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S 1. The Nutrient-Unicellular-Multicellular model 

The Nutrient-Unicellular-Multicellular (NUM) model is a modular framework comprising four separate 

modules: (i) the Generalist module for unicellular organisms, (ii) a specialized module for unicellular 

diatoms that require silica, (iii) a module for multicellular organisms, exemplified by the copepod, and (iv) 

a module for handling particulate organic matter (POM). The NUM model utilizes dissolved organic carbon 

(DOC) and a non-specific nutrient (N). Silica is included when the diatom module is employed. 

 

In this article, we describe and evaluate the Generalist (i) and POM (iv) modules of the NUM model. The 

model formulations are based on Andersen and Visser (2023), who provide an in-depth explanation of the 

underlying motivations, which we will not reiterate here. We highly recommend interested readers refer to 

their comprehensive explanation. 

 

The following sections detail the formulations for the unicellular generalist, nutrient, and DOC 

interactions, along with the POM module and the water-column implementation within the NUM 

framework. All parameters and units are listed in Table 1 of the main text.  
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S 1.1. Generalists 

The unicellular module of the NUM model is described as a series of N unicellular organisms differing only 

in their size. The size classes are logarithmic distributed with geometric mean mass 𝑚𝑚𝑖𝑖  for size group i. The 

energy growth rate (day-1) of the generalist biomass 𝐵𝐵 in size group 𝑖𝑖 is described by the following equation: 

 

𝑑𝑑𝐵𝐵𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑔𝑔(𝑚𝑚𝑖𝑖)𝐵𝐵𝑖𝑖 − 𝜇𝜇(𝑚𝑚𝑖𝑖)𝐵𝐵𝑖𝑖 , (1) 

 

In this equation, 𝑔𝑔(𝑚𝑚𝑖𝑖) represents the synthesis rate of carbon and nitrogen (day-1), and 𝜇𝜇(𝑚𝑚𝑖𝑖) represents 

the total mortality losses (day-1). The specific forms of 𝑔𝑔(𝑚𝑚𝑖𝑖) and 𝜇𝜇(𝑚𝑚𝑖𝑖) are detailed below. 

 

S 1.1.1. Synthesis rate, 𝒈𝒈(𝒎𝒎𝒊𝒊) 

The synthesis rate 𝑔𝑔 of size group i is described by a type II functional response (Holling, 1959):  

𝑔𝑔(𝑚𝑚𝑖𝑖) = 𝑗𝑗max.i
𝐽𝐽net.𝑖𝑖

𝐽𝐽net.𝑖𝑖 + 𝐽𝐽max.𝑖𝑖
, (2) 

Here, the maximum synthesis rate 𝑗𝑗max is given by: 

𝑗𝑗max.𝑖𝑖 = 𝛼𝛼max(1 − 𝜈𝜈)𝑚𝑚𝑖𝑖𝜓𝜓, (3) 

where 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum synthesis coefficient (day-1) and 𝜈𝜈 is the fraction of the cell used by cell 

membrane and wall, defined as 𝜈𝜈 = 3(𝛿𝛿/𝑟𝑟) with 𝛿𝛿 being the thickness of the cell wall in nm.  𝜓𝜓 represents 

the temperature adjustment factor with a Q10 value of 2 (Eppley, 1971).  

𝐽𝐽net.𝑖𝑖 is the minimum of the combined net uptake of carbon and nutrients from different sources, 

determined by Liebig’s law of the minimum: 

𝐽𝐽net.𝑖𝑖 = min{𝑗𝑗Cnet.𝑖𝑖 , 𝑗𝑗Nnet.𝑖𝑖} (4) 

 

The unicellular generalist can take up carbon as dissolved organic carbon (DOC) through osmotrophy 

(𝑗𝑗DOC), phototrophy (𝑗𝑗L), and phagotrophy (𝑗𝑗F), while losing carbon through respiration (𝑗𝑗R) and passive 

losses (𝑗𝑗passive) 

𝑗𝑗Cnet.𝑖𝑖 = 𝑗𝑗DOC + 𝑗𝑗L + 𝑗𝑗F − 𝑗𝑗R − 𝑗𝑗passive (5) 

 

Similarly, the net uptake of nutrients for the unicellular generalist involves diffusive uptake through 

osmotrophy (𝑗𝑗N) and phagotrophic uptake (𝑗𝑗𝐹𝐹), with losses occurring passively (𝑗𝑗passive)  

𝑗𝑗Nnet.𝑖𝑖 = 𝑗𝑗N + 𝑗𝑗𝐹𝐹 − 𝑗𝑗passive (6) 
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The uptake rates from the resources DOC (𝑗𝑗DOC.𝑖𝑖), light (𝑗𝑗L.𝑖𝑖), and nutrients (𝑗𝑗N.𝑖𝑖) depend on the mass-

specific affinity for the given resource 𝑎𝑎𝑚𝑚 (volume/day/gC), the concentration of the resource X (𝑋𝑋/volume), 

and the Carbon: X ratio 𝜌𝜌C:X (gC/gX) 

𝑗𝑗X.𝑖𝑖 = 𝑎𝑎𝑚𝑚.𝑖𝑖𝑋𝑋𝜌𝜌C:X (7) 

In the model 𝑎𝑎𝑚𝑚 take the form of 𝑎𝑎𝐷𝐷, the mass-specific affinity for the diffusive uptake of carbon and 

nutrient, 𝑎𝑎𝐿𝐿 the mass-specific affinity for carbon uptake through photosynthesis, and 𝑎𝑎𝐹𝐹  the mass-specific 

affinity for phagotrophic uptake of food. The mass-specific affinities are central to the NUM model, as they 

account for the differences among generalist organisms that vary only in size. The affinities are thoroughly 

discussed in Andersen and Visser (2023) with a comprehensive presentation of model's underlying 

principles. Here only in short, we  present the mass-specific affinity functions. 

 

The mass-specific affinity for the diffusive uptake of carbon and nutrients 𝑎𝑎D is described as:   

𝑎𝑎D = 𝛼𝛼𝐷𝐷𝑟𝑟−2
1

1 + 𝑟𝑟
𝑟𝑟𝐷𝐷∗

−2 𝜓𝜓, (8) 

where 𝛼𝛼𝐷𝐷 is the diffusive affinity coefficient, 𝑟𝑟𝐷𝐷∗ is the diffusive affinity crossover and 𝑟𝑟 is the radius of the 

cell.  

The mass-specific affinity for carbon uptake through photosynthesis 𝑎𝑎L is give as: 

𝑎𝑎L = 𝜀𝜀𝐿𝐿
𝛼𝛼𝐿𝐿
𝑟𝑟
�1 − 𝑒𝑒

− 𝑟𝑟
𝑟𝑟𝐿𝐿
∗�𝑚𝑚(1 − 𝜈𝜈), (9) 

Where 𝛼𝛼𝐿𝐿 is the light affinity coefficient, 𝑟𝑟𝐿𝐿∗ is the light affinity crossover and 𝜀𝜀𝐿𝐿 is the light uptake efficiency. 

 

The uptake rate of phagotrophy has a constant mass-specific affinity, corresponding to the phagotrophic 

clearance rate. However, the actual food consumption is limited by assimilation, and the phagotrophic 

uptake rate is thus given by: 

𝑗𝑗F = 𝜀𝜀𝐹𝐹
𝑐𝑐𝐹𝐹
𝑟𝑟

𝑎𝑎𝐹𝐹𝐹𝐹

𝑎𝑎𝐹𝐹𝐹𝐹 + 𝑐𝑐𝐹𝐹
𝑟𝑟

, (10) 

 

Where 𝑐𝑐𝐹𝐹  is the maximum phagotrophic coefficient, 𝑎𝑎𝐹𝐹  is the phagotrophic clearance rate, 𝜀𝜀𝐹𝐹  is the 

phagotrophic efficiency, and 𝐹𝐹 is the amount of available food. The available food 𝐹𝐹𝑖𝑖 is the sum of the prey 

in each size group j: 

𝐹𝐹𝑖𝑖 = �𝜑𝜑𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖
𝑖𝑖

(11) 

𝜑𝜑𝑖𝑖𝑖𝑖 is the size preference for predation. Predation occur when larger cells predate on smaller cells. This 

interaction is described as a log-normal size function that, when integrated across all size groups, has the 

detailed formulation: 
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(12) 

where 𝑠𝑠 = 2𝜎𝜎2, 𝜎𝜎 is the predator-prey width ratio, 𝛽𝛽 is the predator-prey mass ratio, 𝑧𝑧 = 𝑚𝑚𝑖𝑖
𝑚𝑚𝑗𝑗

, and 

∆= 𝑚𝑚𝑖𝑖
+/𝑚𝑚𝑖𝑖

−.  

 

In addition to these gains, 𝐽𝐽net also includes losses from respiration and passive leakages. Respiration is 

modeled as a constant fraction 𝛼𝛼𝑅𝑅 of maximum synthesis: 

𝑗𝑗𝑅𝑅 = 𝛼𝛼𝑅𝑅𝛼𝛼max𝜓𝜓 (13) 

Finally, passive leakage of nitrogen and carbon from the cell is defined as: 

𝑗𝑗passive =
𝑐𝑐passive
𝑟𝑟

𝑚𝑚, (14) 

where 𝑐𝑐passive is the passive loss coefficient.  

 

S 1.1.2. Mortality losses, 𝝁𝝁(𝒎𝒎𝒊𝒊) 

The mortality losses for the unicellular generalist 𝜇𝜇 (d-1) arise from three different processes: (i) background 

mortality (𝜇𝜇v), (ii) predation mortality from unicellular organisms (𝜇𝜇p ), and (iii) predation from higher 

trophic levels (𝜇𝜇htl): 

𝜇𝜇(𝑚𝑚𝑖𝑖) = 𝜇𝜇v.𝑖𝑖 + 𝜇𝜇p.𝑖𝑖 + 𝜇𝜇htl.𝑖𝑖 (15) 

 

The background mortality (d-1) is modelled as viral lysis, assumed to be proportional to the biomass and 

dependent on the viral lysis mortality coefficient 𝜇𝜇v0:  

𝜇𝜇v.𝑖𝑖 =
𝜇𝜇v0

log � 𝑚𝑚𝑖𝑖
+

𝑚𝑚𝑖𝑖−1
+ �

𝐵𝐵𝑖𝑖 (16)
 

 

The predation mortality represents internal phagotrophy within the unicellular module, where larger cells 

consume smaller cells. It is defined by: 

𝜇𝜇p.𝑖𝑖 =  �
𝚥𝚥�̃�𝐹.𝑖𝑖

𝜖𝜖𝐹𝐹
𝜑𝜑𝑖𝑖𝑖𝑖
𝐹𝐹𝑖𝑖
𝐵𝐵𝑖𝑖

𝑖𝑖
(17) 

Where 𝜑𝜑𝑖𝑖𝑖𝑖 is calculated as in equation (12), and 𝚥𝚥�̃�𝐹.𝑖𝑖  is the down-regulated phagotrophic uptake rate after 

leakage of surplus nutrients:  
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𝚥𝚥�̃�𝐹.𝑖𝑖 = 𝑚𝑚𝑎𝑎𝑚𝑚{0, 𝑗𝑗𝐹𝐹.𝑖𝑖 − (𝐽𝐽net.𝑖𝑖 − 𝑔𝑔𝑖𝑖)} (18) 

 

 The higher trophic level mortality is modelled as: 

𝜇𝜇htl = 𝜇𝜇htl.0
1

1 + � 𝑚𝑚𝑖𝑖
𝑚𝑚ℎ𝑡𝑡𝑙𝑙

�
−2  (19) 

  

Where 𝜇𝜇htl.0 defines the size of the higher trophic level mortality and 𝑚𝑚ℎ𝑡𝑡𝑙𝑙 defines the lower size limit of the 

higher trophic level mortality. 

S 1.2. Nutrients and DOC 

Nutrients and DOC are updated several times depending on the number of modules used. Within the 

unicellular module, nutrients and DOC are utilized by the generalist and returned into the environment 

through several processes: passive losses (𝑗𝑗passive), nutrient surplus leaking from the cell (𝑗𝑗Nliebig, 𝑗𝑗Cliebig) 

feeding losses (𝑗𝑗feeding), along with the fraction of background and higher-trophic level mortality that it not 

transferred into POM (controlled by the parameters  γ2 and γhtl).  

The nutrient dynamics is described by: 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ��
−𝑗𝑗N.𝑖𝑖 + 𝑗𝑗passive.𝑖𝑖 + 𝑗𝑗Nliebig.𝑖𝑖 + 𝑗𝑗feeding.𝑖𝑖

𝑚𝑚𝑖𝑖
+ 𝜇𝜇v.𝑖𝑖γ2+ 𝜇𝜇htlγℎ𝑡𝑡𝑙𝑙�

𝑖𝑖

𝐵𝐵𝑖𝑖 
𝜌𝜌C:N

 (20) 

The DOC dynamics are described by: 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ��
−𝑗𝑗DOC.𝑖𝑖 + 𝑗𝑗passive.𝑖𝑖 + 𝑗𝑗Cliebig.𝑖𝑖 + 𝑗𝑗feeding.𝑖𝑖γ𝐹𝐹 + 𝑗𝑗photouptake.𝑖𝑖

𝑚𝑚𝑖𝑖
+ 𝜇𝜇v.𝑖𝑖γ2�

𝑖𝑖

𝐵𝐵𝑖𝑖 (21) 

 

Here, the surplus of nutrient and carbon is calculated as: 

𝑗𝑗Nliebig.𝑖𝑖 = max{0, 𝚥𝚥Ñ.net.𝑖𝑖 − 𝑔𝑔𝑖𝑖} (22) 

 

𝑗𝑗Cliebig.𝑖𝑖 = max{0, 𝚥𝚥C̃.net.𝑖𝑖 − 𝑔𝑔𝑖𝑖} (23) 

 

The downregulated uptake of carbon and nutrients are described as: 

𝚥𝚥Ñnet.𝑖𝑖 = 𝑗𝑗N + 𝚥𝚥F̃ − 𝑗𝑗passive (24) 

𝚥𝚥C̃.net.𝑖𝑖 = 𝚥𝚥L̃.𝑖𝑖 + 𝑗𝑗DOC + 𝚥𝚥F̃ − 𝑗𝑗R − 𝑗𝑗passive (25) 

and  

𝚥𝚥L̃.𝑖𝑖 = 𝑗𝑗L − max{0, min{(𝑗𝑗C.net − (𝑗𝑗F − 𝚥𝚥F̃) − 𝑔𝑔), 𝑗𝑗L}} (26) 

 

Finally, feeding losses and photo-uptake are described as:  

𝑗𝑗feeding.𝑖𝑖 =
1 − 𝜖𝜖𝐹𝐹
𝜖𝜖𝐹𝐹

𝚥𝚥F̃.𝑖𝑖 (27) 
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𝑗𝑗photouptake.𝑖𝑖 =
1 − 𝜖𝜖𝐿𝐿
𝜖𝜖𝐿𝐿

𝚥𝚥L̃.𝑖𝑖 (28) 

 

S 1.3. POM 

The NUM model handles particulate organic matter (POM) similarly to how it manages unicellular 

organisms. POM is divided into M logarithmic size classes, each with a geometric mean mass 𝑚𝑚𝑘𝑘  for POM 

group k. The sources of POM include: (i) Mortality from higher trophic levels, (ii) feeding losses, and (iii) 

background mortality, while losses occur through remineralization and predation by larger cells. The 

assignment of background mortality to specific POM classes is described by the matrix ϑ. Viral lysis 

products are directed into the POM class closest in size to the original generalist size from which they 

originated, with a constraint preventing them from exceeding the original generalist size. The matrix ϑ 

contains 0s and 1s, indicating where the biomass from different sources is allocated within the POM size 

classes. The dynamics of POM are described by the equation: 

 

dPOM𝑘𝑘

d𝑑𝑑
= �(1 − γ2) 𝜇𝜇v.𝑖𝑖𝜃𝜃𝑘𝑘.𝑖𝑖𝐵𝐵𝑖𝑖 + �(1 − γℎ𝑡𝑡𝑙𝑙)𝜇𝜇htl∆𝑘𝑘

𝐵𝐵𝑖𝑖 
𝜌𝜌C:N

− γPOM.𝑘𝑘𝑃𝑃𝑘𝑘 − 𝜇𝜇p.𝑘𝑘𝑃𝑃𝑘𝑘
𝑖𝑖𝑖𝑖

 (29) 

 

Here, ∆𝑘𝑘= �0, 𝑘𝑘 < 𝑀𝑀
𝑚𝑚, 𝑘𝑘 = 𝑀𝑀 denotes that POM from higher-trophic level mortality is transported into the largest 

POM size class.  𝜇𝜇p.𝑘𝑘 describes feeding of large unicellular organisms on POM and is calculated as in 

equation (17). Remineralization of POM is described as 

γPOM.𝑘𝑘 = 𝑤𝑤𝑘𝑘𝑎𝑎 𝜓𝜓 (30) 

 

Where 𝑤𝑤𝑘𝑘  is the mass-specific sinking velocity described by 𝑤𝑤𝑘𝑘 = 𝑣𝑣1𝑚𝑚𝑘𝑘
𝑣𝑣2  in meters/day and 𝑎𝑎 is the 

inverse solubilization length scale with units of m-1. 

 

Nutrients are updated as POM is remineralized back into nitrogen (N) and dissolved organic carbon (DOC): 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
generalist

+ �
γPOM𝑃𝑃𝑘𝑘
𝜌𝜌C:N𝑘𝑘

 (31) 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  �
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
generalist

+ �γPOM𝑃𝑃𝑘𝑘
𝑘𝑘

 (32) 

S 1.4. Water-column routine 

The water-column dynamics (mixing and sinking) is described with a transport matrix: 

𝒖𝒖𝑡𝑡+1 = (𝑻𝑻𝑡𝑡 + 𝑺𝑺)𝒖𝒖𝑡𝑡 , (33) 

 

Where 𝒖𝒖𝒕𝒕 is the state vector at time 𝑑𝑑 comprising nutrients, biomasses, and POM state variables, 𝑻𝑻𝑡𝑡 is the 

transport matrix, and 𝑺𝑺 is the sinking matrix. The transport matrix represents vertical mixing and is 
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extracted as the implicit matrix from the global 1o transport matrix MITgcm_ECCO (Stammer et al., 2004) 

at the two study sites on a monthly basis. The sinking matrix 𝑺𝑺 represents sinking of POM as described with 

a first-order implicit down-wind scheme. The time step of transport and sinking is 0.5 days. In between 

each transport time step the ecological and biogeochemical model is integrated with a Euler scheme with 

a time step of 0.1 days. The boundary at the surface is closed for all state variables. The boundary at the 

bottom is fixed to the initial concentrations for nutrient state variables, closed for unicellular state 

variables, and open for sinking POM. 

The light availability in the water column is dependent on the light attenuation (kw and kPOM), which result 

from shading and scattering by dissolved and particulate organic matter in the water column. kw is 

calculated based on observations at CEE. We have fitted an exponential function to observed irradiance 

as function of depth using the particulate organic matter concentration for each station at each measuring 

day in the CCE-LTER program. This has resulted in a kPOM value of 3 × 10−5 (m2 mg C-1) used here. 

S 2. Inter-annual statistical variations in the dataset from CCE and Station ALOHA 

In the article we compare the model result to the mean size spectrum for California Current Ecosystem 

(CCE) and Station ALOHA in the years 2004-2011. To evaluate the model results we compare the deviations 

from the mean observations with the inter-annual variability in Root-Mean-Squared-difference (RMSdiao), 

Standard Deviation (STDiao) and Correlation coefficient (CORiao) given in Table S1. 

 

Table S2.1: The Root-Mean-Squared-difference, Standard Deviation and Correlation between annual observation 
versus mean of year 2004-2001 for CCE (RMSdiao, STDiao, and CORiao) 

CCE BT-pico BT-nano BA-pico BA-nano BA-micro 

RMSdiao 0.4 0.3 2.7 0.4 1.0 

STDiao 2 1.4 2.1 1.4 1.4 

CORiao 0.2 0.7 0 0.7 0.96 

Station ALOHA BT-pico BT-nano BA-pico BA-nano BA-micro 

RMSdiao 0.04 0.5 0.2 0.4 1.0 

STDiao 1.2 1.6 1.4 1.5 2.6 

CORiao 0.97 0.9 0.96 0.9 0.7 
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S 3. Statistics for best model solutions 

Model Root-Mean-Squared-difference (RMSdm-o), and Correlation coefficient (CORm-o) for the best model 

fit to observations.  

Table S2: The Root-Mean-Squared-difference, and Correlation between model result and mean of year 2004-2001 for 
CCE (RMSdm-o, and CORm-o) for the best parameter combinations for CCE. Compare with Table S1 for boundaries. 
Values highlighted with grey are not within the inter-annual variability of the observations.  

 

CCE 

 
simulation nr. 

BT-pico BT-nano BA-pico BA-nano BA-micro 

RMSdm-o 

RM
Sd

m
-o

 

1703 0.64 0.60 0.08 0.25 0.40 

5801 0.48 0.71 0.05 0.39 0.51 

39986 0.57 0.45 0.16 0.19 0.23 

41402 0.53 0.37 0.13 0.22 0.67 

49833 0.63 0.40 0.19 0.17 0.35 

91224 0.54 0.47 0.08 0.22 0.27 

99032 0.55 0.50 0.10 0.32 0.67 

 CORm-o 

C
O

R m
-o

 

1703 0.86 0.96 0.98 0.98 0.89 

5801 0.83 0.98 0.98 0.99 0.90 

39986 0.98 0.94 1.00 0.96 0.95 

41402 0.93 0.96 1.00 0.98 0.79 

49833 0.93 0.95 1.00 0.97 0.91 

91224 0.95 0.94 0.99 0.96 0.92 

99032 0.93 0.97 0.98 0.99 0.80 
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Table S3: The Root-Mean-Squared-difference, and Correlation between model result and mean of year 2004-2001 for 
CCE (RMSdm-o, and CORm-o) for the best parameter combinations for CCE. Compare with Table S1 for boundaries. 
Values highlighted with grey are not within the inter-annual variability of the observations.  

 

Station ALOHA 

 
simulation nr. 

BT-pico BT-nano BA-pico BA-nano BA-micro 

RMSdm-o 

RM
Sd

m
-o

 

29534 0.17 0.56 0.09 0.12 0.88 

37705 0.31 1.08 0.29 0.36 1.69 

69585 0.12 0.67 0.13 0.20 1.29 

74294 0.41 1.18 0.24 0.18 2.77 

 
CORm-o 

C
O

R m
-o

 

29534 0.97 0.97 0.99 0.99 0.78 

37705 0.98 0.90 0.97 0.95 0.72 

69585 0.96 0.96 0.97 0.99 0.71 

74294 1.00 0.95 0.98 0.99 0.81 

 

S 4. Local sensitivity analysis for CCE 

The aim of the local sensitivity assessment is to evaluate each parameter’s effect on the model result. The 

range of each free parameter is based on the range defined by the solutions with optimal fit (Fig. 6). Several 

of the parameters result in a threshold sensitivity (systems bifurcation point) where the model solution 

changes abruptly. We note as an example the threshold sensitivity related to the phagotrophic assimilation 

rate (εF), where there is an abrupt increase in microplankton at εF ~0.25 (Fig. S1a). εF has a highly non-linier 

effect on the ecosystem expressed in terms of light harvesting and food consumption (Fig. S1b,c). As εF 

decrease, the bifurcation in the ecosystem is associated with an abrupt reduction of food consumption in 

the lower half of the phytoplankton mass (size) spectrum, resulting in lower overall biomass, a reduction 

of light harvesting as a result of more unassimilated food is shunted into DOC and shading. While being 

extremely interesting, the detailed analysis of such bifurcation points is beyond the current scope and 

remains a prospect for future analyses.  
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Figure S1: Model threshold sensitivity related to the phagotrophic assimilation rate (εF) with an abrupt decrease in 
microplankton as εF decrease below ~0.25 (a). Note how this bifurcation point behavior is associated with light 
harvesting (b); light harvesting initially decreases for nearly all cell mass as εF decrease, but suddenly at ~0.25 results 
in a significant reduction mainly in the lower half of the mass range. Phagotrophic food consumption also suddenly 
decreases at ~0.25 (c). Model parameter combination is Test 41402, with local sensitivity plot shown in Fig. S2 

 

Overall, the random sampling of the restricted parameter span, as well as local sensitivity study show that 

most parameters are highly coupled in term of ecosystem sensitivity, where the effect of individual 

parameters are intertwined and result in a highly non-linier system. An illustration of this non-linearity can 

be seen by comparing the local sensitivity of two of our nine optimal fits. The two sets of local sensitivity 

analyses result in very different estimates of the parameter sensitivity (Fig. S2). One model, with its initial 

optimal parameter set, yielded nearly equally sensitive to almost all parameters with only aF, σ and mHTL 

standing out in RMSd (Fig. S2a). In contrast, εF is the absolute most important parameter in the other model 

(Fig. S2b). 



11 of 16 
 

 
Figure S2: Local sensitivity, for two optimal model results, where only one parameter is varied at the time. The variation 
is within the restricted parameter span based on the parameter range for the nine statistically optimal parameter 
combinations for CCE. Note how model test 85751 is sensitive to change in most parameters (a) whereas model test 
41402 (b) is strongly sensitive to εF. Abbreviations as in Fig. 2 and parameters in Table 1. 

S 5. Setting up Sobol’s sensitivity assessment simulations and calculating 
sensitivity index 

The following is a “dummy” script for setting up a Sobols Sensitivity Analysis and calculating the Sobols 

sensitivity index. 
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Step 1: Run the model with three sets of parameters: 

% a. "Original": 20,000 simulations with predefined Latin Hypercube Sampling of random parameters in a 

23-parameter space. 

% b. "Set 1": 460,000 simulations. For each of the 20,000 original simulations, run 23 simulations where 

each parameter is held at its "original" value while changing all other parameters within the same 

parameter space as the original collection. 

% c. "Set 2": 460,000 simulations where each parameter is varied individually while the other parameters 

are held constant at their "original" values. 

 

Step 2: Sorting data: 

% a. The result of simulations in 1a becomes a column vector from 1 to 20,000, called "y0." 

% b. The result of simulations in 1b becomes a matrix that is 23 times 20,000 in size, where row 1 

corresponds to simulations where parameter 1 is held at its "original" value while all others are varied (and 

so on for all 23 rows/parameters). This matrix is called "y1." 

% c. The result of simulations in 1c becomes a matrix that is 23 times 20,000 in size, where row 1 

corresponds to simulations where only parameter 1 is varied while others are held at their "original" values 

(and so on for all 23 rows/parameters). This matrix is called "y2." 

 

Step 3: Calculate f0 and D using the formula: 

f0 = sum(y0)/20000; 

D = sum(y0.^2)/20000; 

D = D - f0.^2; 

 

Step 4: Calculate Di and Di_tot using the formula: 

Di = ones(23, 1) * D; 

Ditot = zeros(23, 1); 

for i = 1:20000 

    for j = 1:23 

        Di(j) = Di(j) - (y0(i) - y1(j, i)).^2 / (2 * 20000); 

        Ditot(j) = Ditot(j) + (y0(i) - y2(j, i)).^2 / (2 * 20000); 

    end 

end 

Step 5: Calculate the First-order (S1) and Total (St) effect sensitivity indices: 

S1 = Di./D; 

St = Ditot./D; 
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S 6. Checking stability of Total Sobol’s sensitivity index 

To test if 20,000 random simulations is enough to assess the Sobol’s Total index (STi) we evaluated the 

evolution of STi as a function of the number of simulations. Fig. S3 show that the STi for Root-Mean-Square 

difference (RMSd) for ACpico is stable for most of the parameters after approximately 7,000 random 

simulations. 

  
Figure S3: Sobol’s Total index (STi) calculated on RMSd for ACpico as a function of the number of simulations, for each 
of the 23 parameters. Most of the parameters show large variations with few simulations but the STi values are stable 
above approximately 7,000 simulations.  

 

The manuscript includes the global parameter sensitivity ranked based on sensitivity index calculated for 

RMSd but not correlation which is added in Fig. S4. The result for correlations supports the result for RMSd 

showing a model sensitivity towards predation and synthesis.  
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Figure S4: Global parameter sensitivity ranked based on sensitivity index calculated by Sobol’s variance-based 
sensitivity method for non-linear models for RMSd and Correlation. Note how all biomass sizes are especially sensitive 
to parameters controlling predation (red dots) and synthesis (grey dots). Parameter definitions in Table 1 and other 
abbreviations in Fig. 2. 

S 7. Random Parameters study for Station ALOHA 

The first order parameter sensitivity study was done for both CCE and Station ALOHA. Figure S5 below 

show the result for Station ALOHA. The figure shows how many of the model simulations underestimate 

pico- and nanoplankton at low ACbio while overestimate at higher ACbio. The simulations generally 

overestimate the microautotrophic biomass. This pattern is very similar to the pattern for the 100,000 

simulations for the first-order sensitivity analysis at CCE (compare to Fig. 5 in text). 
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Figure S5: Model mean and total biomass of size groups as a function of total biomass for the 100,000 random 
parameter combinations for Station ALOHA. Black dots are observations in ACbio bins. Abbreviations as Fig. 2.  
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