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Abstract. The accurate calibration of parameters in atmospheric and Earth system models is crucial for improving their per-

formance, but remains a challenge due to their inherent complexity, which is reflected in input-output relationships often char-

acterised by multiple interactions between the parameters and thus hindering the use of simple sensitivity analysis methods.

This paper introduces the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis

Tool (ML-AMPSIT), a new tool designed with the aim of providing a simple and flexible framework to estimate the sensitivity5

and importance of parameters in complex numerical weather prediction models. This tool leverages the strengths of multiple

regression-based and probabilistic machine learning methods, including LASSO, Support Vector Machine, Classification and

Regression Trees, Random Forest, Extreme Gradient Boosting, Gaussian Process Regression, and Bayesian Ridge Regres-

sion. These regression algorithms are used to construct computationally inexpensive surrogate models to effectively predict

the impact of input parameter variations on model output, thereby significantly reducing the computational burden of running10

high-fidelity models for sensitivity analysis. Moreover, the multi-method approach allows for a comparative analysis of the re-

sults. Through a detailed case study with the Weather Research and Forecasting (WRF) model coupled with the Noah-MP land

surface model, ML-AMPSIT is demonstrated to efficiently predict the effects of varying the values of Noah-MP model param-

eters with a relatively small number of model runs, by simulating a sea breeze circulation over an idealised flat domain. This

paper points out how ML-AMPSIT can be an efficient tool for performing sensitivity and importance analysis also for complex15

models, guiding the user through the different steps and allowing for a simplification and automatisation of the process.

1 Introduction

One of the primary sources of error in atmospheric/Earth system models stems from inaccurate parameter values (Clark et al.,

2011; Li et al., 2018), which can affect different physical parameterisations. Although model parameter tuning can help to

alleviate this issue, determining optimal values is highly dependent on model structures and how input parameters influence20

model outputs. Sensitivity analysis is commonly used to evaluate these input-output relationships and parameter importance,

but traditional one-at-a-time (OAT) methods yield varying results depending on the interdependence of parameters, particu-

larly within complex models, leading to issues of poor reproducibility and inability to generalise results. Consequently, more

advanced variance-based techniques like the Sobol method, in the context of global sensitivity analysis (GSA, Saltelli et al.,
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2008), exhibit superior performance in such tasks, albeit being computationally intensive (Herman et al., 2013) and some-25

times infeasible, especially when dealing with complex weather/climate models like the widely used Weather Research and

Forecasting (WRF) model (Skamarock et al., 2021).

An alternative approach that avoids running numerous model realisations is the utilisation of surrogate models or emulators

(Queipo et al., 2005; O’Hagan, 2006; Forrester et al., 2008; Fernández-Godino et al., 2017; Kim and Boukouvala, 2020; Longo

et al., 2020; Lamberti and Gorlé, 2021). A surrogate model/emulator is a simpler model trained using the input-output pairs30

of the original complex high-fidelity model that can be used to substitute it. The emulator makes the model process more

computationally efficient in producing model realisations, while it still provides accurate predictions of the output variable.

Machine learning (ML) algorithms designed for regression tasks offer a computationally efficient means to build surrogate

models to be used for sensitivity analysis (Engelbrecht et al., 1995; Shen et al., 2008; Muthukrishnan and Rohini, 2016;

Antoniadis et al., 2021; Torres, 2021; Zouhri et al., 2022). Over time, a variety of algorithms have been tested in the literature35

and used in different fields.

These algorithms can also be used to extract feature importance, which has become a well-established methodology widely

employed in different geoscience fields, such as landslide susceptibility (Yilmaz, 2010; Catani et al., 2013; Pradhan, 2013;

Youssef et al., 2016; Kalantar et al., 2018; Lee et al., 2018; Zhou et al., 2018; Chen et al., 2020; Liu et al., 2021; Daviran et al.,

2023; Elia et al., 2023), forest fire susceptibility (Oliveira et al., 2012; Bar Massada et al., 2013; Arpaci et al., 2014; Pourtaghi40

et al., 2016; Satir et al., 2016; Gigović et al., 2019), water quality assessment (Palani et al., 2008; Rodriguez-Galiano et al.,

2014; Sarkar and Pandey, 2015; Haghiabi et al., 2018; Shah et al., 2021; Alqahtani et al., 2022; Trabelsi and Bel Hadj Ali,

2022), hydrological modelling (Zhang et al., 2009; Yu et al., 2024), air quality assessment (Suárez Sánchez et al., 2011; Yu

et al., 2016; Maleki et al., 2019; Sihag et al., 2019; Lei et al., 2023), groundwater mapping (Rahmati et al., 2016), agronomy

(Kok et al., 2021; Sridhara et al., 2023; Wu et al., 2023), climatological applications (Wu et al., 2021; Dey et al., 2022),45

renewable energy (Wolff et al., 2017; Meenal et al., 2022), earthquake detection (Murti et al., 2022), and it also has significant

relevance in civil engineering (Tian, 2013; Gholampour et al., 2017; Farooq et al., 2020; Salmasi et al., 2020), genetics (Sharma

et al., 2014), biology (Cui and Wang, 2016), and medical research (Antonogeorgos et al., 2009; Maroco et al., 2011; Yang et al.,

2022).

ML techniques have gained traction in weather and climate modelling and observations (Schultz et al., 2021; Schneider50

et al., 2022), particularly in parameter optimisation tasks like calibration (Bocquet et al., 2020; Bonavita and Laloyaux, 2020;

Williamson et al., 2013; Couvreux et al., 2021; Dagon et al., 2020; Watson-Parris et al., 2021; Cinquegrana et al., 2023), spatial

interpolation (Stein, 1999; Sekulić et al., 2020), downscaling (Fowler et al., 2007; Maraun and Widmann, 2018; Leinonen

et al., 2021), parameterisation substitution (Rasp et al., 2018; Han et al., 2020; Yuval and O’Gorman, 2020; Mooers et al.,

2021; Grundner et al., 2022; Ross et al., 2023), and image-based classification (Chase et al., 2022, 2023).55

Among the most relevant for the topic of the present work, Dagon et al. (2020) focused on building a surrogate model

based on feed-forward artificial neural networks of a land surface model (CLM5) ensemble of perturbed parameters, which

greatly improved the rapidity of generating predictions. Similarly, Cinquegrana et al. (2023) built a framework for optimising

physical parameters for the ICOsahedral Non-hydrostatic (ICON) limited area model at high resolution, aiming to reduce
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the discrepancy between observed and modelled meteorological variables using an Efficient Global Optimization algorithm60

relying on Gaussian-based surrogate models. Watson-Parris et al. (2021) introduced an open-source tool (ESEm) based on

surrogate models for model calibration and uncertainty quantification, demonstrating its functionalities for climate modelling.

Couvreux et al. (2021) used Gaussian process-based methods to calibrate parameters through the comparison of single-column

simulations and reference large-eddy simulations over multiple boundary-layer cases.

Despite these recent advancements, the extraction of feature importance remains relatively uncommon in the meteorologi-65

cal/climate modelling literature. Notable exceptions in recent times include Baki et al. (2022), who employed GSA methods

and a surrogate model based on Gaussian process regression. The study found that a subset of parameters significantly influ-

enced WRF simulations of tropical cyclones over the Bay of Bengal. Similarly, Fischer et al. (2024) used a Gaussian process

regression-based surrogate model of the ICON model to quantify the uncertainty of simulations of the African monsoon through

GSA.70

Many of the previous studies have proposed comparisons between several feature importance analysis algorithms. This is

because the ability of these algorithms to best capture feature relevance is influenced by a variety of factors that can change with

the application, depending on the context under analysis, such as the degree of nonlinearity of the input-output relationships,

the interaction degree between features, the dimensionality of the features, the size and quality of the data used for training, the

shape and smoothness of the distribution of the training data, and ultimately the validity of each algorithm’s assumptions. Often,75

the influence of one or more factors on the chosen method’s quality cannot be assessed in advance, leading to a trial-and-error

procedure that would benefit from a multi-algorithm approach where the results of different methods can be compared. For

this reason, the present work shares the same multi-method philosophy as many of the studies mentioned above, extracting the

most popular algorithms available in the literature and combining them into a single flexible, efficient framework for analysis.

The importance of sensitivity analysis in Earth science modelling is critical, not only for academic pursuits, but also for its80

practical implications for public safety and resource management. Currently, the diversity of research cultures across scientific

disciplines, coupled with heterogeneous computational resources and varying degrees of familiarity with sensitivity analysis

techniques, contributes to a predominant reliance on older, more familiar methods. This scenario prevails despite the increas-

ing complexity of models, which would require more robust sensitivity analysis techniques. The field of meteorology currently

exhibits a significant gap in the adoption of advanced sensitivity analysis methods, despite the chaotic nature of atmospheric85

dynamics and the interactions among numerous parameterisations in atmospheric models contribute to a high degree of sensi-

tivity to input parameter variations, underscoring the need for robust uncertainty quantification to improve model reliability.

In light of the above considerations and to fill this gap, this paper proposes a new tool, the Machine Learning-based Auto-

mated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), which aims at providing a flexible

and easy-to-use framework for performing sensitivity and importance analysis also for complex models. ML-AMPSIT applies90

a series of ML feature importance extraction algorithms to model parameters (using the widely-used WRF/Noah-MP coupled

meteorological model as a case study), accommodating any user-specified model configuration. ML-AMPSIT represents a

novel contribution to the field by providing a toolkit that integrates multiple ML algorithms for an improved sensitivity anal-

ysis. The algorithms included are among the most commonly used in literature, namely: LASSO, Support Vector Machine,
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Classification and Regression Trees, Random Forest, Extreme Gradient Boosting, Gaussian Process Regression and Bayesian95

Ridge Regression. These algorithms have been chosen for their simplicity and speed and to create an ensemble of state-of-

the-art ML models each employing distinct methodologies, so as to improve the flexibility of the tool and its performance in

different possible applications. This diversity allows for a robust method of self-validation or self-falsification of the results

through comparative analysis, enhancing the reliability of the findings by ensuring that consistent results are not an artefact

of a single modelling approach. While most of these algorithms directly provide a measure of feature importance through the100

Python scikit-learn library, the last two methods are specifically used in this framework for a fast implementation of

the Sobol method through the SALib Python library, leading to a computationally efficient way to obtain the Sobol sensi-

tivity indices directly from the ML-inferred relation between input and output data. Our tool’s objective is overall to assist

users in evaluating parameter sensitivity and importance using computationally inexpensive and nonlinear interaction-aware

approaches.105

ML-AMPSIT guides the user through the different steps of the sensitivity and importance analysis, allowing, on the one

hand, for a simplification and automatisation of the process and, on the other hand, for extending the application of advanced

sensitivity and importance analysis techniques to complex models, through the use of computationally inexpensive and non-

linear interaction-aware methods. Once knowing which parameters cause most of the variance within a perturbed ensemble,

the user can potentially concentrate on these parameters to improve model results. Indeed, knowing which parameters are most110

critical to the simulation output highlights which values should be estimated with more care to improve model results.

This paper is organised as follows: Section 2 outlines the methodology used to develop ML-AMPSIT, including a detailed

description of the ML models integrated into the tool and the workflow for performing sensitivity and importance analysis.

Section 3 presents the case study involving the coupled WRF/Noah-MP model to demonstrate the application of ML-AMPSIT.

The results of the sensitivity analysis are discussed in Section 4, highlighting the effectiveness of different ML models in115

identifying the key parameters for the case study presented in this paper. Finally, Section 5 concludes the paper with a summary

of the findings and some insights into potential future work to further enhance the capabilities of ML-AMPSIT.

2 Methods

In this section, we describe the methodological framework underlying this study. We begin with an overview of the ML-

AMPSIT workflow, detailing the process from the selection of the input parameters to the sensitivity analysis phase. We then120

introduce the Sobol method, a variance-based technique used for GSA. Finally, we provide a description of the ML algorithms

integrated into the tool, highlighting their main characteristics, how they are implemented and used in ML-AMPSIT and the

rationale behind their selection.

2.1 ML-AMPSIT workflow

The ML-AMPSIT workflow (Figure 1) can be divided into four main steps, each of which involves one or more Python/Bash-125

based scripts: the pre-processing phase, the model run phase, the post-processing phase, and the sensitivity analysis phase.
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Figure 1. ML-AMPSIT workflow. The main code scripts are indicated with blue boxes. The yellow boxes indicate the configuration files

that need to be filled by the user, the green boxes refer to the output files that eventually become inputs for other subsequent scripts, and the

orange box indicates the generic model execution that varies depending on the model involved.

1. The selection of the input features is accomplished by specifying the parameter names within the configuration file

configAMPSIT.json. The compiled configuration file related to the case study discussed in this paper is reported in the

Appendix. There is no upper limit for the number of parameters that can be analysed, but it is worth noting that the

sensitivity analysis could converge significantly more slowly in high-dimensional (i.e., with more parameters) problems.130

Moreover, the scalability with the number of parameters can highly depend on the case study considered. The number

of simulations to perform must also be specified through the configuration variable totalsim. To generate the values of

the parameters to be tested, a Sobol sequence of the same length of totalsim is produced for each parameter from the

pre-processing script sobol.ipynb. The Sobol sequence (Saltelli et al., 2010, Bratley and Fox, 1988) is a quasi-random

low-discrepancy distribution designed to produce well-spaced points in the unit hypercube representing the parameter135

space. Unlike random sampling, each point in the sequence considers the positions of the previous points, resulting in

a more uniform filling of gaps, as shown in Figure 2. Consequently, a robust sequence is generated more efficiently

compared to random sampling, requiring fewer points.

Once the Sobol sequences are generated, a user-specified reference value and a maximum perturbation percentage need

to be specified in configAMPSIT.json, which will be passed to the preprocessing script autofill.sh. These values are used140

to rescale the sequence values from the [0,1] range to the actual parameter range space. The output of the sobol.ipynb

script is the file X.txt, containing a m x n matrix, where m is the number of simulations and n the number of parameters

tested.
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Figure 2. Demonstration of the differences between Sobol sampling (left, blue dots) and random sampling (right, red dots) in representing

the parameter space. The Sobol sequence is able to more uniformly cover the parameter space, avoiding the presence of very close points, as

it occurs in the random sequence.

Therefore, each row specifies a different set of parameter values that will be used in each particular model realisation.

Based on these data, the autofill.sh script creates multiple copies of the folder in which the model is run and then searches145

for each parameter name within the original model parameter look-up table in each newly created folder. The values of

the parameters are then changed according to the X.txt file for each realisation. Since this script edits the original model

parameter look-up table, which is MPTABLE.TBL for the WRF/Noah-MP model in the case study presented here, it is

necessarily model-dependent and thus needs to be adapted if used with other models, to suitably modify the values of

the tested parameters.150

2. After all the simulation folders have been created, the user can run the original high-fidelity model as usual. It will be

necessary to collect all the output files into one single folder, whose path must be specified in the configuration file, so

that the post-processing script can find it.

3. Once the user has completed all the high-fidelity model runs, a post-processing script named WRFload.ipynb is provided

to extract single-point time series for each output variable at specific coordinates in the simulation domain, as specified155

by the user in the configuration file. The resulting output data, which serves as input to the sensitivity analysis tool ML-

AMPSIT.ipynb, consists of different files with the naming convention var_h_v_time.txt, where var is the variable name,

h and v indicate the labels identifying the horizontal and vertical grid cell, while time represents the simulated time. The

script WRFload.ipynb specifically extracts variables from NetCDF files that follow a WRF-like format (a widely used
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format for weather/climate models). If the user’s model output follows a different format, the script must be modified160

accordingly.

Extracting single-point time series means that the tool has no information about spatial patterns, nor can it capture

time patterns, because the sensitivity analysis is performed on each single point and time separately. Consequently,

the importance of different parameters can be directly compared only for the specific point and time being analysed.

However, the observation of consistent relative importance between parameters across different points and times can165

confirm the statistical robustness of the results.

4. The sensitivity phase is performed by the main script of the ML-AMPSIT tool ML-AMPSIT.ipynb, which accomplishes a

regression task based on different ML algorithms offered to the user. As mentioned in the Introduction, this multi-method

approach is useful for comparing different results, since each algorithm is structurally different and could be more or

less appropriate for the problem at hand. This ML-based ensemble philosophy is similar to an ensemble learning (EL)170

approach (Ren et al., 2016), which combines the predictions of multiple base models to improve the overall performance,

but the present tool does not yet include an option to integrate the methods into a stacking, bagging, or boosting pro-

cedure, allowing for the user to choose any single or multiple methods independently. For each method offered by the

present tool, the input and output data are split into training and testing sets in proportions of 70% and 30%, and each set

is scaled separately to have zero mean and unit variance with respect to the ensemble. The training set is used to fit the175

model to the data, while the testing set is used to evaluate the model’s ability to reproduce new data. This strategy is used

to mitigate the risk of overfitting. The coefficient of determination (R2), the mean squared error (MSE), and the mean

absolute error (MAE) are used as measures of goodness when comparing the predicted output against the actual "truth",

i.e., the results of the original physical model simulations. Since all the variables are scaled before calculating these error

metrics, MSE and MAE are not affected by the different scales of the variables. This allows for a fair and meaningful180

comparison of the model’s performance across different variables. The coefficient of determination R2 = 1− SSres

SStot
, is

used as a measure of goodness of fit, where SSres is the residual sum of squares and SStot is the total sum of squares.

R2 indicates how much variation in the target variable can be explained by the model’s predictors. R2 is typically a

value between 0 and 1, where values closer to 1 indicate a better ability of the model to explain the variance in the data.

Eventually, if the chosen model fits worse than the average value, then SSres

SStot
can be greater than 1 and R2 is negative. If185

the model has low values of MSE and MAE, but also low values of R2, it might indicate that the relationship between the

input data and the target variable cannot be properly explained in terms of linear weights only. This is an indication of

nonlinearity in the output response. In addition to the R2 coefficient, the associated p-value is also computed and saved.

The script ML-AMPSIT.ipynb produces an interactive graphical user interface (GUI) built from the ipywidgets python

library, which allows the user to specify which vertical level and surface point to consider in the analysis, the output190

variable for which to compute the sensitivity analysis, the number of simulations to consider, the algorithm to use,

and the output time to plot for punctual evaluations. The flexibility of this GUI allows the user to quickly check the
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influence of the number of simulations on the robustness of the results and the performance of the different ML methods

implemented.

Based on the selected options, unless the specified methods are Gaussian Process Regression or Bayesian Ridge Regres-195

sion, the tool produces four plots: the upper two dedicated to the feature importance time series and the time-evolution

of the metrics for the whole simulation duration, and the lower two showing the metrics and feature ranking specific

to a particular time selected. Hence, the user is provided with both the global result and the analysis related to a single

output time. An example from the proposed case study will be provided in Section 3.3. If the specified method is either

Gaussian Process Regression or Bayesian Ridge Regression, the features are ranked based on the total Sobol index, and200

the tool produces two additional plots, one showing the second-order Sobol interaction index between each couple of

parameters, and the other showing the feature ranking based on the first-order Sobol index, which could potentially be

different from the total index-based ranking if parameters’ interactions are strong enough.

An alternative version of the main script is the ML-AMPSITloop.ipynb loop suite, which allows the user to automate

multiple analyses by using the loopconfig.json configuration file, specifying all the combinations of settings to be ex-205

plored, without the need to manually set each combination through the graphical interface, saving time for long in-depth

analyses.

2.2 Sobol method

In classical sensitivity analysis, given a set of input parameters {X1, ..Xk}, the elementary effect of a single perturbation ∆ in

the input parameter Xi on the output Y (X) is defined as (Saltelli, 2007):210

EEi =
[Y (X1,X2, ...,Xi +∆, ...,Xk)−Y (X1,X2, ...,Xi, ...,Xk)]

∆
, (1)

The above definition assumes a linear relationship between the parameter and the output variable and it becomes ineffective in

the presence of non-linearities or interactions between parameters. To achieve the highest level of generalisation in sensitivity

analysis, both the effect of the single input parameter and the additional effect of its interaction with other parameters must be

evaluated.215

A variance-based approach achieves this while also not relying on a linear assumption. The most well-established variance-

based method is the Sobol method (Saltelli and Sobol’, 1995). With this approach, the variance V (Y ) is decomposed as:

V (Y ) =
∑
i

Vi +
∑
i

∑
j>i

Vij + · · ·+V12...k, (2)

where Vi is the main effect variance, representing the contribution of the i-th input parameter to the output variance, Vij is220

the second-order interaction effect variance, representing the combined contribution of the i-th and j-th input parameters to the

output variance, and so on up to V12..k, which represents the interaction effect variance of all k input parameters together.
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Dividing by V (Y ), the Sobol indices are derived as Si = Vi/V (Y ), Sij = Vij/V (Y )..., leading to:

1 =
∑
i

Si +
∑
i

∑
j>i

Sij + · · ·+S12...k. (3)

The total effect, or total index STi is the total contribution to the output variation due to a specific factor Xi, i.e., a specific225

parameter. Hence, for instance, for a set of three parameters X1,X2,X3 the total effect index for the parameter X1 is:

ST1 = S1 +S12 +S13 +S123. (4)

Both first-order effects Si and total effects STi are important to assess the overall influence of an input parameter.

2.3 Implemented ML algorithms

2.3.1 LASSO230

The Least Absolute Shrinkage and Selection Operator, (LASSO, Tibshirani, 1996) is an ML method used for feature selection

and regression. It derives from the basic concept of curve fitting in the context of optimisation, therefore it is one of the simplest

algorithms among the most widely used. The goal of LASSO is to identify a subset of input features that are most predictive

of the output variable, while also performing regularisation to prevent overfitting.

In a classical regression problem, the goal is to find a function that maps the input features to the output variable. This is235

done by minimising an objective function that takes into account the differences between the observations and the predictions,

as a measure of how well the model fits the data. The minimisation is performed during the training process to find the optimal

values of the model coefficients. In the LASSO algorithm, a penalty term (the "regularisation") is added to the objective

function, encouraging the model coefficients to be small. Specifically, the objective function for LASSO regression is the

residual sum of squares (RSS), while the penalty term is based on the sum of the absolute values (L1 norm) of the coefficients,240

which promotes sparsity of the solution, and it can be adjusted to control the amount of shrinkage applied to the coefficients.

As a result, LASSO can be particularly useful to identify the most important features by setting the coefficients of the less

important features to zero.

The present tool uses LassoCV from the Python library scikit-learn, which adds a cross-validation strategy to the

standard LASSO algorithm. In cross-validation, data are divided into multiple subsets or "folds", and the model is trained and245

evaluated multiple times, each time using a different fold as the validation set and the rest of the data as the training set (Brunton

and Kutz, 2019). By averaging the results of the multiple evaluations, cross-validation provides a more accurate estimate of the

model’s performance than a single evaluation on a single training-validation split.

2.3.2 Support Vector Machine

Support vector machine (SVM) is an ML method that can be used for regression as well as classification tasks. The original250

algorithm was proposed in 1963 (Vapnik, 1963), was refined multiple times (Boser et al., 1992; Cortes and Vapnik, 1995;

Schölkopf and Smola, 2002), and is considered a core method in ML.
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For regression tasks, SVM aims to find a hyperplane that approximates the underlying relationship between the input vari-

ables (i.e. the model parameters) and the continuous output values. In order to do this, SVM solves a convex optimisation

problem by minimising a cost function that incorporates a margin of error and an L2-norm-based regularisation term (ridge-255

type regularisation). Unlike the LASSO-type regularisation, the L2 regularisation is a penalty based on the square of the

coefficients. This penalty term is less strict compared to LASSO, because it helps to shrink the coefficient values towards

zero without eliminating them completely. This can be preferred to a LASSO regularisation when there are many important

parameters, since it avoids eliminating them in favour of the most important ones. The regularisation term controls the trade-off

between the complexity of the model and the amount of error allowed, and its strength is regulated by the hyperparameter "C".260

The optimisation problem in the proposed implementation is solved by the default quadratic "liblinear" Python solver. SVM

offers several advantages, including the ability to handle high-dimensional data and resistance to overfitting when properly reg-

ularised. The tool presented in this paper implements a simple linear kernel, which maps the input data into a high-dimensional

space using a linear function.

2.3.3 Classification and Regression Trees265

The Classification and Regression Trees (CART, Breiman et al., 1984) algorithm is one of the most basic and straightforward

decision tree methods, making it widely used and popular for various applications. The main idea behind CART is to partition

the input space recursively into smaller regions based on the values of the input variables, with the goal of minimising the

impurity (or variance) within each resulting region. This partitioning process creates a binary tree structure called a "decision

tree", where each internal node represents a splitting rule based on a selected input variable and a threshold value. The leaf270

nodes of the tree represent the final prediction or class assignment.

In the proposed tool, from the training dataset consisting of input-output pairs, the algorithm recursively selects the best

splitting rule at each internal node based on the mean squared error of the regression. The splitting process continues until

a stopping criterion is met, such as a maximum tree depth or a minimum number of samples required to split a node. For

regression tasks, the predicted output is the average value of the training samples within the leaf node.275

2.3.4 Random Forest

Random Forest (RF, Breiman, 2001) is technically an ensemble learning method, that can be used both for classification and

regression tasks. Differently from the CART algorithm, a multitude of decision trees are constructed in an RF, and the final

prediction is based on the average of the predictions of all the trees. For this reason, RF usually performs significantly better

than CART.280

The advantage of using RF is that it can handle high-dimensional data and complex interactions between variables, making

it a useful tool for sensitivity analysis. However, it can suffer from overfitting, where the model performs well on the training

data but poorly on new data. To mitigate this, both cross-validation and Bayesian optimisation are used to make the model

more robust.
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2.3.5 Extreme Gradient Boosting285

Extreme Gradient Boosting (XGboost, Chen and Guestrin, 2016) builds an ensemble of decision trees, similarly to RF, but each

new tree is trained to correct the errors of the previous trees. It is hence a refined version of an RF and it is usually expected to

perform better.

2.3.6 Gaussian Process Regression

Gaussian Process Regression (GPR), better known in geosciences as kriging (Stein, 1999) when applied to spatial interpolation,290

is a non-parametric algorithm for computing the probability density function of the regression curve, instead of a single fitting

curve and can be used as a supervised ML technique (Rasmussen and Williams, 2005). GPR assumes that the output values

follow a Gaussian distribution with unknown mean µ and variance σ that must be predicted, given a set of input-output pairs.

To achieve this, GPR models the output values as a function of the input variables, where the function is assumed to be smooth

and continuous. GPR is often described as a non-parametric method because it does not assume a specific functional form295

for the relationship between input and output variables. Instead, it models this relationship as a distribution over possible

functions, allowing for flexibility in the shape of the regression curve. However, it is important to note that there are underlying

assumptions about the functional form embedded in the chosen kernel. The kernel influences the shape and properties of the

functions that the Gaussian process can learn. The kernel implemented inside ML-AMPSIT is the Radial Basis Function (RBF)

kernel, which uses functions of the type σ2 exp
(
− (t−t′)2

2l2

)
where σ2 is a variance, l is a length scale and t, t′ represent pairs300

of values extracted from the training data. The choice of an RBF kernel is particularly advantageous due to its ability to model

complex, non-linear relationships without imposing strong parametric constraints. The RBF kernel’s smoothness assumption

is well-suited for many real-world applications where the underlying function is expected to be continuous and differentiable.

During the training phase, GPR estimates the parameters of this kernel function and calculates the covariance matrix between

the input-output pairs. Using this covariance matrix and the training data, GPR then estimates the mean and variance of the305

distribution for each new input value through Bayesian inference.

2.3.7 Bayesian Ridge Regression

In Bayesian Ridge Regression (BRR), the hyperparameters of a classical ridge regression (i.e. a linear regression that imple-

ments a ridge regularisation term) are associated with a priorly assumed probability distribution (also called hyperprior), and

tuned through training in a Bayesian inference approach (Box and Tiao, 1992). Defining both a prior distribution p(H) for310

the model parameters H and a likelihood function p(E|H) for the ingested data E, the BRR model computes the posterior

distribution over functions p(H|E) given the observed data through the use of Bayes’ theorem p(H|E) = p(E|H)·p(H)
p(E) , where

p(E) =
∫
p(E|H) · p(H)dH is the marginal likelihood. Once the posterior distribution is obtained, the model is used to make

predictions for unseen data points. These predictions come with uncertainty estimates, which are derived from the posterior

distribution. BRR, as in the case of the SVM algorithm, employs an L2 regularisation, hence it spreads the coefficient values315

more evenly, stabilising the model and preventing overly large coefficient estimates.
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2.3.8 Feature importance computation

Each of the algorithms implemented in this study provides a method for calculating feature importance, albeit through differ-

ent approaches. In principle, a single sensitivity method could be used to evaluate feature importance across all algorithms.

However, some algorithms have built-in methods specifically designed to align with their inherent characteristics.320

– Fitting Methods: LASSO and SVM derive feature importance from the model coefficients. In these linear models, the

magnitude of the coefficients indicates the strength and direction of the relationship between each feature and the target

variable. Specifically, in the scikit-learn library, this can be accessed through the best_estimator_.coef_

attribute. Larger absolute values of these coefficients indicate greater importance.

– Tree-based algorithms: for CART, RF, and XGboost, feature importance is assessed using the Mean Decrease in Impurity325

(MDI) method. This method quantifies the contribution of each feature to the overall prediction accuracy by measuring

how much each feature decreases the impurity of the splits in which it is involved. For RF and XGboost, the final value is

obtained by averaging over all the trees in the ensemble. In scikit-learn, these contributions are accessible through

the feature_importances_ attribute. The MDI method is particularly effective because it directly measures the

impact of each feature on the model’s decision process, providing a clear indication of feature importance.330

– Probabilistic methods: GPR and BRR do not have a built-in mechanism for directly assessing feature importance. There-

fore, in this work, the Sobol method is used to infer feature importance. Once built and tested against the original model

outputs, the GPR and BRR surrogate models can be used to perform a GSA in substitution of the original model. By

using a surrogate model, the computational cost of running the original model for a large number of input combinations

is avoided. Instead, the surrogate model can be used to generate a large number of input combinations with significantly335

less computational time and evaluate their impact on the output. Over these samples, in ML-AMPSIT the Sobol sensitiv-

ity indices are computed following the definition proposed by Saltelli et al. (2008). The user can then compare the Sobol

indices evaluated with both GPR and BRR, providing information on their robustness and reliability. In the proposed

tool, after the algorithm generates the optimal surrogate model, it uses the Python library SALib to compute the Sobol

total index as a score for the sensitivity importance of each parameter. The low computational cost of these emulators340

allowed us to employ a surrogate sampling generated by sobol.sample(), with 5000 input values (the user can

change this value by modifying the configuration parameter Nsobol in loopconfig.ipynb) with the overall Sobol method

calculations performed in minutes against a single traditional WRF simulation typically taking several hours. The Sobol

first-order index and Sobol second-order interaction terms are also available for users who wish to examine the presence

of strong parameter interactions.345

Despite the differences in the feature importance calculation approaches of the different algorithms, each method is applied

to standardised, non-dimensional data and each feature importance set is scaled between [0,1]. This ensures that feature im-

portance scores are comparable across all the models. In general, the sum of the total Sobol indexes (
∑

STi) is ≥ 1, because

higher-order terms, representing the interactions between parameters, are double-counted in
∑

STi (see Equations 3 and 4).
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However, it was observed that in the present case study higher-order terms are negligible (order 10−3), which implies that350 ∑
STi ≈

∑
Si ≈ 1. Therefore, the STi indices are left non-normalised, since they are still comparable with reasonable ac-

curacy to the other normalised sensitivity indices, and at the same time allow the evaluation of possible spurious results in

the Sobol index calculation due to poor sample statistics in the convergence analysis, as it will be highlighted in Section 4.3.

For the general case, the published tool automatically scales the STi indices. The user who wants to check non-normalised

values (e.g., to evaluate the effects of the interaction terms on the Sobol total indices) can find and uncomment the lines355

#importance_list.append(importances).

The primary objective of all these methods is to quantify the sensitivity of the model output to changes in the input fea-

tures. Consequently, the feature importance scores obtained from these different methods provide a well-posed comparison of

parameter sensitivities. By evaluating and comparing these scores, it is possible to gain a comprehensive understanding of the

relative importance of each feature across different modelling approaches, which increases the robustness of the results.360

2.3.9 Hyperparameter Tuning

In the proposed tool, the hyperparameters of each implemented algorithm are tuned based on a cross-validation score obtained

through Bayesian optimisation. Bayesian optimisation is an iterative process that seeks to explore the hyperparameter space

while also exploiting regions of the space that are expected to yield good performance. At each iteration, the method proposes

a new set of hyperparameters based on a probabilistic model of the function behaviour and then evaluates the function at that365

point. The results of the evaluation are used to update the probabilistic model, which is then used to propose a new set of

hyperparameters for the next iteration.

To conclude this methods section, Table 1 provides a summary of the main characteristics of the ML models used in this

study. This table outlines the regression type of each model (linear or nonlinear), the associated method used to evaluate feature

importance, and other relevant characteristics such as regularisation techniques and kernel functions.370

3 Case study

The proposed case study, adopted to highlight the functionalities of ML-AMPSIT, is based on idealised coupled WRF/Noah-

MP simulations of a sea breeze circulation over a flat three-dimensional domain. The objective of this case study is to evaluate

the impact of a prescribed set of Noah-MP parameters on the development of the thermally-driven wind.

3.1 The WRF/Noah-MP model375

The Weather Research and Forecasting (WRF) model is a widely-used state-of-the-art mesoscale numerical weather prediction

model for atmospheric research and operational forecasting applications, which is supported by the NSF National Center for

Atmospheric Research (NCAR), with more than 50000 registered users from more than 160 countries (Skamarock et al., 2021).

It offers a wide range of customisation options consisting of dedicated modules and physics schemes to meet the state of the art

in atmospheric science and adapt to a wide variety of scenarios. The dynamical core used for this case study is the Advanced380
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Table 1. Summary table of the characteristics of the ML models implemented in ML-AMPSIT

Model Name Regression Type Feature Importance Method Additional Characteristics

LASSO Linear Model coefficients Applies L1 regularisation to encourage

sparsity in coefficients

SVM Linear Model coefficients Uses L2 regularisation; implemented

with a linear kernel

CART Nonlinear Mean Decrease in Impurity (MDI) Constructs binary trees for decision-

making based on feature values

RF Nonlinear Mean Decrease in Impurity (MDI) Ensemble method that builds multiple

decision trees

XGboost Nonlinear Mean Decrease in Impurity (MDI) Gradient boosting technique, correcting

errors of previous trees

GPR Nonlinear Sobol indices (external method) Models output as a Gaussian distribu-

tion; uses Radial Basis Function kernel

BRR Linear Sobol indices (external method) Incorporates Bayesian inference with

ridge (L2) regularisation

Research WRF (ARW), which uses a third-order Runge-Kutta scheme for time integration with a time-split method for solving

acoustic modes (Wicker and Skamarock, 2002) and an Arakawa-C grid staggering for spatial discretisation. In the case study

presented here to illustrate the functionalities of ML-AMPSIT, WRF is coupled with the Noah with Multi-Physics options

(Noah-MP, He et al., 2023 Niu et al., 2011, Yang et al., 2011) land surface model (LSM). Noah-MP is one of the most used

LSMs available in WRF to calculate surface-atmosphere exchanges and interactions. It is an augmented version of the Noah385

land surface model (Ek et al., 2003) that allows the usage of different physical schemes and multi-parameterisation options,

reaching a total number of 4584 possible combinations (https://www.jsg.utexas.edu/noah-mp/).

3.2 Model setup

Simulations are performed using one domain with 201 x 201 cells in the horizontal plane with a grid spacing of 3 km. 65

vertical levels are used, transitioning from a vertical resolution of 7 m close to the surface up to 600 m at the top of the domain,390

which is placed at 16 km above sea level. The domain is completely flat and subdivided into two equally-sized rectangular

sub-regions of land and water, with the interface line oriented along the west-east direction (Figure 3). The aim is to simulate

the daily cycle of a sea/land breeze. Boundary conditions are set as open at all the boundaries.

14



The initial atmospheric potential temperature profile is set using the following expression, representative of a stable atmo-

sphere:395

θ(z) = θs +Γz+∆θ(1− e−βz), (5)

where the surface temperature θs = 280 K, Γ = 3.2 K km−1, ∆θ = 5 K, and β = 0.002 m−1. The atmosphere is initially at

rest and the relative humidity is set constant over all the domain and equal to 30%. The sea temperature is set as 293 K.

The idealised simulations start at 13:00 UTC, 19 March, are centred at 47°N, 11°E, and last for 35 hours, thus with a

solar radiation cycle representative of the equinoxes at mid-latitudes. The first eleven simulation hours are not analysed and400

considered as spin-up period. Therefore, analyses concentrate on a full diurnal cycle, from 00:00 UTC 20 March to 00:00 UTC

21 March. Model output is saved every hour.

The physical parameterisation schemes selected for the present work are the Rapid Radiative Transfer Model (RRTM) for

longwave radiation (Mlawer et al., 1997), the Dudhia scheme (Dudhia, 1989) for shortwave radiation and the YSU scheme

(Hong et al., 2006) as planetary boundary layer (PBL) parameterisation, coupled to the MM5 similarity scheme for the surface405

layer. Since this idealised study aims at reproducing a sea/land circulation, which best develops under completely clear sky, the

microphysics parameterisation is switched off, as well as the convective scheme, since convection is explicitly resolved at the

resolution used.

As said above, the Noah-MP model is used to evaluate land-atmosphere exchange. In Noah-MP, the canopy radiative transfer

scheme used is the "modified two-stream" (Niu and Yang, 2004), one of the most used, which aggregates cloudy leaves into410

evenly distributed tree crowns with gaps. The gaps are computed according to the specified vegetation fraction. The Ball-Berry

scheme, the most common choice in literature, is used for the stomatal resistance computation, with the Noah-type soil moisture

factor (Schaake et al., 1996), while the surface runoff parameterisation TOPMODEL (Niu et al., 2007) with groundwater option

is used for runoff and groundwater processes. The surface resistance to evaporation and sublimation processes is set following

Sakaguchi and Zeng (2009). The surface-layer drag coefficient, used to compute heat and momentum exchange coefficients,415

is calculated with the traditional Monin-Obukhov-based parameterisation. In this work, the dynamic vegetation option is not

activated, with the prescription of a fixed vegetation fraction of 60% to consider a reasonably realistic percentage, while the

monthly satellite-based climatological leaf area index is read from the MPTABLE.TBL file, which contains all the parameter

values. Finally, crop and irrigation options are deactivated. It is important to underline that water physical properties are not

varied in the sensitivity simulations, but changes in atmospheric variables are also expected over water, due to the indirect420

effects of the variations in the surface parameters over land.

In order to simplify this demonstrative case study, only six of the surface parameters defined in the look-up table MPT-

ABLE.TBL, from which WRF reads and sets the surface values accordingly, are considered. In particular, the Noah-MP refer-

ence vegetation type adopted over land is grassland (vegtype=10 of the IGBP-Modified MODIS classification) and the parame-

ters for which the sensitivity and relative importance are evaluated are the characteristic leaf dimension (DLEAF), the height of425

the vegetative canopy top (HVT), the momentum roughness length (Z0MVT), the near-infrared leaf reflectance (RHOL_NIR),

the empirical canopy wind parameter (CWPVT), and the leaf area index referred to the month of March (LAI_MAR). The
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choice of these parameters is based on their importance in other sensitivity studies reported in the literature (Mendoza et al.,

2015; Cuntz et al., 2016; Arsenault et al., 2018). The final perturbed model parameter ensemble contains 100 samples, each

with different parameter values based on the associated Sobol sequences. The input ensemble is generated by perturbing the430

parameters by up to 50% of their reference value in the look-up table MPTABLE.TBL. It should be clear that the results of a

sensitivity analysis, regardless of the approach chosen, always depend on the range of exploration of the parameters, and that

their transferability to arbitrary ranges of values is not guaranteed if the true sensitivity of the parameters in unexplored ranges

is not known a priori. The perturbation percentage in this work has been chosen to avoid unphysical values, but it must be

noted that the aim of the present work is to introduce and test ML-AMPSIT functionalities in a simplified case study, whereas435

a more detailed analysis would require more attention to the choice of the parameter space.

The output variable for which sensitivity is evaluated is the south-north horizontal component of the wind v in the lowest

10 vertical levels at two different locations in the domain, one over land and one over water. These two locations are chosen

to evaluate the effects of varying land parameters over two completely different surfaces and to assess how changes in land

properties can influence atmospheric fields also over water. The locations are also strategically chosen near the interface be-440

tween the land and water regions to better capture the dynamics of the sea/land breeze circulation, which is expected to be most

pronounced near this boundary. For both locations, the average output from three adjacent cells in the south-north direction is

analysed, in order to increase the representativeness of the results. The central points of these two locations are x=100, y=95

and x=100, y=105 for water and land respectively, i.e., in the central cell in the west-east direction, and 5 grid points to the

north and to the south of the land-water interface (Figure 3).445

4 Results

4.1 Sea breeze ensemble

Before analysing the ML-AMPSIT results, this section presents an overview of the output of the WRF/Noah-MP simulations,

focusing on the horizontal south-north wind component v at the two locations selected for the application of ML-AMPSIT.

Figure 4 shows the ensemble time series of v during the entire period analysed at the first vertical level. The daily cycle of the450

sea breeze is evident at both locations, as the velocity changes sign according to the radiation pattern and the varying horizontal

temperature and pressure gradient, i.e. v is negative (northerly, from land to sea) during the night and positive (southerly, from

sea to land) during the day. It is worth noting that, even if only land parameters have been considered in this work, the spread of

the ensemble tends to be larger over water than over land, especially before sunrise. Indeed, changes in land parameters affect

the thermal contrasts between land and water, and thus the characteristics of the sea and land breeze, including their timing and455

strength. This highlights that changes in surface parameters can influence atmospheric variables not only locally, especially

when they affect the development of thermally-driven circulations.

Figure 5 shows the ensembles of the vertical profiles of v in the lowest 200 m, containing the lowest 10 vertical levels, at

three different times, 7:00 UTC, 13:00 UTC, and 19:00 UTC, which are representative respectively of the maximum intensity

of the northerly land breeze, the morning transition between northerly and southerly wind, and the maximum intensity of the460
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Figure 3. (a) Domain configuration for the idealised simulation study. The grid consists of 201 x 201 cells with a 3 km spacing, divided

equally into land (upper region, green) and water (lower region, light blue). The land and water points considered for the sensitivity analysis

are marked, positioned at (x=100, y=95) for water and (x=100, y=105) for land. The interface line runs along the west-east direction,

reflecting the setup for simulating the diurnal cycle of a sea/land breeze developing in the south-north direction. The red box highlights the

zoomed area in (b) around the points used for the sensitivity analysis; the neighbouring cells in the south-north direction used for the analysis

are also shown in (b) around the selected points.

southerly sea breeze at the water point. It can be noted that the northerly land breeze (Figures 5a,b) is shallower than the

southerly sea breeze (Figures 5e,f). Moreover, the comparison between Figures 5e and 5f highlights the stronger effect of

friction over land, with a more pronounced decrease in the wind speed close to the surface.

The ensemble variance is small near the ground over land and increases with height at 07:00 UTC and 19:00 UTC. Over the

water point, the spread is larger and more uniform along the entire vertical profile, especially at 13:00 UTC and 19:00 UTC.465

During the transition (Figures 5c and 5d), the ensemble spread is very small over land, with all the simulations showing very

small v values along the entire vertical profile, whereas a large spread is observed over water, suggesting that the variations

in the surface parameters investigated significantly influence the timing of the transition from land to sea breeze over water,

although preserving the shape of the vertical profile.

4.2 ML-AMPSIT output470

After all the steps discussed in Section 2.1, the basic output that the ML-AMPSIT tool offers to the user is a composition of

four plots similar to those reported in Figure 6, which refers to the results obtained for v at the third vertical level, over the

water point (for this example, no averaging over multiple points was performed and all the simulation hours are shown, in order

to present the default output of the tool) using the LASSO algorithm. In particular, panel a) shows the importance time series
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Figure 4. Time series of the south-north wind component at the first vertical level for the (a) land and (b) water points. The solid and dashed

red lines represent the ensemble mean and standard deviation, respectively, while the grey lines represent the output of the single simulations.

The values of the maximum and minimum hourly standard deviations (std) are also reported.

related to each of the 6 selected parameters, panel b) shows the time evolution of the metrics, underlining how the correlation475

score and the errors eventually change over time, while panels c) and d) are specific to a single hour selected by the user,

showing respectively the goodness of fit and the ranking of the feature importance for that hour. In the following sections, the

outputs from ML-AMPSIT will be aggregated to perform convergence analysis and methods comparison.

4.3 Convergence analysis

Figures 7 and 8 show the convergence of the MSE and of the feature importances computed by each method as a function of480

the number of simulations considered, i.e. the number of input-output relations used for training the algorithms. The analysis

of the convergence is important because it indicates when the regression tasks reach a stable state and additional simulations

do not significantly alter the results. When convergence is reached, it can be assumed that the obtained feature importance

provides a reliable representation of the underlying relationships in the system and that a sufficient number of simulations are

performed to capture the essential characteristics of the system under investigation.485

For the sake of brevity, only results over the land region at the first vertical level are shown here, considering results at 13:00

UTC for the feature importance and at 4 different times for the MSE convergence. However, the considerations reported below

can be generalised to other times and to the water point, since the methods maintain a similar speed of convergence during the

entire run in the two analysed points.

Despite each method showing some differences, especially in the oscillations around the convergence values, four out of490

seven of the proposed methods are able to reach a reasonably stable result after approximately 20 simulations. BRR, GPR,

LASSO and SVM are the fastest and most stable algorithms to reach convergence. On the other hand, the decision-tree-based
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Figure 5. Vertical profiles of the south-north wind component in the lowest 200 m above the surface, at (a)-(b) 07:00, (c)-(d) 13:00, and

(e)-(f) 19:00 UTC for the land (left columm) and water (right column) points. The solid and dashed red lines represent the ensemble mean

and standard deviation, respectively, while the grey lines represent the output of the single simulations. The values of the maximum and

minimum hourly standard deviations (std) are also reported.

methods have significant oscillations even after 20 realisations and the metrics show that they are less consistent than the
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Figure 6. Example of the ML-AMPSIT output for a LASSO regression of 100 simulations with a duration of 36 hours (spin-up phase

included), focusing on v at the third vertical level over the water point and displaying the metrics for the 30th simulated hour: a) importance

time series of the 6 parameters; b) time evolution of the metrics R2 (indicated as "Score"), MSE, MAE and p-value (testing the probability

of unrelated variables to produce the same R2); c) quality of the test phase associated to the selected hour with the corresponding metrics; d)

ranking of the importance of the features for the selected hour.

other methods. However, the results highlight that all the methods propose a stable and consistent ranking of the parameters’

importance after 80 simulations and, in most cases, even with a much lower number of simulations.495

It can be seen from Figure 8 that the sum of the total Sobol indices
∑

STi generated by GPR for N=10 is greater than

1, whereas this effect disappears for N ≥ 20. The values of the first-order terms Si obtained for N=10 are indeed observed

to be significantly different from STi, because the higher order terms in Equation 4 are estimated as relevant. For N ≥ 20

the higher order terms all become irrelevant (order 10−3), so Si ≈ STi and
∑

STi converges to 1. This occurs because with a

small number of simulations the Sobol method tends to either over or underestimate parameters’ interactions due to insufficient500

sampling. Notably, BRR does not show the same overestimation of the indices even for N=10.
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Figure 7. Convergence of the MSE with the number of realisations N for each method implemented, considering v over land, at the first

vertical level, at 4 different times.

Figure 8. Convergence of the feature importance with the number of realisations N, for each method implemented, considering v over land,

at the first vertical level, at 13:00 UTC.

4.4 Parameter importance analysis

Figures 9 and 10 show respectively the time series of the performance metrics for the south-north wind component at the lowest

vertical level over the land and water regions, while Figures 11 and 12 show, for the same variable and points, the time series
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Figure 9. Time series of the performance metrics for each method implemented, considering v over land at the first vertical level: blue, green,

red and orange lines represent respectivelyR2, MSE and MAE.

of the feature importance for each of the proposed methods. It is important to underline that comparing the results of each505

surrogate model is the core of the ML-AMPSIT’s robustness strategy. The agreement between the different models strengthens

the reliability of the results and provides a form of self-validation.

In this example, GPR, BRR, LASSO and SVM show the best metrics, suggesting that in the proposed case study there is no

relevant difference between non-linearity-aware approaches and linear approaches, as they both correctly capture the relation

between the tested parameters and the south-north wind component. These algorithms show very stable results, with slightly510

worse performance metrics occurring around 13:00 UTC over land and around 06:00 UTC over water. These times correspond
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Figure 10. Time series of the performance metrics for each method implemented, considering v over water at the first vertical level: blue,

green, red and orange lines represent respectivelyR2, MSE and MAE.

to sudden changes in the ensemble spread (see Figure 4), but the observed degradation in performance metrics is likely due to

the contrasting behaviour of the ensemble members rather than the time variation itself, which ML-AMPSIT cannot be aware

of by design. Around these times, individual ensemble members exhibit divergent behaviour, some showing increases and

some decreases in wind speed, which can complicate the prediction for the regression models. The three decision-tree-based515

methods present a more irregular behaviour of the performance metrics, with higher errors and lower correlations. In particular,

CART presents the worst performance metrics for this case study. The poorer metrics compared to more refined methods such
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Figure 11. Time series of the importance of the parameters considered for each method implemented, considering v over land at the first

vertical level.

as RF or XGboost are expected, since CART does not compute an ensemble of decision trees and does not consider the errors

of the previous branches.

As shown in Figures 11 and 12, all methods agree very well for both regions on the ranking and overall magnitude ratios520

of the feature importance, individuating similar patterns, with only minor differences, also considering the methods showing

worse performance metrics (cf. Fig. 9).

Figure 11 highlights cyclic trends of the parameters’ importance over the land region, likely induced by the cycle of the

diurnal thermally-driven circulation. In particular, Z0MVT and RHOL_NIR alternate as the most important parameters, with
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Figure 12. Time series of the importance of the parameters considered for each method implemented, considering v over water at the first

vertical level.

RHOL_NIR dominating for most of the day, whereas Z0MVT becomes more important close to sunrise and sunset. The short525

time windows in which Z0MVT appears as the dominant parameter correspond to the phases in which the vertical wind profile

over land showcases the most pronounced shear in the lowest layers, as shown in Figures 5a,e. This seems to indicate a stronger

role of surface friction in dictating ensemble variability when stronger winds are present (Z0MVT directly influences surface

friction). LAI_MAR shows an importance almost comparable to RHOL_NIR during the day, especially with LASSO, SVM

and RF, whereas its importance is lower during the night, especially in the algorithms that tend to separate more the relevant530
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and non-relevant parameters (i.e., GPR, BRR and decision-tree-based methods). The other parameters seem to be more relevant

at night, with the exception of DLEAF, which is always non-relevant for every method implemented.

Comparisons between Figure 11 and Figure 12 show that the results are more uniform over water than over land. In particular,

over water the ranking of the parameters does not show significant variations during the whole day. The dominant parameters

are RHOL_NIR and LAI_MAR, with Z0MVT always showing low importance values. Since the sea breeze is driven by thermal535

contrasts, it is expected that the parameters mainly affecting temperature, such as the reflectivity and the leaf area index, are also

particularly significant for this case study. Among the selected parameters, RHOL_NIR plays a central role in the main radiative

processes in Noah-MP, modulating the overall canopy albedo, defining the scattered fraction of leaf intercepted radiation, and

ultimately entering the computation of all radiation fluxes. LAI_MAR is involved in important processes, such as determining

the canopy gaps, the fraction of vegetation exposed to sunlight, and significantly affects both sensible and latent heat fluxes, as540

well as the leaf boundary resistance. Although HVT might be expected to be more important due to its influence on radiation

and heat trapping, its importance is probably limited by the low canopy height in the selected grassland vegetation class.

CWPVT, which enters the canopy wind extinction computation, and DLEAF, which mainly affects leaf boundary resistance,

were expected to play a minor role in this setup with respect to the other parameters, mainly due to their secondary role in

Noah-MP.545

It is interesting to note that the decision-tree-based algorithms, CART, RF and XGboost, overall detect minor differences

between the less relevant parameters, while the other methods, GPR, BRR, LASSO and SVM, enhance the differences and

define a clearer ranking. The reason for these differences is reasonably due to the fact that, as mentioned in Section 2, the

decision-tree-based algorithms are less strict about feature shrinkage compared to other methods containing a regularisation

term like LASSO, hence resulting in a less clear ranking in feature importance with respect to the other methods. However, the550

relative importance between parameters is conserved overall, i.e. the feature importance ranking is mostly the same as in the

other methods for the entire length of the simulation.

It is also worth noting that, considering the importance time series obtained from GPR and BRR surrogate models, the

surrogate Sobol total index agrees very well with the feature importance scores of the other algorithms, which indicates that

the Sobol indices derived from BRR and GPR and the feature importance derived from the other methods have equivalent555

sensitivity estimation capability when convergence is properly achieved.

4.5 Vertical variability

Figures 13 and 14 show, for the land and water regions respectively, the variations in the feature importance in the lowest 10

vertical levels at different times. Since, as highlighted in the previous section, GPR is one of the methods presenting the best

performance metrics, it has been chosen as the reference algorithm for this analysis. However, the results obtained with GPR560

are consistent with those obtained with all the other methods, particularly with LASSO, SVM and BRR.

Over the water region, the parameters’ ranking does not show significant variations with height, except in correspondence

with the nocturnal wind peak (06:00 UTC), when LAI_MAR becomes more important than RHOL_NIR above the 8th model

level. The situation is more complex over the land region, with more significant variations of the parameter importance with
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height. In particular, it can be seen that Z0MVT is more important close to the surface, especially when wind speed is stronger565

(06:00 UTC and 18:00 UTC), coherently with the results shown in Figure 11, and remarking that friction affects the results

especially close to the surface. In contrast to the decreasing vertical importance of Z0MVT, the importance of LAI_MAR and

RHOL_NIR tends to increase with height (Figure 13). The importance ranking converges to the water region scenario shown

in Figure 14 above the lowest two vertical levels at 06:00 UTC and above the lowest 5-6 vertical levels at 18:00 UTC, i.e.,

above the layer in which friction is playing the most important role. On the other hand, when the wind speed is weak, i.e., at570

00:00 UTC and 12:00 UTC, the vertical profile of the parameters’ importance values is similar over land and water at all the

vertical levels investigated.

It is worth noting that the MSE for GPR, LASSO, BRR and SVM does not show significant variations in the lowest 10

vertical levels both over land and over water (Figures 15 and 16), meaning that the observed variations in feature importance

are related to changes in the input-output relation rather than to uncertainty issues. This is also supported by the fact that the575

metrics of these algorithms in Figure 9 show no deterioration associated with the changes in feature importance shown in

Figure 11, and that these patterns are consistent across all the surrogate models. A slightly higher variability in MSE is shown

by RF and XGboost, whereas CART is the only method presenting a strong height dependence, in particular considering higher

MSE values close to the surface at night over land and in correspondence with the northerly land breeze peak over water. These

observations strengthen the evidence that this method is not performing well in this case study.580

Figure 13. Parameter importance, considering v in the lowest 10 vertical levels over the land region at different times, for the GPR method.

5 Discussions and conclusions

This paper presented a novel automated model parameter sensitivity and importance analysis tool (ML-AMPSIT) that applies

different machine learning algorithms, namely LASSO, Support Vector Machine, Classification and Regression Trees, Ran-

dom Forest, Extreme Gradient Boosting, Gaussian Process Regression and Bayesian Ridge Regression, to perform sensitivity

analysis and extract feature importance from input-output relationships. This tool was conceived to alleviate the computational585

burden usually associated with traditional global sensitivity analysis methods, which require a large number of model reali-

sations, proposing an alternative approach using surrogate models or emulators. In fact, global sensitivity analysis methods,
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Figure 14. Parameter importance, considering v in the lowest 10 vertical levels over the water region at different times, for the GPR method.

Figure 15. MSE for each method implemented, considering v in the lowest 10 vertical levels over the land region at different times.

Figure 16. MSE for each method implemented, considering v in the lowest 10 vertical levels over the water region at different times.

such as the Sobol method, demonstrate superior performance with respect to one-at-a-time approaches, which do not consider

the interaction between parameters, but the large number of model realisations needed often makes their use unfeasible for

complex numerical models. On the other hand, surrogate models or emulators, trained using input-output pairs of the origi-590

nal high-fidelity model, offer a cost-effective means of generating accurate predictions of the output variable. The utilisation
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of machine learning techniques provides computationally efficient solutions while considering non-linearity and interactions

between variables.

The advantage of implementing different methods, also within the same family of algorithms, is multifaceted. First, if differ-

ent algorithms produce consistent results, this consistency increases the reliability and robustness of the outcome. Moreover,595

after assessing the consistency of the results between different models of the same family, it could be more convenient to rely

on the fastest method instead of the most accurate. Second, the use of different families of algorithms extends the applicability

and flexibility of the tool, as their performance can vary in different scenarios.

The functionalities of the tool were tested and shown in a case study using the WRF meteorological model coupled with the

Noah-MP land surface model. A sensitivity analysis applied to a set of Noah-MP parameters was presented for simulations600

of a sea breeze circulation over an idealised flat geometry. The different algorithms work as surrogate models of the original

WRF/Noah-MP high-fidelity simulations and are able to accurately predict the original model behaviour and reach robust

conclusions about the parameter sensitivity given a relatively small ensemble of model runs. The efficiency of the model

emulation is also tested through the computation of Sobol total indexes from the training of Gaussian Processes Regression and

Bayesian Ridge Regression, with results strongly consistent with the other proposed feature extraction methods. By integrating605

multiple algorithms into a flexible framework, ML-AMPSIT offers a comprehensive and reliable approach for sensitivity

analysis in complex models, also allowing the assessment of the uncertainty of the estimates by evaluating the spread between

the outcomes of different algorithms.

Among the different methods, Gaussian Process Regression, LASSO, Support Vector Machine, and Bayesian Ridge Regres-

sion emerged as the most reliable and robust. In contrast, decision-tree-based algorithms exhibited lower performance both in610

terms of convergence with respect to the number of realisations and higher uncertainty. In this case study, the linear models

LASSO, Support Vector Machine, and Bayesian Ridge Regression demonstrated equal performance to the non-linearity-aware

Gaussian Process Regression, suggesting the absence of strong non-linear relationships between the chosen parameters and the

output variable in the analysed domain regions.

For the best algorithms, the convergence of the feature importance was achieved with a small sample of about 20 simula-615

tions, whereas classical global sensitivity analysis approaches often require a much higher number of realisations. A qualitative

comparison to evaluate the added value of ML-AMPSIT in terms of the number of simulations needed to reach robust results

can be performed considering two of the most advanced methods in global sensitivity analysis, i.e. the Morris method (Morris,

1991), and the Sobol method (Saltelli and Sobol’, 1995), assuming to use six parameters following a Latin hypercube sampling

(Mckay et al., 1979) with radial design (Campolongo et al., 2011). This sampling technique is one of the best trade-off for620

decreasing the number of simulations needed compared to a full-factorial sampling (Saltelli et al., 2008). If parameter interac-

tions are not relevant, such as for models with low complexity and low dimensionality, a viable strategy is to use the Morris

method to find out the most and least relevant parameters. For p points produced with a Latin hypercube sampling, and k per-

turbations produced by radial design around these points, one perturbation for each input parameter, the total number of model

runs required, is N = p(k+1). A sufficient number of points p can be found in literature ranging from 10 to 50 (Campolongo625

et al., 2007), leading to 70-350 total simulations. However, even with this number of simulations, convergence is not guaran-
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teed, as it depends on the specific case. For more complex models, the Morris method can be very inefficient in stating the true

parameter relevance (it is usually considered only a proxy of the true sensitivities, depending on the number of interactions

and non-linearities in the model, Cuntz et al., 2015). The Sobol method is able to weigh the interaction effects between each

parameter more accurately, but it is more demanding. Following Saltelli et al. (2010) to circumvent some constraints over the630

number of model runs required, the final number would be N = p(k+1)(k+2) which, using the previous assumptions for p,

gives a minimum number of 560-2800 runs. Aside from the minimum amount computed above, real applications of the Sobol

method can easily exceed this value to achieve robust results (Cuntz et al., 2015, 2016). However, this is not usually feasible

for complex and computationally intensive models such as the WRF model.

It is then clear that ML-AMPSIT significantly reduces the number of simulations needed for sensitivity analysis and ex-635

traction of feature importance. Considering that all the proposed regression methods in ML-AMPSIT intrinsically account for

interactions between parameters, this highlights its added value over classical global sensitivity analysis methods and points

out its possible applications, especially in cases when the use of classical global sensitivity analysis methods is not feasible.

Furthermore, the intercomparison of the results from different algorithms in ML-AMPSIT can reveal useful physical insights

into model simulations.640

It should be noted that the results presented in this paper are limited to the simple case study considered here to test the tool

functionalities. In particular, it is expected that more simulations can be needed to train the algorithms in more complex scenar-

ios, when non-linearities are more strongly involved in the input-output relations. However, while actual runtimes depend on

the specific dataset and hardware, the speed improvements observed in our case study highlight the potential of ML-AMPSIT to

enable large-scale sensitivity analysis and ensemble generation with significantly lower computational requirements. The gen-645

eration of surrogate outputs was observed to be significantly faster than running high-fidelity WRF simulations, with runtimes

reduced from hours to seconds or minutes, depending on the algorithm. This efficiency enabled the generation of thousands

of surrogate results that would not have been possible by relying solely on traditional simulations. Finally, it is worth noting

that the application of the methods implemented in ML-AMPSIT is not only limited to the evaluation of land surface model

parameters; these methods are inherently adaptable to any dataset containing input-output pairs, regardless of the data char-650

acteristics. This flexibility allows ML-AMPSIT to evaluate not only the influence of different input parameters, but also the

effects of different simulation setups, such as physical schemes, subprocesses, land cover, numerical strategies, or geometric

configurations. By using data-driven modelling, these tasks can be accomplished more quickly and with potentially less data.

Moreover, since input-output frameworks are ubiquitous in scientific and statistical domains, the reach of a data-driven tool

like ML-AMPSIT potentially extends far beyond the specific examples mentioned here.655

Code availability. The code of the ML-AMPSIT tool, along with detailed instructions on how to use it, is available at http://dx.doi.org/10.

5281/zenodo.10789930 (Di Santo, 2024). The data extracted from the simulations and used for training the machine learning algorithms

and producing the results presented in this paper are available at https://doi.org/10.5281/zenodo.14051616. This work used WRF version 4.4

(doi:10.5065/D6MK6B4K), which includes a built-in version of Noah-MP 4.4.
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Appendix A: ML-AMPSIT configuration file660

Figure A1. An example of the configuration file for the WRF/Noah-MP model case study.

Appendix B: Acronyms

Acronym Full Form

ML-AMPSIT Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool

WRF Weather Research and Forecasting

Noah-MP Noah with Multi-Physics

ML Machine Learning

LASSO Least Absolute Shrinkage and Selection Operator

SVM Support Vector Machine

CART Classification and Regression Trees

RF Random Forest

XGBoost Extreme Gradient Boosting

GPR Gaussian Process Regression

BRR Bayesian Ridge Regression

GSA Global Sensitivity Analysis
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OAT One-at-a-time

ARW Advanced Research WRF

RRTM Rapid Radiative Transfer Model

YSU Yonsei University

PBL Planetary Boundary Layer

RBF Radial Basis Function

MAE Mean Absolute Error

MSE Mean Squared Error

R2 R2 (Coefficient of Determination)

GUI Graphical User Interface

EE Elementary Effect

L1 L1 Norm (sum of absolute values)

L2 L2 Norm (sum of squares)

MPTABLE.TBL Model Parameter Table

DLEAF Characteristic Leaf Dimension

HVT Height of Vegetative Canopy Top

Z0MVT Momentum Roughness Length

RHOL_NIR Near-Infrared Leaf Reflectance

CWPVT Empirical Canopy Wind Parameter

LAI_MAR Leaf Area Index for March
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