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Abstract 15 

Trait-based models founded on biophysical principles are becoming popular in planktonic ecological modeling, and 

justifiably so. They allow for slim, efficient models with a significant reduction in parameters, well suited for modeling the 

past and future climate changes. In their simplest idealized form, trait-based models describe the ecosystem in one set of 

parameters defined by first principles, rooted in physics, chemistry, geometry, and evolution. The result is an emerging 

ecosystem defined by physical and chemical limitations at the cell level. At present, however, a significant part of these 20 

parameters is not fully constrained, which potentially introduces a considerableconsiderable uncertainty to the model results. 

Here, we investigate how these parameters influence the ecosystem structure of one of the simplest trait-based models, the 

Nutrient-Unicellular-Multicellular (NUM) model. We describe the unicellular module of the NUM model and through an 

extensive parameter sensitivity analysis, we demonstrate that the model - with a large span in parameters – can capture the 

general features of the pico-, nano-, and micro planktonic ecosystem at in the southern California Currenta high-productivity 25 

upwelling system. We show demonstrate that it is possible to narrow the range of parameters to get a stable, acceptable, 

solution. Finally, the we show thatmodel  the model responds correctly in an oligotrophic downwelling system using 

parameters fitted to the upwelling systemto a change in oceanographic setting.  

Our analysis demonstrates that the unicellular module of the NUM model is broadly accessible for the general non-expert 

without detailed intimate knowledge of the parameter settings, and that the first-principal approach is well suited for 30 

modeling poorly resolved region and ecosystem evolution during current and deep time climate change. 
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1 Introduction 

Trait-based models are becoming an important tool for understanding the spatial and temporal pattern in planktonic 

ecosystem structure (e.g. Follows et al., 2007; Dutkiewicz et al., 2021; Ward et al., 2019; Eckford-Soper et al., 2022). 35 

Rooted in first principles of biophysics and biochemistry, trait-based models alleviate many of the caveats that confine 

traditional functional planktonic ecosystem models: they allow for large-scale ocean domains without the need for adding 

increased complexity; they reduce the amount of parameter tuning; and they allow for modeling evolution in the past and 

future, under climate change where ecosystems are different from the ones we know today (Reinhard et al., 2020; Sauterey et 

al., 2017; Wilson et al., 2018; Archibald et al., 2022). 40 

There isare a variety of approaches to trait-based modeling. For most of the trait-based planktonic ecosystem models, size 

is used as a master trait, as it scales with many of the cells processes and rates (Ward et al., 2019; Sauterey et al., 2015; 

Andersen et al., 2015). One particularly simple size-based plankton model is the Nutrient-Unicellular-Multicellular (NUM) 

model (Andersen and Visser, 2023; Serra-Pompei et al., 2020; Serra-Pompei et al., 2022). The NUM model is founded in the 

biophysical and chemical processes of the cell, scaled up to community level (Fig. 1). With the cell processes at the center, 45 

the result is a simple and fast model where size-spectrum and rates of photosynthesis, as well as uptakes of nutrients, 

dissolved organic carbon (DOC) and food (phagotrophy), emerges from the specific physical conditions of the 

oceanographic conditions (Andersen and Visser, 2023; Serra-Pompei et al., 2020). 

Despite the simplicity of the NUM model, it - like any other model – relies ofon a set of parameters (Table 1). In principle, 

these parameters are universal and common for all organisms; however, they are not all well established. Some parameters 50 

are well defined by cell physiology, e.g., the maximum diffusive nutrient affinity coefficient (αD) that is limited by cell 

surface area, but many have a range of uncertainty that emerges from natural cell variability or from a limited understanding 

of the parameter. As with any model, the output of the NUM model reflects the parameter choices. It is still, however, 

unclear how much the parameters influence the result, how much tuning the model reacquire and how well the model 

transfers between sites with the current parameter uncertainty.  55 

In this article we describe the unicellular module of the NUM model and evaluate the model’s ability to capture well-

established key ecosystem descriptors, its robustness, geographical transferability, and the relative importance of the 

underlying parameters. Specifically, we start by evaluating the model’s ability to capture the size structure of the planktonic 

biomass at the California Current Ecosystem (CCE) (California-Current-Ecosystem-Lter and Landry, 2019; Taylor and 

Landry, 2018), using default model parameters. Hereafter we address the parameters,evaluate how the their parameter 60 

uncertaintydistributions effects the result, and how much sensitivity they add to the model sensitivity. We conclude by 

applying the identified optimal parameter values for the CCE in a test of the model’s geographical transferability to the 

ALOHA station north of Oahu, Hawaii (Pasulka et al., 2013; Taylor and Landry, 2018). 
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 65 

Figure 1: Schematic of the unicellular module of the Nutrient-Unicellular-Multicellular (NUM) model. The unicellular organisms 
are here represented by 7 size-classes of organisms that can all get their nutrients and carbon from osmo-, photo- and 
phagotrophy. The uptake rates depend on the biophysics of the cell and the environmental availability of dissolved organic carbon 
(DOC), nutrient (N), light and food availability (smaller cells). Higher trophic levels are here parameterized as feeding on a 
specific size range of cells. Exudation, viral lysis, assimilation losses, and higher trophic level losses replenish the nutrients and 70 
carbon. Losses from sloppy feeding by phagotrophy and higher trophic level are re-introduced as particulate organic matter 
(POM) that sinks down through the water column and is remineralized into DOC and N. The model formulations are listed in 
Supplement S1.   

 

 75 

 

 



4 
 

 

Table 1: Parameters used in this study. Reference values are based on arguments from Andersen and Visser (2023) and standard 
values used in the NUM model setup. 80 

Parameter 

 

Unit 
reference 

value 

Parameter range 
Parameter 
confidence4 min Max 

carbon density ρ µgC µm-3 0.410-6 0.310-6 0.510-6 1 

C:N mass ratio ρC:N gC gN-1 5.68 2.7 8.7 1 

Cell rate parameters  

Diffusive affinity coefficient αD l µm2 d-1 (µgC)-1 0.972 0.75 1.3 1 

Diffusive affinity crossover r*D µm 0.4 0.1 5 1 

Light affinity coefficient αL (d µmol m-2 s-1)-1 µm 0.3 0.05 1.5 2 

Light affinity crossover r*L µm 7.5 2.5 20 2 

Light uptake efficiency εL unitless 0.8 0.1 0.9 2 

Clearance rate aF l d-1 µgC-1 1.810-2 8.2310-4 0.4455 2 
Max. phagotrophic coefficient cF µm d-1 30 10 50 3 

Assimilation efficiency εF unitless 0.8 0.1 0.9 1 

Passive losses coefficient cpassive unitless 0.03 0.01 0.1 2 

Maximum synthesis coef. αmax d-1 1.5 0.1 2.1 2 

Basal metabolism coef. αR unitless 0.1 0.045 0.22 2 

Prey encounter  
predator-prey mass ratio β unitless 500 300 700 2 
predator-prey width σ unitless 1.3 0.9 1.7 2 

community model parameter  
DOC remineralization remin. of 
feeding γF unitless 

0.1 0.1 0.9 
3 

DOC remineralization remin. of 
viral lysis γ2 unitless 

0.5 0.1 0.9 
3 

Viral lysis mort. coefficient µv0 unitless 4.010-3 4.010-4 4.010-2 3 

Size of HTL mortality1 mHTL µgC 0.1 0.001 0.1 2 

HTL mortality coefficient µhtl d-1 0.1 1.010-2 0.25 3 

Particulate organic matter (POM)  

POM sinking coefficient32 v1 m d-1 400100 1 200 2 

Inverse solubilization length scale2 a m-1 0.004 0.002 0.006 2 

Fraction of HTL mort. to POM γHTL unitless 0.5 0.1 0.9 2 

Fixed parameters  

Membrane thickness δ nm 50    2 

Light attenuation by water kw m-1 0.05    2 

Light attenuation by POM3 kPOM m2 mg C-1 310-5- 310-5 310-5 2 

POM sinking exponent3 v2 md-1 0.5130.2 0.2 0.2 2 
1The size of HTL mortality is between 100 and 10000 times smaller than the largest cell size. 

2Fennel et al. (2001)   



5 
 

3POM was not included in previous versions of the NUM model and the parameters written in the reference value signify the 

values used in the initial evaluation of the model. Based on arguments in supplement S1, a kPOM value of 310-5 m2 mg C-1 is 

used for all simulations in this article. The choice in POM sinking coefficient and exponent result in a sinking speed of 0.01-85 

3 m day-1 for the smallest POM size classes and 1-200 m day-1 for the largest, using the formulation for POM sinking in 

supplement S1.  
4Qualitative parameter uncertainty ranging between 1 (low) and 3 (high) cf. Andersen and Visser (2023). Parameter 

uncertainty stem from limited understanding of processes and/or empirical evidence. 

 90 

 

 

2 Model description 

2.1 The Nutrient-Unicellular-Multicellular model framework  

The NUM model is built on an additive model framework that relies on formulations of the fundamental properties of the 95 

organism (Andersen and Visser, 2023; Serra-Pompei et al., 2020; Serra-Pompei et al., 2022). The NUM model initially 

included copepods and protists as the unicellular and multicellular components of the model, along with nutrient (N) and 

fecal pellets (Serra-Pompei et al., 2020). Serra-Pompei et al. (2020) implemented the model in MATLAB with a chemostat 

setup. Later, Serra-Pompei et al. (2022) coupled the NUM model to a transport matrix, enabling both water column and 

global simulations. In aA major update of the NUM model that resulted in the current version, where the core NUM model 100 

was translated from MATLAB to FORTRAN95. The model can be run directly from FORTRAN but can also be initialized 

from MATLAB and from R, which opens the model to users without FORTRAN experience. In this update, the NUM 

framework was extended to include a DOC module and a particulate organic carbon (POM) module.  

 The NUM model can be used in three different setups; It can be used in a global simulation where the NUM model is 

coupled to a transport matrix that provide advection, diffusion, and temperature for the simulation (Khatiwala, 2007); It can 105 

be used in a chemostat setup with a constant mixing rate and deep nutrient concentration; and finally, as we do here, it can be 

used in a water column simulation where temperature and diffusion at single location is extracted from the transport matrix. 

Here, we describe and evaluate the unicellular organisms and the particulate matter, and we will therefore limit the 

description of the NUM framework to these parts. The model formulations are provided in Supplement S1. Section 2.2 

describes the unicellular module and parameters while section 2.3 describes the new simple DOC and POM modules and the 110 

associated parameters.  
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2.2 The unicellular module  

The backbone of the NUM is the unicellular module that comprisecomprises the classic functional groups of 

phytoplankton, osmotrophic bacteria, and zooplankton. While unicellular organisms span many orders of magnitude in size, 

across all types of trophic strategies (feeding mechanisms), they are all described with one set of parameters in the 115 

unicellular subroutine of NUM. Here, the cell may be visualized as one type of organism – we refer to as a generalist - that is 

essentially a mixotroph in the sense that it is able to perform osmotrophy (diffusive uptake of DOC), photosynthesis and 

phagotrophy (food consumption) to gain nutrient and carbon. The generalist can utilize all three trophic strategies at the 

same time. However, the yield from each of these strategies depends on the size of the generalist and on the surrounding 

environmental conditions (light level, nutrient and dissolved organic carbon concentration, food, etc.). The model contains 120 

several of these generalists with the only difference being the size of the organism, defined in logarithmic size-bins of mass, 

m. The output of the generalist subroutine is the biomass of each of the generalist size bins and the associated rates of 

phototrophy (Jauto), osmotrophy (Josmo) and phagotrophy (Jphag). This approach makes the unicellular module especially well 

adapted to handle mixotrophic organisms. In the following subsections, we will go through the most important processes 

controlling the generalist growth and, size structure and the formation of particulate organic matter (POM). The aim of this 125 

section is to give the reader an understanding of the mechanisms that control the organism and a sense of the parameters that 

are evaluated in this study. The important parameters are highlighted in bold in the text below. The following sections 

summarize the more detailed description of the model given in Serra-Pompei et al. (2020) and Andersen and Visser (2023).   

2.2.1 Resource uptake 

The organism’s affinity for (meaning its ability to take up) dissolved organic matter and nutrients (aD), light (aL) and for 130 

food phagotrophy (aF) is dependent on its size. The affinities for uptake of these resources are determined by the encounter 

rate (how much resource the generalist is in contact with) and the assimilation rate (how fast it can take up the resource it 

encounters).  

The affinity for diffusive uptake of nutrients and dissolved organic carbon (DOC) is modeled as a crossover between two 

size regimes: large and small organism size. For large organisms, the limiting factor is the rate of diffusion towards the outer 135 

cell membrane. In contrast for smaller organisms, it is the numbers of cell porter channels that transport the resource across 

the cell membrane (Eq. (1), all equations referred to are listed in Table 2). The parameter r*
D determines the organism size 

where the crossover between the two regimes occuroccurs, and the diffusive affinity coefficient, αD, defines the upper limit 

of the diffusive encounter.  

The affinity for uptake of carbon through photosynthesis, aL, is also modeled as a crossover between two regimes (Eq. (2)). 140 

For small organisms aL is dependent on the organism’s mass, while for larger organisms, where light harvesting complexes 

create internal shading, aL is dependent on the cell surface area. The parameter r*
L determines the crossover size between the 

two regimes. The parameter αL is defined as 𝛼𝐿 = 3𝑦/(4𝜌), where y is the quantum-yield (describing the efficiency of the 
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process relative to the available photons) and ρ is the carbon density of the individual cell (cf. Andersen and Visser, 2023). 

The light uptake efficiency (εL) is a fraction that defines how efficient the organism is at utilizing the available light.  145 

Phagotrophy is modelled as a hyperbolic curve where an increase in the amount of prey ingested increase with the prey 

density, until saturation of prey ingestion occurs. Such ecological type-II functional response has a constant affinity (the 

clearance rate, aF) and a maximum assimilated phagotrophic uptake that is dependent on the assimilation efficiency (εF) and 

the maximum phagotrophic coefficient (cF) (Eq. (3)).  

2.2.2 Synthesis, respiration, and losses 150 

The generalist might be able to take up more nutrient and carbon than it is able to synthesize. The rate of biosynthesis is 

controlled by the maximum synthesis coefficient (αmax, Eq. (4)). Nutrients and carbon in excess leaks out of the cell. Beside 

the resource uptake, the organism passively leaks carbon and nutrients through the cell membrane. This process is modeled 

as a constant, cpassive, divided by the radius of the organism (Eq. (5)). Finally, the organism’s respiration rate is modeled as a 

fraction of the maximum synthesis coefficient (Eq. (6)). This is called the basal metabolism coefficient, αR. 155 

2.2.3 Prey-predator interactions 

The generalist is potential prey for two groups: other larger generalists and predators from higher trophic levels. The 

generalist’s internal prey-predator relationship is based on the two parameters, β and σ (Eq. (7)). Β defines the mean mass 

ratio between the prey and the predator. The parameter σ defines the wideness of the preferred size range that a predator prey 

on. The mortality from higher trophic levels is likewise defined by two parameters: mHTL, that defines the lower limit 160 

(expressed as mass) of organisms that are preyed upon by higher trophic levels, and the higher trophic level mortality 

coefficient, µHTL, that defines the rate of predation by higher trophic levels. 

 Lastly, the generalists undergo viral lysis. The rate is controlled by the parameter  𝝁𝒗𝟎 and dependent on the logarithmic 

size bin length (Eq. (8)) 

 165 

2.2.43 Remineralization Dissolved organic carbon and particulate organic matter 

This version of the NUM Andersen and Visser (2023)incorporates both dissolved and particulate matter in a simplified 

approach (Fig. 1). Dissolved nutrients, both inorganic and organic N containing, are modelled as one dissolved N pool, while 

dissolved organic carbon (DOC) is modelled separately. The particulate matter (POM) contains both C and N in a fixed 

ratio. Dead cells, feeding losses, and higher trophic level mortality produce both particulate organic matter (POM) and 170 

dissolved constituents (DOC and N). Note, that the choice of pooling inorganic and organic N in a single pool means that the 

microbial consumption/remineralization of N is not explicitly resolved as dependent on osmotrophy. In contrast, 

consumption of DOC as an energy source for heterotrophic osmotrophy is explicitly modelled as presented above (section 

2.2.1). The pool of DOC in this model represents “labile” DOC. The division between the particular and dissolved fractions 
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are determined by the 𝛾 parameters (γ2, γF and γHTL), which describe how much of each flux (mortality, feeding losses, and 175 

higher trophic level mortality) are routed to the dissolved fractions, with the remaining losses transferred to POM. Particulate 

organic matter is here divided into two different size fractions (a number that can readily be increased in future applications). 

POM derived from dead cells and feeding losses is transferred to the largest POM size fraction, which is smaller than the 

size of the original cell. POM from higher trophic level mortality is transferred into the largest POM size fraction. POM 

sinks with a size-dependent velocity, Particulate organic matter (POM) and dissolved organic carbon (DOC) are a product of 180 

cell mortality, feeding losses and higher trophic level mortality. Three parameters determine how much of the cell mortality 

(γ2), feeding losses (γF) and higher trophic level mortality (γHTL) are converted to nutrients and carbon. γ2, γF and γHTL can 

vary between 0 and 1, with the remaining losses transferred into particulate organic matter. The sinking velocity of POM is 

dependent on the size of particle, and it is described as a power function with the parameters v1 and exponent v2 (Eq. (9)). 

POM is assumed to remineralize directlyRemineralization of detritus  to the dissolved N and DOC pools. This process of 185 

remineralization is not explicitly microbial cell related in the model but occurs at a constant rate determined by the inverse of 

the solubilization length scale is modeled as a constant rate(a) as 𝑟𝑒𝑚 = 𝑎𝑤., 𝜸
𝑃𝑂𝑀

.  The model formulation of 

nutrient, along with DOC and POM modules are given in Supplement S1. 

 

 190 
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Table 2: Equations used for the unicellular submodule. Full model description is given in Supplement S1. 205 
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Affinity for nutrients and dissolved organic matter. 
 

𝑎 = 𝛼𝑟ିଶ
1

1 + (
𝑟
𝑟

∗)ିଶ
𝑚 

 

Eq.1 

Affinity for carbon uptake through photons 𝑎 =
𝛼

𝑟
(1 − 𝑒

ି


ಽ
∗
)(1 − 𝜈)𝑚 Eq.2 

Rate of phagotrophy 𝐽ி = 𝜖ி𝑐ி𝑟ିଵ
𝑎ி𝐹

𝑎ி𝐹 + 𝑐ி/𝑟
𝑚 Eq.3 

Maximum biosynthesis rate 𝐽௫ = 𝛼௫(1 − 𝜈)𝑚 Eq.4 

Passive losses 𝑗௦௦௩ = 𝑐௦௦௩𝑟ିଵ Eq.5 

Respiration rate 𝐽ோ = 𝛼ோ𝛼௫𝑚 Eq.6 

Size preference for predation 𝜑 = exp ൦−

𝑙𝑛ଶ(
𝑚

𝛽𝑚௬
)

2𝜎ଶ
൪ Eq.7 

Viral lysis1 𝜇௩ =
𝜇௩

log (
𝑚ା

𝑚ି)
 Eq.8 

Sinking of particulate organic matter 
𝑤ைெ = 𝑣ଵ𝑚௩ଶ 

 Eq.9 

1m+ and m- is mass of the upper and lower limit of the size bin 

3 Modelling approach  

In this article, we are using the water-column setup of the NUM model to simulate the conditions at the southern California 

Current Ecosystem (CCE) and Station ALOHA. We initially perform a general validation of the model with default 

parameters against the mean biomass size spectrum and nutrient profile for the two locations. The subsequent analysis is 210 

aimed at understanding the model’s performance, robustness, transferability, and parameter sensitivity.  

The investigation has two levels: an overall broad random parameter evaluation followed by three more detailed statistical 

sub-analyses.  

 The first-level parameter study is comprised of 100,000 simulations with quasi-random input parameters in the range 

defined in Table 1. Of the 23 free parameters, several are assigned a span of several orders of magnitude, which is 215 

computationally demanding but enables a genuine investigation of the solution space and variability for the model. We use 

Latin hypercube sampling scheme for all 23 parameters to ensure an even spread in the entire parameter space (Mckay et al., 

1979; Stein, 1987) and evaluate the model performance by comparing the results with observations, using a set of statistical 
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matrices that will be described below. We moreover use this first-level parameter study and evaluation to identify optimized 

parameter combinations that result in good model fit to CCE observations. These optimized parameter combinations define a 220 

restricted parameter spans that permit us to make three additional statistical subanalysis for CCE. The first subanalysis is a 

set of 10,000 simulations where input parameters are quasi-randomly sampled with the Latin hypercube sampling scheme 

within the restricted parameter spans. This subanalysis allow us to determine if only very specific combination of parameter 

results in good model fit or if how much model performance is increased by simply reducing the parameter span. The second 

subanalysis is a set of local sensitivity analyses where the model’s sensitivity toward each of the parameters is evaluated 225 

separately with outset in an initial specific parameter combination (Zhou and Lin, 2008). The local sensitivity analysis is 

made with outset in the initial parameter combinations that performs outset in the seven best parameter combinations for 

CCE., where eEach of the parameters are successively varied in 50 evenly distributed intervals within the restricted 

parameter span. This subanalysis showed that several of the parameters results in systems bifurcation points where the 

model solution changes abruptly. While being extremely interesting, the detailed analysis of such bifurcation points is 230 

beyond the current scope and remains a prospect for future analyses. The subanalysis also showed that most parameters are 

highly coupled in term of ecosystem sensitivity, where the effect of individual parameters are intertwined and result in a 

highly non-linier system. The sensitivity analysis with a specific parameter outset yielded nearly equally sensitive to almost 

all parameters whereas with a different parameter outset, εF was the absolute most important parameter. Because of these 

highly non-linier parameter interactions, local sensitivity studies give little added information about the model performance. 235 

We have added two of these seven tests in Supplement S4. The third subanalysis is a global variance-based sensitivity 

analysis using Sobol’s method and sensitivity index (Bilal, 2014; Sobol, 1993, 2001). The global variance-based sensitivity 

analysis not only accounts for the effect of each individual parameter on the modeled result (the first-order effect) but also 

more interestingly, the effects of the parameter through its interactions with other parameters (total effect) (Bilal, 2014; Zhou 

and Lin, 2008). The global sensitivity analysis is made following Bilal (2014), as a set of 20,000 simulations with parameter 240 

combinations based on random sampling of the restricted parameter spans. Then, for each of the 20,000 simulations we step 

through the parameters and perform two simulations: (1) the parameter in question is kept at its value while the other 22 

parameter are selected quasi-randomly within the restricted parameter span, and (2) the parameter in question is randomly 

selected in the parameter span while all other parameters are kept at their values (Bilal, 2014; Sobol, 2001). A step-by-step 

description for the process for setting up the global sensitivity analysis is included in Supplement S5.  245 

The model evaluation and statistical test against the CEE permit us to identify seven optimized parameter combinations 

that result in a good model fit to observations for the CCE. We then finally evaluate how the model performs within the 

restricted parameter spans at Station ALOHA that, with is different physical and chemical conditions, represent an 

oligotrophic downwelling system. These results are evaluated against a first-level parameter study at ALOHA with 100,000 

quasi-random parameter combinations.  250 
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3.1 Observational data 

Compilations of the composition of phytoplanktonic communities have illuminated some systematic trend in the size 

distribution of planktonic organisms as a function of chlorophyll and autotrophic biomass concentration (ACbio) (Taylor and 

Landry, 2018; Maranon et al., 2012; Ward et al., 2014). Analyses across various provinces in the Atlantic and in the North 

Pacific broadly reveal that, when chlorophyll a (Chl-a) or primary production is low, ~40% of the biomass is dominated by 255 

picophytoplankton (0.22 µm), irrespective of temperature. As Chl-a increases, microphytoplankton (>20 µm) increase in 

biomass and dominate when Chl-a is high. Nanophytoplankton (220 µm) is intermediate between pico- and 

microphytoplankton at both low and high Chl-a. Similar trends are present at sub-regional or local scale in detailed work that 

is described below (Taylor and Landry, 2018; Taylor et al., 2015; Goericke, 2011)  (Fig. 2). Because of the apparent 

pervasiveness of these trends and characteristic of the planktonic community in marine ecosystems, size structure represents 260 

an excellent test for the model’s adaptability across oceanographic regimes.  
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 265 

Figure 2: Observed plankton biomass as function total autotrophic biomass (ACbio). (a, ,b) Mean biomass of pico- (< 2 µm, BA-pico), 
nano- (2-20 µm, BA-nano) and microautotrophs (> 20 µm, BA-micro) at (a) California current ecosystem (CCE) with upwelling, (b) 
Hawaii ocean time series (HOT) with downwelling conditions. Data are compiled from 0-200 m depth from 2004 to 2011 and has 
been binned in logarithmically distributed bins. (c, d) Number of observations per bin at respective sites. (e, f) Total picoplankton 
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(BT-pico) and nanoplankton (BT-nano) biomass, respectively at CCE and HOT, is the sum of autotrophic and heterotrophic biomass. 270 
DData and binning method from Taylor and Landry (2018) and references in text. Note that CEE relative to HOT is more 
eutrophic reflected by more data in higher ACbio bins (c vs. d).   

Here, we compare the model result to size-spectrum data gathered from the southern California Current Ecosystem (CCE) 

as a part of the California Current Ecosystem Long Term Ecological Research (CCE-LTER) and from Station ALOHA, the 

long-term Hawaii Ocean Time series (HOT) (Taylor and Landry, 2018; Pasulka et al., 2013; California-Current-Ecosystem-275 

Lter and Landry, 2019) (Fig. 2). These two sites reflect distinctly different oceanographic regimes: coastal upwelling with 

eutrophic conditions at CCE and downwelling oligotrophic open-ocean waters at Station ALOHA. Both sites have been 

sampled for epifluorescence microscopy and flow cytometry regularly in the years 2004 to 2011, resulting in large datasets 

of biomass abundance, size structure and planktonic composition. The phytoplanktonic size structure of the two sites show 

many of the same features as the large-scale compilations of planktonic size distribution: Pico- and nano- autotrophic 280 

organisms dominate the size spectrum at low autotrophic carbon biomass (ACbio) where the concentrations of 

microautotrophic organisms are very low (Fig. 2a, b) (Taylor and Landry, 2018; Maranon et al., 2012; Ward et al., 2014). 

The concentration of all three size classes increases with increasing ACbio, however, the autotrophic microplankton 

concentration increases faster than the smaller size groups and become dominant at intermediate levels of ACbio 

(approximately 20 µgCl-1). Microautotrophic plankton continue to increase in a power law fashion for both observational 285 

datasets. In contrast, the pico- and nanoautotrophs increase as a function of ACbio is different at the two sites. The CCE-

LTER dataset followfollows the global tendency of a continued increase in nano-autotrophs while the pico-autotrophs 

decrease toward high ACbio. The HOT observations show a steadier concentration for both pico- and nanoautotrophs across 

ACbio concentrations, but with a small decrease in nanoautotrophs at high ACbio. OverallWhile, the two sites show many of 

the same features , but we note that high autotrophic biomass concentrations are much more frequently observed at CCE than 290 

at Station ALOHA (Fig. 2, c-d). However, it is only in approximately two percent of the observations from the CCE-LTER 

dataset that autotrophic biomass has been measured as high as 100 µgC/l. At Station ALOHA, only four percent of the 

observations has autotrophic biomass concentrations of 30 µgC/l. 

As explained above, the unicellular subroutine of the NUM framework calculates the rate of nutrient and carbon uptake 

Jauto, Josmo, and Jphago for each generalist size bin, while the specific trophic strategy is not explicitly calculated. The 295 

observations of autotrophic organisms in the CCE-LTER and HOT datasets are on the other hand based on the presence of 

chlorophyll-a in epiflourescenceepifluorescence microscopy as well as on DNA and photosynthetic pigments in flow 

cytometry. In these types of analysis, an organism is either classified as autotroph or heterotroph with no room for 

distinguishing degrees of mixotrophy. It therefore requires a post-processing of our model result to be able to compare with 

observations. Our processing approach is described below. To minimize the significance of the uncertain distinction of 300 

mixotrophy in comparison with observations, we also calculate the total biomass (heterotrophic plus autotrophic carbon) of 

the pico- and nano-sized classes (Fig. 2 e-f). The addition of the heterotrophic component increases the overall biomass of 

pico- and nanoplankton, especially in the CCE-LTER observations, but has very little influence on the overall size-
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distribution of the plankton. Finally, we do not calculate the total biomass in the micro-sized bin, as observations in this size 

class are significantly underestimated (Taylor et al., 2011). Taylor et al. (2011) finds that micro-sized heterotrophic ciliates 305 

are poorly preserved in the epifluorescence slide-making protocol.  

3.2 Evaluation metrics 

The model result size spectrum is recalculated into different pools of biomass carbon (Table 3): The sum of heterotrophic 

and autotrophic biomass size classes is referred to as total picoplankton (BT-pico) and total nanoplankton (BT-nano). The 

autotrophic biomass in the size classes is referred to as autotrophic picoplankton (BA-pico), autotrophic nanoplankton (BA-nano) 310 

and autotrophic microplankton (BAT-micro). These different biomass classes are calculated for each autotrophic biomass bins 

(AC-bins) the same way that Taylor and Landry (2018) processed they observations (Fig. 2).  

 

Table 3: Notation used for different biomass size classes 

Notation Biomass class Size range 

BT-pico Biomass of total picoplankton  <2 µm 

BT-nano Biomass of total nanoplankton  2-20 µm 

BA-pico Biomass of autotrophic picoplankton  <2 µm 

BA-nano Biomass of autotrophic nanoplankton  2-20 µm 

BA-micro Biomass of autotrophic microplankton  20-200 µm 

 315 

To calculate how much of the model biomass should be classified as autotrophic we first define two ratios 𝛾
𝐴:𝐹

=

𝐽
auto

/(𝐽
auto

+ 𝐽
phago

) and 𝛾
𝐴:𝑂

= 𝐽
auto

/(𝐽
auto

+ 𝐽
osmo

), where J’s are the different rates of carbon synthesis defined above. If 

the ratio 𝛾
𝐴:𝐹

 is above 0.1, we classify the generalist in that size bin as a fully photoautotrophic organism for comparison 

with observations (Stoecker et al., 1996; Stukel et al., 2011). We then calculate the autotrophic biomass in that size bin(i) 

based on the combined rates of autotrophic and phagotrophic biosynthesis as: 320 

𝐵𝑎𝑢𝑡𝑜,𝑖 = 𝐵𝑖

𝐽auto,𝑖+𝐽phago,𝑖

𝐽auto,𝑖+𝐽phago,𝑖+𝐽osmo,𝑖

  

If 𝛾
𝐴:𝐹

 is below 0.1, we instead define that the generalist in that size bin is both auto- and phagotrophphagotrophic and the 

autotrophic biomass is calculated as: 

𝐵𝑎𝑢𝑡𝑜,𝑖 = 𝐵𝑖

𝐽auto,𝑖

𝐽auto,𝑖+𝐽phago,𝑖+𝐽osmo,𝑖

  

The same philosophy is used for the osmotrophic-autotrophic ratios.  325 
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While the use of 𝛾
𝐴:𝐹

 is inspired by red/green florescence ratio (~0.08) used to partition mixotrophic nanoplankton into 

functionally phototrophs or heterotrophs in observational datasets (Stukel et al., 2011), we test our results for a range of 

values (0.1 0.9) and find that this range does not change our results quantitatively.  

In evaluating our model against observations, we use oceanographic statistical practice as described in Taylor (2001). For 

each of the 14 AC-bins we first calculate the mean and its standard deviation (STD) for the model and for the observations 330 

over the years of 2004-2011. Based on these means and STDs we then calculate the model versus observation correlation 

coefficient (CORm-o), root-mean square difference (RMSdm-o) as well as centered root-mean square error (cRMSm-o) for the 

14 AC-bins (Table 4). The statisticalStatistical comparisons are only made between model and observation AC-bins if there 

are more than two observations in an AC-bin. The model-observation comparison is based on the upper 100 meters of water 

columns because this increases the total number of observations through the year. Taylor and Landry (2018) evaluated only 335 

the upper 30 meters of their observations. Our reanalysis of their data shows no significant change in the observed 

distribution of pico-, nano-, and microautotrophic organism relative to their results, when we also include observation 

between 30 and 100 m. 

The statistical measures are objective, but we need to identify define what is acceptable model results are. We work with 

the premises that we cannot expect to have a better fit to the mean observation (mean of 2004-2011) than the year-to-year 340 

variation that is observed at the specific site. For each year between 2004-2011 Wwe therefor calculate annual means and its 

standard deviationSTDs for each AC-bin based on the observations from 2004 to 2011(STDia, Table 4). We refer to 

differences from year to year as the inter-annual variation in observations. We then evaluate correlation coefficient and root-

mean-square difference between the annual mean observation and the total mean observation for all 14 AC-bins (abbreviated 

CORiao and RMSdiao, respectively. Notice the difference from the subscripts above). These statistics informsinform us how 345 

much natural variation occurs around the mean observation. The minimum CORiao and maximum RMSdiao of the inter-

annual variation is used to determine if a model result is successful (CORiao and RMSdiao values are available in Supplement 

S2). For example, if the correlation coefficient of the model average versus the observed total mean is higher than the 

correlation coefficient of the inter-annual variation (CORm-o > CORiao) then the model result for a given parameter set is 

considered successful in terms of correlation coefficient. Ideally, the optimal successful model simultaneously has CORm-o > 350 

CORiao and RMSdm-o< RMSdiao for all biomass size categories. As is clear below, no model results fulfill both criteria for all 

biomass size categories. Instead, we isolate the model results that fit the COR and RMSd criteria for at least 8 out of 10 size 

categories and has biomass in ACbio-bin up to at least 40 µgCl-1 for CCE and 15 µgCl-1 for HOT. For the solutions that fulfill 

these criteria we sort them according to their CORm-o and RMSdm-o and make a visual qualitative assessment in comparison 

with observations (cf. Fig 2).  355 
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Table 4: Definitions of biomass metrics and their calculations 

Metric Description Formula 

STDo
1 Standard deviation of observed biomass (o) across ACbio-

bins (N), calculated from the mean biomass (�̅�) values. 𝑠𝑡𝑑 = ඨ
∑ (𝑜 − �̅�)ଶே

ୀଵ

𝑁
 

STDia
2 Standard deviation of biomass for a given year (oia) for 

each ACbio-bins (N), showing inter-annual variability. 𝑠𝑡𝑑 = ඨ
∑ (𝑜. − �̅�)ଶே

ୀଵ

𝑁
 

STDm Standard deviation of modelled biomass (m) across 

ACbio-bins (N), calculated from the mean modelled 

biomass (𝑚ഥ) values. 

𝑠𝑡𝑑 = ඨ
∑ (𝑚 − 𝑚ഥ)ଶே

ୀଵ

𝑁
 

CORm-o Correlation coefficient between modelled biomass and 

mean observed biomass for each ACbio-bins (N) 
𝐶𝑂𝑅 =

∑ (𝑜 − �̅�)(𝑚 − 𝑚ഥ)ே
ୀଵ

𝑁

1

𝑠𝑡𝑑𝑠𝑡𝑑

 

 

CORiao Correlation coefficient between yearly observed biomass 

and mean observed biomass for each ACbio-bins (N) 
𝐶𝑂𝑅 =

∑ (𝑜 − �̅�)(𝑜. − �̅�)ே
ୀଵ

𝑁

1

𝑠𝑡𝑑𝑠𝑡𝑑

 

cRMSm-o Centered root-mean square difference between modelled 

biomass and mean observed biomass for each ACbio-bins 

(N) 

𝑐𝑅𝑀𝑆 = ඨ
∑ ((𝑚 − 𝑚ഥ) − (𝑜 − �̅�))ଶே

ୀଵ

𝑁
 

RMSdm-o root-mean square difference between modelled biomass 

and mean observed biomass for each ACbio-bins (N) 𝑅𝑀𝑆 = ඨ
∑ (𝑚 − 𝑜)ଶே

ୀଵ

𝑁
 

RMSdiao root-mean square difference between yearly observed 

biomass and mean observed biomass for each ACbio-bins 

(N) 

𝑅𝑀𝑆 = ඨ
∑ (𝑜. − 𝑜)ଶே

ୀଵ

𝑁
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1STDo represents the variability of biomass among size classes within the dataset averaged across the years 2004 to 2011. 

This is a mean of all data within the upper 100 meters for all sampling data and location and interannual variability is thus 370 

not present here. 
2STDia captures how biomass in each size class for a given year deviates from the dataset averaged across the years 2004 to 

2011. 

3.3 Initial- and boundary conditions 

The analyses are performed in a water-column setup of the NUM model with vertical diffusion and temperature profiles for 375 

the two sites extracted from the global 1o transport matrix MITgcm_ECCO (Stammer et al., 2004). Light, expressed as PAR, 

is modeled according withto daily insolation depending on the specific latitude, day of the year, and time of day. The NUM 

model uses nitrate as nutrient and is initialized with annual mean observations of nitrate concentrations based on data from 

CCE-LTER and HOT (Calcofi-Scripps-Institution-of-Oceanography and Wilkinson, 2022; Pasulka et al., 2013; Karl and 

Lukas, 1996) The nitrate observations have been smoothed with a Gaussian filter to reduce noise. The observations from 380 

Station ALOHA only includesinclude nutrient measurements to a depth of 175 meters. Mean nitrogen values from World 

Ocean Atlas 2018 are used below this depth (Garcia, 2018; Garcia et al., 2019).  

The model is simulated with 10 logarithmically distributed size classes of generalists in the range from 3 pgC to 10 µgC, 

equivalent to a spherical cell diameter of approximately 0.25 µm to 363 µm. In addition to the 10 size classes of generalists, 

the model has small and large detritus of particulate organic carbon with different sinking velocities. The model is run for 15 385 

years with daily output. The last five years are averaged and evaluated to smooth out inter-annual differences in model 

results. DOC is initialized with a value of 60 µmol kg-1  (Zakem and Levine, 2019; Sarmiento and Gruber, 2006; Letscher 

and Moore, 2015). DOC rapidly decreases to dynamic steady state with an annual mean value of ~1 ± 0.5 µmol kg-1. 

 

4 Results 390 

4.1 Model validation 

Initial simulations have shown that 15 years is sufficient to produce a dynamic steady state with steady annual cyclicity. Of 

the 100,000 simulations for CCE, less than 1% terminated due to instability generated by the combinations of parameters. 

Random sampling of the simulations that integrated properly (completed) showed results were reproducible in re-runs and 

that the model had reached dynamic steady state. 395 

To validate the model's first-order response, we simulated conditions for the California Current Ecosystem (CCE) and 

Station ALOHA using the reference parameters from Table 1. The results were then compared to observed biomass spectra 

and nitrogen depth profiles for the two sites (Fig. 3). The contrasting oceanographic regimes between the sites are evident 

from their nitrogen profiles (Fig. 3a, b). The California Current Ecosystem, characterized by coastal upwelling, shows a 
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nitricline at approximately 100 meters depth. In contrast, Station ALOHA, an oligotrophic open-ocean site with 400 

downwelling, exhibits lower nitrogen levels and a deeper nitricline. The model responds correctly to the difference in 

circulation at the two sites resulting in higher nitrogen concentration at CCE compared to Station ALOHA. Although the 

model's results generally align with observations, there is a depressed nitricline at CCE, leading to lower-than-expected 

nitrogen values in the upper 200 meters of the water column and slightly elevated nitrogen concentrations at Station 

ALOHA. 405 

Despite these differences in nitrogen profiles, the biomass size distributions at both sites are remarkably similar (Fig. 3c, 

d). Both sites display a relatively flat Sheldon biomass spectrum, with a mean biomass of approximately 1 µgC/L at CCE 

and approximately 0.5 µgC/L at Station ALOHA. These biomasses are within the expected range of observations, although 

the mean observed biomass is slightly higher, averaging 1.5 µgC/L at CCE and 0.5 µgC/L at Station ALOHA. Notably, the 

largest discrepancy between the model and observations occurs in the small size classes at Station ALOHA, where the model 410 

underestimates the biomass. The larger standard deviations observed at CCE indicate a more variable environment compared 

to Station ALOHA.  

 

 

 415 
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Figure 3: Nutrient profile and Sheldon biomass comparison between observations and reference model simulation for (a) CCE and 

(b) Station ALOHA. The Sheldon biomass spectrum illustrates the biomass in each body mass bin normalized with bin width. The 

Sheldon biomass spectrum is defined as 𝑩𝒔(𝒎) = 𝑩𝒊/𝒍𝒐𝒈(
𝒎𝒊

శ

𝒎𝒊
ష) (Andersen and Visser, 2023).  420 

 

In the following, we describe the results of the first-level randomized parameter studies and the subsequent detailed studies. 

The shared aim of these investigations is to better understand NUM model behavior, performance relative to observations, 

and of how much parameter choice influences model results. 
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4.2 First-level random parameter study: can the model reproduce the planktonic community biomass structure? 425 

We initially testtested the model’s ability to reproduce the biomass spectrum and the community size spectrum of the 

California Current Ecosystem (CCE). Just as important, this is also a test of the variability that parameter choices have on the 

model result. The result of the simulations is illustrated in Taylor diagrams (Fig. 4). The Taylor diagrams provide a visual 

representation of the normalized standard deviation (STDm/STDo; radial distance from origin shown as grey solid line), 

correlation (CORm-o; azimuthal positions) and the centered root-mean-square difference (cRMSm-o; black circles extending 430 

out from the grey dot) of the 100,000 model simulations, compared to the annual averaged observations from CCE 

(represented by the grey dot). The bright yellow color in the first quadrant of all five diagrams show that the model 

simulations generally resultsresult in a positive correlation coefficient with the CCE-LTER observations on all biomass size 

categories. The smallest effect of parameter variations is seen om the autotrophic microplankton (BA-micro, Fig4e) where 

solutions are centered in a smaller area than the other four size categories. On the other end of the scale autotrophic 435 

picoplankton show the larges spread in solutions from randomizing the parameters (BA-pico, Fig4c). On average, the smallest 

difference between model result and the mean observations (determined as 𝑎𝑏𝑠(1 − 𝑚𝑒𝑎𝑛(𝑐𝑅𝑀𝑆))) is found for BT-nano 

which, despite some simulations with a negative correlation, generally show the closest fit to observation. The other four 

categories have a larger deviation from observations due to either lower pattern agreement (CORm-o) or over- or 

underestimation of the amplitude of variations (STDm/STDo). The pico- and nanoplanktonic size groups all overestimate the 440 

amplitude of variation in the size spectrum is overestimated for all size groups of pico- and nanoplankton while the model 

underestimate the amplitude of variation in the autotrophic micro plankton. The pattern agreement is overall best for BT-pico 

and BA-nano with mean correlation of 0.87 and 0.80. Interestingly, the result of the simulations falls within three distinct 

groups for BA-pico, where some parameter combinations produce a much better correlation with observations than otherothers. 

That BA-pico fall in three groups may be related to the biomass quantization also found in observations and other size-445 

structured planktonic ecosystem models (Moscoso et al., 2022; Schartau et al., 2010).     
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Figure 4: Taylor diagrams for 100,000 random parameter combinations at CCE, displaying the standard deviation (STD) of the 450 

model result relative to observations (Obs.), and correlation coefficient (COR), and centered root-mean-square-difference (cRMS) 

between model and observations. Blue to yellow color reflect increasing number of realizations in each area. BT and BA definedare 

defined in figure 2. 

 

An alternative way to get an overview of the model’s capabilities and parameter effect is to ato visualization visualize of 455 

the overall trend in simulations compared to the observation data as a density plot (Fig. 5). The coloring on the figure show 

that most of the simulations for the five size categories have a power-law increase of the biomass with increasing AC-bins. 

Generally, the model does not capture the occurrences of  there is a lack of model results with biomass concentrations into 

the high ACbio concentrationsbins (ACbio above approximately 100 µg C/l), which is consistent with the observation that only 

2% of the samples have autotrophic biomass concentrations of 100 µg C/l or above, here illustrated by the size of the white 460 

dots. The trend in simulations corresponds relatively well with observations for BT-nano (compare to mean observations given 
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as white dots) which also showed to be the size category with the lowest cRMS (fig. 4). The trend in BA-nano simulations also 

aligns reasonably well with observations, though the correlation is slightly weaker due to a larger discrepancy between the 

modelled increase in biomass and the observed increase in biomass. Both size groups of nanoplankton do however 

underestimate the biomass at low ACbio-bin (ACbio< 10 µgCl-1) and overestimate the biomass at higher ACbio, corresponding 465 

with the greater-than-observed amplitude of variations in the Taylor diagrams. The picoplanktonic size groups also exhibit a 

gradual increase in biomass with increasing ACbio, rather than the plateau at intermediate-high ACbio seen for observations of 

BT-pico and the decrease in biomass for BA-pico. Additionally, the model underestimates biomass at low ACbio for both 

picoplanktonic size groups. The modelled amplitude of variation for BA-micro is lower than the observations which manifest as 

a too high biomass at low ACbio and a lower-than-observed increase in biomass with increasing ACbio.  470 

 

 

 

 

 475 
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Figure 5: Model mean and total biomass of size groups as a function of total biomass for 100,000 random parameter combinations 

at CCE. White dots are observations in ACbio bins. Abbreviations as figure 2. Blue to yellow reflect increasingan increasing 

number of realizations in each area. SizeThe size of white observations dots indicateindicates the relative number of observations 480 

in that ACbio bin. Note the tendency of NUM to under-estimate pico- (a, c) and nanoplanktonic (b, d) biomass at low ACbio while 

overestimating the biomass at intermediate-high ACbio. The autotrophic microplanktonic biomass (e) is generally overestimated.  
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Of the completed model calculations, the ideal parameter combinations should result in CORm-o > CORiao and RMSdm-o< 

RMSdiao for all size groups. Evaluating these conditions showshows that none of model results fulfill both criteria for all size 485 

groups. A detailed examination of the simulations in term of CORm-o and RMSdm-o, however, revealreveals a subset of seven 

simulations that result in a planktonic size variability that corresponds particularly well with the observations (Fig. 6). 
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 490 

Figure 6: Model mean and total biomass of size groups as a function of total biomass for the 7 statistically most optimal parameter 

combinations at CCE. Black dots are observations in ACbio bins. Abbreviations as Fig. 2. Note the tendency for NUM to 

underestimate pico- and nanoautotrophic biomass at very low ACbio and overestimate microautotrophic biomass. 
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In these seven simulations the picoplanktonic size groups align with the mean observations, showing a plateau at 495 

intermediate-high ACbio for BT-pico and a tendency for biomass to decrease for BA-pico at ACbio above 30 µgCl-1 (Fig. 6a, c). 

The parameter combinations do however result in BT-pico lower than one standard deviation for the smallest ACbio bin. Both 

nanoplanktonic size groups closely follow the observations, though still with lower-than-observed biomass at low ACbio (Fig. 

5b, d). The trend in microautotrophic biomass aligns with most of the model results, which generally show higher-than-

observed biomass. These results fall on the lower end of the 100,000 simulations but are still too high at low to intermediate 500 

autotrophic biomass levels (approximately 4-30 µgC/L), forming a “humped back” shape (Fig. 5e). While these seven 

simulations correlate remarkably well with the observations, the seven simulations general have slightly too low correlation 

coefficient for BA-micro (0.79-0.95 for model results versus 0.96 for observations) and too high root-mean-square-difference 

for BT-pico (0.48-0.64 versus 0.4) and BT-nano (0.37-0.71 versus 0.3) (the statistic is available in Supplement S3). 

With the goal of identifying a parameter range that yields robust optimal solutions, we will focus on this subset of seven 505 

simulations that preformperform especially well in the further sensitivity analyses of the parameters. We use the identified 

seven sets of parameters to define a restricted parameter span based on the on minimum and maximum of each parameter in 

the set group (Fig. 7, blue lines). 
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Figure 7: Span of all free model parameters for the seven most optimal parameter combinations at either CCE (blue) or Station 

ALOHA (yellow). The seven CCE model results are shown in Fig. 6. Note how the parameter spans for CCE and Station ALOHA 

generally follows the same trend except for γ2 and cF where higher values are needed to fit the data at Station ALOHA than CCE. 

The most optimal parameter combination is estimated by highest correlation coefficient and lowest root-mean-square difference 

between model and observation simultaneously for BT-pico, BT-nano, BA-pico BA-nano, and BA-micro. Parameter definitions in Table 1 and 515 

other abbreviations in Fig. 2.  

4.3 Restricted parameter span and sensitivity 

We will now aim to evaluate the importance of the parameter uncertainties and to establish a stable parameter space for the 

23 free parameters, wherein the simulations yield a reasonable result. The range of each free parameter is based on the range 

defined by the seven solutions with optimal fit (Fig. 6). An initial local parameter sensitivity assessment revealed a high 520 

degree of non-linearity in the model that makes it difficult to make any global conclusions about parameter influence based 

on local studies. To gain more insight into how the parameters influence the sensitivity of the entire non-linier ecosystem 

system we instead perform a global sensitivity analysis (Bilal, 2014; Sobol, 2001; Zhou and Lin, 2008).  

Figure 8 displaydisplays the parameters ranked by Sobol’s total sensitivity index (STi) based on root-mean-squared 

difference for the five size groups. The corresponding figure based on correlation is available in Supplement S6, but its 525 

conclusions are consistent with Fig. 8. The value of the index cannot be compared across the different categories but the span 

in values gives an indication of the variability in the sensitivity across parameters. For example, while BT-pico seems to be 

especially sensitivity to approximately half of the parameters there is little difference among the parameter sensitivity for BA-

micro. The global sensitivity analysis reveal that all size groups are sensitive to the choice in parameters that control mortality 

(red dots): phagotrophy (the phagotrophic assimilation rate (εF), clearance rate (aF), the predator-prey ratio (β) and width 530 

(σ)), higher trophic level mortality (HTL pressure (µHTL)), and viral lysis (µv0). All size groups are also sensitive to the value 

of maximum rate of biosynthesis (αmax) and to a smaller degree respiration (αR) (grey dots). Parameters such as the 

remineralization rate of dead organisms (γ2, purple), diffusive affinity cross-over (r*
D, except for BA-micro, blue), and the C:N 

ratio of the cell are among the moderately sensitive parameters. The parameters mentioned above are parameters that control 

the predation pressure, biosynthesis and nutrient availability and uptake. FinallyFinally, the analysis showshows that the 535 

picoautotrophic biomass is more sensitive to the light uptake efficiency (εL, yellow) parameter than the other size groups. 

The analysis showshows that other parameters are less important and therefore allows for larger uncertainties. These 

parameters include the carbon density of the cell (ρ), passive losses coefficient (cpassive), and the remineralization of feeding 

losses (γF) and higher trophic levels (γHTL).  

 540 
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Figure 8: Global parameter sensitivity ranked based on sensitivity index calculated by Sobol’s variance-based sensitivity method 

for non-linear models.  Sensitivity calculated for RMSd. The parameters that the NUM model is most sensitive to have been 

colored according to categories; predation and mortality (red), synthesis (grey), cell remineralization (purple), light uptake 

efficiency (yellow), diffusive affinity cross-over (blue). Note how all biomass size areis especially sensitive to parameters controlling 545 

predation (red dots), and synthesis (grey dots). Parameter definitions in Table 1 and other abbreviations in Fig. 2  
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 550 

 

While the model sensitivity towards parameters is complex and non-linear, a final set of 10,000 random parameter 

simulations demonstrate that the model result space can be reduced by confining the parameter space to the restricted 

parameter span found in Fig. 7. Using the restricted parameter span we see a tighter fit of model results to observations (Fig. 

9) in contrast to the full randomized parameter spans (Fig. 5). The parameter restrictions have removed the simulations that 555 

produced excess pico- and nanosized biomass at high ACbio and the simulations now follow the observed trend with an onset 

of a plateau at ACbio of 20 µgCl-1 for BT-pico and BA-pico. The restriction has had less impact on the nanoplanktonic biomass but 

has narrowed the range of results, leading to a slight overestimation of nanoplanktonic biomass in most simulations, 

particularly at ACbio levels above 30 µgCl-1. Overall, the model results in Fig. 9 demonstrate a notable improvement in model 

performance for the identified parameter spans in comparison to the full parameter space. While this improvement may seem 560 

intuitive it is not necessarily a priori given, considering the model’s parameters non-linear response to parameter change. 

The local sensitivity analysis showed that, even within the restricted parameter space, the impact of varying a parameter is 

highly dependent on the other parameters (Fig. S2). The restricted parameter space could therefore, in theory, have resulted 

in the same degree of model misfits as the full parameter span with only a few acceptable solutions generated by very 

specific parameter combinations. That the model performance is enhanced by restricting the parameter spanThis suggests 565 

that further detailed parameter tuning may not be necessary to achieve reliable results from the NUM model. While a better 

performance this is encouraging it is important to evaluate if the identified parameter spans are applicable to other 

biogeographic provinces. 
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Figure 9: Model mean and total biomass of size groups as a function of total biomass for 10,000 random parameter combinations 

sampled within the restricted span of parameters at CCE. The random parameter spans are based on the parameter range of the 

seven statistically optimal parameter combinations at CCE (see text). White dots are observations in ACbio bins. Abbreviations as 

Fig. 2. Blue to yellow reflect increasingan increasing number of realizations in each area. Note how the solution space has been 575 

restricted, especially for picoplankton (a ,c) compared to the full parameter span (Fig. 5). 
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4.4 Results for Station ALOHA 

The heart of the trait-based approach is its potential universality; the principle that a single set of parameters can describe 

organisms and ecosystems across time and place. An important test is therefore if the parameter sets that performed best at 

CCE are suited for different oceanographic settings. Figure 10 showshows the result of 10,000 simulations with conditions 580 

mimicking Station ALOHA with quasi-random parameters from within the restricted parameter span defined for CCE. The 

model reacts to the shift in oceanographic regime by lowering the overall autotrophic biomass. Most simulations only reach 

a biomass of 20 µg C l-1 which is consistent with observations. The biomass of the picoplanktonic size groups is lower than 

mean observation but generally within one standard deviation (Fig 10 a, c and see Fig. 2b for comparison). Both 

nanoplanktonic size groups exhibit elevated biomass relative to observations, with the discrepancy being larger than that 585 

observed for the nanoplanktonic size groups in the CCE simulations (Fig 10b, c, compare with Fig 9b, c). The 

microautotrophic size group exhibits the poorest correlation with mean observations, displaying excessive biomass at low 

ACbin (< 9 µg C l-1) and variable, but lower biomass at ACbin above 9 µg C l-1. This pattern is inconsistent with the observed 

sigmoidal trend, although the biomass falls within the standard deviation of the observations (Fig 10e, compare with Fig. 

2b). A comparison to the first-level random parameter simulation with 100,000 simulations within the full parameter space 590 

(not illustrated here but available in Supplement S7) show that restricting the parameters based on the solutions from CCE 

has removed a set of simulations that produced too large biomasses for all size categories at intermediate AC-bins. However, 

it also eliminates a set of simulations with better fitting biomass concentrations at low ACbio-bins. Figure 11 showshows a set 

of simulations from the first-level random parameter study that performs particularly well for Station ALOHA. In these 

simulations, both pico- and nanoplankton follow the trend of the observations and exhibit the correct amount of biomass. 595 

Interestingly, most of the parameters for these four simulations fully overlap with parameter for the best solutions at CCE 

(Fig. 7). While some parameters such as aF and αmax only partly overlap, tare he only parameters only significantly diffethat 

significantlyrent differs between the two sites arefrom the parameter for the best solutions at CCE by having higher γ2, cF 

that both have higher value at Station ALOHA than CCE.  and partly aF values (Fig. 7). The parameter γ2 controls the 

fraction of dead matter directly remineralizer back to nutrients and it areis thereby an important parameter in controlling the 600 

amount of osmotrophy for the smallest planktonic size group. cF and aF are two important components of the rate of 

phagotrophy. It is noteworthy that the parameters for successful solutions at the two different sites exhibit parameter trends 

in many cases correlate; for both stations, the successful simulations have relatively high αL, αmax, ρC:N, εL, a ,a, and low εF. 
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 610 

Figure 10: Model mean and total biomass of size groups as a function of total biomass for 10,000 random parameter combinations 

at Station ALOHA. The simulations have random parameter combinations within the restricted parameter space based on the 

successful simulations from CCE (Fig. 7). White dots are observations in ACbio bins. Abbreviations as Fig. 2. Blue to yellow color 

reflect increasing number of realizations in a given area. Note how biomass of pico plankton (a, c) is underestimated while nano 
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plankton (b, d) is generally overestimated. Microautotrophic plankton (e) has the lowest correlation of the five size classes with 615 

decreasing biomass as a function of ACbio. 
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Figure 11: Model mean and total biomass of size groups as a function of total biomass for the four statistically most optimal 

parameter combinations at Station ALOHA. Black dots are observations in ACbio bins. Abbreviations as Fig. 2.  625 
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4.5 Nutrient profiles 

As an indirect way of evaluating the model performance and response to the different environmental conditions, we also 

evaluate the depth profile of model nutrients for the two sites (Fig. 12). Importantly, the nutrient profile was not part of the 

initial statistical measures used to identify the model parameters. The nutrient profiles for CCE are remarkably consistent 630 

across the solutions. Nutrient concentrations are low in the upper photic zone and increase with depth. While the modelled 

profiles generally align with the observed data, there is a tendency to underestimate nitrate concentrations at depths ranging 

between 50 and 200 meters. For Station ALOHA, the modelled profiles also align well with the measured concentrations, 

with a slight tendency to overestimate nutrient concentrations at depth. The model is generally able to respond correctly to 

the shift from eutrophic to oligotrophic conditions. 635 
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Figure 12: Model nutrient profiles at CCE (a) and Station ALOHA (b). White dots are observations based on (Calcofi-Scripps-

Institution-of-Oceanography and Wilkinson, 2022; Pasulka et al., 2013; Garcia, 2018). Note the model tendency to underestimate 

N in the thermocline at CCE, but overestimate at Station ALOHA. 

5 Discussion and Perspectives 640 

5.1 Summary of model performance 

We have validated the generalist unicellular NUM ecosystem model toward two quite different biogeographic provinces: 

the high productivity upwelling conditions of the California Current Ecosystem and the oligotrophic downwelling conditions 
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at Station ALOHA. For the California Current Ecosystem, out of 100,000 random combinations of the 23 free parameters a 

large majority of the model results have correlation coefficient toward observations (CORm-o) better than 0.7. This 645 

demonstrated that the generalist unicellular NUM model, despite its simplicity, is able tocan capture the size distribution of 

the planktonic ecosystem and its nutrient profile over a broad range of parameter values. Out of the random simulations we 

find only seven optimal, but quite different, parameter combinations that reproduce results for the CCE. These seven optimal 

simulations almost perfectly match the distribution of each of the size groups as functiona function of increasing ACbio (Fig. 

6). The seven optimal parameter combination have mean CORm-o of 0.94 and RMSdm-o 0.4 for the five size groups 650 

considered in comparison with observations. In particular, we find that BA-pico peak and BT-pico plateau at intermediate levels 

of autotrophic biomass in agreement with observations (Taylor and Landry, 2018) (Fig. 6a,c). We also find a power-law 

increase in BT-nano and BA-nano as function of ACbio as in observations (Fig. 6b, d). Finally, we observe a "humped back" 

increase in BA-micro that has the lowest correlation to observations but still within one standard deviation of the observed total 

mean (Fig. 6e).  655 

Moving to oligotrophic ALOHA station, we find that the seven optimal model parameter combinations from CEE give 

model results that capture many important aspects of the observational data. NUM qualitatively model a reduction in 

biomass at Station ALOHA relative to CEE and it generally reproduce the overall size structure. That the NUM model 

produces less biomass at ALOHA is consistent with observational differences between CEE and ALOHA (Taylor and 

Landry, 2018). The seven simulations do however produce too low picoplanktonic biomasses and too high nanoplankton 660 

biomasses, compared to the observations. A detailed analysis showshows that another set of parameter combinations were 

better at reproducing the pico- and nanoplanktonic biomass both in term of correlation and overall biomass values. The 

parameter space for these simulations were only significantly different from the restricted parameter span for CCE in their 

range of a few parameters (discussed below). Our validation against ALOHA overall indicates that by restricting the 

parameters to a restricted span, based on the seven optimal models at CCE, and focusing on this small set of parameters, it is 665 

possible to match the overall increase and decrease in biomass for the different size classes to a degree that would be 

satisfactory for applications where site-by-site calibration is not possible.  

5.2 Parameter sensitivity 

Our sensitivity analysis shows that the model parameter sensitivity is dependent on the specific parameter combinations 

and that the ecosystem response is non-linier. Local sensitivity analysis revealed that while one of the good solutions was 670 

nearly equally sensitive to almost all parameters, another was mainly sensitive to only one parameter (F, Fig S2 in 

Supplement 4). Based onThrough a global sensitivity analysisanalysis, we isolated whichidentified the parameters that are 

especially controlling (Fig. 8). Parameters regulating predation and mortality, biosynthesis, and respiration are generally 

important among all size groups. Changes in these parameters create the largest shifts in the model output.  Interestingly, 

many of the parameters that produce the largest shifts in biomass are also among the least constrained (Table 1; cf. 675 

(Andersen and Visser, 2023)). In the following discussion we focus on the parameters that are the least constrained while 
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also resulting in the largest sensitivity. Higher trophic level mortality (µhtl) is important for all size groups. µhtl is an extrinsic 

parameter that governs predation rates by higher trophic levels. This parameter serves as a closure term in the model and 

plays a critical role in shaping biomass distribution. Specifically, µhtl determines the size and biomass of microplankton, 

initiating cascading effects on smaller size classes. While µhtl significantly impacts biomass partitioning across size groups, 680 

its influence on total biomass is limited because reductions in microplankton results in corresponding increases in 

nanoplankton (see Fig. 15b in  Andersen and Visser (2023)). The value of µhtl depends on the biomass and efficiency of 

higher trophic levels, which can vary significantly between eutrophic and oligotrophic environments. Our results indicate 

that optimal µhtl  is larger at CCE compared to Station ALOHA, although there is a significant overlap (Fig. 7). The 

importance of µhtl suggests that including higher trophic levels, such as copepods, could reduce model uncertainties. 685 

However, that only shifts the problem towards determining the higher trophic level mortality on copepods, which is equally 

uncertain. Another highly uncertain parameter that creates large shift in the biomass distribution is the viral lysis mortality 

coefficientAndersen and Visser (2023) µv0. This parameter introduces a density dependent control of the population in each 

size group. It has the effect of increasing the mortality on groups with high biomass and prevents all biomass ending up in 

one or a few size groups. The principle of abundance controlled viral lysis is an important aspect of the “Killing the Winner” 690 

principle (Thingstad, 2000; Winter et al., 2010). The default parameter used in the NUM model is adjusted such that the 

effect of viral lysis is smaller than other mortalities, to avoid that this process is determining the result, despite that the value 

of the parameter is largely unknown. Based on the global sensitivity study it is an important future priority to get a better 

mechanistic understanding of the viral lysis mortality process. Two other important parameters, cF and εF are both involved 

in heterotrophic phagotrophy, and are partly multiplicative so one is influencing the other (cf. Eq. 3 Table 2). While the 695 

assimilation efficiency (εF) is relatively well-constrained the maximum phagotrophic coefficient (cF) is not. The parameter 

cF is unique to the NUM model and determines the phagotrophic assimilation limit for large cells. While cF only directly 

influences the largest cells it causes a cascading effect down the size spectrum. The default value used here is fitted against 

maximum growth rate for different types of plankton (see Fig. 5 in Andersen and Visser (2023)). Interestingly, cF is one of 

the only parameters that show significantly different optimal values for CCE and Station ALOHA (11-25 µg d-1 for CCE 700 

versus 35-45 µg d-1 for Station ALOHA). The difference is likely related to a tradeoff between food acquisition and 

predation, an important aspect of the slow-fast tradeoff (Salguero-Gómez et al., 2016; Kiørboe and Thomas, 2020). High 

rates of predation induces higher food acquisition but comes with a higher predation risk (Kiørboe and Thomas, 2020). The 

difference between CCE and Station ALOHA can therefore be seen as a difference between a more stable environment with 

high population densities (CCE) and varied conditions with strong environmental gradients (Station ALOHA). The same 705 

argument is valid for the phagotrophic clearance rate (aF), where the good fit for Station ALOHA has higher values 

compared to CCE. The mechanistic argument for phagotrophic clearance rate relates to the fluid dynamics of a beating 

flagellate cell (Nielsen and Kiørboe, 2021; Andersen and Visser, 2023). This mechanistic underpinning means that the value 

of aF is relatively well known, however with a scatter of one of magnitude due to difference in flagella arrangements that 
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generates difference in predation risk. Future investigations into patterns of flagella arrangements in different nutrient 710 

environments can maybe give some valuable insight into the trade-off between foraging and predation risk. 

The last highly unknown parameter that can create large shifts in the biomass is γ2, that determines how large a fraction of 

the background mortality is remineralized directly into N and DOC instead of becoming POM. Increasing γ2 increases the 

amount of dissolved nutrients and carbon in the system which increases the osmotrophic efficiency for picoplankton. 

However, this value of γ2 is highly uncertain, and cell mortality is treated quite simply here because of limited mechanistic 715 

understanding (Andersen and Visser, 2023). Apart from cF, γ2 is the only other parameter where values are significantly 

different between the two sites. Values for γ2 are larger at Station ALOHA than at CCE, indicating that a faster 

remineralization of organic matter is required at Station ALOHA. It is clear from the global sensitivity study that developing 

a clear mechanistic understanding of the fate of cell mortality should be an important priority. Fortunately, a mechanistic 

model for organic matter accumulation has recently been developed which may be a way to improve the NUM model 720 

accuracy in future versions (Zakem et al., 2021).      

Apart from the parameters described above, the model includes better established parameters that result in a relatively large 

sensitivity while also influencing the entire size spectrum. Of these, σ,β defines the shape of the prey-predator size 

distribution, and αmax, αR controls the biosynthesis. In contrast, the effect of εL (light uptake efficiency) mainly influences 

picoplankton’s affinity for photosynthesis. In contrast, the effect of εL (light uptake efficiency) mainly influences 725 

picoplankton’s affinity for photosynthesis. Andersen and Visser (2023)The analysis shows that the parameter space for 

successful simulations overlap significantly between the two sites. The only parameters that are significantly different in the 

optimal parameter setup for the two sites are γ2, the parameter that determines how large a fraction of the background 

mortality is transferred directly into N and DOC, and the parameter cF that is involved in the calculation of phagotrophy. 

Increasing γ2, increases the amount of nutrients and carbon in the system which increases the efficiency osmotrophic 730 

efficiency for picoplankton. 

Despite the model sensitivity to parameter changes, non-linearity and system bifurcation, the model appears to be relatively 

stable within the optimized restricted parameter spans identified based on comparison with CEE observations. Within the 

restricted se spans, no parameter combinations seem to perform significantly better than others for the chosen metrics. We 

recognize however that further local parameter sensitivity investigation can be useful with the current knowledge about the 735 

most important parameters gained from the global sensitivity study. 

An underlying premise in our validation is that we compared the model results of a water column setup with annual-mean 

observations averaged overaveraging nearly 700 km by 400 km including shelf and open ocean. This means that any 

parameter combination that performs well compared to the mean dataset will surely be less than optimal at some of the 

individual stations or at specific times of the year. It would be interesting toOngoing work is evaluatinge the NUM model in 740 

a regional ocean model where smaller variations along shelf and especially across the shelf can be resolved, and in settings 

were data permits resolution of seasonal variability. 
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5.3 Areas of improvement 

We note that the optimal parameters spans have been determined with a water column model without vertical advection. 

CEE is particularly influenced by upwelling advection while Station ALOHA is influenced by convergence and 745 

downwelling advection. This difference is likely a significant factor contributing to the model deficiencies at ALOHA. 

Indeed the 100,000 random simulations at CEE tend to produce too low nitrate concentrations between 50 m and 200 m 

depth. This indicatingindicates that the model is missing additional upwelling that could push the nutricline up. It may be 

reasoned, that if there had been more physical upwelling in the model, the higher nutrient loading and presumably growth 

would mean that a new set of optimal parameter combinations would need to result in less biomass production to fit the 750 

observed biomass. The implication of more efficient biomass downregulation by perhaps more export would mean that for 

ALOHA, there would be more export driving the system more oligotrophic further enhancing the picoplanktonic biomass 

and lessen nano and microplankton. In fact, we see in the nutrient profiles that ALOHA has a tootoo high nutrient levels 

from 100 m and deeper. More downwelling advection in the model setup for ALOHA would push the nutricline down and 

result in a more oligotrophic system, perhaps shifting the ecosystem toward more picoplankton. Regardless, future 755 

investigating including a full two-way cross validation should explore NUM in a 3D circulation mode to alleviate model 

physics deficiencies of the current water column setup.   

In the NUM model, there is only one generalist functional group where small to large are defined by the same parameter 

combination. This means that the smallest sizes, that are essentially bacteria in size, are modeled with the same set of 

parameters as larger eukaryotic phototrophs. It is well known that there is a myriad of different species of bacteria optimized 760 

with different metabolic strategies, optimized with different cell membranes, and with no mitochondria. For example, while 

the Prokaryotes Synechococcus and Prochlorococcus are of similar size the former inhabit the surface waters at Station 

ALOHA while the latter live at low light conditions near the nutricline (Wu et al., 2022). Further, while having quite 

different modes of life, their resource uptake and growth is also significantly different from for example pico- or nano-

eukaryotes. In fact, large meta data analyses show very different allometric scaling of metabolic rate as function of body 765 

mass (size) (Delong et al., 2010). Prokaryotes show superlinear scaling with a power of 1.7, while eukaryote protists have 

linier scaling with a power of 1. Thus, empirical observation seem to suggest that the parameters regulating biosynthesis in 

NUM may need to respond more strongly to size in the picoplankton end of the spectrum (cf.Delong et al., 2010). In fact, 

our global sensitivity study revealed that the parameter regulating biosynthesis (αmax) areis among the most important 

parameters (Fig. 8). We furthermore found that the model in general could not capture picoplankton biomass in the 770 

oligotrophic system. h However, the best fit between model and observations is with low r*
D which increases the efficiency 

of the picoplanktonic community. If biosynthesis in the picoplankton range is modeled as more efficient than in for larger 

sizes, it potential would upregulate the microbial loop and result in more picoplankton biomass.   

Another aspect related to too little pico-biomass under oligotrophic conditions may be related to the model treatment of 

DOM. Currently the model use DOC contributing only to osmotrophic heterotrophy. However, labile DOM has a 775 
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DOC:DON ~5-15 (Zakem and Levine, 2019). This means that under oligotrophic conditions the model osmotrophic bacteria 

are potentially nutrient limited missing an important source of nutrients that could boost the pico-microbial loop thereby 

increasing BT-pico. Adding an explicit or implicit treatment of labile DON would likely result in better performance  (cf. 

Zakem and Levine, 2019). Other recent studies have shown that the picoplankton Prochlorococcus, while predominantly 

phototrophic, is capable of osmotrophic mixotrophy at low light conditions, and that labile DOM additions under low light 780 

boots the growth significantly (Wu et al., 2022). The experiments reveal that significant Prochlorococcus growth and 

biomass in the deep chlorophyll maximum is likely sustained by both light and DOM. Such additive substrate would 

increase the model picoplankton growth rate and boost BA-pico to better match observations. 

The simplicity of the NUM model puts some limitations on its use in some environments. The model does not yet include 

oxygen nor reduction-oxidation reactions as in some trait-based models (cf. Zakem et al., 2020b; Zakem et al., 2020a). This 785 

has implications for the large phagotrophs or higher trophic level that are therefore not restricted in their respiration if for 

example oxygen is low. Using the model below the photic zone in upwelling systems and for investigating low-oxygen 

environments would require implementation of oxygen, a development that is underway. The model ecosystem is currently 

not limited by other nutrients than nitrate such as iron or phosphate (cf. Serra-Pompei et al., 2022; Serra-Pompei et al., 

2020). It might also be possible to capture more details of the ecosystem by parameterizing or adding additional functional 790 

groups such as diatom and bacteria, but these refinements come with a computational cost. Overall, the NUM model is fast 

and has the benefit of being able to resolve mixotrophy in organisms and shared predation, aspects attracting increasing 

attention in trait modelling (Wu et al., 2022; Casey et al., 2022; Follett et al., 2022). Our analysis shows that the model – 

overall and despite its simplicity – is remarkably stable within a wide range of parameters, and usable for a user without 

intimate knowledge of the parameter settings. 795 

6 Conclusion 

We have validated the generalist unicellular component of the NUM ecosystem model framework in a water column setup 

for two sites - a high productivity upwelling system and an oligotrophic downwelling system. With optimization of the range 

of 23 free parameters, the unicellular component of NUM, despite its simplicity, is able tocan capture the size distribution of 

the planktonic ecosystem and its nutrient profile over a broad range of parameter values. The model reasonably reproduces 800 

the nutrient profile despite its simple POM and degradation formulation. For the California Current system (CCE) we find 

seven optimal parameterparameters combinationcombinations that are quite different but almost perfectly match the 

distribution of each of the size groups as function of increasing ACbio. Validation against ALOHA overall indicate that by 

restricting the parameters based on the optimal parameters for CCE and increasing the microbial loop (increasing γ2) and 

focusing on predation, there is a reasonable match to the overall trends in biomass for the different size classes and the 805 

nutrient profile. We find there is a tendency for NUM to underestimate pico- and nanoplankton biomass at both sites, 
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indicating that osmotrophy, nutrient uptake and/or mixotrophy in the lower range of the picoplankton group require further 

development.  

Despite its simplicity, the NUM framework is remarkably stable within the identified restricted parameter ranges and likely 

well suited for modeling poorly known regions and evolutionary scenarios where first-principles trumps details. 810 

 

7 Code availability 

The NUM model used in this analysis along with scripts for running experiments, analyzing results and data, and plotting 

figures is available at https://github.com/trinefrisbaek/NUM_0.91_ModelEvaluation 

(https://zenodo.org/doi/10.5281/zenodo.10844336). The readme file contains a list of relevant scripts for running and 815 

plotting files. The original NUM code analyzed in this paper is available at 

https://github.com/Kenhasteandersen/NUMmodel/releases/tag/v0.91. The simulations are done with the MITgcm_2.8deg 

transport matrix that has to be downloaded separately from 

http://kelvin.earth.ox.ac.uk/spk/Research/TMM/TransportMatrixConfigs/.  
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S 1. The Nutrient-Unicellular-Multicellular model 

The Nutrient-Unicellular-Multicellular (NUM) model is a modular framework comprising four separate 

modules: (i) the Generalist module for unicellular organisms, (ii) a specialized module for unicellular 

diatoms that require silica, (iii) a module for multicellular organisms, exemplified by the copepod, and (iv) 

a module for handling particulate organic matter (POM). The NUM model utilizes dissolved organic carbon 

(DOC) and a non-specific nutrient (N). Silica is included when the diatom module is employed. 

 

In this article, we describe and evaluate the Generalist (i) and POM (iv) modules of the NUM model. The 

model formulations are based on Andersen and Visser (2023), who provide an in-depth explanation of the 

underlying motivations, which we will not reiterate here. We highly recommend interested readers refer to 

their comprehensive explanation. 

 

The following sections detail the formulations for the unicellular generalist, nutrient, and DOC 

interactions, along with the POM module and the water-column implementation within the NUM 

framework. All parameters and units are listed in Table 1 of the main text.  
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S 1.1. Generalists 

The unicellular module of the NUM model is described as a series of N unicellular organisms differing only 

in their size. The size classes are logarithmic distributed with geometric mean mass 𝑚  for size group i. The 

energy growth rate (day-1) of the generalist biomass 𝐵 in size group 𝑖 is described by the following equation: 

 

𝑑𝐵

𝑑𝑡
= 𝑔(𝑚)𝐵 − 𝜇(𝑚)𝐵 , (1) 

 

In this equation, 𝑔(𝑚) represents the synthesis rate of carbon and nitrogen (day-1), and 𝜇(𝑚) represents 

the total mortality losses (day-1). The specific forms of 𝑔(𝑚) and 𝜇(𝑚) are detailed below. 

 

S 1.1.1. Synthesis rate, 𝒈(𝒎𝒊) 

The synthesis rate 𝑔 of size group i is described by a type II functional response (Holling, 1959):  

𝑔(𝑚) = 𝑗୫ୟ୶.୧

𝐽୬ୣ୲.

𝐽୬ୣ୲. + 𝐽୫ୟ୶.

, (2) 

Here, the maximum synthesis rate 𝑗୫ୟ୶ is given by: 

𝑗୫ୟ୶. = 𝛼୫ୟ୶(1 − 𝜈)𝑚𝜓, (3) 

where 𝛼௫  is the maximum synthesis coefficient (day-1) and 𝜈 is the fraction of the cell used by cell 

membrane and wall, defined as 𝜈 = 3(𝛿/𝑟) with 𝛿 being the thickness of the cell wall in nm.  𝜓 represents 

the temperature adjustment factor with a Q10 value of 2 (Eppley, 1971).  

𝐽୬ୣ୲.  is the minimum of the combined net uptake of carbon and nutrients from different sources, 

determined by Liebig’s law of the minimum: 

𝐽୬ୣ୲. = min{𝑗େ୬ୣ୲. , 𝑗୬ୣ୲.} (4) 

 

The unicellular generalist can take up carbon as dissolved organic carbon (DOC) through osmotrophy 

(𝑗ୈେ), phototrophy (𝑗), and phagotrophy (𝑗), while losing carbon through respiration (𝑗ୖ) and passive 

losses (𝑗୮ୟୱୱ୧୴ୣ) 

𝑗େ୬ୣ୲. = 𝑗ୈେ + 𝑗 + 𝑗 − 𝑗ୖ − 𝑗୮ୟୱୱ୧୴ୣ (5) 

 

Similarly, the net uptake of nutrients for the unicellular generalist involves diffusive uptake through 

osmotrophy (𝑗) and phagotrophic uptake (𝑗ி), with losses occurring passively (𝑗୮ୟୱୱ୧୴ୣ)  

𝑗୬ୣ୲. = 𝑗 + 𝑗ி − 𝑗୮ୟୱୱ୧୴ୣ (6) 
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The uptake rates from the resources DOC (𝑗ୈେ.), light (𝑗.), and nutrients (𝑗.) depend on the mass-

specific affinity for the given resource 𝑎௫  (volume/day/gC), the concentration of the resource X (𝑋/volume), 

and the Carbon: X ratio 𝜌େ:ଡ଼ (gC/gX) 

𝑗ଡ଼. = 𝑎௫.𝑋𝜌େ:ଡ଼ (7) 

In the model 𝑎௫  take the form of 𝑎, the mass-specific affinity for the diffusive uptake of carbon and 

nutrient, 𝑎  the mass-specific affinity for carbon uptake through photosynthesis, and 𝑎ி  the mass-specific 

affinity for phagotrophic uptake of food. The mass-specific affinities are central to the NUM model, as they 

account for the differences among generalist organisms that vary only in size. The affinities are thoroughly 

discussed in Andersen and Visser (2023) with a comprehensive presentation of model's underlying 

principles. Here only in short, we  present the mass-specific affinity functions. 

 

The mass-specific affinity for the diffusive uptake of carbon and nutrients 𝑎ୈ is described as:   

𝑎ୈ = 𝛼𝑟ିଶ
1

1 +
𝑟
𝑟

∗

ିଶ 𝜓, (8) 

where 𝛼  is the diffusive affinity coefficient, 𝑟
∗  is the diffusive affinity crossover and 𝑟 is the radius of the 

cell.  

The mass-specific affinity for carbon uptake through photosynthesis 𝑎 is give as: 

𝑎 = 𝜀

𝛼

𝑟
ቆ1 − 𝑒

ି


ಽ
∗
ቇ 𝑚(1 − 𝜈), (9) 

Where 𝛼  is the light affinity coefficient, 𝑟
∗ is the light affinity crossover and 𝜀 is the light uptake efficiency. 

 

The uptake rate of phagotrophy has a constant mass-specific affinity, corresponding to the phagotrophic 

clearance rate. However, the actual food consumption is limited by assimilation, and the phagotrophic 

uptake rate is thus given by: 

𝑗 = 𝜀ி

𝑐ி

𝑟

𝑎ி𝐹

𝑎ி𝐹 +
𝑐ி

𝑟

, (10) 

 

Where 𝑐ி  is the maximum phagotrophic coefficient, 𝑎ி  is the phagotrophic clearance rate, 𝜀ி  is the 

phagotrophic efficiency, and 𝐹 is the amount of available food. The available food 𝐹  is the sum of the prey 

in each size group j: 

𝐹 =  𝜑𝐵



(11) 

𝜑  is the size preference for predation. Predation occur when larger cells predate on smaller cells. This 

interaction is described as a log-normal size function that, when integrated across all size groups, has the 

detailed formulation: 
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𝜑 =
√∆

(∆ − 1)log (∆)

⎣
⎢
⎢
⎢
⎡

⎝

⎜
⎛1

2
𝑠 ቌ𝑒ି

మ൬
∆௭
ఉ

൰
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௭
ఉ

൰

௦ ቍ

−
1

2
√𝜋√𝑠 ൮log ൬

∆𝑧

𝛽
൰ 𝑒𝑟𝑓 ቆ

log(𝛽) − log(∆𝑧)

√𝑠
ቇ

+ log ൬
𝛽∆

𝑧
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√𝑠
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⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

 

(12) 

where 𝑠 = 2𝜎ଶ, 𝜎 is the predator-prey width ratio, 𝛽 is the predator-prey mass ratio, 𝑧 =


ೕ
, and 

∆= 𝑚
ା/𝑚

ି.  

 

In addition to these gains, 𝐽୬ୣ୲ also includes losses from respiration and passive leakages. Respiration is 

modeled as a constant fraction 𝛼ோ  of maximum synthesis: 

𝑗ோ = 𝛼ோ𝛼୫ୟ୶𝜓 (13) 

Finally, passive leakage of nitrogen and carbon from the cell is defined as: 

𝑗୮ୟୱୱ୧୴ୣ =
𝑐୮ୟୱୱ୧୴ୣ

𝑟
𝑚, (14) 

where 𝑐୮ୟୱୱ୧୴ୣ  is the passive loss coefficient.  

 

S 1.1.2. Mortality losses, 𝝁(𝒎𝒊) 

The mortality losses for the unicellular generalist 𝜇 (d-1) arise from three different processes: (i) background 

mortality (𝜇୴), (ii) predation mortality from unicellular organisms (𝜇୮ ), and (iii) predation from higher 

trophic levels (𝜇୦୲୪): 

𝜇(𝑚) = 𝜇୴. + 𝜇୮. + 𝜇୦୲୪.  (15) 

 

The background mortality (d-1) is modelled as viral lysis, assumed to be proportional to the biomass and 

dependent on the viral lysis mortality coefficient 𝜇୴:  

𝜇୴. =
𝜇୴

log ൬
𝑚

ା

𝑚ିଵ
ା ൰

𝐵  (16)
 

 

The predation mortality represents internal phagotrophy within the unicellular module, where larger cells 

consume smaller cells. It is defined by: 

𝜇୮. =  
𝚥ி̃.

𝜖ி

𝜑

𝐹

𝐵


(17) 

Where 𝜑  is calculated as in equation (12), and 𝚥ி̃.  is the down-regulated phagotrophic uptake rate after 

leakage of surplus nutrients:  



5 of 17 
 

𝚥ி̃. = 𝑚𝑎𝑥{0, 𝑗ி. − (𝐽୬ୣ୲. − 𝑔)} (18) 

 

 The higher trophic level mortality is modelled as: 

𝜇୦୲୪ = 𝜇୦୲୪.

1

1 + ቀ
𝑚

𝑚௧
ቁ

ିଶ  (19) 

  

Where 𝜇୦୲୪. defines the size of the higher trophic level mortality and 𝑚௧ defines the lower size limit of the 

higher trophic level mortality. 

S 1.2. Nutrients and DOC 

Nutrients and DOC are updated several times depending on the number of modules used. Within the 

unicellular module, nutrients and DOC are utilized by the generalist and returned into the environment 

through several processes: passive losses (𝑗୮ୟୱୱ୧୴ୣ), nutrient surplus leaking from the cell (𝑗୪୧ୣୠ୧, 𝑗େ୪୧ୣୠ୧) 

feeding losses (𝑗ୣୣୢ୧୬), along with the fraction of background and higher-trophic level mortality that it not 

transferred into POM (controlled by the parameters  γ2 and γhtl).  

The nutrient dynamics is described by: 

 

𝑑𝑁

𝑑𝑡
=  ൬

−𝑗. + 𝑗୮ୟୱୱ୧୴ୣ. + 𝑗୪୧ୣୠ୧. + 𝑗ୣୣୢ୧୬.

𝑚

+ 𝜇୴.γଶ+ 𝜇୦୲୪γ௧൰



𝐵 

𝜌େ:

 (20) 

The DOC dynamics are described by: 

 

𝑑𝐷𝑂𝐶

𝑑𝑡
=  ൬

−𝑗ୈେ. + 𝑗୮ୟୱୱ୧୴ୣ. + 𝑗େ୪୧ୣୠ୧. + 𝑗ୣୣୢ୧୬.γி + 𝑗୮୦୭୲୭୳୮୲ୟ୩ୣ.

𝑚

+ 𝜇୴.γଶ൰



𝐵  (21) 

 

Here, the surplus of nutrient and carbon is calculated as: 

𝑗୪୧ୣୠ୧. = max{0, 𝚥̃.୬ୣ୲. − 𝑔} (22) 

 

𝑗େ୪୧ୣୠ୧. = max{0, 𝚥େ̃.୬ୣ୲. − 𝑔} (23) 

 

The downregulated uptake of carbon and nutrients are described as: 

𝚥̃୬ୣ୲. = 𝑗 + 𝚥̃ − 𝑗୮ୟୱୱ୧୴ୣ (24) 

𝚥େ̃.୬ୣ୲. = 𝚥̃. + 𝑗ୈେ + 𝚥̃ − 𝑗ୖ − 𝑗୮ୟୱୱ୧୴ୣ (25) 

and  

𝚥̃. = 𝑗 − max{0, min{(𝑗େ.୬ୣ୲ − (𝑗 − 𝚥̃) − 𝑔), 𝑗}} (26) 

 

Finally, feeding losses and photo-uptake are described as:  

𝑗ୣୣୢ୧୬. =
1 − 𝜖ி

𝜖ி

𝚥̃. (27) 



6 of 17 
 

𝑗୮୦୭୲୭୳୮୲ୟ୩ୣ. =
1 − 𝜖

𝜖

𝚥̃.  (28) 

 

S 1.3. POM 

The NUM model handles particulate organic matter (POM) similarly to how it manages unicellular 

organisms. POM is divided into M logarithmic size classes, each with a geometric mean mass 𝑚  for POM 

group k. The sources of POM include: (i) Mortality from higher trophic levels, (ii) feeding losses, and (iii) 

background mortality, while losses occur through remineralization and predation by larger cells. The 

assignment of background mortality to specific POM classes is described by the matrix ϑ. Viral lysis 

products are directed into the POM class closest in size to the original generalist size from which they 

originated, with a constraint preventing them from exceeding the original generalist size. The matrix ϑ 

contains 0s and 1s, indicating where the biomass from different sources is allocated within the POM size 

classes. The dynamics of POM are described by the equation: 

 

dPOM

d𝑡
= (1 − γଶ) 𝜇୴.𝜃.𝐵 + (1 − γ௧)𝜇୦୲୪∆

𝐵 

𝜌େ:

− γ.𝑃 − 𝜇୮.𝑃



 (29) 

 

Here, ∆= ൜
0, 𝑘 < 𝑀
𝑥, 𝑘 = 𝑀

 denotes that POM from higher-trophic level mortality is transported into the largest 

POM size class.  𝜇୮.  describes feeding of large unicellular organisms on POM and is calculated as in 

equation (17). Remineralization of POM is described as 

γ. = 𝑤𝑎 𝜓 (30) 

 

Where 𝑤  is the mass-specific sinking velocity described by 𝑤 = 𝑣ଵ𝑚
௩మ  in meters/day and 𝑎 is the 

inverse solubilization length scale with units of m-1. 

 

Nutrients are updated as POM is remineralized back into nitrogen (N) and dissolved organic carbon (DOC): 

𝑑𝑁

𝑑𝑡
=  ൬

𝑑𝑁

𝑑𝑡
൰

ୣ୬ୣ୰ୟ୪୧ୱ୲

+ 
γ𝑃

𝜌େ:


 (31) 

 

𝑑𝐷𝑂𝐶

𝑑𝑡
=  ൬

𝑑𝐷𝑂𝐶

𝑑𝑡
൰

ୣ୬ୣ୰ୟ୪୧ୱ୲

+  γ𝑃



 (32) 

S 1.4. Water-column routine 

The water-column dynamics (mixing and sinking) is described with a transport matrix: 

𝒖௧ାଵ = (𝑻௧ + 𝑺)𝒖௧ , (33) 

 

Where 𝒖𝒕 is the state vector at time 𝑡 comprising nutrients, biomasses, and POM state variables, 𝑻௧  is the 

transport matrix, and 𝑺 is the sinking matrix. The transport matrix represents vertical mixing and is 
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extracted as the implicit matrix from the global 1o transport matrix MITgcm_ECCO (Stammer et al., 2004) 

at the two study sites on a monthly basis. The sinking matrix 𝑺 represents sinking of POM as described with 

a first-order implicit down-wind scheme. The time step of transport and sinking is 0.5 days. In between 

each transport time step the ecological and biogeochemical model is integrated with a Euler scheme with 

a time step of 0.1 days. The boundary at the surface is closed for all state variables. The boundary at the 

bottom is fixed to the initial concentrations for nutrient state variables, closed for unicellular state 

variables, and open for sinking POM. 

The light availability in the water column is dependent on the light attenuation (kw and kPOM), which result 

from shading and scattering by dissolved and particulate organic matter in the water column. kw is 

calculated based on observations at CEE. We have fitted an exponential function to observed irradiance 

as function of depth using the particulate organic matter concentration for each station at each measuring 

day in the CCE-LTER program. This has resulted in a kPOM value of 3 × 10ିହ (m2 mg C-1) used here. 

S 2. Inter-annual statistical variations in the dataset from CCE and Station ALOHA 

In the article we compare the model result to the mean size spectrum for California Current Ecosystem 

(CCE) and Station ALOHA in the years 2004-2011. To evaluate the model results we compare the deviations 

from the mean observations with the inter-annual variability in Root-Mean-Squared-difference (RMSd iao), 

Standard Deviation (STDiao) and Correlation coefficient (CORiao) given in Table S1. 

 

Table S2.1: The Root-Mean-Squared-difference, Standard Deviation and Correlation between annual observation 
versus mean of year 2004-2001 for CCE (RMSdiao, STDiao, and CORiao) 

CCE BT-pico BT-nano BA-pico BA-nano BA-micro 

RMSdiao 0.4 0.3 2.7 0.4 1.0 

STDiao 2 1.4 2.1 1.4 1.4 

CORiao 0.2 0.7 0 0.7 0.96 

Station ALOHA BT-pico BT-nano BA-pico BA-nano BA-micro 

RMSdiao 0.04 0.5 0.2 0.4 1.0 

STDiao 1.2 1.6 1.4 1.5 2.6 

CORiao 0.97 0.9 0.96 0.9 0.7 
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S 3. Statistics for best model solutions 

Model Root-Mean-Squared-difference (RMSdm-o), and Correlation coefficient (CORm-o) for the best model 

fit to observations.  

Table S2: The Root-Mean-Squared-difference, and Correlation between model result and mean of year 2004-2001 for 
CCE (RMSdm-o, and CORm-o) for the best parameter combinations for CCE. Compare with Table S1 for boundaries. 
Values highlighted with grey are not within the inter-annual variability of the observations.  

 

CCE 

 
simulation nr. 

BT-pico BT-nano BA-pico BA-nano BA-micro 

RMSdm-o 

RM
Sd

m
-o

 

1703 0.64 0.60 0.08 0.25 0.40 

5801 0.48 0.71 0.05 0.39 0.51 

39986 0.57 0.45 0.16 0.19 0.23 

41402 0.53 0.37 0.13 0.22 0.67 

49833 0.63 0.40 0.19 0.17 0.35 

91224 0.54 0.47 0.08 0.22 0.27 

99032 0.55 0.50 0.10 0.32 0.67 

 CORm-o 

C
O

R m
-o

 

1703 0.86 0.96 0.98 0.98 0.89 

5801 0.83 0.98 0.98 0.99 0.90 

39986 0.98 0.94 1.00 0.96 0.95 

41402 0.93 0.96 1.00 0.98 0.79 

49833 0.93 0.95 1.00 0.97 0.91 

91224 0.95 0.94 0.99 0.96 0.92 

99032 0.93 0.97 0.98 0.99 0.80 

 

 

 

 

 

 

 

 

 

 

 



9 of 17 
 

Table S3: The Root-Mean-Squared-difference, and Correlation between model result and mean of year 2004-2001 for 
CCE (RMSdm-o, and CORm-o) for the best parameter combinations for CCE. Compare with Table S1 for boundaries. 
Values highlighted with grey are not within the inter-annual variability of the observations.  

 

Station ALOHA 

 
simulation nr. 

BT-pico BT-nano BA-pico BA-nano BA-micro 

RMSdm-o 

RM
Sd

m
-o

 

29534 0.17 0.56 0.09 0.12 0.88 

37705 0.31 1.08 0.29 0.36 1.69 

69585 0.12 0.67 0.13 0.20 1.29 

74294 0.41 1.18 0.24 0.18 2.77 

 
CORm-o 

C
O

R m
-o

 

29534 0.97 0.97 0.99 0.99 0.78 

37705 0.98 0.90 0.97 0.95 0.72 

69585 0.96 0.96 0.97 0.99 0.71 

74294 1.00 0.95 0.98 0.99 0.81 

 

S 4. Local sensitivity analysis for CCE 

The aim of the local sensitivity assessment is to evaluate each parameter’s effect on the model result. The 

range of each free parameter is based on the range defined by the solutions with optimal fit (Fig. 6). Several 

of the parameters result in a threshold sensitivity (systems bifurcation point) where the model solution 

changes abruptly. We note as an example the threshold sensitivity related to the phagotrophic assimilation 

rate (εF), where there is an abrupt increase in microplankton at εF ~0.25 (Fig. S1a). εF has a highly non-linier 

effect on the ecosystem expressed in terms of light harvesting and food consumption (Fig. S1b,c). As εF 

decrease, the bifurcation in the ecosystem is associated with an abrupt reduction of food consumption in 

the lower half of the phytoplankton mass (size) spectrum, resulting in lower overall biomass, a reduction 

of light harvesting as a result of more unassimilated food is shunted into DOC and shading. While being 

extremely interesting, the detailed analysis of such bifurcation points is beyond the current scope and 

remains a prospect for future analyses.  
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Figure S1: Model threshold sensitivity related to the phagotrophic assimilation rate (εF) with an abrupt decrease in 
microplankton as εF decrease below ~0.25 (a). Note how this bifurcation point behavior is associated with light 
harvesting (b); light harvesting initially decreases for nearly all cell mass as εF decrease, but suddenly at ~0.25 results 
in a significant reduction mainly in the lower half of the mass range. Phagotrophic food consumption also suddenly 
decreases at ~0.25 (c). Model parameter combination is Test 41402, with local sensitivity plot shown in Fig. S2 

 

Overall, the random sampling of the restricted parameter span, as well as local sensitivity study show that 

most parameters are highly coupled in term of ecosystem sensitivity, where the effect of individual 

parameters are intertwined and result in a highly non-linier system. An illustration of this non-linearity can 

be seen by comparing the local sensitivity of two of our nine optimal fits. The two sets of local sensitivity 

analyses result in very different estimates of the parameter sensitivity (Fig. S2). One model, with its initial 

optimal parameter set, yielded nearly equally sensitive to almost all parameters with only aF,  and mHTL 

standing out in RMSd (Fig. S2a). In contrast, εF is the absolute most important parameter in the other model 

(Fig. S2b). 
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Figure S2: Local sensitivity, for two optimal model results, where only one parameter is varied at the time. The variation 
is within the restricted parameter span based on the parameter range for the nine statistically optimal parameter 
combinations for CCE. Note how model test 85751 is sensitive to change in most parameters (a) whereas model test 
41402 (b) is strongly sensitive to εF. Abbreviations as in Fig. 2 and parameters in Table 1. 

S 5. Setting up Sobol’s sensitivity assessment simulations and calculating 
sensitivity index 

The following is a “dummy” script for setting up a Sobols Sensitivity Analysis and calculating the Sobols 

sensitivity index. 

 

 



12 of 17 
 

Step 1: Run the model with three sets of parameters: 

% a. "Original": 20,000 simulations with predefined Latin Hypercube Sampling of random parameters in a 

23-parameter space. 

% b. "Set 1": 460,000 simulations. For each of the 20,000 original simulations, run 23 simulations where 

each parameter is held at its "original" value while changing all other parameters within the same 

parameter space as the original collection. 

% c. "Set 2": 460,000 simulations where each parameter is varied individually while the other parameters 

are held constant at their "original" values. 

 

Step 2: Sorting data: 

% a. The result of simulations in 1a becomes a column vector from 1 to 20,000, called "y0." 

% b. The result of simulations in 1b becomes a matrix that is 23 times 20,000 in size, where row 1 

corresponds to simulations where parameter 1 is held at its "original" value while all others are varied (and 

so on for all 23 rows/parameters). This matrix is called "y1." 

% c. The result of simulations in 1c becomes a matrix that is 23 times 20,000 in size, where row 1 

corresponds to simulations where only parameter 1 is varied while others are held at their "original" values 

(and so on for all 23 rows/parameters). This matrix is called "y2." 

 

Step 3: Calculate f0 and D using the formula: 

f0 = sum(y0)/20000; 

D = sum(y0.^2)/20000; 

D = D - f0.^2; 

 

Step 4: Calculate Di and Di_tot using the formula: 

Di = ones(23, 1) * D; 

Ditot = zeros(23, 1); 

for i = 1:20000 

    for j = 1:23 

        Di(j) = Di(j) - (y0(i) - y1(j, i)).^2 / (2 * 20000); 

        Ditot(j) = Ditot(j) + (y0(i) - y2(j, i)).^2 / (2 * 20000); 

    end 

end 

Step 5: Calculate the First-order (S1) and Total (St) effect sensitivity indices: 

S1 = Di./D; 

St = Ditot./D; 
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S 6. Checking stability of Total Sobol’s sensitivity index 

To test if 20,000 random simulations is enough to assess the Sobol’s Total index (STi) we evaluated the 

evolution of STi as a function of the number of simulations. Fig. S3 show that the STi for Root-Mean-Square 

difference (RMSd) for ACpico is stable for most of the parameters after approximately 7,000 random 

simulations. 

  
Figure S3: Sobol’s Total index (STi) calculated on RMSd for ACpico as a function of the number of simulations, for each 
of the 23 parameters. Most of the parameters show large variations with few simulations but the STi values are stable 
above approximately 7,000 simulations.  

 

The manuscript includes the global parameter sensitivity ranked based on sensitivity index calculated for 

RMSd but not correlation which is added in Fig. S4. The result for correlations supports the result for RMSd 

showing a model sensitivity towards predation and synthesis.  
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Figure S4: Global parameter sensitivity ranked based on sensitivity index calculated by Sobol’s variance-based 
sensitivity method for non-linear models for RMSd and Correlation. Note how all biomass sizes are especially sensitive 
to parameters controlling predation (red dots) and synthesis (grey dots). Parameter definitions in Table 1 and other 
abbreviations in Fig. 2. 

S 7. Random Parameters study for Station ALOHA 

The first order parameter sensitivity study was done for both CCE and Station ALOHA. Figure S5 below 

show the result for Station ALOHA. The figure shows how many of the model simulations underestimate 

pico- and nanoplankton at low ACbio while overestimate at higher ACbio. The simulations generally 

overestimate the microautotrophic biomass. This pattern is very similar to the pattern for the 100,000 

simulations for the first-order sensitivity analysis at CCE (compare to Fig. 5 in text). 
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Figure S5: Model mean and total biomass of size groups as a function of total biomass for the 100,000 random 
parameter combinations for Station ALOHA. Black dots are observations in ACbio bins. Abbreviations as Fig. 2.  
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