenarios 

In order to gain insight about emergence of environmentally responsible behavior in the setting described above, we ran several 

rounds of simulations with different scenarios. We defined scenarios so that the comparison of their results provides useful 255 

information about the subject of study. Below are descriptions of these scenarios: 

1- The simplest scenario is Business As Usual (BAU), in which there is no intervention from the governing agent to 

control the disturbance. In each time step, user agents harvest a proportion of their allocated zones. That proportion 

is the business-as-usual harvest ratio, which is a model parameter. The spatial ecological model iteratively simulates 

the spread of infestations, noting that harvested grid cells cannot become infested anymore. In this scenario, the 260 

governing agent’s RL algorithm is not engaged. This scenario indicates a case where there is no government 

intervention to control the insect disturbance, or a case where user agents never cooperate with the governing agent. 

Hence, this scenario serves as a baseline for comparison with main simulations. 

2- Another baseline in our study is a scenario in which all user agents always cooperate fully with the governing agent. 

This scenario, which we named Enforce, provides a best case for the social component of our study. The Enforce 265 
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scenario shows the effectiveness of the management plan in the control of the disturbance. In this scenario the 

governing agent’s RL algorithm is not engaged. 

3- Our main scenarios, which we named Suggest, are those in which the governing agent is active and uses its RL 

algorithm. In Suggest scenarios, the governing agent suggests that if user agents cooperate with it in the management 

action then they will receive ‘responsible user’ labels. User agents then analyze the governing agent’s suggestion and 270 

make their decisions. In terms of cooperation of user agents with the governing agent, the Suggest scenarios are 

between BAU and Enforce. The neighborhood of management action is a Moore neighborhood of the newly visible 

infestations. The size of this neighborhood is a model parameter. We ran simulations with a neighborhood of size 4 

grid cells. We also defined preparation runs, in which the ecological model is not engaged. Instead, agents in the 

social model interact with each other, which results in increased visibility and value of the ‘responsible user’ label. 275 

Thereupon, the following three scenarios were defined: 

o Suggest scenario with 0 prepation time steps 

o Suggest scenario with 10 prepation time steps 

o Suggest scenario with 20 prepation time steps 

4- Corresponding to each Suggest scenario, we defined another baseline, in which the governing agent behaves randomly 280 

instead of using its RL algorithm. In these scenarios, which we named Random, user agents analyze and respond to 

the governing agent’s signals, as in the Suggest scenarios. The calculation of the state of health of the resource and 

the costs of management action in user agent zones are performed similar to the Suggest scenarios. The only difference 

between Suggest and Random scenarios is in the decision making mechanism of the governing agent. In this sense, 

by showing what could be achieved with a naïve model, Random scenarios serve as a baseline to indicate the power 285 

of the sophisticated RL algorithm of the governing agent. Thereupon, the following three scenarios were defined: 

o Random scenario with 0 prepation time steps 

o Random scenario with 10 prepation time steps 

o Random scenario with 20 prepation time steps 

3 Results 290 

Figure 4 shows the mean maps of remaining infestations in the simulated scenarios at the final time step. It can be seen that , 

without preparation, the Suggest and Random scenarios are similar to BAU. On the other hand, with addition of preparation 

steps, less infestation remains in the study area. The figure also shows that in Suggest scenarios less infestation remains in 

comparison with Random scenarios. 
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 295 

Figure 4: Maps of mean remaining infestation after the final time step of simulations. The Enforce scenario was run once, and all 

other scenarios were run 50 times. For each scenario, 'High' infestation in a cell means the presence of infestation in the cell in all 

runs of that scenario; ‘Low’ infestation means the absence of infestation in the cell in all runs of that scenario. 

Figure 5 shows the mean ratio of cooperation of user agents with the governing agent over time steps of Suggest and Random 

scenarios. Without preparation of the user agents, both Suggest and Random scenarios end with nearly no cooperation at all. 300 

Therefore, in these cases no management action is done to control the infestations, which explains why the maps of no-

preparation scenarios are similar to the map of BAU. With preparation, cooperation ratio increases in both Suggest and Random 

scenarios, with Suggest scenarios showing higher cooperation than Random. Nonlinear behavior is observed in the curves of 
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Suggest and Random scenarios with 10 steps of preparation, which shows sudden emergence of cooperation with the governing 

agent. 305 

 

Figure 5: Mean cooperation ratio over time for Suggest and Random scenarios with 0, 10 and 20 preparation steps. Each scenario 

was run 50 times. 

Figures 6 and 7 show the mean proportions of study area that are covered by healthy and infested forest, as well as the area 

that is cut, in each time step. The baseline scenarios BAU and Enforce, which are shown in Fig. 6, indicate the maximum 310 

amount of forest that can be saved from infestation if the management action is successfully implemented. The Random and 

Suggest scenarios, shown in Fig. 7, demonstrate interim situations where the management action is partly implemented. The 

plots of Random and Suggest scenarios also show the results of adding preparation steps in the simulations. 

 

Figure 6: Proportions of healthy, infested and cut areas in BAU and Enforce baseline scenarios. 315 

Deleted: 5 

Deleted: 6 



13 

 

 

Figure 7: Proportions of healthy, infested and cut areas in Random baseline and Suggest scenarios. Each plot represents 50 runs. 

Table 1 gives a quantitative summary of the proportions of healthy, infested and cut area at the end of the simulations. Note 320 

that the Enforce scenario was run only once, because it involves no stochasticity in decisions of agents. This is why there i s no 

deviation in the results of this scenario. The mean values in this table correspond to the final time step in the plots of Figs. 6 

and 7. The standard deviations reveal several things about variations of the results. Firstly, variations are minimal in the BAU, 

as well as in Random and Suggest scenarios with no preparation. These are the scenarios in which user agents rarely cooperate 

with the governing agent, and therefore, the management action is not implemented. Variations in results increase substantially 325 

when preparation steps are included in simulations. Secondly, variations in the proportion of healthy area are smaller than 

variations in proportions of infested and cut areas. Thirdly, variations in Suggest scenarios are smaller than variations in 

Random scenarios. This is particularly evident in scenarios with 20 preparation steps. This table shows that, in comparison 

with the Random baseline scenarios, the Suggest scenarios result in a higher proportion of healthy forest at the end of the 

simulations, with smaller variations in results. 330 

Table 2: Mean and standard deviation of the final proportions of healthy, infested and cut areas in simulations. Each scenario was 

run 50 times, except for Enforce, which run once. 
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Scenario Healthy proportion Infested proportion Cut proportion 

 Mean S.D. Mean S.D. Mean S.D. 

BAU 0.076 0.001 0.827 0.001 0.097 0 

Enforce 0.295 0 0.001 0 0.704 0 

Random-Prep 0 0.075 0.003 0.825 0.008 0.100 0.010 

Random-Prep 10 0.057 0.037 0.395 0.292 0.547 0.297 

Random-Prep 20 0.187 0.110 0.245 0.321 0.568 0.243 

Suggest-Prep 0 0.076 0.002 0.826 0.002 0.098 0.004 

Suggest-Prep 10 0.135 0.084 0.126 0.249 0.739 0.239 

Suggest-Prep 20 0.257 0.089 0.059 0.166 0.683 0.110 

 

It can be seen in Figs. 6 and 7 as well as Table 1 that results of the no-preparation scenarios are similar to BAU. On the other 

hand, as shown in Fig. 5, in runs with more preparation steps, the percentage of cooperation of user agents with the governing 

agent increases. Such increase is larger when the governing agent’s decisions are made by the RL algorithm, i.e., in Suggest 

scenarios. Comparing the zero-preparation and 20 step-preparation scenarios in Figs. 6 and 7, it is evident that the 20 time 340 

steps of preparation lead to an increase in the remaining healthy forest, even when the governing agent’s decisions are random. 

Considering all cases with preparation of user agents, it can be observed that more healthy cells are saved in Suggest scenarios, 

i.e. with RL decision making algorithm for the governing agent than in Random scenarios, i.e. with random decisions. The 

case of 10-step preparation with random decisions of the governing agent is particularly noteworthy. In this scenario, first the 

infestation spreads to large areas, and then the management action begins, which involves cutting large areas around the newly 345 

observed infestations. Consequently, the remaining healthy forest in this scenario is even slightly smaller than BAU.  

Tables 2 and 3 summarize non-parametric Wilcoxon signed rank tests that were performed to statistically analyze simulation 

results. Scenarios were compared in terms of proportions of remaining healthy forest after the final time step of their respective 

simulations. As can be seen in Table 2, the proportions of remaining healthy forest in scenarios Suggest-Prep10, Suggest-

Prep20 and Random-Prep20 are greater than BAU. Likewise, in comparison with Enforce, all scenarios lead to significantly 350 

less proportions of remaining healthy forest, except for Suggest-Prep20. In other words, the result of Suggest-Prep20 is very 

similar to our best cooperation case baseline. Table 3 shows the comparison of Random and Suggest scenarios. It is seen that 

without preparation steps, the results of Random and Suggest scenarios are not significantly different. On the other hand, in 

scenarios with preparation steps, the proportion of remaining healthy forest is greater in Suggest scenarios than in Random 

scenarios. 355 

Table 2: Wilcoxon signed rank test statistic and p-value for comparison of remaining healthy forest proportions of scenarios with 

BAU and with Enforce (n=50). 
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 Scenario Null hypothesis Alternative hypothesis Statistic p-value 

Comparison 

with BAU 

Random-Prep 0 

Scenario = BAU Scenario > BAU 

638.0 0.50 

Random-Prep 10 295.0 0.99 

Random-Prep 20 1133.0 8.8x10-07 

Suggest-Prep 0 669.5 0.38 

Suggest-Prep 10 1064.0 1.9x10-05 

Suggest-Prep 20 1244.0 2.4x10-09 

Comparison 

with Enforce 

Random-Prep 0 

Scenario = Enforce Scenario < Enforce 

0 3.8x10-10 

Random-Prep 10 0 3.8x10-10 

Random-Prep 20 300 4.8x10-04 

Suggest-Prep 0 0 3.8x10-10 

Suggest-Prep 10 15 9.5x10-10 

Suggest-Prep 20 903 0.99 

 

Table 3: Wilcoxon signed rank test statistic and p-value for comparison of remaining healthy forest proportions between Random 

and Suggest scenarios (n=50). 360 

Null hypothesis Alternative hypothesis Statistic p-value 

Random-Prep0 = Suggest-Prep0 Random-Prep0 < Suggest-Prep0 555.5 0.29 

Random-Prep10 = Suggest-Prep10 Random-Prep10 < Suggest-Prep10 140.0 8.0x10-07 

Random-Prep20 = Suggest-Prep20 Random-Prep20 < Suggest-Prep20 109.0 5.7x10-03 

 

4 Discussion 

4.1 Insights about the case of study 

Our simulation results reveal several points that deserve further attention and discussion. One such point is the importance of 

the first time step in the result of the simulations. In the comparison of the scenarios in Fig. 7, those which have a smaller 365 

proportion of infested cells at the end of the first time step have a larger proportion of healthy forest remaining at the end of 

the final time step. Future infestations as well as the size of the areas to cut thus depend on infestations in the first time step. 

Therefore, the more newly infested trees are cut in the first time step, the more healthy forest remains in future time steps. As 

an implication of the importance of success at the first step, and expanding this discussion beyond the scope of the present 

study, if the government has access to limited financial resources to provide incentives for users, then our insight suggests  that 370 

focusing the incentives at the beginning of intervention may contribute substantially to success in the end. The study of such 
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cases and building hybrid models for them, where the government uses both incentives and recognition, can be an area for 

future research. 

Our results in Fig. 7 show that forest cover is eliminated not only by infestations, but also by the considered management 

action, which is to cut trees in order to stop the progress of infestations. Depending on the scenario, the proportion of the forest 375 

that is cut may even be larger than the proportion that is infested. Particularly, when infestations spread in a large area and user 

agents decide to cooperate with the governing agent, user agents will cut a large zone in the forest and a small proportion of 

healthy forest will remain. Likewise, in the Enforce scenario, control of the epidemic is achieved at the cost of cutting a large 

area of the forest, but in this case the proportion of remaining healthy forest is larger, and the participation of user agents is 

enforced, not voluntary. 380 

We noted that preparatory steps lead to the emergence of the desired behavior among user agents, even if the governing agent’s 

decisions are made randomly. This shows that recognizing responsible users and introducing them to the society is a powerful 

mechanism with the potential to create new behavior norms. Indeed, during preparation time, the social model runs alone 

before starting the ecological model, and user agents are introduced to the scheme of recognition of responsible behavior. As 

user agents compete for recognition, the value of being recognized in this scheme increases. After preparation time the coupled 385 

model runs begin, with the social model keeping its memory of the value of recognition of responsible behavior. That is why 

even in our Random scenarios where the governing agent does not learn to improve its decisions, there is some responsible 

action by user agents. 

Another interesting matter about the simulations is that they show that, in all scenarios, infestations spread rapidly at first and 

slow down later, such that by the final time steps little or no change is noticeable in the proportion of the study area that is 390 

infested. As the spread of infestations stops, there will be no areas to cut around observed infestations, and the composition of 

the study area does not change anymore. It is noteworthy that in BAU the largest spread of infestations happens in the first 

three time steps. Therefore, in the Suggest scenarios, if no management action is taken in these initial time steps, then a la rge 

part of the forest is destroyed by infestations. 

4.2 Insights about governance of SES 395 

In addition to the above-mentioned points about the particular case of simulations, in this study we gained insight into the more 

general problem of sustainable management of SESs by engaging users. Our most important finding in this study is that it is 

possible to create a strong motivation for effective action towards protection of natural resources in a SES by encouraging 

users – without financial incentives, enforcement or punishment. The latter is of particular importance because the role of 

punishment as a basis for the formation of norms of environmentally responsible behavior has been emphasized in the literature 400 

of SES (Farrow et al., 2017) and social sciences (Axelrod, 1986). Our results show that even without punishment, recognition 

of responsible behavior through the mechanism of our model can create a force towards emergence of a norm of responsible 

behavior. Moreover, from model results presented in Fig. 7 we gain the insight that even with existence of the potential for 

action towards protection of a natural resource, uncalculated governance decisions about using that potential may cause adverse 
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effects on the resource. The simulations show an example of this type. The difference between model results with and without 

an intelligent algorithm highlights the importance of well-thought-through decision making in governance of SES. 

Another general insight that we gained from the simulations pertains to the temporal differences between social and ecological 

processes, which add to the complexity of a SES. For example, from our simulations we noted that formation of an 510 

environmentally responsible behavior norm takes time. We also noted, throughout the simulations produced, that the largest 

damage made by the ecological disturbance occurred in the beginning time steps of the study. Therefore, if the efforts to 

promote a new norm of responsible behavior begin at the onset of the ecological disturbance, then by the time the responsible 

behavior emerges in the society much of the resource is already lost. This means that it is important to prepare the society and 

promote environmentally responsible behavior before there is a need for action to protect the natural resource. 515 

4.3 Reflections on the use of conceptual bottom-up models in the study of complex systems 

Our work is an example of application of conceptual models for understanding complexity. In this section we highlight several 

noteworthy points in this regard. 

Questions arise about relevance and usefulness of conceptual models, as they typically involve simplifying assumptions and 

may not be constrained by empirical data. Indeed, where the objective is precise prediction, simplistic conceptual models are  520 

not helpful. However, in studies where the aim is to gain understanding about a complex system, conceptual bottom-up models 

can be of use. 

Complex systems typically involve multiple and possibly diverse interactions among their components. To follow all these 

interactions simultaneously is a challenge for the unaided human mind. That can make the dynamics of these systems difficult 

to understand, even if individual interactions are simple. Bottom-up modelling offers a solution for these challenges by 525 

simulating smaller components of the system and simple interactions among them. Such interactions are typically easy to 

understand. Therefore, the result of calculation of many such interactions will be reasonable even if the calculation load is 

beyond the capacity of unaided human mind. This is how conceptual bottom-up models help gain insight into complexity. 

In our study, for example, at the individual level user agents act upon self-interest, which is easy to understand. At the aggregate 

level, however, the system is highly complex: decision factors of user agents depend on the history of actions of all user agents 530 

and the governing agent on the one hand, and changes in the ecological simulation on the other hand. Moreover, the ecological  

simulation is affected by the decisions of user agents. Computer simulations showed that such complex setting can result in 

emergence of environmentally responsible behavior, and that the effectiveness of such behavior depends on the timing of its 

emergence. We do not claim that our model is a replication of reality, but we argue it makes sense. In other words, if a system 

has a configuration similar to our model, it is reasonable to assume the system has a tendency to evolve in a fashion similar to 535 

our simulations. 

Conceptualizing a complex, dynamic and multifaceted situation involves deciding which of its many degrees of freedom to 

reduce, and which to keep in an abstract, simplified representation. There are many combinations of degrees of freedom, and 

therefore many ways to perform the above task, which is a part of the problem formulation stage. We emphasize the importance 
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of this stage because it shapes all subsequent developments and analyses and eventually defines what can be learned from the 540 

model about the subject of study. In the example of our work, identifying the importance of recognition as a motivation for 

responsible behavior, and subsequently defining a hypothetical scheme of governing and user agents and interactions within 

them and between them and the ecosystem was the foundation for the development of our model. 

Our final remark in this section is about the importance of experimenting with the conceptual model in order to extract useful 

information from its output. A model serves as a virtual laboratory where one can run multiple experiments with various 545 

settings. Comparing results of simulations made with different settings can provide insightful information if the experiments 

are properly defined. We used several baseline settings, or scenarios, as reference for comparison with our main simulations.  

We also compared our baselines with each other to learn about the space of possible results. Our multiple scenario comparisons 

revealed important information about the complexity of the system. Especially informative was our counterintuitive 

observation that our RL algorithm does not necessarily outperform a naïve model with random decisions for the governing 550 

agent. This surprising finding lead us towards defining and experimenting with preparatory steps for the social model before 

coupling with the ecological model. 

4.4 Challenges and perspectives for future work 

Our model is defined in a specific scope. This scope might as well be considered a limitation for the model. That is, our model 

does not account for the effect of other processes than what we included in it. Future works may use other social models instead 555 

of ours and insert them in our SES model. Potential research efforts may as well couple other ecological models to the social  

model. In these cases, the coupling mechanism of our model may be modified according to the needs of other applications and 

assumptions. As another suggestion for future works, a challenge that can be addressed is the addition of a third submodel in 

the coupled model to account for economic complexity. In the example of this study, total harvest from the forest comprises 

market supply, which influences market price and sales quantity, which in turn influence users’ profit and hence individual 560 

decisions on harvest in the next time step. Another matter that may be considered in future works is the interactions among 

user agents. In the present study our goal was to gain useful insight for managerial and government decision making. Therefor e, 

our RL decision making algorithm was placed in the governing agent. Future works can equip user agents with more 

sophisticated decision algorithms. 

5 Conclusion 565 

In this work we approached a complex social-ecological situation and translated it into a problem formulation. Then we built 

a conceptual model and used it to gain insight into the subject of study through a set of hypothetical experiments.  We connected 

a social model and an ecological model, which were developed independently, through a coupling mechanism to build a 

conceptual social-ecological model. Using our model we carried out tests that allowed us to perform ‘what-if’ analyses with 

several scenarios of SES management. Our simulations showed that in a society where individuals or companies (i.e. “agents”) 570 
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care about their reputation, it is possible to promote environmentally responsible behavior through an encouragement 

mechanism, without use of force, without use of financial incentives, and only by recognition of responsible individuals in the 575 

society. In the management of a SES under disturbance, it is important to note that before the emergence of environmentally 

responsible behavior, the disturbance may damage the ecological system, as demonstrated in our zero-preparation scenario 

simulations. It is therefore important to prepare the society in advance for engagement in environmental protection and 

ecological conservation action. We used a conceptual model as a virtual laboratory for performing hypothetical experiments, 

and by comparing the outputs of those experiments we gained insight about a complex system. 580 
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Appendix A – Model description using ODD+D protocol 735 

A.1 Overview 

A.1.1 Purpose 

The overall goal of this study is to gain insight about the possibility of emergence of environmentally responsible behavior in 

a SES in the absence of altruism, obligation, and financial incentives. To that end, this model has been built with the purpose 

of simulating a mechanism of recognition of environmentally responsible behavior in a setting of forest disturbance. We use 740 

the model to learn about the complexities of a SES in which users of a forest resource are requested to participate in a cost ly 

action to protect the resource from a disturbance. Particularly, we intend to better understand the potential of the desire for 
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good reputation in promotion of environmentally responsible behavior, and its implications in management and policy making. 

The model has been designed for scientists, policy and decision makers, and experts with an interest in developing decision 

support systems. 745 

A.1.2 Entities, state variables and scales 

The model consists of a social component, which is an ABM, and an ecological component, which is a spatial ecological 

model. The social ABM includes a governing agent, several user agents and an auxiliary agent called registrar, which has been 

defined for a better understanding of the model. The model includes a spatial component, which represents a forest resource 

attacked by insect infestations. The spatial ecological model’s units are grid cells. 750 

In each time step the governing agent is in a state, takes and action, and receives a reward. The governing agent’s state is a 2-

dimensional variable which cumulatively summarizes past interventions and their results. The two components of this state 

variable are calculated based on actions and rewards. The governing agent’s reward is the cooperation by the user agents in 

the management action to save the forest. The governing agent’s action is to generate a binary signal for communication to 

user agents. A signal of 0 is a request for a no-cost action, and a signal of 1 is a request for a costly action. To produce signal, 755 

it uses a policy, which recommends an action for each state. To update its policy, it uses its memory of past states, actions and 

rewards. For that purpose, the governing agent has two arrays of time-discounted scores calculated for each (state,action) pair 

(Harati et al., 2021a). Each user agent is allocated a forest zone where the user agent harvests. These zones are created by 

dividing the map of the study area into equal squares. Each square contains cells that are in the study area and cell that are not. 

Therefore, user zones include various numbers of cells from the study area. Moreover, each user agent is characterized by a 760 

constant decision threshold that it uses in a cost-benefit analysis to make a binary decision in response to the governing agent’s 

signal. Decisions of 0 and 1 mean rejection and acceptance of the governing agent’s request, respectively. The registrar is 

characterized by two variables, nSum and nLast, which are non-negative integers. nSum is the total number of times user agents 

decided to cooperate with the governing agent. nLast is the number of user agents who cooperated with the governing agent 

in the last time the latter requested a costly action. In the spatial component of the model, each cell is identified by geographical 765 

data fields including coordinates, elevation, aspect, slope and ruggedness. Cells are marked with presence or absence of 

infestations. Cells are also marked with a mask layer that indicates presence or absence of trees. The simulation area is divided 

into zones and each zone is allocated to a user agent. Table A.1 lists the model entities and their state variables. 

Table A.3: An example for accurate data representation & universal readability of figures. 

Entity State variable Description 

Registrar nLast Last known number of user agents cooperating with the governing agent 

 nSum Cumulative number of user agents cooperating with the governing agent 

Governing agent state 2-dimensional summary of past interventions and results 

 signal Binary request (easy task or hard task) 

Deleted: 1770 
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User agent decision Binary response (refuse or accept) 

Cell infestation Binary indicator of presence or absence of infestations 

 mask Binary indicator of presence or absence of host trees 

The social ABM is influenced by an exogenous driver: spread of insect infestations in the forest. This driver is simulated in 

the spatial ecological model, which is coupled with the ABM. The spatial ecological model is a GIS model that simulates land 

change. The land change process of this study is the infestation of forests of British Columbia (BC) in western Canada by the 

Mountain Pine Beetle (MPB). The area where infestations are modeled is a sub-division of the Kamloops Timber Supply Area 

(TSA). The extents of this area are from 120°19’59”W 50°45’22”N to 119°6’0”W 51°32’40”N. In the spatial ecological model, 775 

one grid cell represents an area of 400m x 400m. 

A time step in the coupled social-ecological model represents one year and the simulations ran for 10 years. In addition, 

separate sets of simulations were run with the social model alone, in which time step was arbitrarily defined as one month. 

These simulations, which prepared the agents for later runs of the coupled social-ecological model, were performed with 10 

and 20 additional steps. 780 

A.1.3 Process overview and scheduling 

In the coupled social-ecological model, in each time step, infestations spread from infested cells in the previous time step. This 

spread is simulated by the spatial ecological model. Newly infested grid cells remain invisible to the governing agent for one 

time step after infestation and become visible in the next time step. These grid cells act as sources of spread of infestations 

while they are invisible to the governing agent. 785 

The social model’s governing agent analyzes the last visible spread of infestations and calculates the cost of management 

action to stop the spread of infestations in each user zone. The management action is to cut a neighborhood area of the fores t 

surrounding last visible infestations. Accordingly, the cost of action is defined proportional to the size of the said neighborhood.  

Then the governing agent sends a binary signal to the user agents. A signal of 1 means the governing agent requests the user 

agents to participate in the management action in their allocated forest zone voluntarily and at their own cost, in exchange for 790 

a ‘responsible user’ label. The ‘responsible user’ label only shows recognition of the user agents who cooperate with the 

governing agent, and has no monetary value. A signal of 0 means the governing agent requests the user agents to do an easy 

task with no cost for the user agents and no benefit for the governing agent, in exchange for the ‘responsible user’ label. There 

is no difference between labels given when the governing agent’s signal is 0 or 1. The governing agent uses a Reinforcement 

Learning (RL) algorithm in order to produce its signal, considering the past states, actions, and rewards (Harati et al., 2021a). 795 

The reward for the governing agent is the cooperation by the user agents in the costly management action and thus saving the 

forest from the infestations. 

Each user agent considers the governing agent’s signal and produces a binary decision in response, which indicates whether 

or not the user agent accepts the governing agent’s request in exchange for the ‘responsible user’ label. When the governing 

agent’s signal is 0, the requested action is of no cost and all user agents accept the governing agent’s request and all user agents 800 
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receive the ‘responsible user’ label. When the governing agent’s signal is 1, each user agent makes a decision with a cost-

benefit analysis, taking into account the governing agent’s calculated cost of action, history of the ‘responsible user’ label, the 

uniqueness and visibility that they gain if they get the label, and the revenue from sales. Each user agent considers obtaining 

the label as an opportunity to be unique in having a recognition that some user agents do not. Such uniqueness is assessed 

based on the response of user agents to the governing agent in the last known interaction. Each user agent also assumes that 805 

the acknowledgement of the label in its group depends on how much the group knows the label, which in turn depends on the 

cumulative number of times the label has been seen in the group. Thereupon, user agents consider a visibility score for the 

label. 

In order to help understand interactions in the model, another agent, the registrar, is defined. The registrar observes and registers 

actions of the governing agent and the user agents in each time step from the beginning of an episode of simulations. The other 810 

agents refer to the registrar in their decision making process. 

Once the users make their decisions, a message is sent from the social ABM to the spatial ecological model, and modifications 

are correspondingly made in the forest map. These modifications include removing trees for annual harvest or management 

action. Specifically, each user’s zone is subject to annual harvest unless that user cooperates with the governing agent when 

the signal is 1. In this case, that is, if the signal is 1 and the user agents cooperates with the governing agent, the neighborhood 815 

indicated for management action in the user’s zone is cut. The modified landscape map is used by the spatial ecological model  

in the next time step. 

A.2 Design concepts 

A.2.1 Theoretical and empirical background 

The core idea of the social ABM is the promotion of responsible behavior using individuals’ desire for respect. The theoretical 820 

basis for this idea notes that sustainability issues are problems of collective action (Ostrom, 1990), that an individual’s behavior 

is influenced by the observation of behavior of others in the society, or descriptive norms, as stated in the theory of normative 

conduct (Cialdini et al., 1990), and that people care about their reputation in the society (Anderson et al., 2015; Lazaric et al., 

2020; Nolan et al., 2008; Tascioglu et al., 2017). 

The two models that are coupled in this study are both taken from previous works. The social ABM has been built on the above 825 

concepts and calibrated through thousands of training iterations (Harati et al., 2021a). The spatial ecological model has been 

developed, calibrated and tested with observed data (Harati et al., 2020). We refer the readers to these two papers for a detailed 

description of the models. 

Complexities arise when the model’s governing agent uses the ‘responsible user’ label to encourage the user agents to engage 

in a costly action. At the beginning of the simulations, the label has not been introduced in the society of user agents and it is 830 

therefore not deemed valuable. Later on, as the label becomes more visible in society, its value increases in the calculations of 

the user agents. Meanwhile, an ecological disturbance causes damage to the forest resource. The model sheds light on the 
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complexities of the above said setting. Specifically, the model helps answer these questions about the possibility of success  

for the governing agent: Can the governing agent gain the cooperation of the user agents? Can they effectively control the 

disturbance? Can they save the resource? 835 

The governing agent’s decisions are based on bounded rationality (Simon, 1990). The governing agent does not know how the 

group of user agents behaves, it does not know what their decision thresholds are, and its information about the ecological 

system comes with a delay. The governing agent is designed in such a way that it observes the outcome of its actions, and 

learns to update its decision policy according to its observation. User agents make rational choices (Scott, 2000) based on 

information that is available to them. They do not modify their decision rule. User agents compare the utility of a suggestion 840 

with a threshold that indicates their hesitation, and make their decisions accordingly. 

The social ABM uses input from the spatial ecological model. This input is the simulation of changes in a landscape, which is 

produced and processed through a GIS approach. This GIS approach does not take a time-series of external inputs during the 

simulations. However, the spatial ecological model is calibrated before the start of simulations using GIS data, which is 

available at grid cell level. 845 

A.2.2 Individual decision-making 

Subjects of decision making are the governing agent and user agents. The object of decision making of the governing agent is 

its binary signal, which is a variable that the governing agent communicates to user agents. The signal indicates whether the 

governing agent is requesting a costly action or no-cost action from the user agents. The object of decision making of each 

user agent is its decision, which is the user’s response to the governing agent’s signal request. 850 

Since the governing agent’s decisions are based on bounded rationality and it does not have perfect knowledge of the complex 

system that it deals with, it takes actions according to its available knowledge. Then based on the result of its action, the 

governing agent updates its decision policy using a RL algorithm. The governing agent’s RL algorithm is a double-learning 

algorithm, which means it includes two arrays of scores of (state,action) pairs. These two arrays are updated iteratively in a 

convoluted manner, each based on the other. 855 

The user agents’ decisions are based on rational choice. User agents calculate the utility of cooperating with the governing 

agent, and compare it with an internal decision threshold. The utility that user agents calculate is a quantity between 0 and  1. 

If the calculated utility of a suggestion exceeds a user agent’s decision threshold then the user agent accepts that suggestion. 

In calculation of the utility of the ‘responsible user’ label, user agents take into account the uniqueness that they will have with 

the label, and the visibility of being associated with responsibility. They assess uniqueness based on the last known proportion 860 

of user agents who cooperated with the governing agent in a costly action. They assess visibility based on the total number of 

times the label has been presented in their society since the first time step of the simulation. User agents calculate uniqueness 

and visibility based on the registrar’s nLast and nSum. 

User agents adapt to changes in their social and ecological environment. Social changes influence each user agent’s perceived  

value of being recognized as a ‘responsible user’, and ecological changes influence the size of the area where the management 865 
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action is prescribed, hence influencing the cost of action required to receive the ‘responsible user’ label. These variables do 

not change the decision rule of the user agent. The simulations shed light on the emergence of a norm of environmentally 

responsible behavior among user agents. On the other hand, the spread of infestations in the forest is a spatial process, which 

influences the governing agent’s perceived state of forest health, and subsequently, cost of management action in each user 

zone. 870 

All agents in the model use memory in their decisions. User agents refer to the registrar’s memory. The governing agent, in 

addition to the memory of the registrar, uses its own built-in memory. The governing agent’s RL algorithm applies a future 

discounting rate in the calculation of the present value of future consequences of its decisions. 

The model includes some elements of uncertainty. The decision thresholds of user agents are taken from a normal distribution. 

The decision policy of the governing agent is defined stochastically. That is, for each (state,action) pair, the policy includes a 875 

number, which is used as a threshold for comparison against a random number. The decision is made according to that 

comparison. 

A.2.3 Learning 

Learning is the basis of the governing agent’s RL algorithm. The RL algorithm keeps track of its states, actions, and rewards . 

The algorithm uses a policy to decide an action in each state. Then, based on the subsequent reward, the RL algorithm updates 880 

its policy. Through iterations, the governing agent’s RL algorithm learns to adjust its policy in order to maximize its rewards. 

The model does not include collective learning. 

A.2.4 Individual sensing 

In this model, individuals are the agents in the social ABM. The model includes endogenous and exogenous variables. As for 

endogenous variables, user agents sense the governing agent’s signal. User agents and the governing agent sense the total 885 

number of ‘responsible user’ labels as well as the last known number of labels given in a time step when signal was 1. These 

variables are accessible to agents through the registrar. These endogenous variables are sensed without error. As for exogenous 

variables, the governing agent senses the changes that happen in the ecosystem. In our conceptual model, these changes are 

simulated by a spatial ecological model that is coupled to the social ABM. Therefore, this information is exogenous to the 

ABM. The sensing of environmental change is erroneous because in the definition of the model, environmental changes are 890 

not visible when they occur. The time lag between occurrence and visibility of the changes causes errors in the governing 

agent’s sensing, thus adding to the complexity of the SES model. The governing agent and user agents sense the variables 

stored in the registrar, which is an auxiliary agent created for better understanding the model. The registrar, in turn, senses the 

governing agent’s signal and each user agent’s decision. These variables are sensed without error. The governing agent senses 

the spatial environment at global and local scales, when it calculates the overall state of health of the forest and the cost of 895 

management action in each user agent zone, respectively. 
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Within the social ABM, when the governing agent, users agents, or the registrar require information from another agent, they 

call that other agent. The agents are equipped with functions that send the requested information. Agents do not have direct 

access to variables of other agents. In the link between the social ABM and the spatial ecological model, each model is designed 

to perform some calculations, then wait for the other model to send the required information. This information is transferred  900 

by copying a file into the recipient model’s inbox directory. The model does not assume any costs associated with cognition 

or for gathering information. 

A.2.5 Individual prediction 

The governing agent’s RL algorithm uses the data gained through experience in order to assess the values of its possible actions 

in the next step. The user agents consider data of the last known states in their calculations. The governing agent uses a temporal 905 

difference RL algorithm known as Double Expected SARSA (Sutton and Barto, 2018). The user agents assess the future value 

of obtaining the ‘responsible user’ label with the assumption that the agents who previously chose a costly action in return for 

a label, will do so again. The predictions of the agents may be erroneous. User agents have limited ability to predict future 

changes in their society. Likewise, the governing agent’s social prediction capability is limited. In addition, the governing 

agent’s external input, which comes from the ecological spatial model, is designed to come with a delay. 910 

A.2.6 Interaction 

The model includes direct and indirect interactions among agents. Direct interactions include the communication of governing 

agent’s signal and action cost calculations, as well as user agents’ decisions. Indirect interactions occur due to user agents’ 

desire to be better recognized than their peers, as well as through the market where all user agents sell their harvest. The 

governing agent’s decisions and calculations depend on the history of responses from the user agents as well as the state of the 915 

ecological system. User agents’ decisions depend on action costs, which are calculated through a spatial analysis. Interactions 

within the social ABM are communicated via the registrar. Interactions between the social ABM and the ecological spatial 

model are performed via file transfers, in which messages are copied into the recipient’s inbox directory. The model does not 

include a coordination network. 

A.2.7 Collectives 920 

There are no collectives in this model. 

A.2.8 Heterogeneity 

User agents are heterogeneous in their decision thresholds, as well as their allocated forest zones. User agents and the governing 

agent are different in their decision making. The object of decision of the governing agent is the signal it sends to the user 

agents, and the objects of decisions of user agents are their responses to the governing agent. The governing agent uses a RL 925 

algorithm in its decision, whereas user agents compare the utility of a suggestion with a threshold. 
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A.2.9 Stochasticity 

The decision thresholds of the users are drawn from a normal distribution. The decision policy of the governing agent is 

stochastic. 

A.2.10 Observation 930 

In each time step, the governing agent’s signal, the proportion of user agents who cooperated with the governing agent, and 

remaining proportions of infested, non-infested, and harvested forest land are collected for analysis. In addition, for testing 

and verification of the model, all communications between the social ABM and the ecological spatial model are saved. Among 

the user agents, cooperation with the governing agent despite its cost is a behavior that emerges through simulations. In 

addition, saving forest areas from infestations is an emergent effect in the simulations. 935 

A.3 Details 

A.3.1 Implementation details 

The social ABM was developed in Java, using features of REPAST (North et al., 2013). The spatial ecological model was 

developed in R (R Core Team, 2019). Please see the ‘Data and code availability’ section for links to model code and results. 

A.3.2 Initialization 940 

The social ABM consists of a governing agent, nine user agents, and a registrar agent. The governing agent’s policy is defined 

by the results of a previous study (Harati et al., 2021a), wherein the governing agent’s RL algorithm was trained through 

interaction with the same number of user agents. There is no history of decisions of user agents, therefore the last known 

number of user agents cooperating with the governing agent is zero. In the previous study that defined the social ABM (Harati 

et al., 2021a), three sets of simulations were run with mean user agent decision thresholds of 0.3 (low), 0.5 (medium) and 0.7 945 

(high). In the present study, assuming that the governing agent does not have any information about the decision thresholds o f 

user agents, we initialized the governing agent with the policy obtained from training with medium level user agent decision 

thresholds. The said training was the output of the previous study (Harati et al., 2021a). In the spatial ecological model, 

locations of insects at the start of simulations are extracted through GIS analysis of infestation data (BC Ministry of Forests, 

2015). 950 

There are some differences between various runs of the same series of simulations. The decision thresholds of user agents in 

the social ABM are drawn from a truncated normal distribution with pre-set mean and standard deviation. In new runs, new 

thresholds are drawn from the same normal distribution. Therefore, user agents change in new runs. For the governing agent, 

within the same set of simulations, the decision policy is updated based on rewards earned in the previous episode of runs. 
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A.3.3 Input data 955 

In each time step, the social ABM uses input from the ecological spatial model. This input is based on simulations of spread 

of infestations in the forest. As the simulated infestations spread further in the forest, the data transmitted to the social ABM 

changes over time. 

A.3.4 Submodels 

The social ABM includes a RL algorithm for the governing agent and a simple threshold decision-making algorithm for user 960 

agents. These are explained in detail in a previous work (Harati et al., 2021a). The ecological spatial model is based on a 

logistic regression algorithm, which is explained in detail in another previous work (Harati et al., 2020). The social and 

ecological models are coupled through a mechanism that we call flip-flop. The social model requires inputs about the state of 

the forest and newly spread infestations, which is calculated in the ecological model. Conversely, the ecological model requires 

inputs on actions of user agents, which change land cover. In the flip-flop mechanism, each of the models runs its algorithm 965 

up to the moment it requires input from another model. Then it enters a loop in which it waits and observes an inbox directory 

that is allocated to that model in the computer’s hard disk. In the meantime, the other model continues its calculations and 

eventually produces an output message file and sends it to the above-mentioned inbox directory. As soon as the message file 

is copied into the inbox directory, the first model notices the change in the contents of its inbox, exits the waiting loop, reads 

the file and resumes computing. In this way, models take alternative turns of running and pausing, hence the name ‘flip-flop’. 970 

This strategy has enabled us to facilitate the exchange of information between two different algorithms (i.e. the social and the 

ecological models) that have been implemented in two different computer languages (Java and R, respectively). 

The management action that we consider in this study is cutting cells in a neighborhood of newly observed infestations. The 

size of this neighborhood is a parameter that needs to be defined. Based on insight obtained about spatial spread of MPB 

infestations in a previous study (Harati et al., 2021b), in the present study we used Moore neighborhoods of size 4 to simulate 975 

the above-said management action. Considering that the cell-size in the model is 400 meters, the said neighborhood will be a 

square with side length of 3.6 kilometers. The rationale for this hypothetical neighborhood is that newly infested cells are not 

immediately detected. By the time infested cells change color and become observable, the infestation spreads further in the 

area. 

The subject of calibration of the social ABM is the decision policy of its RL algorithm. This policy was learned previously 980 

(Harati et al., 2021a) through 50 sets of 4000 training episodes each in a configuration with medium-level decision thresholds 

for user agents. Each set of 4000 episodes resulted in one (1) learned policy, thus, there were a total of fifty (50) learned 

policies. The mean of those 50 policies was used as the starting policy in the simulations of the present study. The spatial 

ecological model was calibrated using observed infestation data of years 2002-2004 for BC. Details of the model and its 

calibration are described in the corresponding previous work (Harati et al., 2020). 985 
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As both the social ABM and the spatial ecological model are taken from previous works, we only made modifications to code 

and parameters for the coupling of the two models and the runs of this study. The social model’s parameters include the number 

of user agents, mean and standard deviation of decision thresholds of user agents, future discounting rate, number of time steps 

in one episode, and number of episodes. Each episode of simulations was run with a new set of user agents. In addition, in the 

present study we added a new parameter for the number of preparation steps before the social model is coupled with the spatial 990 

ecological model. The parameters of the coupling of the two models are the business-as-usual harvest ratio, which is the ratio 

of the study area that the user agents would harvest regardless of disturbance management, and the size of the neighbourhood 

of newly visible infestations, in which the management action of cutting cells is defined. Table A.2 shows the model parameters 

and their values. Note that in this table all values are dimensionless except for the management action neighborhood size, 

which is in grid cells. 995 

Table A.2: Model parameters. 

Parameter Value(s) 

Number of user agents 9 

Mean decision threshold of user agents 0.7 

Standard deviation of decision thresholds of user agents 0.08 

Future discounting rate 0.1 

Number of time steps in one episode 10 

Number of preparation time steps 0, 10, 20 

Number of episodes 50 

Business-as-usual harvest ratio 0.01 

Management action neighborhood Moore, size 4 
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