
ML-AMPSIT: Machine Learning-based Automated Multi-method
Parameter Sensitivity and Importance analysis Tool
Dario Di Santo1, Cenlin He2, Fei Chen3, and Lorenzo Giovannini1
1Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
2NSF National Center for Atmospheric Research (NCAR), Boulder, CO, USA
3Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong SAR, China

Correspondence: Dario Di Santo (dario.disanto@unitn.it)

Received: 22 March 2024 – Discussion started: 18 April 2024
Revised: 10 November 2024 – Accepted: 14 November 2024 – Published:

Abstract. The accurate calibration of parameters in atmo-
spheric and Earth system models is crucial for improving
their performance but remains a challenge due to their inher-
ent complexity, which is reflected in input–output relation-
ships often characterised by multiple interactions between5

the parameters, thus hindering the use of simple sensitiv-
ity analysis methods. This paper introduces the Machine
Learning-based Automated Multi-method Parameter Sensi-
tivity and Importance analysis Tool (ML-AMPSIT), a new
tool designed with the aim of providing a simple and flexi-10

ble framework to estimate the sensitivity and importance of
parameters in complex numerical weather prediction mod-
els. This tool leverages the strengths of multiple regression-
based and probabilistic machine learning methods, including
LASSO (see the list of abbreviations in Appendix B), sup-15

port vector machine, classification and regression trees, ran-
dom forest, extreme gradient boosting, Gaussian process re-
gression, and Bayesian ridge regression. These regression al-
gorithms are used to construct computationally inexpensive
surrogate models to effectively predict the impact of input20

parameter variations on model output, thereby significantly
reducing the computational burden of running high-fidelity
models for sensitivity analysis. Moreover, the multi-method
approach allows for a comparative analysis of the results.
Through a detailed case study with the Weather Research and25

Forecasting (WRF) model coupled with the Noah-MP land
surface model, ML-AMPSIT is demonstrated to efficiently
predict the effects of varying the values of Noah-MP model
parameters with a relatively small number of model runs by
simulating a sea breeze circulation over an idealised flat do-30

main. This paper points out how ML-AMPSIT can be an effi-

cient tool for performing sensitivity and importance analysis
for complex models, guiding the user through the different
steps and allowing for a simplification and automatisation of
the process. 35

1 Introduction

One of the primary sources of error in atmospheric and
Earth system models stems from inaccurate parameter val-
ues (Clark et al., 2011; Li et al., 2018), which can affect dif-
ferent physical parameterisations. Although model parame- 40

ter tuning can help to alleviate this issue, determining opti-
mal values is highly dependent on model structures and how
input parameters influence model outputs. Sensitivity analy-
sis is commonly used to evaluate these input–output relation-
ships and parameter importance, but traditional one-at-a-time 45

(OAT) methods yield varying results depending on the inter-
dependence of parameters, particularly within complex mod-
els, leading to issues of poor reproducibility and an inability
to generalise results. Consequently, more advanced variance-
based techniques like the Sobol method, in the context of 50

global sensitivity analysis (GSA, Saltelli et al., 2008), exhibit
superior performance in such tasks, albeit being computa-
tionally intensive (Herman et al., 2013) and sometimes infea-
sible, especially when dealing with complex weather and/or
climate models like the widely used Weather Research and 55

Forecasting (WRF) model (Skamarock et al., 2021).
An alternative approach that avoids running numerous

model realisations is the utilisation of surrogate models or
emulators (Queipo et al., 2005; O’Hagan, 2006; Forrester
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et al., 2008; Fernández-Godino et al., 2017; Kim and Bouk-
ouvala, 2020; Longo et al., 2020; Lamberti and Gorlé, 2021).
A surrogate model or emulator is a simpler model trained
using the input–output pairs of the original complex high-
fidelity model that can be used to substitute it. The emula-5

tor makes the model process more computationally efficient
in producing model realisations, while it still provides ac-
curate predictions of the output variable. Machine learning
(ML) algorithms designed for regression tasks offer a com-
putationally efficient means to build surrogate models to be10

used for sensitivity analysis (Engelbrecht et al., 1995; Shen
et al., 2008; Muthukrishnan and Rohini, 2016; Antoniadis
et al., 2021; Torres, 2021; Zouhri et al., 2022). Over time, a
variety of algorithms have been tested in the literature and
used in different fields.15

These algorithms can also be used to extract feature im-
portance, which has become a well-established methodol-
ogy widely employed in different geoscience fields, such as
landslide susceptibility (Yilmaz, 2010; Catani et al., 2013;
Pradhan, 2013; Youssef et al., 2016; Kalantar et al., 2018;20

Lee et al., 2018; Zhou et al., 2018; Chen et al., 2020; Liu
et al., 2021; Daviran et al., 2023; Elia et al., 2023), for-
est fire susceptibility (Oliveira et al., 2012; Bar Massada
et al., 2013; Arpaci et al., 2014; Pourtaghi et al., 2016; Satir
et al., 2016; Gigović et al., 2019), water quality assessment25

(Palani et al., 2008; Rodriguez-Galiano et al., 2014; Sarkar
and Pandey, 2015; Haghiabi et al., 2018; Shah et al., 2021;
Alqahtani et al., 2022; Trabelsi and Bel Hadj Ali, 2022), hy-
drological modelling (Zhang et al., 2009; Yu et al., 2024), air
quality assessment (Suárez Sánchez et al., 2011; Yu et al.,30

2016; Maleki et al., 2019; Sihag et al., 2019; Lei et al.,
2023), groundwater mapping (Rahmati et al., 2016), agron-
omy (Kok et al., 2021; Sridhara et al., 2023; Wu et al., 2023),
climatological applications (Wu et al., 2021; Dey et al.,
2022), renewable energy (Wolff et al., 2017; Meenal et al.,35

2022), and earthquake detection (Murti et al., 2022), and
it also has significant relevance in civil engineering (Tian,
2013; Gholampour et al., 2017; Farooq et al., 2020; Salmasi
et al., 2020), genetics (Sharma et al., 2014), biology (Cui and
Wang, 2016), and medical research (Antonogeorgos et al.,40

2009; Maroco et al., 2011; Yang et al., 2022).
ML techniques have gained traction in weather and cli-

mate modelling and observations (Schultz et al., 2021;
Schneider et al., 2022), particularly in parameter optimisa-
tion tasks like calibration (Bocquet et al., 2020; Bonavita and45

Laloyaux, 2020; Williamson et al., 2013; Couvreux et al.,
2021; Dagon et al., 2020; Watson-Parris et al., 2021; Cin-
quegrana et al., 2023), spatial interpolation (Stein, 1999;
Sekulić et al., 2020), downscaling (Fowler et al., 2007; Ma-
raun and Widmann, 2018; Leinonen et al., 2021), parame-50

terisation substitution (Rasp et al., 2018; Han et al., 2020;
Yuval and O’Gorman, 2020; Mooers et al., 2021; Grundner
et al., 2022; Ross et al., 2023), and image-based classification
(Chase et al., 2022, 2023).

Among the most relevant for the topic of the present work, 55

Dagon et al. (2020) focused on building a surrogate model
based on feed-forward artificial neural networks of a land
surface model (CLM5) ensemble of perturbed parameters,
which greatly improved the rapidity of generating predic-
tions. Similarly, Cinquegrana et al. (2023) built a frame- 60

work for optimising physical parameters for the Icosahedral
Nonhydrostatic (ICON) limited area model at a high resolu-
tion, aiming to reduce the discrepancy between observed and
modelled meteorological variables using an efficient global
optimisation algorithm relying on Gaussian-based surrogate 65

models. Watson-Parris et al. (2021) introduced an open-
source tool (ESEM) based on surrogate models for model
calibration and uncertainty quantification, demonstrating its
functionalities for climate modelling. Couvreux et al. (2021)
used Gaussian process-based methods to calibrate parame- 70

ters through the comparison of single-column simulations
and reference large-eddy simulations over multiple boundary
layer cases.

Despite these recent advancements, the extraction of fea-
ture importance remains relatively uncommon in the meteo- 75

rological and/or climate modelling literature. A notable ex-
ception in recent times is Baki et al. (2022), who employed
GSA methods and a surrogate model based on Gaussian pro-
cess regression. The study found that a subset of parame-
ters significantly influenced WRF simulations of tropical cy- 80

clones over the Bay of Bengal. Similarly, Fischer et al. (2024)
used a Gaussian process regression-based surrogate model of
the ICON model to quantify the uncertainty of simulations of
the African monsoon through GSA.

Many of the previous studies have proposed comparisons 85

between several feature importance analysis algorithms. This
is because the ability of these algorithms to best capture fea-
ture relevance is influenced by a variety of factors that can
change with the application, depending on the context under
analysis, such as the degree of non-linearity of the input– 90

output relationships, the interaction degree between features,
the dimensionality of the features, the size and quality of the
data used for training, the shape and smoothness of the dis-
tribution of the training data, and ultimately the validity of
each algorithm’s assumptions. Often, the influence of one or 95

more factors on the chosen method’s quality cannot be as-
sessed in advance, leading to a trial-and-error procedure that
would benefit from a multi-algorithm approach where the re-
sults of different methods can be compared. For this reason,
the present work shares the same multi-method philosophy 100

as many of the studies mentioned above, extracting the most
popular algorithms available in the literature and combining
them into a single flexible, efficient framework for analysis.

The importance of sensitivity analysis in Earth science
modelling is critical not only for academic pursuits but 105

also for its practical implications for public safety and re-
source management. Currently, the diversity of research cul-
tures across scientific disciplines, coupled with heteroge-
neous computational resources and varying degrees of fa-
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miliarity with sensitivity analysis techniques, contributes to a
predominant reliance on older, more familiar methods. This
scenario prevails despite the increasing complexity of mod-
els, which would require more robust sensitivity analysis
techniques. The field of meteorology currently exhibits a sig-5

nificant gap in the adoption of advanced sensitivity analysis
methods despite the chaotic nature of atmospheric dynamics,
and the interactions among numerous parameterisations in
atmospheric models contribute to a high degree of sensitivity
to input parameter variations, underscoring the need for ro-10

bust uncertainty quantification to improve model reliability.
In light of the above considerations and to fill this gap,

this paper proposes a new tool, the Machine Learning-based
Automated Multi-method Parameter Sensitivity and Impor-
tance analysis Tool (ML-AMPSIT), which aims to provide15

a flexible and easy-to-use framework for performing sen-
sitivity and importance analysis for complex models. ML-
AMPSIT applies a series of ML feature importance extrac-
tion algorithms to model parameters (using the widely used
WRF/Noah-MP coupled meteorological model as a case20

study), accommodating any user-specified model configura-
tion. ML-AMPSIT represents a novel contribution to the field
by providing a toolkit that integrates multiple ML algorithms
for an improved sensitivity analysis. The algorithms included
are among the most commonly used in the literature, namely25

LASSO (see the list of abbreviations in Appendix B), sup-
port vector machine, classification and regression trees, ran-
dom forest, extreme gradient boosting, Gaussian process re-
gression, and Bayesian ridge regression. These algorithms
have been chosen for their simplicity and speed and to cre-30

ate an ensemble of state-of-the-art ML models, each employ-
ing distinct methodologies, so as to improve the flexibility
of the tool and its performance in different possible appli-
cations. This diversity allows for a robust method of self-
validation or self-falsification of the results through compar-35

ative analysis, enhancing the reliability of the findings by
ensuring that consistent results are not an artefact of a sin-
gle modelling approach. While most of these algorithms di-
rectly provide a measure of feature importance through the
Python scikit-learn library, the last two methods are specifi-40

cally used in this framework for a fast implementation of the
Sobol method through the SALib Python library, leading to a
computationally efficient way to obtain the Sobol sensitivity
indices directly from the ML-inferred relation between in-
put and output data. Our tool’s objective is, overall, to assist45

users in evaluating parameter sensitivity and importance us-
ing computationally inexpensive and non-linear interaction-
aware approaches.

ML-AMPSIT guides the user through the different steps of
the sensitivity and importance analysis, allowing, on the one50

hand, for a simplification and automatisation of the process
and, on the other hand, for an extension of the application of
advanced sensitivity and importance analysis techniques to
complex models through the use of computationally inexpen-
sive and non-linear interaction-aware methods. Once the user55

knows which parameters cause most of the variance within a
perturbed ensemble, the user can potentially concentrate on
these parameters to improve model results. Indeed, knowing
which parameters are most critical to the simulation output
highlights which values should be estimated with more care 60

to improve model results.
This paper is organised as follows: Sect. 2 outlines the

methodology used to develop ML-AMPSIT, including a de-
tailed description of the ML models integrated into the tool
and the workflow for performing sensitivity and importance 65

analysis. Section 3 presents the case study involving the cou-
pled WRF/Noah-MP model to demonstrate the application
of ML-AMPSIT. The results of the sensitivity analysis are
discussed in Sect. 4, highlighting the effectiveness of differ-
ent ML models in identifying the key parameters for the case 70

study presented in this paper. Finally, Sect. 5 concludes the
paper with a summary of the findings and some insights into
potential future work to further enhance the capabilities of
ML-AMPSIT.

2 Methods 75

In this section, we describe the methodological framework
underlying this study. We begin with an overview of the ML-
AMPSIT workflow, detailing the process from the selection
of the input parameters to the sensitivity analysis phase. We
then introduce the Sobol method, a variance-based technique 80

used for GSA. Finally, we provide a description of the ML
algorithms integrated into the tool, highlighting their main
characteristics, how they are implemented and used in ML-
AMPSIT, and the rationale behind their selection.

2.1 ML-AMPSIT workflow 85

The ML-AMPSIT workflow (Fig. 1) can be divided into four
main steps, each of which involves one or more Python- or
Bash-based scripts: the pre-processing phase, the model run
phase, the post-processing phase, and the sensitivity analysis
phase. 90

1. The selection of the input features is accomplished by
specifying the parameter names within the configura-
tion file configAMPSIT.json. The compiled configura-
tion file related to the case study discussed in this paper
is reported in the Appendix. There is no upper limit for 95

the number of parameters that can be analysed, but it is
worth noting that the sensitivity analysis could converge
significantly more slowly in high-dimensional (i.e. with
more parameters) problems. Moreover, the scalability
with the number of parameters can depend strongly on 100

the case study considered. The number of simulations
to be performed must also be specified through the con-
figuration variable totalsim. To generate the values of
the parameters to be tested, a Sobol sequence of the
same length as totalsim is produced for each parameter 105
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Figure 1. ML-AMPSIT workflow. The main code scripts are indicated with blue boxes. The yellow boxes indicate the configuration files
that need to be filled by the user, the green boxes refer to the output files that eventually become inputs for other subsequent scripts, and the
orange box indicates the generic model execution that varies depending on the model involved.

from the pre-processing script sobol.ipynb. The Sobol
sequence (Saltelli et al., 2010; Bratley and Fox, 1988) is
a quasi-random low-discrepancy distribution designed
to produce well-spaced points in the unit hypercube rep-
resenting the parameter space. Unlike random sampling,5

each point in the sequence considers the positions of
the previous points, resulting in a more uniform filling
of gaps, as shown in Fig. 2. Consequently, a robust se-
quence is generated more efficiently compared to ran-
dom sampling, requiring fewer points.10

Once the Sobol sequences are generated, a user-
specified reference value and a maximum perturbation
percentage need to be specified in configAMPSIT.json,
which will be passed to the preprocessing script aut-
ofill.sh. These values are used to rescale the sequence15

values from the [0,1] range to the actual parameter
range space. The output of the sobol.ipynb script is the
file X.txt, containing a m × n matrix, where m is the
number of simulations, and n is the number of parame-
ters tested.20

Therefore, each row specifies a different set of parame-
ter values that will be used in each particular model real-
isation. Based on these data, the autofill.sh script creates
multiple copies of the folder in which the model is run
and then searches for each parameter name within the25

original model parameter look-up table in each newly
created folder. The values of the parameters are then
changed according to the X.txt file for each realisa-
tion. Since this script edits the original model param-
eter look-up table, which is MPTABLE.TBL for the30

WRF/Noah-MP model in the case study presented here,

it is necessarily model-dependent and thus needs to be
adapted if used with other models to suitably modify the
values of the tested parameters.

2. After all the simulation folders have been created, the 35

user can run the original high-fidelity model as usual.
It will be necessary to collect all the output files into
one single folder, whose path must be specified in the
configuration file, so that the post-processing script can
find it. 40

3. Once the user has completed all the high-fidelity model
runs, a post-processing script named WRFload.ipynb
is provided to extract single-point time series for each
output variable at specific coordinates in the simula-
tion domain, as specified by the user in the configura- 45

tion file. The resulting output data, which serve as in-
put to the sensitivity analysis tool ML-AMPSIT.ipynb,
consist of different files with the naming convention
var_h_v_time.txt, where “var” is the variable name, h
and v indicate the labels identifying the horizontal and 50

vertical grid cells, while “time” represents the simu-
lated time. The script WRFload.ipynb specifically ex-
tracts variables from NetCDF files that follow a WRF-
like format (a widely used format for weather and cli-
mate models). If the user’s model output follows a dif- 55

ferent format, the script must be modified accordingly.

Extracting single-point time series means that the tool
has no information about spatial patterns and it cannot
capture time patterns because the sensitivity analysis
is performed on each single point and time separately. 60

Consequently, the importance of different parameters
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can be directly compared only for the specific point and
time being analysed. However, the observation of con-
sistent relative importance between parameters across
different points and times can confirm the statistical ro-
bustness of the results.5

4. The sensitivity phase is performed by the main script of
the ML-AMPSIT tool, ML-AMPSIT.ipynb, which ac-
complishes a regression task based on different ML al-
gorithms offered to the user. As mentioned in the Intro-
duction, this multi-method approach is useful for com-10

paring different results since each algorithm is struc-
turally different and could be more or less appropri-
ate for the problem at hand. This ML-based ensem-
ble philosophy is similar to an ensemble learning (EL)
approach (Ren et al., 2016), which combines the pre-15

dictions of multiple base models to improve the over-
all performance, but the present tool does not yet in-
clude an option to integrate the methods into a stack-
ing, bagging, or boosting procedure, allowing for the
user to choose any single method or multiple methods20

independently. For each method offered by the present
tool, the input and output data are split into training
and testing sets in proportions of 70 % and 30 %, and
each set is scaled separately to have zero mean and unit
variance with respect to the ensemble. The training set25

is used to fit the model to the data, while the testing
set is used to evaluate the model’s ability to reproduce
new data. This strategy is used to mitigate the risk of
overfitting. The coefficient of determination (R2), the
mean squared error (MSE), and the mean absolute error30

(MAE) are used as measures of goodness when com-
paring the predicted output against the actual “truth”,
i.e. the results of the original high-fiedlity model simu-
lations. Since all the variables are scaled before calculat-
ing these error metrics, MSE and MAE are not affected35

by the different scales of the variables. This allows for a
fair and meaningful comparison of the model’s perfor-
mance across different variables. The coefficient of de-
terminationR2

= 1− SSres
SStot

is used as a measure of good-
ness of fit, where SSres is the residual sum of squares,40

and SStot is the total sum of squares. R2 indicates how
much variation in the target variable can be explained
by the model’s predictors. R2 is typically a value be-
tween 0 and 1, where values closer to 1 indicate a better
ability of the model to explain the variance in the data.45

Eventually, if the chosen model fits worse than the av-
erage value then SSres

SStot
can be greater than 1, and R2 is

negative. If the model has low values of MSE and MAE
but also low values of R2, it might indicate that the re-
lationship between the input data and the target variable50

cannot be properly explained in terms of linear weights
only. This is an indication of non-linearity in the output
response. In addition to the R2 coefficient, the associ-
ated p value is also computed and saved.

The script ML-AMPSIT.ipynb produces an interactive 55

graphical user interface (GUI) built from the ipywidgets
Python library, which allows the user to specify which
vertical level and surface point to consider in the analy-
sis, the output variable for which to compute the sensi-
tivity analysis, the number of simulations to consider, 60

the algorithm to use, and the output time to plot for
punctual evaluations. The flexibility of this GUI allows
the user to quickly check the influence of the number of
simulations on the robustness of the results and the per-
formance of the different ML methods implemented. 65

Based on the selected options, unless the specified
methods are Gaussian process regression or Bayesian
ridge regression, the tool produces four plots: the up-
per two are dedicated to the feature importance time se-
ries and the time evolution of the metrics for the whole 70

simulation duration, and the lower two show the met-
rics and feature ranking specific to a particular time se-
lected. Hence, the user is provided with both the global
result and the analysis related to a single output time.
An example from the proposed case study will be pro- 75

vided in Sect. 3.3. If the specified method is either
Gaussian process regression or Bayesian ridge regres-
sion, the features are ranked based on the total Sobol
index, and the tool produces two additional plots, one
showing the second-order Sobol interaction index be- 80

tween each couple of parameters and the other showing
the feature ranking based on the first-order Sobol in-
dex, which could potentially be different from the total
index-based ranking if the parameters’ interactions are
strong enough. 85

An alternative version of the main script is the ML-
AMPSITloop.ipynb loop suite, which allows the user to
automate multiple analyses by using the loopconfig.json
configuration file, specifying all the combinations of
settings to be explored without the need to manually set 90

each combination through the graphical interface, sav-
ing time for long in-depth analyses.

2.2 Sobol method

In classical sensitivity analysis, given a set of input parame-
ters {X1, ..Xk}, the elementary effect of a single perturbation 95

1 in the input parameter Xi on the output Y (X) is defined as
(Saltelli, 2007):

EEi =

[Y (X1,X2, . . .,Xi +1,. . .,Xk)−Y (X1,X2, . . .,Xi , . . .,Xk)]

1
. (1)

The above definition assumes a linear relationship between
the parameter and the output variable, and it becomes ineffec- 100

tive in the presence of non-linearities or interactions between
parameters. To achieve the highest level of generalisation in
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Figure 2. Demonstration of the differences between Sobol sampling (a, blue dots) and random sampling (b, red dots) in representing the
parameter space. The Sobol sequence is able to more uniformly cover the parameter space, avoiding the presence of very close points, as it
occurs in the random sequence.

sensitivity analysis, both the effect of the single input pa-
rameter and the additional effect of its interaction with other
parameters must be evaluated.

A variance-based approach achieves this while also not
relying on a linear assumption. The most well-established5

variance-based method is the Sobol method (Saltelli and
Sobol’, 1995). With this approach, the variance V (Y ) is de-
composed as follows:

V (Y )=
∑
i

Vi +
∑
i

∑
j>i

Vij + . . .+V12...k, (2)

where Vi is the main effect variance, representing the con-10

tribution of the ith input parameter to the output variance,
and Vij is the second-order interaction effect variance, rep-
resenting the combined contribution of the ith and j th in-
put parameters to the output variance and so on up to V12..k ,
which represents the interaction effect variance of all k input15

parameters together.
Dividing by V (Y ), the Sobol indices are derived as Si =

Vi/V (Y ), Sij = Vij/V (Y ). . . , leading to

1=
∑
i

Si +
∑
i

∑
j>i

Sij + . . .+ S12...k. (3)

The total effect or total index STi is the total contribution to20

the output variation due to a specific factor Xi , i.e. a specific
parameter. Hence, for instance, for a set of three parameters
X1,X2,X3, the total effect index for the parameter X1 is

ST1 = S1+ S12+ S13+ S123. (4)

Both first-order effects Si and total effects STi are impor-25

tant to assess the overall influence of an input parameter.

2.3 Implemented ML algorithms

2.3.1 LASSO

The least absolute shrinkage and selection operator (LASSO,
Tibshirani, 1996) is an ML method used for feature selection 30

and regression. It is derived from the basic concept of curve
fitting in the context of optimisation; therefore, it is one of the
simplest algorithms among the most widely used. The goal
of LASSO is to identify a subset of input features that are
most predictive of the output variable while also performing 35

regularisation to prevent overfitting.
In a classical regression problem, the goal is to find a func-

tion that maps the input features to the output variable. This
is done by minimising an objective function that takes into
account the differences between the observations and the pre- 40

dictions as a measure of how well the model fits the data. The
minimisation is performed during the training process to find
the optimal values of the model coefficients. In the LASSO
algorithm, a penalty term (the “regularisation”) is added to
the objective function, encouraging the model coefficients 45

to be small. Specifically, the objective function for LASSO
regression is the residual sum of squares (RSS), while the
penalty term is based on the sum of the absolute values (L1
regularisation) of the coefficients, which promotes sparsity of
the solution, and it can be adjusted to control the amount of 50

shrinkage applied to the coefficients. As a result, LASSO can
be particularly useful in identifying the most important fea-
tures by setting the coefficients of the less important features
to zero.

The present tool uses LassoCV from the Python library 55

scikit-learn, which adds a cross-validation strategy to the
standard LASSO algorithm. In cross-validation, data are di-
vided into multiple subsets or “folds”, and the model is
trained and evaluated multiple times, each time using a dif-
ferent fold as the validation set and the rest of the data as 60
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the training set (Brunton and Kutz, 2019). By averaging the
results of the multiple evaluations, cross-validation provides
a more accurate estimate of the model’s performance than a
single evaluation on a single training–validation split.

2.3.2 Support vector machine5

Support vector machine (SVM) is an ML method that can
be used for regression and classification tasks. The original
algorithm was proposed in 1963 (Vapnik and Chervonenkis,
1963), was refined multiple times (Boser et al., 1992; Cortes
and Vapnik, 1995; Schölkopf and Smola, 2002), and is con-10

sidered to be a core method in ML.
For regression tasks, SVM aims to find a hyperplane that

approximates the underlying relationship between the input
variables (i.e. the model parameters) and the continuous out-
put values. In order to do this, SVM solves a convex opti-15

misation problem by minimising a cost function that incor-
porates a margin of error and an L2-norm-based regulari-
sation term (ridge-type regularisation). Unlike the LASSO-
type regularisation, the L2 regularisation is a penalty based
on the square of the coefficients. This penalty term is less20

strict compared to LASSO because it helps to shrink the co-
efficient values towards zero without eliminating them com-
pletely. This can be preferred to a LASSO regularisation
when there are many important parameters since it avoids
eliminating them in favour of the most important ones. The25

regularisation term controls the trade-off between the com-
plexity of the model and the amount of error allowed, and its
strength is regulated by the hyperparameter “C”. The opti-
misation problem in the proposed implementation is solved
by the default quadratic “liblinear” Python solver. SVM of-30

fers several advantages, including the ability to handle high-
dimensional data and resistance to overfitting when properly
regularised. The tool presented in this paper implements a
simple linear kernel, which maps the input data into a high-
dimensional space using a linear function.35

2.3.3 Classification and regression trees

The classification and regression trees (CART, Breiman
et al., 1984) algorithm is one of the most basic and straight-
forward decision tree methods, making it widely used and
popular for various applications. The main idea behind40

CART is to partition the input space recursively into smaller
regions based on the values of the input variables, with the
goal of minimising the impurity (or variance) within each re-
sulting region. This partitioning process creates a binary tree
structure called a “decision tree”, where each internal node45

represents a splitting rule based on a selected input variable
and a threshold value. The leaf nodes of the tree represent the
final prediction or class assignment.

In the proposed tool, from the training dataset consisting of
input–output pairs, the algorithm recursively selects the best50

splitting rule at each internal node based on the mean squared

error of the regression. The splitting process continues until
a stopping criterion is met, such as a maximum tree depth or
a minimum number of samples required to split a node. For
regression tasks, the predicted output is the average value of 55

the training samples within the leaf node.

2.3.4 Random forest

Random Forest (RF, Breiman, 2001) is technically an ensem-
ble learning method that can be used for both classification
and regression tasks. Differently from the CART algorithm, 60

a multitude of decision trees are constructed in an RF, and
the final prediction is based on the average of the predictions
of all the trees. For this reason, RF usually performs signifi-
cantly better than CART.

The advantage of using RF is that it can handle high- 65

dimensional data and complex interactions between vari-
ables, making it a useful tool for sensitivity analysis. How-
ever, it can suffer from overfitting, where the model performs
well on the training data but poorly on new data. To mit-
igate this, both cross-validation and Bayesian optimisation 70

are used to make the model more robust.

2.3.5 Extreme gradient boosting

Extreme gradient boosting (XGBoost, Chen and Guestrin,
2016) builds an ensemble of decision trees, similarly to RF,
but each new tree is trained to correct the errors of the pre- 75

vious trees. It is hence a refined version of an RF, and it is
usually expected to perform better.

2.3.6 Gaussian process regression

Gaussian process regression (GPR), better known in geo-
sciences as kriging (Stein, 1999) when applied to spatial 80

interpolation, is a non-parametric algorithm for computing
the probability density function of the regression curve in-
stead of a single fitting curve and can be used as a super-
vised ML technique (Rasmussen and Williams, 2005). GPR
assumes that the output values follow a Gaussian distribu- 85

tion with an unknown mean µ and variance σ that must be
predicted given a set of input–output pairs. To achieve this,
GPR models the output values as a function of the input vari-
ables, where the function is assumed to be smooth and con-
tinuous. GPR is often described as a non-parametric method 90

because it does not assume a specific functional form for the
relationship between input and output variables. Instead, it
models this relationship as a distribution over possible func-
tions, allowing for flexibility in the shape of the regression
curve. However, it is important to note that there are under- 95

lying assumptions about the functional form embedded in
the chosen kernel. The kernel influences the shape and prop-
erties of the functions that the Gaussian process can learn.
The kernel implemented inside ML-AMPSIT is the radial ba-
sis function (RBF) kernel, which uses functions of the type 100
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σ 2 exp
(
−
(t−t ′)2

2l2

)
, where σ 2 TS1 is a variance, l is a length

scale, and t and t ′ represent pairs of values extracted from
the training data. The choice of an RBF kernel is particu-
larly advantageous due to its ability to model complex, non-
linear relationships without imposing strong parametric con-5

straints. The RBF kernel’s smoothness assumption is well-
suited for many real-world applications where the underlying
function is expected to be continuous and differentiable. Dur-
ing the training phase, GPR estimates the parameters of this
kernel function and calculates the covariance matrix between10

the input–output pairs. Using this covariance matrix and the
training data, GPR then estimates the mean and variance of
the distribution for each new input value through Bayesian
inference.

2.3.7 Bayesian ridge regression15

In Bayesian ridge regression (BRR), the hyperparameters of
a classical ridge regression (i.e. a linear regression that im-
plements a ridge regularisation term) are associated with a
priorly assumed probability distribution (also called hyper-
prior) and tuned through training in a Bayesian inference ap-20

proach (Box and Tiao, 1992). Defining both a prior distri-
bution p(H) for the model parameters H and a likelihood
function p(E|H) for the ingested data E, the BRR model
computes the posterior distribution over functions p(H |E)
given the observed data through the use of Bayes’ theorem25

p(H |E)=
p(E|H)·p(H)

p(E)
, where p(E)=

∫
p(E|H)·p(H)dH

is the marginal likelihood. Once the posterior distribution
is obtained, the model is used to make predictions for un-
seen data points. These predictions come with uncertainty
estimates, which are derived from the posterior distribution.30

BRR, as in the case of the SVM algorithm, employs an L2
regularisation; hence, it spreads the coefficient values more
evenly, stabilising the model and preventing overly large co-
efficient estimates.

2.3.8 Feature importance computation35

Each algorithm implemented in this study provides a method
for calculating feature importance, albeit through different
approaches. In principle, a single sensitivity method could
be used to evaluate feature importance across all algorithms.
However, some algorithms have built-in methods specifically40

designed to align with their inherent characteristics.

– Fitting methods. LASSO and SVM derive feature im-
portance from the model coefficients. In these lin-
ear models, the magnitude of the coefficients indicates
the strength and direction of the relationship between45

each feature and the target variable. Specifically, in the
scikit-learn library, this can be accessed through the
best_estimator_.coef_ attribute. Larger absolute values
of these coefficients indicate greater importance.

– Tree-based algorithms. For CART, RF, and XGBoost, 50

feature importance is assessed using the mean decrease
in impurity (MDI) method. This method quantifies the
contribution of each feature to the overall prediction ac-
curacy by measuring how much each feature decreases
the impurity of the splits in which it is involved. For 55

RF and XGBoost, the final value is obtained by av-
eraging over all the trees in the ensemble. In scikit-
learn, these contributions are accessible through the fea-
ture_importances_ attribute. The MDI method is partic-
ularly effective because it directly measures the impact 60

of each feature on the model’s decision process, provid-
ing a clear indication of feature importance.

– Probabilistic methods. GPR and BRR do not have a
built-in mechanism for directly assessing feature im-
portance. Therefore, in this work, the Sobol method 65

is used to infer feature importance. Once built and
tested against the original model outputs, the GPR and
BRR surrogate models can be used to perform a GSA
in substitution of the original model. By using a sur-
rogate model, the computational cost of running the 70

original model for a large number of input combina-
tions is avoided. Instead, the surrogate model can be
used to generate a large number of input combinations
with significantly less computational time and to eval-
uate their impact on the output. Over these samples, 75

in ML-AMPSIT, the Sobol sensitivity indices are com-
puted following the definition proposed by Saltelli et al.
(2008). The user can then compare the Sobol indices
evaluated with both GPR and BRR, providing informa-
tion on their robustness and reliability. In the proposed 80

tool, after the algorithm generates the optimal surrogate
model, it uses the Python library SALib to compute the
Sobol total index as a score for the sensitivity impor-
tance of each parameter. The low computational cost of
these emulators allowed us to employ a surrogate sam- 85

pling generated by sobol.sample(), with 5000 input val-
ues (the user can change this value by modifying the
configuration parameter Nsobol in loopconfig.ipynb),
with the overall Sobol method calculations performed
in minutes against a single traditional WRF simulation 90

typically taking several hours. The Sobol first-order in-
dex and Sobol second-order interaction terms are also
available for users who wish to examine the presence of
strong parameter interactions.

Despite the differences in the feature importance calcula- 95

tion approaches of the different algorithms, each method is
applied to standardised, non-dimensional data, and each fea-
ture importance set is scaled between [0,1]. This ensures that
feature importance scores are comparable across all the mod-
els. In general, the sum of the total Sobol indexes (

∑
STi) is 100

≥ 1 because higher-order terms, representing the interactions
between parameters, are double-counted in

∑
STi (see Eqs. 3

and 4). However, it was observed that, in the present case

dario
Barra

dario
Testo inserito
This sigma squared factor should be removed, as it is a scaling factor that always multiplies the kernel function, regardless of the kernel selected, and should therefore be considered external to the kernel definition. Here we are strictly defining the selected kernel.

dario
Barra
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study, higher-order terms are mostly negligible (order 10−3),
which implies that

∑
STi ≈

∑
Si ≈ 1. Therefore, the STi in-

dices are left non-normalised since they are still comparable
with reasonable accuracy to the other normalised sensitivity
indices and, at the same time, allow the evaluation of possi-5

ble spurious results in the Sobol index calculation due to poor
sample statistics in the convergence analysis, as will be high-
lighted in Sect. 4.3. For the general case, the published tool
automatically scales the STi indices. The user who wants to
check non-normalised values (e.g. to evaluate the effects of10

the interaction terms on the Sobol total indices) can find and
uncomment the lines #importance_list.append(importances).

The primary objective of all these methods is to quantify
the sensitivity of the model output to changes in the input fea-
tures. Consequently, the feature importance scores obtained15

from these different methods provide a well-posed compari-
son of parameter sensitivities. By evaluating and comparing
these scores, it is possible to gain a comprehensive under-
standing of the relative importance of each feature across dif-
ferent modelling approaches, which increases the robustness20

of the results.

2.3.9 Hyperparameter tuning

In the proposed tool, the hyperparameters of each imple-
mented algorithm are tuned based on a cross-validation score
obtained through Bayesian optimisation. Bayesian optimisa-25

tion is an iterative process that seeks to explore the hyperpa-
rameter space while also exploiting regions of the space that
are expected to yield good performance. At each iteration,
the method proposes a new set of hyperparameters based on
a probabilistic model of the function behaviour and then eval-30

uates the function at that point. The results of the evaluation
are used to update the probabilistic model, which is then used
to propose a new set of hyperparameters for the next itera-
tion.

To conclude this Methods section, Table 1 provides a sum-35

mary of the main characteristics of the ML models used in
this study. This table outlines the regression type of each
model (linear or non-linear), the associated method used to
evaluate feature importance, and other relevant characteris-
tics such as regularisation techniques and kernel functions.40

3 Case study

The proposed case study, adopted to highlight the func-
tionalities of ML-AMPSIT, is based on idealised coupled
WRF/Noah-MP simulations of a sea breeze circulation over
a flat three-dimensional domain. The objective of this case45

study is to evaluate the impact of a prescribed set of Noah-
MP parameters on the development of the thermally driven
wind.

3.1 The WRF/Noah-MP model

The Weather Research and Forecasting (WRF) model is a 50

widely used state-of-the-art mesoscale numerical weather
prediction model for atmospheric research and operational
forecasting applications, which is supported by the NSF
National Center for Atmospheric Research (NCAR), with
more than 50 000 registered users from more than 160 coun- 55

tries (Skamarock et al., 2021). It offers a wide range of
customisation options consisting of dedicated modules and
physics schemes to meet the state of the art in atmospheric
science and to adapt to a wide variety of scenarios. The
dynamical core used for this case study is the Advanced 60

Research WRF (ARW), which uses a third-order Runge–
Kutta scheme for time integration with a time split method
for solving acoustic modes (Wicker and Skamarock, 2002)
and an Arakawa-C grid staggering for spatial discretisation.
In the case study presented here to illustrate the function- 65

alities of ML-AMPSIT, WRF is coupled with the Noah-
Multiparameterization (Noah-MP; He et al., 2023; Niu et al.,
2011; Yang et al., 2011) land surface model (LSM). Noah-
MP is one of the most used LSMs available in WRF to calcu-
late surface–atmosphere exchanges and interactions. It is an 70

augmented version of the Noah land surface model (Ek et al.,
2003) that allows the usage of different physical schemes
and multi-parameterisation options, reaching a total number
of 4584 possible combinations (https://www.jsg.utexas.edu/
noah-mp/, last access: 1 March 2024). 75

3.2 Model setup

Simulations are performed using one domain with 201×
201 cells in the horizontal plane, with a grid spacing of 3 km.
A total of 65 vertical levels are used, transitioning from a
vertical resolution of 7 m close to the surface up to 600 m 80

at the top of the domain, which is placed at 16 km above
sea level. The domain is completely flat and subdivided into
two equally sized rectangular sub-regions of land and water,
with the interface line oriented along the west–east direction
(Fig. 3). The aim is to simulate the daily cycle of a sea–land 85

breeze. Boundary conditions are set as open at all the bound-
aries.

The initial atmospheric potential temperature profile is set
using the following expression, representative of a stable at-
mosphere: 90

θ(z)= θs+0z+1θ(1− e−βz), (5)

where the surface temperature θs = 280 K, 0 = 3.2 K km−1,
1θ = 5 K, and β = 0.002 m−1. The atmosphere is initially at
rest, and the relative humidity is set to be constant over the
entirety of the domain and equal to 30 %. The sea tempera- 95

ture is set as 293 K.
The idealised simulations start at 13:00 UTC on 19 March,

are centred at 47° N and 11° E, and last for 35 h and thus
are characterised by a solar radiation cycle representative of

https://www.jsg.utexas.edu/noah-mp/
https://www.jsg.utexas.edu/noah-mp/
https://www.jsg.utexas.edu/noah-mp/
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Table 1. Summary table of the characteristics of the ML models implemented in ML-AMPSIT.

Model name Regression type Feature importance method Additional characteristics

LASSO Linear Model coefficients Applies L1 regularisation to encourage sparsity in coef-
ficients

SVM Linear Model coefficients Uses L2 regularisation; implemented with a linear ker-
nel

CART Non-linear Mean decrease in impurity (MDI) Constructs binary trees for decision-making based on
feature values

RF Non-linear Mean decrease in impurity (MDI) Ensemble method that builds multiple decision trees

XGBoost Non-linear Mean decrease in impurity (MDI) Gradient-boosting technique, correcting errors of previ-
ous trees

GPR Non-linear Sobol indices (external method) Models output as a Gaussian distribution; uses radial
basis function kernel

BRR Linear Sobol indices (external method) Incorporates Bayesian inference with ridge (L2) regu-
larisation

the equinoxes at mid-latitudes. The first 11 simulation hours
are not analysed and are considered to be the spin-up period.
Therefore, analyses concentrate on a full diurnal cycle, from
00:00 UTC on 20 March to 00:00 UTC on 21 March. Model
output is saved every hour.5

The physical parameterisation schemes selected for the
present work are the rapid radiative transfer model (RRTM)
for longwave radiation (Mlawer et al., 1997), the Dudhia
scheme (Dudhia, 1989) for shortwave radiation, and the
YSU scheme (Hong et al., 2006) as the planetary boundary10

layer (PBL) parameterisation, coupled to the MM5 similar-
ity scheme for the surface layer. Since this idealised study
aims to reproduce a sea–land circulation, which best devel-
ops under completely clear-sky conditions, the microphysics
parameterisation is switched off, along with the convective15

scheme, since convection is explicitly resolved at the resolu-
tion used.

As said above, the Noah-MP model is used to evaluate
land–atmosphere exchange. In Noah-MP, the canopy radia-
tive transfer scheme used is the “modified two-stream” (Niu20

and Yang, 2004), one of the most used, which aggregates
cloudy leaves into evenly distributed tree crowns with gaps.
The gaps are computed according to the specified vegetation
fraction. The Ball–Berry scheme, the most common choice
in the literature, is used for the stomatal resistance com-25

putation, with the Noah-type soil moisture factor (Schaake
et al., 1996), while the surface runoff parameterisation TOP-
MODEL (Niu et al., 2007), with the groundwater option, is
used for runoff and groundwater processes. The surface resis-
tance to evaporation and sublimation processes is set follow-30

ing Sakaguchi and Zeng (2009). The surface layer drag coef-
ficient, used to compute heat and momentum exchange coef-
ficients, is calculated with the traditional Monin–Obukhov-
based parameterisation. In this work, the dynamic vegetation

option is not activated, with the prescription of a fixed vege- 35

tation fraction of 60 % to consider a reasonably realistic per-
centage, while the monthly satellite-based climatological leaf
area index is read from the MPTABLE.TBL file, which con-
tains all the parameter values. Finally, crop and irrigation op-
tions are deactivated. It is important to underline that water 40

physical properties are not varied in the sensitivity simula-
tions, but changes in atmospheric variables are also expected
over water due to the indirect effects of the variations in the
surface parameters over land.

In order to simplify this demonstrative case study, only six 45

of the surface parameters defined in the look-up table MPT-
ABLE.TBL, from which WRF reads and sets the surface
values accordingly, are considered. In particular, the Noah-
MP reference vegetation type adopted over land is grassland
(vegtype=10 of the IGBP-Modified MODIS classification), 50

and the parameters for which the sensitivity and relative im-
portance are evaluated are the characteristic leaf dimension
(DLEAF), the height of the vegetative canopy top (HVT),
the momentum roughness length (Z0MVT), the near-infrared
leaf reflectance (RHOL_NIR), the empirical canopy wind pa- 55

rameter (CWPVT), and the leaf area index for the month of
March (LAI_MAR). The choice of these parameters is based
on their importance in other sensitivity studies reported in the
literature (Mendoza et al., 2015; Cuntz et al., 2016; Arsenault
et al., 2018). The final perturbed model parameter ensemble 60

contains 100 samples, each with different parameter values
based on the associated Sobol sequences. The input ensem-
ble is generated by perturbing the parameters by up to 50 %
of their reference value in the look-up table MPTABLE.TBL.
It should be clear that the results of a sensitivity analysis, re- 65

gardless of the approach chosen, always depend on the range
of exploration of the parameters and that their transferability
to arbitrary ranges of values is not guaranteed if the true sen-
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Figure 3. (a) Domain configuration for the idealised simulation
study. The grid consists of 201× 201 cells with a 3 km spacing,
divided equally into land (upper region, green) and water (lower
region, light blue). The land and water points considered for the
sensitivity analysis are marked, positioned at x = 100, y = 95 for
water and x = 100, y = 105 for land. The interface line runs along
the west–east direction, reflecting the setup for simulating the di-
urnal cycle of a sea–land breeze developing in the south–north di-
rection. The red box highlights the zoomed area in (b) around the
points used for the sensitivity analysis; the neighbouring cells in the
south–north direction used for the analysis are also shown in (b)
around the selected points.

sitivity of the parameters in unexplored ranges is not known
a priori. The perturbation percentage in this work has been
chosen to avoid unphysical values, but it must be noted that
the aim of the present work is to introduce and test ML-
AMPSIT functionalities in a simplified case study, whereas5

a more detailed analysis would require more attention to the
choice of the parameter space.

The output variable for which sensitivity is evaluated is
the south–north horizontal component of the wind v in the
lowest 10 vertical levels at two different locations in the do-10

main, one over land and one over water. These two locations
are chosen to evaluate the effects of varying land parame-
ters over two completely different surfaces and to assess how
changes in land properties can also influence atmospheric
fields over water. The locations are also strategically cho-15

sen to be near the interface between the land and water re-
gions to better capture the dynamics of the sea–land breeze
circulation, which is expected to be most pronounced near
this boundary. For both locations, the average output from
three adjacent cells in the south–north direction is analysed20

in order to increase the representativeness of the results. The
central points of these two locations are x = 100, y = 95 and
x = 100, y = 105 for water and land respectively, i.e. in the
central cell in the west–east direction, with five grid points to
the north and to the south of the land–water interface (Fig. 3).25

4 Results

4.1 Sea breeze ensemble

Before analysing the ML-AMPSIT results, this section
presents an overview of the output of the WRF/Noah-MP
simulations, focusing on the horizontal south–north wind 30

component v at the two locations selected for the applica-
tion of ML-AMPSIT. Figure 4 shows the ensemble time se-
ries of v during the entire period analysed at the first vertical
level. The daily cycle of the sea breeze is evident at both loca-
tions as the velocity changes sign according to the radiation 35

pattern and the varying horizontal temperature and pressure
gradient; i.e. v is negative (northerly, from land to sea) dur-
ing the night and positive (southerly, from sea to land) during
the day. It is worth noting that, even if only land parameters
have been considered in this work, the spread of the ensem- 40

ble tends to be larger over water than over land, especially
before sunrise. Indeed, changes in land parameters affect the
thermal contrasts between land and water and, thus, the char-
acteristics of the sea and land breeze, including their timing
and strength. This highlights that changes in surface param- 45

eters can influence atmospheric variables more than just lo-
cally, especially when they affect the development of ther-
mally driven circulations.

Figure 5 shows the ensembles of the vertical profiles of
v in the lowest 200 m, containing the lowest 10 vertical lev- 50

els, at three different times, 07:00, 13:00, and 19:00 UTC,
which are representative, respectively, of the maximum in-
tensity of the northerly land breeze, the morning transition
between northerly and southerly wind, and the maximum in-
tensity of the southerly sea breeze at the water point. It can 55

be noted that the northerly land breeze (Fig. 5a, b) is shal-
lower than the southerly sea breeze (Fig. 5e, f). Moreover,
the comparison between Fig. 5e and f highlights the stronger
effect of friction over land, with a more pronounced decrease
in the wind speed close to the surface. 60

The ensemble variance is small near the ground over
land and increases with height at 07:00 and 19:00 UTC.
Over the water point, the spread is larger and more uniform
along the entire vertical profile, especially at 13:00 UTC and
19:00 UTC. During the transition (Fig. 5c and d), the ensem- 65

ble spread is very small over land, with all the simulations
showing very small v values along the entire vertical profile,
whereas a large spread is observed over water, suggesting
that the variations in the surface parameters investigated sig-
nificantly influence the timing of the transition from land to 70

sea breeze over water, although preserving the shape of the
vertical profile.

4.2 ML-AMPSIT output

After all the steps discussed in Sect. 2.1, the basic output that
the ML-AMPSIT tool offers to the user is a composition of 75

four plots similar to those reported in Fig. 6, which refers
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Figure 4. Time series of the south–north wind component at the
first vertical level for the (a) land and (b) water points. The solid
and dashed red lines represent the ensemble mean and standard de-
viation, respectively, while the grey lines represent the output of
the single simulations. The values of the maximum, minimum and
mean hourly standard deviations (SDs) are also reported.

to the results obtained for v at the third vertical level over
the water point (for this example, no averaging over multi-
ple points was performed and all the simulation hours are
shown in order to present the default output of the tool) us-
ing the LASSO algorithm. In particular, panel (a) shows the5

importance time series related to each of the six selected pa-
rameters; panel (b) shows the time evolution of the metrics,
underlining how the correlation score and the errors eventu-
ally change over time; while panels (c) and (d) are specific
to a single hour selected by the user, showing, respectively,10

the goodness of fit and the ranking of the feature importance
for that hour. In the following sections, the outputs from ML-
AMPSIT will be aggregated to perform convergence analysis
and a method comparison.

4.3 Convergence analysis15

Figures 7 and 8 show the convergence of the MSE and of the
feature importances computed by each method as a function
of the number of simulations considered, i.e. the number of
input–output relations used for training the algorithms. The
analysis of the convergence is important because it indicates20

when the regression tasks reach a stable state and when addi-
tional simulations do not significantly alter the results. When
convergence is reached, it can be assumed that the obtained
feature importance provides a reliable representation of the
underlying relationships in the system and that a sufficient25

number of simulations have been performed to capture the
essential characteristics of the system under investigation.

For the sake of brevity, only results over the land region
at the first vertical level are shown here, considering results
at 13:00 UTC for the feature importance and at four different30

times for the MSE convergence. However, the considerations
reported below can be generalised to other times and to the
water point since the methods maintain a similar speed of
convergence during the entire run in the two analysed points.

Despite each method showing some differences, especially35

in the oscillations around the convergence values, four out of

Figure 5. Vertical profiles of the south–north wind component in
the lowest 200 m above the surface at (a–b) 07:00, (c–d) 13:00, and
(e–f) 19:00 UTC for the land (left column) and water (right column)
points. The solid and dashed red lines represent the ensemble mean
and standard deviation, respectively, while the grey lines represent
the output of the single simulations. The values of the maximum,
minimum and mean hourly standard deviations (SDs) are also re-
ported.

seven of the proposed methods are able to reach a reason-
ably stable result after approximately 20 simulations. BRR,
GPR, LASSO, and SVM are the fastest and most stable al-
gorithms with regard to reaching convergence. On the other 40

hand, the decision-tree-based methods have significant oscil-
lations, even after 20 realisations, and the metrics show that
they are less consistent than the other methods. However,
the results highlight that all the methods propose a stable
and consistent ranking of the parameters’ importance after 45

80 simulations and, in most cases, even with a much lower
number of simulations.

It can be seen from Fig. 8 that the sum of the total Sobol
indices

∑
STi generated by GPR for N = 10 is greater than

1, whereas this effect mostly disappears forN ≥ 20. The val- 50
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Figure 6. Example of the ML-AMPSIT output for a LASSO regression of 100 simulations with a duration of 36 h (spin-up phase included),
focusing on v at the third vertical level over the water point and displaying the metrics for the 30th simulated hour: (a) importance time
series of the six parameters; (b) time evolution of the metrics R2 (indicated as “score”), MSE, MAE, and p value (testing the probability of
unrelated variables to produce the same R2); (c) quality of the test phase associated with the selected hour with the corresponding metrics;
and (d) ranking of the importance of the features for the selected hour.

ues of the first-order terms Si obtained forN = 10 are indeed
observed to be significantly different from STi because the
higher-order terms in Eq. (4) are estimated to be relevant. For
N ≥ 20, the higher-order terms tend to become irrelevant,
and so Si ≈ STi, and

∑
STi converges to 1. This occurs be-5

cause, with a small number of simulations, the Sobol method
tends to either overestimate or underestimate parameters’ in-
teractions due to insufficient sampling. Notably, BRR does
not show the same overestimation of the indices even for
N = 10.10

4.4 Parameter importance analysis

Figures 9 and 10 show, respectively, the time series of the
performance metrics for the south–north wind component
at the lowest vertical level over the land and water regions,
while Figs. 11 and 12 show, for the same variable and points,15

the time series of the feature importance for each of the pro-
posed methods. It is important to underline that comparing
the results of each surrogate model is the core of the ML-
AMPSIT’s robustness strategy. The agreement between the
different models strengthens the reliability of the results and20

provides a form of self-validation.
In this example, GPR, BRR, LASSO, and SVM show the

best metrics, suggesting that, in the proposed case study,

there is no relevant difference between non-linearity-aware
approaches and linear approaches as they both correctly cap- 25

ture the relation between the tested parameters and the south–
north wind component. These algorithms show very stable
results, with slightly worse performance metrics occurring
around 13:00 UTC over land and around 06:00 UTC over
water. These times correspond to sudden changes in the en- 30

semble spread (see Fig. 4), but the observed degradation
in performance metrics is likely to be due to differences in
the response of ensemble members to input variations rather
than the time variation itself, which ML-AMPSIT cannot be
aware of by design. The three decision-tree-based methods 35

present a more irregular behaviour of the performance met-
rics, with higher errors and lower correlations. In particular,
CART presents the worst performance metrics for this case
study. The poorer metrics compared to more refined methods
such as RF or XGBoost are expected since CART does not 40

compute an ensemble of decision trees and does not consider
the errors of the previous branches.

As shown in Figs. 11 and 12, all methods agree very
well for both regions on the ranking and overall magnitude
ratios of the feature importance, individuating similar pat- 45

terns, with only minor differences; this is also considering
the methods showing worse performance metrics (cf. Fig. 9).
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Figure 7. Convergence of the MSE with the number of realisations N for each method implemented, considering v over land at the first
vertical level at four different times.

Figure 8. Convergence of the feature importance with the number of realisations N for each method implemented, considering v over land
at the first vertical level at 13:00 UTC.

Figure 11 highlights cyclic trends of the parameters’ im-
portance over the land region, likely induced by the cy-
cle of the diurnal thermally driven circulation. In particular,
Z0MVT and RHOL_NIR alternate as the most important pa-
rameters, with RHOL_NIR dominating for most of the day,5

whereas Z0MVT becomes more important close to sunrise
and sunset. The short time windows in which Z0MVT ap-
pears as the dominant parameter correspond to the phases
in which the vertical wind profile over land showcases the
most pronounced shear in the lowest layers, as shown in10

Fig. 5a and e. This seems to indicate a stronger role of sur-
face friction in dictating ensemble variability when stronger
winds are present (Z0MVT directly influences surface fric-
tion). LAI_MAR shows an importance almost comparable to
RHOL_NIR during the day, especially with LASSO, SVM,15

and RF, whereas its importance is lower during the night. The

other parameters seem to be more relevant at night, with the
exception of DLEAF, which is always non-relevant for every
method implemented.

Comparisons between Figs. 11 and 12 show that the results 20

are more uniform over water than over land. In particular,
over water, the ranking of the parameters does not show sig-
nificant variations throughout the whole day. The dominant
parameters are RHOL_NIR and LAI_MAR, with Z0MVT
always showing low importance values. Since the sea breeze 25

is driven by thermal contrasts, it is expected that the param-
eters mainly affecting temperature, such as the reflectivity
and the leaf area index, are also particularly significant for
this case study. Among the selected parameters, RHOL_NIR
plays a central role in the main radiative processes in Noah- 30

MP, modulating the overall canopy albedo, defining the scat-
tered fraction of leaf intercepted radiation, and ultimately
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Figure 9. Time series of the performance metrics for each method implemented, considering v over land at the first vertical level: green, red,
and orange lines represent, respectively, R2, MSE, and MAE.

entering the computation of all radiation fluxes. LAI_MAR
is involved in important processes, such as determining the
canopy gaps, the fraction of vegetation exposed to sunlight,
and significantly affects both sensible and latent heat fluxes,
as well as the leaf boundary resistance. Although HVT might5

be expected to be more important due to its influence on ra-
diation and heat trapping, its importance is probably limited
by the low canopy height in the selected grassland vegeta-
tion class. CWPVT, which enters the canopy wind extinction
computation, and DLEAF, which mainly affects leaf bound-10

ary resistance, were expected to play a minor role in this
setup with respect to the other parameters, mainly due to their
secondary role in Noah-MP.

It is interesting to note that the decision-tree-based algo-
rithms, CART, RF, and XGBoost, detect minor differences15

between the less relevant parameters overall, while the other
methods, GPR, BRR, LASSO, and SVM, enhance the dif-
ferences and define a clearer ranking in the first part of the
day. The reason for these differences is reasonably due to the
fact that, as mentioned in Sect. 2, the decision-tree-based al-20

gorithms are less strict about feature shrinkage compared to

other methods containing a regularisation term like LASSO,
hence resulting in a less clear ranking in terms of feature im-
portance with respect to the other methods. However, the rel-
ative importance between parameters is conserved overall; 25

i.e. the feature importance ranking is mostly the same as in
the other methods for the entire length of the simulation.

It is also worth noting that, considering the importance
time series obtained from GPR and BRR surrogate mod-
els, the surrogate Sobol total index agrees very well with the 30

feature importance scores of the other algorithms, which in-
dicates that the Sobol indices derived from BRR and GPR
and the feature importance derived from the other methods
have equivalent sensitivity estimation capability when con-
vergence is properly achieved. 35

4.5 Vertical variability

Figures 13 and 14 show, for the land and water regions, re-
spectively, the variations in the feature importance in the low-
est 10 vertical levels at different times. Since, as highlighted
in the previous section, GPR is one of the methods present- 40

ing the best performance metrics, it has been chosen as the
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Figure 10. Time series of the performance metrics for each method implemented, considering v over water at the first vertical level: green,
red, and orange lines represent, respectively, R2, MSE, and MAE.

reference algorithm for this analysis. However, the results
obtained with GPR are consistent with those obtained with
all the other methods, particularly with LASSO, SVM, and
BRR.

Over the water region, the parameters’ rankings do not5

show significant variations with height, except in correspon-
dence with the nocturnal wind peak (06:00 UTC), when
LAI_MAR becomes more important than RHOL_NIR above
the eighth model level. The situation is more complex over
the land region, with more significant variations in the pa-10

rameter importance with height. In particular, it can be seen
that Z0MVT is more important close to the surface, espe-
cially when wind speed is stronger (06:00 and 18:00 UTC),
coherently with the results shown in Fig. 11, showing that
friction affects the results, especially close to the surface. In15

contrast to the decreasing vertical importance of Z0MVT, the
importance of LAI_MAR and RHOL_NIR tends to increase
with height (Fig. 13). The importance ranking converges to
the water region scenario shown in Fig. 14 above the lowest
two vertical levels at 06:00 UTC and above the lowest five to20

six vertical levels at 18:00 UTC, i.e. above the layer in which

friction plays the most important role. On the other hand,
when the wind speed is weak, i.e. at 00:00 and 12:00 UTC,
the vertical profile of the parameters’ importance values is
similar over land and water at all the vertical levels investi- 25

gated.
It is worth noting that the MSE for GPR, LASSO, BRR,

and SVM does not show significant variations in the lowest
10 vertical levels, both over land and over water (Figs. 15
and 16), meaning that the observed variations in feature im- 30

portance are related to changes in the input–output relation
rather than to uncertainty issues. This is also supported by
the fact that the metrics of these algorithms in Fig. 9 show no
deterioration associated with the changes in feature impor-
tance shown in Fig. 11 and that these patterns are consistent 35

across all the surrogate models. A slightly higher variabil-
ity in MSE is shown by RF and XGBoost, whereas CART is
the only method presenting a strong height dependence, par-
ticularly considering higher MSE values close to the surface
at night over land and in correspondence with the northerly 40

land breeze peak over water. These observations strengthen
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Figure 11. Time series of the importance of the parameters considered for each method implemented, considering v over land at the first
vertical level.

the evidence that this method is not performing well in this
case study.

5 Discussion and conclusions

This paper presented a novel automated model parame-
ter sensitivity and importance analysis tool (ML-AMPSIT)5

that applies different machine learning algorithms, namely
LASSO, support vector machine, classification and regres-
sion trees, random forest, extreme gradient boosting, Gaus-
sian process regression, and Bayesian ridge regression, to
perform sensitivity analysis and to extract feature impor-10

tance from input–output relationships. This tool was con-
ceived to alleviate the computational burden usually asso-
ciated with traditional global sensitivity analysis methods,
which require a large number of model realisations, propos-
ing an alternative approach using surrogate models or em-15

ulators. In fact, global sensitivity analysis methods, such as
the Sobol method, demonstrate superior performance with
respect to one-at-a-time approaches, which do not consider
the interaction between parameters, but the large number of

model realisations needed often makes their use unfeasible 20

for complex numerical models. On the other hand, surrogate
models or emulators, trained using input–output pairs of the
original high-fidelity model, offer a cost-effective means of
generating accurate predictions of the output variable. The
utilisation of machine learning techniques provides compu- 25

tationally efficient solutions while considering non-linearity
and interactions between variables.

The advantage of implementing different methods, also
within the same family of algorithms, is multifaceted. First,
if different algorithms produce consistent results, this consis- 30

tency increases the reliability and robustness of the outcome.
Moreover, after assessing the consistency of the results be-
tween different models of the same family, it could be more
convenient to rely on the fastest method instead of the most
accurate. Second, the use of different families of algorithms 35

extends the applicability and flexibility of the tool as their
performance can vary in different scenarios.

The functionalities of the tool were tested and shown in
a case study using the WRF meteorological model coupled
with the Noah-MP land surface model. A sensitivity analysis 40

applied to a set of Noah-MP parameters was presented for
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Figure 12. Time series of the importance of the parameters considered for each method implemented, considering v over water at the first
vertical level.

Figure 13. Parameter importance, considering v in the lowest 10 vertical levels over the land region at different times, for the GPR method.

simulations of a sea breeze circulation over an idealised flat
geometry. The different algorithms work as surrogate models
of the original WRF/Noah-MP high-fidelity simulations and
are able to accurately predict the original model behaviour
and reach robust conclusions about the parameter sensitiv-5

ity given a relatively small ensemble of model runs. The ef-
ficiency of the model emulation is also tested through the
computation of Sobol total indexes from the training of Gaus-
sian process regression and Bayesian ridge regression, with
results being strongly consistent with those of the other pro-10

posed feature extraction methods. By integrating multiple al-
gorithms into a flexible framework, ML-AMPSIT offers a
comprehensive and reliable approach for sensitivity analysis
in complex models, also allowing the assessment of the un-
certainty of the estimates by evaluating the spread between 15

the outcomes of different algorithms.
Among the different methods, Gaussian process regres-

sion, LASSO, support vector machine, and Bayesian ridge
regression emerged as the most reliable and robust. In con-
trast, decision-tree-based algorithms exhibited lower perfor- 20
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Figure 14. Parameter importance, considering v in the lowest 10 vertical levels over the water region at different times, for the GPR method.

Figure 15. MSE for each method implemented, considering v in the lowest 10 vertical levels over the land region at different times.

mance in terms of both the convergence with respect to the
number of realisations and a higher uncertainty. In this case
study, the linear models LASSO, support vector machine,
and Bayesian ridge regression demonstrated equal perfor-
mance to the non-linearity-aware Gaussian process regres-5

sion, suggesting the absence of strong non-linear relation-
ships between the chosen parameters and the output variable
in the analysed domain regions.

For the best algorithms, the convergence of the feature
importance was achieved with a small sample of about 2010

simulations, whereas classical global sensitivity analysis ap-
proaches often require a much higher number of realisations.
A qualitative comparison to evaluate the added value of ML-
AMPSIT in terms of the number of simulations needed to
reach robust results can be performed considering two of the15

most advanced methods in global sensitivity analysis, i.e. the
Morris method (Morris, 1991) and the Sobol method (Saltelli
and Sobol’, 1995), assuming the use of six parameters fol-
lowing a Latin hypercube sampling (Mckay et al., 1979) with
radial design (Campolongo et al., 2011). This sampling tech-20

nique is one of the best trade-offs for decreasing the number
of simulations needed compared to a full-factorial sampling
(Saltelli et al., 2008). If parameter interactions are not rel-
evant, such as for models with low complexity and low di-
mensionality, a viable strategy is to use the Morris method25

to find out the most and least relevant parameters. For p
points produced with a Latin hypercube sampling and for k
perturbations produced by radial design around these points,
one perturbation for each input parameter, the total number
of model runs required, is N = p(k+ 1). A sufficient num-30

ber of points p can be found in the literature, ranging from
10 to 50 (Campolongo et al., 2007), leading to 70–350 to-
tal simulations. However, even with this number of simu-
lations, convergence is not guaranteed as it depends on the
specific case. For more complex models, the Morris method 35

can be very inefficient in stating the true parameter rele-
vance (it is usually considered to be only a proxy of the true
sensitivities, depending on the number of interactions and
non-linearities in the model; Cuntz et al., 2015). The Sobol
method is able to weigh the interaction effects between each 40

parameter more accurately, but it is more demanding. Fol-
lowing Saltelli et al. (2010), to circumvent some constraints
over the number of model runs required, the final number
would be N = p(k+1)(k+2),TS2 which, using the previous
assumptions for p, gives a minimum number of 560–2800 45

runs. Aside from the minimum amount computed above, real
applications of the Sobol method can easily exceed this value
to achieve robust results (Cuntz et al., 2015, 2016). However,
this is not usually feasible for complex and computationally
intensive models such as the WRF model. 50

It is then clear that ML-AMPSIT significantly reduces the
number of simulations needed for sensitivity analysis and ex-
traction of feature importance. Considering the fact that all
the proposed regression methods in ML-AMPSIT intrinsi-
cally account for interactions between parameters, this high- 55

lights its added value over classical global sensitivity analysis
methods and points out its possible applications, especially
in cases when the use of classical global sensitivity analysis
methods is not feasible. Furthermore, the intercomparison of

dario
Barra

dario
Testo inserito
This should be replaced with "M(k+2), with M≥500, resulting in our case in a total of at least 4000 runs." Because this is more consistent with the referenced paper (Saltelli et al. 2010), which uses a different nomenclature and does not explicitly use the term p(k+1), instead using a generic number (here called M) multiplying (k+2). This makes the estimate more general and valid regardless of the sampling technique.
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Figure 16. MSE for each method implemented, considering v in the lowest 10 vertical levels over the water region at different times.

the results from different algorithms in ML-AMPSIT can re-
veal useful physical insights into model simulations.

It should be noted that the results presented in this paper
are limited to the simple case study considered here to test
the tool functionalities. In particular, it is expected that more5

simulations can be needed to train the algorithms in more
complex scenarios, when non-linearities are more strongly
involved in the input–output relations. However, while ac-
tual run times depend on the specific dataset and hardware,
the speed improvements observed in our case study high-10

light the potential of ML-AMPSIT to enable large-scale sen-
sitivity analysis and ensemble generation with significantly
lower computational requirements. The generation of sur-
rogate outputs was observed to be significantly faster than
running high-fidelity WRF simulations, with run times be-15

ing reduced from hours to seconds or minutes, depending
on the algorithm. This efficiency enabled the generation of
thousands of surrogate results that would not have been pos-
sible by relying solely on traditional simulations. Finally, it
is worth noting that the application of the methods imple-20

mented in ML-AMPSIT is not only limited to the evalua-
tion of land surface model parameters; these methods are
inherently adaptable to any dataset containing input–output
pairs, regardless of the data characteristics. This flexibility
allows ML-AMPSIT to evaluate not only the influence of25

different input parameters but also the effects of different
simulation setups, such as physical schemes, sub-processes,
land cover, numerical strategies, or geometric configurations.
By using data-driven modelling, these tasks can be accom-
plished more quickly and with potentially fewer data. More-30

over, since input–output frameworks are ubiquitous in scien-
tific and statistical domains, the reach of a data-driven tool
like ML-AMPSIT potentially extends far beyond the specific
examples mentioned here.
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Appendix A: ML-AMPSIT configuration file

Figure A1. An example of the configuration file for the WRF/Noah-MP model case study.
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Appendix B: Abbreviations

Abbreviation Full form
ML-AMPSIT Machine Learning-based Auto-

mated Multi-method Parameter
Sensitivity and Importance analysis
Tool

WRF Weather Research and Forecasting
Noah-MP Noah-Multiparameterization
ML Machine learning
LASSO Least absolute shrinkage and selec-

tion operator
SVM Support vector machine
CART Classification and regression trees
RF Random forest
XGBoost Extreme gradient boosting
GPR Gaussian process regression
BRR Bayesian ridge regression
GSA Global sensitivity analysis
OAT One-at-a-time
ARW Advanced Research WRF
RRTM Rapid radiative transfer model
YSU Yonsei University
PBL Planetary boundary layer
RBF Radial basis function
MAE Mean absolute error
MSE Mean squared error
R2 R2 (coefficient of determination)
GUI Graphical user interface
EE Elementary effect
L1 L1 regularisation (sum of absolute

values)
L2 L2 regularisation (sum of squares)
MPTABLE.TBL Model parameter table
DLEAF Characteristic leaf dimension
HVT Height of vegetative canopy top
Z0MVT Momentum roughness length
RHOL_NIR Near-infrared leaf reflectance
CWPVT Empirical canopy wind parameter
LAI_MAR Leaf area index for March

Code and data availability. The code of the ML-AMPSIT tool,
along with detailed instructions on how to use it, is avail-
able at https://doi.org/10.5281/zenodo.10789930 (Di Santo,5

2024b). The data extracted from the simulations and used
for training the machine learning algorithms and pro-
ducing the results presented in this paper are available at
https://doi.org/10.5281/zenodo.14051616 (Di Santo, 2024a). This
work used WRF version 4.4 (https://doi.org/10.5065/D6MK6B4K,10

Skamarock et al., 2019), which includes a built-in version of
Noah-MP 4.4.
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