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Abstract. Projecting the anthropogenic mass loss of the Greenland and Antarctic ice sheets requires models that can 

accurately describe the physics of flowing ice, and its interactions with the atmosphere, the ocean, and the solid Earth. As the 

uncertainty in many of these processes can only be explored by running large numbers of simulations to sample the phase-10 

space of possible physical parameters, the computational efficiency and user-friendliness of such a model are just as relevant 

to its applicability as is its physical accuracy. Here, we present and verify version 2.0 of the Utrecht Finite Volume Ice-Sheet 

Model (UFEMISM). UFEMISM is a state-of-the-art finite-volume model which applies an adaptive grid in both space and 

time. Since the first version was published two years ago, v2.0 has added more accurate approximations to the Stokes flow, 

more sliding laws, different schemes for calculating the ice thickness rates of change, a more numerically stable time-15 

stepping scheme, more flexible and powerful mesh generation code, and a more generally applicable discretisation scheme. 

The parallelisation scheme has changed from a shared-memory architecture to distributed memory, enabling the user to 

utilise more computational resources. The version control system (git) includes automated unit tests and benchmark 

experiments, to aid with model development, as well as automated installation of the required libraries, improving both user 

comfort and reproducibility of results. The in/output (I/O) now follows the NetCDF-4 standard, including automated 20 

remapping between regular grids and irregular meshes, reducing user workload for pre- and post-processing. These additions 

and improvements make UFEMISM v2.0 a powerful, flexible ice-sheet model, that can be used for long palaeoglaciological 

applications, as well as large ensemble simulations for future projections of ice-sheet retreat, and which is ready to be used 

for coupling within Earth system models. 

1 Introduction 25 

One of the most worrisome, and at the same time most uncertain, possible long-term consequences of anthropogenic climate 

change is mass loss of the Greenland and Antarctic ice sheets, leading to global sea-level rise (Oppenheimer et al., 2019; van 

de Wal et al., 2019; Fox-Kemper et al., 2021). Projections for the Antarctic contribution to sea-level rise in 2100 under 

RCP8.5, which were studied in the Ice-Sheet Model Intercomparison for CMIP6 (ISMIP6), range from −2.5 cm to +17 cm 

(Seroussi et al., 2020), with a possible high-end value of +59 cm (van de Wal et al., 2022) and consequently much more on 30 
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longer time scales. Part of this large uncertainty stems from poorly constrained physical properties and processes in the 

Antarctic ice sheet system, including subglacial conditions (e.g. Kazmierczak et al., 2022; Berends et al., 2023a), basal 

sliding (Sun et al., 2020), interactions between the ice shelf and the ocean in the sub-shelf cavity (e.g. Burgard et al., 2022; 

Berends et al., 2023b), calving (e.g. Crawford et al., 2021) and ice-dynamical processes (e.g. Rückamp et al., 2022). 

However, even in idealised experiments where all these quantities are known perfectly, different ice-sheet models can 35 

predict rates of sea-level rise that differ by a factor of three (Cornford et al., 2020). This represents the uncertainty arising 

from the numerical models themselves, which disagree on how to translate the physical equations to computer code. These 

model differences include the way the momentum balance (typically represented by the Stokes equations) is approximated, 

the choice of grid, the numerical treatment of discontinuities in basal friction and melt rates at the grounding line, and the 

way the model is initialised. Sampling both this model-intrinsic uncertainty, and the uncertainty in the physical properties 40 

and processes of the actual ice sheet, require ice-sheet models that have the computational power, and the flexibility, to 

perform large numbers of simulations, at an adequate resolution to capture these processes. To meet this challenge, many 

research groups working on ice-sheet modelling have recently directed their efforts at creating new, more powerful ice-sheet 

models (e.g. Pattyn, 2017; Hoffman et al., 2018; Quiquet et al., 2018; Lipscomb et al., 2019; Robinson et al., 2020; Berends 

et al., 2022). 45 

 

Here, we present version 2.0 of the Utrecht Finite Volume Ice-Sheet Model (UFEMISM). The main distinguishing feature of 

the model is its dynamic adaptive mesh. This approach was pioneered by Durand et al. (2009) and Gladstone et al. (2010), 

and has since been applied in BISICLES (Cornford et al., 2013), ISSM (dos Santos et al., 2019), and (in glacier-scale 

applications) in Elmer/ice (Todd et al., 2018). This structure allows the model to resolve the grounding line at high (< 5 km) 50 

resolutions during multi-millennial simulations. Since the publication of v1.0, many new features have been added to 

UFEMISM, and many existing features have been improved in terms of power, flexibility, and user-friendliness. In Sect. 2, 

we provide the physical equations for ice flow that are solved by the model. This includes several approximations to the 

Stokes equations for the momentum balance (Sect. 2.2), several sliding laws (Sect. 2.3), a new numerical scheme for treating 

basal friction at the grounding line (Sect. 2.4), different temporal discretisation schemes to calculate the ice geometry rates of 55 

change (Sect. 2.5), and a new adaptive time-stepping scheme (Sect. 2.6). In Sect. 3, we describe several improvements that 

were made to the model code. This includes a change from a shared-memory to a distributed-memory implementation (Sect. 

3.1), and a thoroughly reworked I/O module that now follows the NetCDF-4 standard (Unidata, 2023) and is much more 

flexible and user-friendly (Sect. 3.2). It also includes a version control system that includes automated unit tests and 

benchmark experiments to aid in developing robust code, and automated installation of external libraries to improve user-60 

friendliness and reproducibility of results (Sect. 3.3). In Sect. 4, we present results of a number of idealised-geometry 

experiments to verify the new model physics and numerics. 
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This paper, part 1, focuses on the basic mathematics and physics of the model, and their verification in idealised benchmark 

experiments. Part 2, which is submitted for review and publication separately (Bernales et al, in prep.), focuses on model 65 

additions required for the application of UFEMISM to realistic ice sheets such as those in Greenland and Antarctica. It 

includes descriptions of the routines for inverting for subglacial bed roughness and for ocean temperatures in shelf cavities, 

different sub-shelf melt parameterisations, initialisation approaches, and future projections of mass loss. 

2 Model description 

2.1 General 70 

UFEMISM is a large-scale ice-sheet model. It solves different approximations of the Stokes equations to calculate the flow 

velocities of the ice. These are combined with the ice accumulation/loss rates at the surface, basal, and lateral boundaries of 

the ice sheet to find the thinning/thickening rates of the ice, which are integrated through time to find the evolution of the ice 

sheet. Note that hereafter, we will refer to UFEMISM version 1.0 as “v1.0”, and to the version 2.0 presented here as “v2.0”. 

 75 

The main distinguishing feature of UFEMISM compared to many other ice-sheet models is the use of a dynamic adaptive 

grid. The two-dimensional plane on which the model operates is discretised as an irregular triangular mesh, an example of 

which is shown in Fig. 1. 

 
Fig. 1: A demo mesh generated by UFEMISM for the Antarctic ice sheet, using a 10 km grounding-line resolution, and up to 200 80 
km for the ice-sheet interior and the open ocean. 

Earlier research in ice-sheet modelling has shown that the accuracy of a numerical model is particularly sensitive to the 

spatial resolution of the grid around the grounding line (Durand et al., 2009; Gladstone et al., 2012; Pattyn et al., 2012). 

There, the discontinuous basal friction, which is non-zero underneath the grounded ice but zero underneath the floating ice, 

causes strong gradients in englacial stresses and therefore the ice geometry. Although different solutions have been presented 85 
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in earlier literature to produce accurate results at coarser resolutions (see Sect. 2.4), the resolutions required at the grounding 

line are still much higher than those needed in the slow-moving interior of the ice sheet, in order to achieve the same level of 

accuracy in the ice thickness evolution. As the demand for both the temporal coverage and number of ice-sheet simulations 

increases, computational efficiency becomes a more important property of ice-sheet models. Using a uniform high resolution 

over the entire ice sheet, while it is only needed in the relatively small area around the grounding line, is therefore 90 

undesirable. UFEMISM solves this problem by using a mesh that has a high resolution only where needed, and a low 

resolution where possible. This is the “adaptive” part of the mesh. However, as the ice-sheet geometry changes over the 

course of a model simulation, the location of the grounding line changes as well. This means that, after a while, the 

grounding line might no longer be located within the high-resolution area of the mesh. A possible solution would be to use a 

mesh with a high resolution over a wider area, enveloping the expected future migration of the grounding line. While this is 95 

a feasible approach for century-scale simulations, doing this for the multi-millennial applications for which UFEMISM is 

also intended would mean creating a mesh with a very large high-resolution area, thus offsetting the benefits of the adaptive 

mesh. Instead, UFEMISM periodically checks the mesh fitness to the modelled ice-sheet geometry and, if needed, 

automatically creates a new mesh that conforms to the new ice-sheet geometry (with a high-resolution area around the new 

grounding-line position), remapping the model data from the old mesh to the new one. This is the “dynamic” part of the 100 

mesh. Berends et al. (2021) showed that this approach results in good computational performance, with no significant loss of 

accuracy. 

While the general principles of the dynamic adaptive mesh have not changed significantly in v2.0 with respect to v1.0, the 

way these principles are implemented has changed in several ways. The new mesh generation code, the scheme used to 

discretise the partial differential equations of the model on the mesh, and the scheme used to remap data from one mesh to 105 

another, are presented in Appendices A, B, and C, respectively. 

2.2 Momentum balance 

UFEMISM v2.0 includes solvers for several different approximations to the Stokes equations, which neglect increasingly 

more terms in these equations. Of these approximations, the Blatter-Pattyn approximation (BPA; Blatter, 1995; Pattyn, 

2003), which is described in Sect. 2.2.1, neglects the fewest terms. The depth-integrated viscosity approximation (DIVA; 110 

Goldberg, 2011; Sect. 2.2.2), the shallow shelf approximation (SSA; Morland, 1987; Sect. 2.2.3), the shallow ice 

approximation (SIA; Morland and Johnson, 1980; Sect. 2.2.4), and the hybrid SIA/SSA (Bueler and Brown, 2009; Sect. 

2.2.5) can all be derived by neglecting more and more terms. For a comprehensive description of the Stokes equations and a 

derivation of the different approximations, we recommend reading Greve and Blatter (2009). 

  115 
Table 1: Model symbols, units, and default values where applicable 

Symbol Description Units Valu
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e 

𝐴 Glen’s flow law factor Pa-n yr-1  

𝑏 Bedrock elevation m  

𝛽 Basal friction coefficient Pa m-1 yr  

𝜀!̇ Effective strain rate yr-1  

𝑔 Gravitational acceleration m s-2 9.81 

𝐻 Ice thickness m  

𝜂 Effective viscosity Pa yr  

𝑛 Glen’s flow law exponent  3 

𝜌 Density of ice kg m-3 910 

𝑠 Surface elevation m  

𝑢 Horizontal ice velocity vector m yr-1  

𝑢 Horizontal ice velocity in x-direction m yr-1  

𝑣 Horizontal ice velocity in y-direction m yr-1  

𝑤 Vertical ice velocity m yr-1  

𝜁 Scaled vertical coordinate  0 – 1 

2.2.1 Blatter-Pattyn Approximation 

The BPA arises from the Stokes equations by assuming hydrostatic equilibrium and neglecting the stresses arising from 

horizontal variations in the vertical velocity (i.e. "#
"$
≪ "%

"&
, "#
"'
≪ "(

"&
; Pattyn, 2003). This means that the pressure 𝑝 and the 

vertical velocity 𝑤 disappear as degrees of freedom from the momentum balance, so that only the horizontal velocities 𝑢, 𝑣 120 

remain to be solved for. The BPA produces ice velocities that are generally very close to those from the Stokes equations 

(Pattyn et al., 2008), so that it is generally able to describe the large-scale evolution of continental ice-sheet-shelf systems 

such as the Antarctic ice sheet. Deviations from the full Stokes solution are more noticeable in e.g. thermo-mechanically 

coupled problems of ice-streams (Schoof and Mantelli, 2021), advection problems of tracers (Jouvet et al., 2021) and flow at 

ridges and domes (Seddik et al., 2011). While less computationally expensive to solve than the Stokes equations, the BPA is 125 

still significantly slower than the DIVA or the hybrid SIA/SSA, owing to the fact that, where those approximations either 

parameterise or neglect vertical variations in horizontal velocities or strain rates, the BPA solves for such variations 

explicitly. This requires the model to discretise the vertical dimension as well, whereas the DIVA and the hybrid SIA/SSA 

operate in the two-dimensional plane, yielding a system of linear equations that is larger by a factor of the number of vertical 

layers in the model. 130 

 

The set of partial different equations that must be solved in order to find the 3-D horizontal ice velocities 𝑢, 𝑣 reads: 
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The effective viscosity 𝜂 is related to the effective strain rate 𝜀 by Glen’s flow law (Glen, 1955): 135 

 𝜂 = *
+
𝐴,* -⁄ 𝜀!

!"#
# .          (2) 

The flow factor can be set to a uniform fixed value (as is done in the idealised experiments presented here), or can be 

calculated from the ice temperature, following the Arrhenius-type relation provided in Berends et al. (2021). 

The effective strain rate 𝜀! is given by: 
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At the ice surface, the zero-stress boundary condition reads: 
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A similar dynamical boundary condition at the ice base includes a basal friction term: 
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UFEMISM currently does not include a stress boundary condition at the ice front for any of the momentum balance 

approximations. Instead, it uses the “infinite slab” approach, where the momentum balance is solved on the entire grid, 

including ice-free cells (which the solvers assumes are covered by a very thin [0.1 m by default] layer of ice), and a simple 

Neumann boundary condition is applied at the domain boundary. 150 

In order to solve the BPA, the vertical dimension must be discretised as well. This is not straightforward, as the surface and 

base of the ice are generally not flat, and evolve over time, so that these surfaces will generally move in between grid points 

in the vertical. In UFEMISM, as in most other ice-sheet models that solve a three-dimensional version of the momentum 

balance, this problem is solved by introducing a terrain-following coordinate transformation, which is described in Appendix 

D. 155 

2.2.2 Depth-integrated viscosity approximation 

The DIVA, which is the default option for the momentum balance approximation in v2.0, arises by neglecting the stresses 

that arise from vertical variations in the horizontal strain rates in the BPA (i.e. "
"&
5"%
"$
, "%
"'
, "(
"$
, "(
"'
7 ≈ 0), and integrating the 

resulting equations vertically. This means that, whereas the BPA is solved in three dimensions, the DIVA operates in the 

two-dimensional plane, greatly reducing the computational expense of solving it. In the Ice-Sheet Model Intercomparison 160 
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Project for Higher-Order Models (ISMIP-HOM; Pattyn et al., 2008) experiments, the DIVA produces velocities that agree 

well with the Stokes solution down to horizontal scales for basal topographical features of about 20 km (Berends et al., 2022; 

Robinson et al., 2022; this study, Sect. 4.1). 

 

The partial differential equations of the DIVA read:  165 
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Here, 𝛽!33 is a term describing both basal friction and vertical shear stress: 

 𝛽!33 =
1

*415$
.           (7) 

The integral term 𝐹+, which can be thought of as a (scaled) depth-integral of the inverse viscosity, is defined as: 170 

 𝐹- = ∫ *
2
5),&
6
7
-
𝑑𝑧7

0 .          (8) 

Note that, in Eq. 7, 𝑛 = 2; Eq. 8 lists the general form because elsewhere in the DIVA, 𝐹* appears as well. A comprehensive 

derivation of these and other required equations, including a step-by-step approach for how to solve them numerically, can 

be found in Lipscomb et al. (2019). 

While the mathematical derivation is too cumbersome to include here, it can be shown that, in the absence of horizontal 175 

strain (i.e. "%
"$
, "%
"'
, "(
"$
, "(
"'
= 0), the DIVA is identical to the SIA. In a preliminary experiment, we used to DIVA to perform 

the moving-margin experiment from EISMINT-1 (Huybrechts et al., 1996), which describes a roughly Greenland-sized, 

idealised, circular, polythermal (though not thermomechanically coupled) ice sheet lying on a flat bed, achieving a steady 

state through a simple, spatially variable mass balance. The resulting ice sheet, which is dominated by vertical shearing, was 

nearly identical to that produced by the SIA, with only a few meters difference in ice thickness, concentrated near the ice 180 

divide and the ice margin. 

A more practical advantage of the DIVA that was previously pointed out by Robinson et al. (2022) is that the system of 

linear equations that must be solved (Eq. 6) is almost identical to that of the SSA (Eq. 9). Ice-sheet models that already 

contain code to solve the SSA can therefore be altered to solve the DIVA instead with relatively little effort, including only a 

few simple calculations to evaluate Eq. 7, altering the friction term that enters into the system of linear equations. 185 

2.2.3 Shallow shelf approximation 

The SSA arises by neglecting all vertical variations in the BPA (i.e. "%
"&
, "(
"&
≈ 0), leaving only the membrane stresses, and 

then vertically integrating the result. This is generally accepted to be a valid approximation in areas of negligible basal shear 

stress, such as ice shelves, as well as well-lubricated, fast-flowing ice streams. 

 190 
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The partial differential equations of the SSA read: 
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Neglecting the same strain rates reduces the expression for the effective strain rate that is used in Glen’s flow law to: 
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It should be noted that v1.0 further simplified Eq. 9 by neglecting the gradients in the effective viscosity (after expanding the 

derivative outside the square brackets using the product rule). While this made the numerical solver more stable (and also 

significantly faster, requiring fewer non-linear viscosity iterations to converge), it was later discovered that this could lead to 

significant errors in the velocity and the ice thickness evolution. V2.0 therefore solves the SSA (and the DIVA) without this 

simplification, gaining physical accuracy at the cost of computational performance. Including these additional terms 200 

necessitated a change in the discretisation scheme, so that in v2.0 the ice velocities are defined on the triangle centres, 

whereas in v1.0 they were defined on the edges. The new discretisation scheme is presented in more detail in Appendix B. 

2.2.4 Shallow ice approximation 

The SIA arises by neglecting the membrane stresses in the BPA (i.e. "%
"$
, "%
"'
, "(
"$
, "(
"'
≈ 0), leaving only the vertical shear strain 

rates. This is generally accepted to be a valid approximation for the thick, slow-moving ice in the interior of the Greenland 205 

and Antarctic ice sheets, where the flow is dominated by deformation due to vertical shearing, rather than by basal sliding. 

These assumptions simplify the Stokes equations to: 
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Similarly, the effective strain rate that is used in Glen’s flow law reduces to: 210 
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Substituting Eq. 12 into Eq. 11, and assuming a stress-free boundary condition at the ice surface and a no-slip boundary 

condition at the ice base, leads to the following analytical solution for the vertical profile of the horizontal ice velocity: 

𝑢(𝑧) = −2(𝜌𝑔)-|𝛻𝑠|-,*𝛻𝑠 ∫ 𝐴H𝑇(𝜁)J(𝑠 − 𝜁)-𝑑𝜁&
0 .       (13) 

Note that it is not possible to include a sliding law in UFEMISM v2.0 when using only the SIA; for this, the hybrid SIA/SSA 215 

must be used (see Sect. 2.2.5). 
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2.2.5 Hybrid shallow ice / shallow shelf approximation 

In this approach, the SIA and SSA are solved separately, following the approach proposed by Bueler and Brown (2009). 

Based on the observation that the flow regime in most areas of an ice sheet is generally dominated by either vertical shear 

(described by the SIA) or by basal sliding (described by the SSA), the two solutions are then simply added together to find 220 

an approximation of the flow of the entire ice sheet. This approach produces accurate results in terms of large-scale ice flow 

(e.g. Bueler and Brown, 2009; Berends et al., 2022), but starts to deviate significantly from the Stokes solution earlier than 

the DIVA as the length scale decreases (Berends et al., 2022; this study). 

2.2.6 Vertical velocities 

The assumption that glacial ice is incompressible is expressed mathematically as: 225 
"%
"$
+ "(

"'
+ "#

"&
= 0.          (14) 

The BPA, the DIVA, and the (hybrid) SIA/SSA only solve for the horizontal velocities 𝑢, 𝑣. From those, the horizontal 

divergence "%
"$
+ "(

"'
 can be calculated. Integrating Eq. 14 in the vertical dimension then yields the vertical velocity 𝑤: 

 𝑤(𝑧) = 𝑤(𝑧 = 𝑏) − ∫ K"%
"$
(𝜁) + "(

"'
(𝜁)L𝑑𝜁&

0 .       (15) 

Here too, the terrain-following coordinate transformation must be applied before evaluating the vertical integral. The way 230 

this is done in UFEMISM is described in Appendix E. 

2.3 Sliding laws 

UFEMISM v2.0 includes a number of different sliding laws for the user to choose from, which relate the basal shear stress 

𝜏0 to the basal velocity 𝑢0 through the basal friction coefficient 𝛽 = |9%|
|%%|

. All sliding laws are presented here as they are 

coded in the model, with the basal friction coefficient 𝛽 expressed as a function of the basal speed 𝑢0 = |𝑢0|. The first 235 

option is a Weertman-type sliding law (Weertman, 1957): 

𝛽 = 𝐶#𝑢0
!
&,*.           (16) 

Here, 𝐶# represents the (spatially variable) subglacial bed roughness. 

The second option is a Coulomb-type sliding law (Iverson et al., 1998): 

𝛽 = 𝑁𝑡𝑎𝑛𝜑𝑢0,*.           (17) 240 

Here, 𝑁 is the effective pressure between the ice and the bedrock, which is equal to the ice overburden pressure minus the 

subglacial water pressure. Currently, the subglacial water pressure is defined simply as 96% of the ice overburden pressure, 

following Winkelmann et al. (2011), optionally scaled with a bedrock elevation-dependent parameterisation developed for 
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Antarctica by Martin et al. (2011); the addition of a more elaborate subglacial hydrology model to UFEMISM is planned for 

future work. The (spatially variable) till friction angle 𝜑 is a measure for the subglacial bed roughness. 245 

The third option is a Budd-type sliding law, proposed by Bueler and van Pelt (2015): 

𝛽 = 𝑁	tan𝜑 %%
'"!

%(
' .           (18) 

Here, 𝑢: is a transition velocity, with a default (configurable) value of 100 m yr-1. Note that this is a Budd-type sliding law 

(i.e. a power-law dependence on velocity, scaled with the effective pressure) for the current choice of exponent 𝑞 = 0.3; for 

𝑞 = 1, this becomes a regularised Coulomb sliding law, with no dependence on velocity. This sliding law was the only 250 

option in UFEMISM 1.0 (Berends et al., 2021). 

The fourth option is the hybrid sliding law proposed by Tsai et al. (2015), as formulated by Asay-Davis et al. (2016): 

𝛽 = minK𝛼+𝑁, 𝛽+𝑢0
!
&L𝑢0,*.         (19) 

Note that here, the (spatially variable) subglacial bed roughness is described by two separate parameters: 𝛼+  for the 

Coulomb-type part of the friction, and 𝛽+ (which is not the square of the basal friction coefficient 𝛽, but a confusingly 255 

named separate entity, which we maintain for the sake of consistency with earlier literature) for the Weertman-type part. 

The final option is the hybrid sliding law proposed by Schoof (2005), as formulated by Asay-Davis et al. (2016): 

𝛽 =
1$%%

!
&;$<

[1$&%%4(;$<)&]
!
&
𝑢0,*.          (20) 

Note that the terms on the right-hand side of Eq. 20 are again the 𝛽+  term from Eq. 19. In the idealised-geometry 

experiments presented here, the bed roughness is spatially uniform. For applications to realistic ice sheets, UFEMISM v2.0 260 

includes routines for inverting the bed roughness by nudging. These are presented in part 2 of this work (Bernales et al., in 

prep.). 

2.4 Sub-grid friction scaling 

UFEMISM v1.0 used a grounding-line flux condition (Schoof, 2007; Pollard and DeConto, 2012) to improve grounding-line 

migration. While the flux condition generally seems to produce more accurate results in unbuttressed geometries (e.g. Pattyn 265 

et al., 2012), extending this solution to geometries where buttressing plays a significant role has proved problematic (Reese 

et al., 2018). Furthermore, while the implementation of this scheme in v1.0 performed well in idealised geometries, it 

frequently resulted in numerical instability in the more complex geometries encountered in e.g. the Antarctic ice sheet. 

Therefore, in UFEMISM v2.0 the flux condition has been replaced by a sub-grid friction scaling scheme, following the 

approach used in ISSM (Seroussi et al., 2014), PISM (Feldmann et al., 2014), Elmer/ice (Gagliardini et al., 2016), CISM 270 

(Leguy et al., 2021), and IMAU-ICE (Berends et al., 2022). Here, the area fraction of each mesh triangle (where the 

velocities are defined) that is covered by grounded ice, is calculated by bilinearly interpolating the thickness above floatation 

on the three vertices spanning the triangle. The basal friction coefficient 𝛽 that is calculated using the sliding law, is then 
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multiplied with this grounded fraction, before being used to solve the momentum balance. This approach is much more 

numerically stable, does not require any special treatment to include buttressing, and works well in both idealised and 275 

realistic geometries. 

2.5 Conservation of energy 

The way the heat equation inside the ice is approximated and discretised is unchanged from UFEMISM v1.0. The 

approximation, which is based on Greve (1997), includes terms describing horizontal and vertical advection, vertical 

diffusion, and internal strain heating, with the annual mean temperature of the ocean and atmosphere and the geothermal heat 280 

flux serving as boundary conditions. Horizontal diffusion and the possible formation of liquid water inside the ice column 

are neglected. The governing equations and their discretisation (which uses an explicit scheme for the horizontal advective 

terms, and an implicit scheme for the vertical advective and diffusive terms) are provided, and verified in the EISMINT-1 

benchmark experiments (Huybrechts et al., 1996), by Berends et al. (2021). Unless otherwise specified by the user, the ice 

temperature affects the ice flow factor through an Arrhenius-type relation, following Huybrechts (1992). 285 

2.6 Conservation of mass 

After the momentum balance has been solved to find the ice velocities, the condition of conservation of mass can be used to 

find the rates of change of the ice geometry. Conservation of ice mass for a shallow layer of incompressible ice in the 2-D 

plane is expressed mathematically as: 
"6
"A
= −𝛻 ∙ (𝒖_𝐻) +𝑚.          (21) 290 

Here, 𝑚 is the net mass balance, including terms at the ice base, the ice surface, and the lateral boundaries, while 𝒖_ is the 

vertically averaged, horizontally vector-valued ice velocity. Since UFEMISM always assumes a uniform, constant ice 

density, vertical variations in the horizontal velocities are not needed to solve the continuity equation. Eq. 21 is discretised 

spatially using the finite volume scheme that lent UFEMISM its name, which is derived in Appendix F, resulting in the 

following equation: 295 

 "6
"A

B
= −𝑀CDEF𝐻B +𝑚B.          (22) 

Here, the ice thickness vector 𝐻B contains the values of 𝐻 on all the vertices 𝑖. 𝑀CDEF is a matrix whose coefficients depend 

on the mesh geometry and the ice velocities, which can be multiplied with the ice thickness vector 𝐻B to find the ice flux 

divergence 𝛻 ∙ (𝑢𝐻)B = 𝑀CDEF𝐻B. UFEMISM v2.0 offers three different options to discretise Eq. 22 temporally: an explicit 

scheme, an implicit scheme, and a semi-implicit scheme. In all three cases, the thickness rate of change "6
"A

 is discretised 300 

using a simple first-order scheme. In the explicit scheme, all terms on the right-hand side of Eq. 22 are defined at time 𝑡: 

 6),+,∆+,6),+

∆A
= −𝑀CDEF𝐻B,A +𝑚B,A.         (23) 

Rearranging the terms yields the following expression, which can be evaluated to find 𝐻B,A4∆A: 
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 𝐻B,A4∆A = H𝐼 −𝑀CDEF∆𝑡J𝐻B,A +𝑚B,A∆𝑡.        (24) 

In the implicit scheme, the ice thickness on the right-hand side of Eq. 22 is defined at time 𝑡 + ∆𝑡: 305 

 6),+,∆+,6),+

∆A
= −𝑀CDEF𝐻B,A4∆A +𝑚B,A.         (25) 

Rearranging the terms yields the following matrix equation that can be solved for 𝐻B,A4∆A: 

 H𝐼 +𝑀CDEF∆𝑡J𝐻B,A4∆A = 𝐻B,A +𝑚B,A∆𝑡.        (26) 

Lastly, the semi-implicit scheme is derived by defining the ice thickness on the right-hand side of Eq. 22 as the weighted 

average of 𝐻B,A and 𝐻B,A4∆A: 310 

 6),+,∆+,6),+

∆A
= −𝑀CDEF(𝑓)𝐻B,A4∆A + (1 − 𝑓))𝐻B,A) + 𝑚B,A.      (27) 

Here, using a coefficient 𝑓) = 0 implies a fully explicit scheme, 𝑓) = 1 implies a fully implicit scheme, 0 < 𝑓) < 1 implies a 

semi-implicit scheme, and 𝑓) > 1  implies an over-implicit scheme. Rearranging the terms yields the following matrix 

equation that can be solved for 𝐻B,A4∆A: 

 H𝐼 + 𝑓)𝑀CDEF∆𝑡J𝐻B,A4∆A = H𝐼 − ∆𝑡(1 − 𝑓))𝑀CDEFJ𝐻B,A +𝑚B,A∆𝑡.     (28) 315 

Note that the (semi-)implicit schemes are only implicit in terms of the ice thickness. The flux divergence is still computed 

based on the velocity solution at time step, making even the implicit scheme technically semi-implicit. Recent work by 

Bueler (2023) has looked into the possibilities of fully implicit solvers for the coupled momentum-mass conservation 

equations, but this has not (yet) been implemented in UFEMISM. 

2.7 Time stepping 320 

In v2.0, we use the predictor/corrector (PC) time-stepping scheme by Robinson et al. (2020). Whereas the SIA and SSA both 

have well-defined critical time steps, no such condition has yet been derived for the DIVA or the BPA. The 

predictor/corrector scheme essentially operates by calculating two solutions of 𝐻B,A4∆A: one with an explicit solution of the 

ice velocity 𝑢, and one with a pseudo-implicit solution. The difference between the two solutions of 𝐻B,A4∆A is a measure for 

the temporal discretisation error, which can be used to adapt the time step; if the error is found to be increasing, the time step 325 

is decreased, and vice versa. Robinson et al. (2022) showed that this scheme is particularly suitable to the DIVA (and, by 

extension, the BPA), where the error is less sensitive to larger time steps than in the hybrid SIA/SSA, due to the weaker 

dependence of the velocity on the local surface slope. 

 

A time step in the PC scheme consists of three parts: the predictor step, the update step, and the corrector step. First, in the 330 

predictor step, the “predicted” ice thickness is calculated, based on the current ice thickness and the current velocity solution: 

 𝐻IJKCA4∆A = 𝐻A + ∆𝑡A 351 + L+
+
7 "6
"A
(𝐻A , 𝑢A) − L+

+
"6
"A
(𝐻A,∆A , 𝑢A,∆A)8.     (29) 

Here, 𝜁A =
∆A+

∆A+"∆+
 is the ratio between the current and the previous time steps. 
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Then, in the update step, a new ice velocity solution is calculated for the predicted ice thickness: 

 𝑢A4∆A = 𝑢H𝐻IJKCA4∆AJ.          (30) 335 

Lastly, in the corrector step, the “corrected” ice thickness is calculated, based on the current ice thickness and the new 

velocity solution: 

 𝐻MNJJA4∆A = 𝐻A + ∆A+

+
3"6
"A
(𝐻A , 𝑢A) + "6

"A
H𝐻IJKCA4∆A , 𝑢A4∆AJ8.       (31) 

The discretisation error 𝜏 in the ice thickness is estimated based on the difference between the predicted and the corrected ice 

thicknesses: 340 

 𝜏A4∆A =
L+O6./00+,∆+,61023

+,∆+P

(QL+4Q)∆A+
.          (32) 

The time step is then adapted based on the maximum discretisation error: 

 ∆𝑡A4∆A = h R
STUV9+,∆+V

i
WX44X5Y

h R
STUV9+V

i
,X5

∆𝑡A.       (33) 

Here, 𝜖 is the target truncation error in the ice thickness rate of change (configurable, default value 3 m/yr), and 𝑘Z = 0.2 and 

𝑘[ = 0.1 are tuning parameters (values taken from Robinson et al., 2020). 345 

It should be noted that Eqs. 29 and 31 involve different realisations of the ice thickness rate of change "6
"A

. However, the 

equations for the different ice thickness schemes (Eqs. 24, 26, and 28) yield 𝐻A4∆A, for a given value of ∆𝑡. In the model, the 

current ice thickness 𝐻A is subtracted from that, and the remainder divided by ∆𝑡, to find "6
"A

. Later on, "6
"A

 is then adapted by 

the predictor-corrector scheme to yield the “final” value of "6
"A

 that is used by the model. 

3 Code 350 

3.1 Parallelisation 

A major change in v2.0 with respect to v1.0 is the switch from a shared-memory architecture, where all parts of the 

memory are accessible via a common bus to all computing cores, to a distributed-memory architecture, which involves 

communication between memory-separated computing nodes. Memory access within shared-memory nodes outperforms 

message passing between separated-memory nodes, which implies that, all else being equal, v2.0 would be (slightly) slower 355 

than v1.0. However, the shared-memory architecture can only run on the number of cores within a single multi-core, shared-

memory node (typically 32 or 64 on many high-performance scientific computing systems). The distributed-memory 

architecture is not limited in this way, allowing the user to scale up to far larger numbers of cores if necessary. With 

distributed-memory MPI, the code path and the communication paradigm stay the same whether running on a single-node or 

a multi-node configuration. However, inter-nodal communication is usually much slower than intra-nodal communication 360 

which might cause an observable slowdown in the algorithm when moving to multiple nodes. 
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Solving the matrix equation representing the momentum balance is currently the most computationally demanding part of the 

model by far, often accounting for more than 80 % of the total computation time of a simulation (when using the DIVA; the 

hybrid SIA/SSA and the BPA are more expensive to solve, and would account for an even larger fraction). UFEMISM uses 

the PETSc library (Balay et al., 2021) for this. Most of the other operations that require data exchange between processes 365 

(e.g. remapping, calculating gradients, etc.) are represented by matrix operations, which are also handled by PETSc. In cases 

where the user requires a process to access data from another process, UFEMISM offers a set of standardised routines that, 

in turn, use the MPI API to facilitate this. For example, gathering a distributed array to a single process would require 

allocating memory on that process (possibly after performing an MPI reduction to determine how much memory is needed), 

calling one of the MPI_gather routines, and finally (optionally) deallocating the memory for the distributed array. We have 370 

combined these steps into a single subroutine to ease the workload of an aspiring UFEMISM developer. Currently, 

MPI_gather routines are only used for I/O, and for boundary communications when necessary for domain-wide 

computations that are not supported by PETSc. 

 

We have performed some simple simulations to assess the scalability of UFEMISM v2.0. These consist of the spin-up phase 375 

of the (modified, plan-view) MISMIP experiment, using the DIVA with an 8-km resolution at the grounding line, for a 

period of 10,000 years. These simulations were run on the Snellius supercomputer on the AMD Rome 7H12 nodes (of 128 

cores each). These preliminary results show that v2.0 does not yet scale well when using more than 32 cores, as shown in 

Fig. 2. This likely has to do with the way data communication between processes is handled by PETSc, which could be 

improved by paying more attention to the way the model domain is partitioned over the processes, and the way PETSc 380 

decides which data should be communicated. These improvements are reserved for future work. Another contributing factor 

could be that the model set-up used for the scaling test was too ‘small’ (i.e. had too few vertices), so that the communication 

latencies between cores begin to dominate the total computation time. This is supported by the slowdown observed at 64 

cores. Unfortunately, the time spent on communications is not (yet) measured separately in v2.0. However, it should be 

noted that v2.0 in its current form is already capable of performing multi-millennial simulations of the Antarctic ice sheet, 385 

solving the DIVA with a grounding-line resolution of < 5 km across selected basin-scale regions (e.g. the Amundsen Sea 

drainage basin), on a dual-core, consumer-grade laptop (Macbook Pro M2 2023), within 24 hours of wall-clock time 

(Bernales et al., in prep.). Large-scale practical applications of the model are therefore already feasible even without these 

future improvements. 

https://www.amd.com/en/products/cpu/amd-epyc-7H12
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 390 
Figure 2: Strong scaling for UFEMISM v2.0 with the 10,000-yr initialisation phase of the (modified, plan-view) MISMIP 
experiment, run with the DIVA (see also Sect. 4.2). The domain consists of approximately 13,000 triangles. The full model is the 
sum of the ice dynamics and non-ice dynamics components. I/O was disabled for these scaling tests. With more than 32 cores a 
slowdown instead of a speedup is visible 

3.2 I/O 395 

All output files of v2.0 are now NetCDF-4 standard (Unidata, 2023), and all input files are NetCDF too (replacing the small 

number of text-based files that v1.0 in/outputted). UFEMISM’s NetCDF input routines automatically interact with the 

routines for remapping data between Cartesian grids (typical of ice-sheet-specific data, e.g. BedMachine; Morlighem et al., 

2019), lon/lat-grids (typical of global climate model output), and triangular meshes (e.g. output from other UFEMISM 

simulations). The user can provide input data in any of those formats, and UFEMISM will automatically detect the type of 400 

grid (by parsing the names of the dimensions of the NetCDF file), choose the appropriate remapping function for that grid, 

and remap the data to the model mesh. The sparse matrices representing the remapping operators (commonly known as 

‘weights’; see Appendix C) are stored in memory, so that if more data is read from the same input file later on, the matrix is 

reused instead of needing to calculate it again. All of this is done automatically, requiring no user intervention. Currently, 

2nd-order conservative remapping is used by default; with a single keyword, this can be changed to e.g. bilinear or nearest-405 

neighbour interpolation. Input files that do not cover the entire computational domain are extrapolation on a nearest-

neighbour basis; routines for applying a user-defined missing value, or doing a linear or Gaussian extrapolation instead exist, 

and can be easily integrated here. Projection parameters specified in the header of the NetCDF file are not read; UFEMISM 

assumes that input grids use the same projection as the model itself (i.e. the ISMIP standard projections for Greenland and 

Antarctica). Converting between different projections therefore must be done by the user before providing files to the model. 410 

UFEMISM produces output on both the model mesh, and on a Cartesian grid (with a used-defined resolution). The former is 

useful for detailed post-processing or visualisation, while the latter can be conveniently used for cursory inspection of model 

output using any NetCDF viewing software, as well as for coupling to other models where square-grid input is more 
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convenient. The user can specify in the model configuration files which data fields should be included in the output files; the 

full list of the 100+ fields (both 2-D and 3-D) that the user can choose from, can be found in the NetCDF-output module. 415 

Adding a new field requires about 10 lines of new code. The standard output includes all the data required for a “perfect 

restart” (so that e.g. running one simulation of 200 years yields identical results to two subsequent simulations of 100 years), 

which is necessary for script-based coupling to other models. Additionally, UFEMISM generates a separate NetCDF file 

with time series of domain-integrated quantities (e.g. mass balance components, ice volume). 

3.3 Version control 420 

UFEMISM is maintained on GitHub (https://github.com/IMAU-paleo/UFEMISM2.0). GitHub Actions 

(https://docs.github.com/en/actions) have been set up to automatically perform all the unit tests that have been built in for the 

routines interfacing with OpenMPI and PETSc, the NetCDF I/O routines, mesh generation, remapping, and PDE 

discretisation. This enables the user to quickly diagnose any problems occurring in the model. A number of benchmark 

experiments have been set up similarly, which are automatically run when Git branches are merged. Figures for these 425 

experiments, following the style of the publications where these benchmark experiments were first presented (e.g. Pattyn et 

al., 2008 for the ISMIP-HOM experiments) are created automatically. The UFEMISM GitHub repository also features 

integration with the nix package manager (https://nixos.org/). This should allow the user to install all the required libraries 

(OpenMPI, PETSc, NetCDF) with their transient dependencies, using the exact version numbers for each of them, with a 

single command. 430 

4 Idealised-geometry experiments 

4.1 ISMIP-HOM 

The Ice-Sheet Model Intercomparison Project for Higher-Order Models (ISMIP-HOM; Pattyn et al., 2008) contains several 

experiments to benchmark the velocities produced by the momentum balance in an idealised geometry. These experiments 

describe a slab of ice on a sloping bed. In experiments A and B, no sliding is allowed, and periodic undulations are 435 

superimposed on the flat bed slope, either in both the along-slope and cross-slope directions (experiment A), or in only the 

along-slope direction (experiment B). In experiments B and C, the bedrock remains a flat slope, but sliding is now allowed, 

with the basal friction coefficient varying periodically in both the along-slope and cross-slope directions (experiment C), or 

in only the along-slope direction (experiment D). Six different versions of each experiment exist, differing in the wavelength 

of the bedrock undulations or the friction variations, with values ranging between 160 km and 5 km. Decreasing the 440 

wavelength increases the aspect ratio of the ice geometry, making the more simplified momentum balance approximations 

such as the SIA and SSA less accurate. The experimental setup is described in full by Pattyn et al. (2008). 

The velocities calculated by UFEMISM v2.0 for ISMIP-HOM experiments A and C using the hybrid SIA/SSA, the DIVA, 

and the BPA are compared to the ISMIP-HOM model ensemble by Pattyn et al. (2008) in Figs. 3 and 4. 

https://github.com/IMAU-paleo/UFEMISM2.0
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 445 
Figure 3: Ice surface velocities calculated by UFEMISM with the hybrid SIA/SSA (red), the DIVA (yellow), and the BPA (purple) 
in the six different versions of ISMIP-HOM experiment A (periodic bedrock undulations in both directions), compared to the 
model ensemble by Pattyn et al. (2008), which is divided into the higher-order model ensemble (green), and the full-Stokes model 
ensemble (blue). 

 450 
Figure 4: Ice surface velocities calculated by UFEMISM with the hybrid SIA/SSA (red), the DIVA (yellow), and the BPA (purple) 
in the six different versions of ISMIP-HOM experiment C (flat sloping bed, periodic variations in friction in both directions), 
compared to the model ensemble by Pattyn et al. (2008), which is divided into the higher-order model ensemble (green), and the 
full-Stokes model ensemble (blue). 

In experiment C (Fig. 4), which concerns sliding over a bed with spatially varying roughness, all three approximations result 455 

in velocities that agree well with the ensemble, with only the BPA solution lying (slightly) outside the ensemble range, 
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differing from the full Stokes solution by up to 13 %. In experiment A (Fig. 3), which concerns viscous, non-sliding flow 

over an undulating bed, the hybrid SIA/SSA starts to diverge from the ensemble with the increasing aspect ratio of the 

geometry at spatial scales of about 80 km. UFEMISM’s solution to the BPA lies within the ensemble for all spatial scales. 

The DIVA produces a relative velocity error of about 17 % in the L = 40 km experiment, which increases to 25 % and 40 % 460 

for the L = 20 km and L = 10 km experiments, respectively. The choice of what level of error is acceptable is, to some 

extent, subjective. Considering the inter-model spread in ensembles of realistic experiments (e.g. ISMIP6-Antarctica; 

Seroussi et al., 2020), and the fact that ISMIP-HOM Experiment A has rather extreme subglacial topography, we believe it is 

justified to use the DIVA in settings where subglacial topographical features have a typical length scale larger than 20 km. 

Of course, when it comes computationally feasible to use the BPA in large-scale realistic experiments, this is to be preferred. 465 

4.2 MISMIP 

To demonstrate the effectiveness of our sub-grid basal friction scaling scheme at resolving grounding-line migration, we 

performed an experiment along the lines of the Marine Ice-Sheet Intercomparison Project (MISMIP; Pattyn et al., 2012). The 

original experiment describes a flowline over a simple linear slope, which is subjected to a spatially uniform positive mass 

balance. Rather than transforming this 1-D flowline into a 2-D flowband, we have opted to extrude the 1-D geometry 470 

radially to create a circular, cone-shaped island. This results in the formation of a circular, dome-shaped ice sheet, which 

flows radially outward, feeding into an ice shelf that extends outward to infinity. While this means the resulting grounding-

line position no longer matches the (semi-)analytical solution provided by Pattyn et al. (2012), it offers the advantage of 

checking the full 2-D stress balance (instead of only the x-component). The experimental protocol consists of step-wise 

decreasing/increasing the flow parameter 𝐴 in Glen’s flow law, resulting in an advance/retreat of the grounding line. After 475 

being spun up to a steady state, a single advance-retreat cycle should, physically, result in the same grounding-line position 

as before. Any remaining difference in position, i.e. grounding-line hysteresis where there should be none, must therefore be 

a numerical path-dependency, which the original MISMIP study showed could be significant (up to several hundred 

kilometres) in models that do not pay special attention to the way the discontinuous friction at the grounding line is handled 

(Pattyn et al., 2012). 480 

We performed simulations with grounding-line resolutions of 10, 8, 5, and 4 km, using the DIVA. We start with a 10,000-yr 

spin-up phase, with a uniform flow factor of 𝐴 = 10,*\𝑃𝑎,Q𝑦𝑟,*. We then decrease the flow factor to 𝐴 = 10,*]𝑃𝑎,Q𝑦𝑟,* 

for a period of 10,000 years, resulting in an advance of the grounding line by about 200 km. Finally, we revert the flow 

factor back to its original value, causing the grounding line to retreat again. While the original experiment involves several 

more decreases of the flow factor before moving on to the step-wise increases, only a single decrease/increased step is 485 

sufficient to assess the level of unwanted numerical grounding-line hysteresis, which is what we aim to investigate here. The 

results of this experiment are shown in Fig. 5; panel A shows transects of the ice sheet at the end of each of the three phases 

(spin-up, advance, retreat) for the 10 km simulation, while panel B shows the position of the grounding line over time for all 

three resolutions. The difference in grounding-line position between the end of the spin-up phase at 10 kyr, and the end of 
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the retreat phase at 30 kyr is smaller than twice the grounding-line resolution in all simulations. Note that all these 490 

simulations were performed with the dynamic adaptive mesh; whereas in v1.0, a mesh update would result in a small but 

noticeable “jump” in the grounding-line position (Berends et al., 2021, their Fig. 10b; note that that study used the hybrid 

SIA/SSA instead of the DIVA, the flux condition scheme instead of the sub-grid friction scaling scheme, and much coarser 

resolutions of 64 – 16 km). Some improvements to the remapping scheme in v2.0 (see Appendix C) have greatly reduced 

this problem. Lastly, the sub-grid friction scaling scheme in v2.0 results in a more symmetrical, circular grounding line (not 495 

shown) than the flux condition scheme in v1.0. A well-known (but, as far as we are aware, never published) issue with flux 

condition schemes in square-grid models is the “octagonal” grounding line that can sometimes appear (in square-grid 

models; on unstructured grids, the grid dependency is often less obvious); a similar undesirable dependency on the grid 

geometry could sometimes be seen in v1.0. 

 500 
Figure 5: A) Transects of the ice sheet at the end of each of the three phases (spin-up [blue], advance [red], retreat [green]) for the 
10 km simulation. B) Grounding-line position over time, using grounding-line resolutions of 10 km (blue), 8 km (red), 5 km 
(green), and 4 km (orange). 

4.3 MISMIP+ 

The third Marine Ice-Sheet Model Intercomparison Project (MISMIP+; Asay-Davis et al., 2016) investigates the retreat of an 505 

ice stream feeding into a buttressed shelf. In the steady state, the ice stream flows down an 80-km wide, ~500 km long fjord. 

The grounding line rests on a retrograde slope, which is kept stable by the strongly buttressed ice shelf. In the experiment, 

the ice sheet starts from a steady state, and is subjected to a strong sub-shelf melt forcing. The resulting loss of buttressing 

causes the grounding line to retreat by about 50 km over the course of the 100-yr simulation. The experimental set-up is 

described by Asay-Davis et al. (2016), while the results of the intercomparison are presented by Cornford et al. (2020). The 510 

resulting grounding-line retreat was found to vary by about a factor 3 between different models. A large part of this spread 
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was attributed to (small) differences in initial conditions, as well as the choice of sliding law (the experimental protocol 

allows one to choose between three different sliding laws). 

We have performed MISMIP+ experiment “ice1r” (100 years of increased-melt forcing) with UFEMISM v2.0, using the 

Schoof sliding law (Eq. 20, chosen here because, of the three options in the MISMIP+ protocol, we find it results in the best 515 

numerical stability) and the DIVA, at grounding-line resolutions ranging from 5 km to 500 m. Glen’s flow law parameter 𝐴 

has been tuned separately for each simulation to achieve a stable mid-stream grounding-line position at x = 450 km. The 

results of these simulations are compared to the model ensemble results by Cornford et al. (2020) in Fig. 6. The UFEMISM 

results lie well within the Cornford et al. (2020) ensemble range. Note that these simulations were all performed with the 

dynamic adaptive mesh. In the 500 m simulation, the mesh was updated about once every model year on average, at no 520 

significant computational expense (as the computation time is dominated by solving the momentum balance). However, 

since the solution does not seem to converge to a unique value with increasing resolution, we suspect that here, the numerical 

diffusion that is inevitably introduced by a mesh update, is noticeably affecting the solution in the higher-resolution 

experiments (which have more frequent mesh updates). This effect could be reduced by prescribing a wider band around the 

grounding line where the mesh needs a high resolution (easily done, as the width of this band is a user-defined parameter), 525 

which would reduce the frequency of the mesh updates. 

 

Figure 6: A) Mid-stream transects of the ice sheet at the beginning (solid lines) and the end (dashed lines) of the 100-yr retreat 
simulation at different resolutions (see legend). B) Mid-stream grounding-line position over time at different resolutions (see 
legend), compared to the Cornford et al. (2020) model ensemble (mean shown by solid black line, spread shown by grey shaded 530 
area). 
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5 Discussion and conclusions 

We have presented version 2.0 of UFEMISM and verified it in a number of benchmark experiments with idealised 

geometries. We have shown that the model is able to solve different approximations to the Stokes equations, and to integrate 

the resulting thinning rates through time to model the evolving ice geometry on a dynamic adaptive mesh. The results lie 535 

within the published model ensembles for all these experiments. These verified model capabilities provide the groundwork 

for the realistic applications presented in part 2 of this work (Bernales et al., in prep.). 

 

The numerical stability of the model has been greatly improved. This includes the new time-stepping scheme, as well as the 

switch from a simple successive over-relaxation scheme to PETSc for solving the matrix equations. While these changes 540 

have generally improved the computational performance of the model, a direct comparison between v1.0 and v2.0 is 

complicated by the changes that have been made to the model physics and discretisation, such as the un-simplification of the 

SSA, the change from a grounding-line flux condition to a sub-grid friction scaling scheme, and the change from defining 

velocities on the edges to the triangle centres. Comparing the performance is further complicated by the absence of several 

new features in v1.0 that are required for realistic simulations of the Greenland or Antarctic ice sheet. E.g., v1.0 lacks the 545 

modules for inverting the basal friction and the sub-shelf melt, so that it cannot start from the same steady state as v2.0. 

Initialising the model with a spin-up instead, using simple parameterisations for the basal friction and melt, would lead to a 

very different, generally smoother initial ice geometry, which would artificially increase the stability of the model and inflate 

its performance.  

 550 

The ISMIP-HOM experiments presented here, as well as the work by Rückamp et al. (2022), demonstrate the importance of 

considering the model’s approximation to the Stokes equations when moving to high resolutions. At the high resolutions that 

UFEMISM can now achieve, topographical features can be resolved that would invalidate the underlying assumptions of the 

DIVA. However, solving the BPA can easily require 50 times more computation time than solving the DIVA, which would 

be unfeasible for many practical applications. Improving the model’s performance when using large numbers of cores, as 555 

mentioned before, could be a way to solve this problem. Another approach could be to reduce the size of the physical 

problem by moving to regional ice-sheet modelling, limiting the model domain to a single drainage basin. In preparation for 

such an approach, the code of UFEMISM’s routines for solving the ice thickness equation has been written in such a way as 

to easily allow the user to define regions where the ice thickness should not change. 

 560 

The current version of the model does not yet scale well, which is a major remaining point of improvement. We suspect part 

of this problem lies with the way PETSc is implemented in UFEMISM, and consequently, the way it handles inter-process 

communication. Although the (simple) mesh partitioning scheme that was created for version 1.0 (Berends et al., 2021) 

generally results in good load balancing, we suspect that currently, a lot of computation time is wasted by PETSc 
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determining what data it should communicate (i.e., figuring out the non-zero structures of the different sub-matrices), when 565 

this information can already be determined a priori from the mesh connectivity. However, even with this sub-optimal 

performance, the model is already capable of performing high-resolution (< 5 km), multi-millennial simulations of the 

Antarctic ice sheet (Bernales et al., in prep.), within a few hours on a consumer-grade (dual-core) laptop (although moving to 

even higher resolutions would currently still require the user to wait for several days for the simulation to complete). 

Improving this part of the model’s performance should be the focus of future work. 570 

Appendix A: Mesh generation 

UFEMISM uses an extended version of Ruppert’s algorithm (Ruppert, 1995) to iteratively refine a simple initial mesh until 

it meets the requirements of the ice-sheet geometry. In Ruppert’s original algorithm, the mesh is inspected to find “bad” 

triangles, which are triangles whose smallest internal angle lies below a certain threshold value (typically 25°). These 

triangles are then “split”, meaning that a new vertex is added at that triangle’s circumcentre, and the Delaunay triangulation 575 

is updated to include the new vertex. In UFEMISM, Ruppert’s algorithm is extended to additionally mark as “bad” those 

triangles whose longest leg exceeds the maximum resolution for the area of the domain where that triangle lies. For example, 

if the grounding line passes through a triangle whose longest leg exceeds the user-defined maximum grounding-line 

resolution, that triangle is marked as “bad”, even if it meets Ruppert’s original smallest-angle criterion. 

While the general functionality of the mesh generation code has not fundamentally changed from v1.0, the way meshes are 580 

refined is quite different now. In v2.0, the mesh generation code is provided with data fields of bedrock elevation and ice 

thickness, which can be defined either on a square grid or on a mesh. This geometry is then “reduced” to obtain a list of [x,y] 

points that together span the grounding line (and similarly for the calving front, etc.). This is illustrated in Fig. A1. 

 
Figure A1: The grounding line of the Antarctic ice sheet can be represented by a series of short line segments. This grounding line 585 
was created from the BedMachine Antarctica dataset (Morlighem et al., 2019) at 40 km resolution, so that the individual segments 
are at most 𝟒𝟎√𝟐 km long. 
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This line is provided as input to the mesh generation code, which simply checks which triangles cross with any section of the 

line, and splits them if necessary. An advantage of this approach is that the code paths for generating a mesh based on an ice-

sheet geometry that is provided on a square grid (e.g. BedMachine; Morlighem et al., 2019), and for a geometry provided on 590 

a mesh (e.g. during a mesh update in a UFEMISM simulation) are identical from the point where these geometries are 

reduced to lines. 

In addition to the line-based mesh refinement code, v2.0 also contains point-based and polygon-based refinement routines. 

The point-based routine can be used to obtain a high-resolution at a certain location of interest, for example an ice-core site. 

The polygon-based routine can be used to increase the mesh resolution over a certain ice-sheet section, e.g. the Pine Island 595 

Glacier drainage basin. The point-based and line-based refinement are illustrated in Fig. A2. 

  



24 
 

 

 Input mesh  Refinement  Output mesh 

a) 

 

+ 

 

→ 

 

b) 

 

+ 

 

→ 

 

c) 

 

+ 

 

→ 

 

d) 

 

+ 

 

→ 

 
      

Figure A2: Each row shows how the mesh refinement algorithm refines an existing mesh (first column) with a refinement forcing 
(second column) to produce a new mesh (third column). a) Starting with the 5-vertex, 4-triangle “dummy” mesh, the line-600 
refinement algorithm is provided with a series of short line segments spanning a simple circle. b) The mesh is further refined (to 
an even higher resolution) over a series of short line segments spanning a half-circle. c) The mesh is further refined over two 
points. d) A dummy mesh is refined over a series of line segments spanning the Antarctic grounding line, yielding a mesh that 
would be more suitable for the ice-sheet model. 

Through the config file, the user can set separate maximum resolutions for the entire domain, for grounded ice, floating ice, 605 

for (a band of specified width around) the grounding line, the calving front, the grounded ice margin, and the coastline. 
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Appendix B: Discretisation 

The discretisation scheme used in v1.0, described in Berends et al. (2021), which was based on neighbour functions, has 

been replaced by a least squares-based scheme based on Syrakos et al. (2017). The advantage of this new scheme is that it is 

easily extended to work on different Arakawa grids (a benefit, since due to the change in the definition of the velocities from 610 

mesh edges to mesh triangles, v2.0 makes a lot more use of staggering than v1.0 did) and to higher orders of accuracy, and 

that it can be coded much more elegantly. 

 

Let 𝑓: 𝑅+ → 𝑅 be a function defined on the model domain, and let 𝑓 , 𝑓0 , 𝑓_ be its discretised approximations on respectively 

the mesh vertices (equivalent to the Arakawa-A grid), triangles (B-grid), and edges (C-grid). For convenience, the discretised 615 

approximations to the partial derivatives of 𝑓 on the different grids are written as 𝑓$,^ = 5"3
"$
7
^
, 𝑓'',_ = 5"

$3
"$$
7
_
, etc. These 

partial derivatives can be expressed as linear combinations of 𝑓 , 𝑓0 , 𝑓_, e.g.: 

𝑓$,^ = 𝑀$,^,^𝑓 .           (B1) 

Here, 𝑀$,^,^ is an nV-by-nV matrix (with nV being the number of vertices in the mesh). In the notation convention used here, 

𝑀  has three subscript indices. The first indicates the operation represented by 𝑀: 𝑥  for "
"$

, 𝑦𝑦  for "
$

"'$
, etc., and 𝑚  for 620 

mapping 𝑓 between the different Arakawa grids. The second and third indices represent the source and destination Arakawa 

grids, respectively. E.g., 𝑀`,^,0 maps a data field from the vertices to the triangles. 

B1: First-order, regular grid 

Syrakos et al. (2017) describe a (weighted) least-squares scheme for discretising the gradient operator on an unstructured 

grid. Let 𝑓B , 𝑓$,^B , 𝑓',^B  be the values of the function 𝑓 and its first partial derivatives on vertex 𝑖. The value 𝑓a of 𝑓 on vertex 𝑗, 625 

which neighbours vertex 𝑖, can then be expressed as a Taylor expansion of 𝑓 around 𝑖: 

𝑓a = 𝑓B + ∆𝑥a𝑓$,^B + ∆𝑦a𝑓',^B + 𝑂H∆𝑥a+, ∆𝑦a+J.       (B2) 

Here, ∆𝑥a , ∆𝑦a is the displacement between vertices 𝑗 and 𝑖, as illustrated in Fig. B1.  
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Figure B1: illustration showing part of a mesh. Vertex i is indicated by the green dot, while its six neighbours are shown in orange. 630 
Vertex j is one of its neighbours, with the displacement  ∆𝒙𝒋, ∆𝒚𝒋 shown by the red arrows. 

If 𝑖  has 𝑛  neighbours, this results in the following system of 𝑛  linear equations (defining ∆𝑓a ≡ 𝑓a − 𝑓B , dropping the 

truncation error 𝑂H∆𝑥a+, ∆𝑦a+J, and introducing the vertex weights 𝑤a for the weighted least-squares approximation): 
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Using matrix notation, this equation reads 𝑊𝑏 = 𝑊𝐴𝑧, which can be solved for 𝑧: 635 

𝑧 = (𝐴d𝑊d𝑊𝐴),*𝐴d𝑊d𝑊𝑏 = 𝑄𝛽0.        (B4) 

Here, we have grouped the 𝐴 and 𝑊  terms into 𝑄 = (𝐴d𝑊d𝑊𝐴),*  and 𝛽0 = 𝐴d𝑊d𝑊𝑏 . The symmetric 2-by-2 matrix 

𝐴d𝑊d𝑊𝐴, which needs to be inverted to find 𝑄, is expressed as: 

𝐴d𝑊d𝑊𝐴 = ∑ 𝑤_+-
_e* .        (B5) 

Here, 𝑐 loops over all vertices that are connected to 𝑖 (the orange vertices in Fig. B1). The second term, 𝛽0, is expressed as: 640 

𝛽0 = ∑ 𝑤_+ ;
∆𝑥_∆𝑓_
∆𝑦_∆𝑓_

<-
_e* .          (B6) 

Once 𝑄 has been calculated by inverting 𝐴d𝑊d𝑊𝐴, the first partial derivative 𝑓$,^B  of 𝑓 on 𝑖 can be expressed as: 

𝑓$,^B = 𝑄(1,1)∑ (𝑤_+∆𝑥_∆𝑓_)-
_e* + 𝑄(1,2)∑ (𝑤_+∆𝑦_∆𝑓_)-

_e* .      (B7) 

Since we defined ∆𝑓a ≡ 𝑓a − 𝑓B, this can be rewritten to read: 

𝑓$,^B = −𝑓B ∑ [𝑤_+(𝑄(1,1)∆𝑥_ + 𝑄(1,2)∆𝑦_)]-
_e* + ∑ 𝑓_[𝑤_+(𝑄(1,1)∆𝑥_ + 𝑄(1,2)∆𝑦_)]-

_e* .  (B8) 645 

This means that the coefficients of the operator matrix 𝑀$,^,^ are given by: 
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𝑀$,^,^
B,a = �

−∑ [𝑤_+(𝑄(1,1)∆𝑥_ + 𝑄(1,2)∆𝑦_)]-
_e* if	𝑖 = 𝑗,
𝑤a+H𝑄(1,1)∆𝑥a + 𝑄(1,2)∆𝑦aJ if	𝑗	is	connected	to	𝑖,

0 otherwise.
    (B9) 

Similarly, the coefficients for 𝑀',^,^ are given by: 

𝑀',^,^
B,a = �

−∑ [𝑤_+(𝑄(2,1)∆𝑥_ + 𝑄(2,2)∆𝑦_)]-
_e* if	𝑖 = 𝑗,
𝑤a+H𝑄(2,1)∆𝑥a + 𝑄(2,2)∆𝑦aJ if	𝑗	is	connected	to	𝑖,

0 otherwise.
    (B10) 

The weights 𝑤a depend on the distance between 𝑗 and 𝑖: 650 

𝑤a =
*

Vf6,f)V
'.           (B11) 

Following Syrakos et al. (2017), we choose 𝑞 = Q
+
. 

B2: First-order, staggered grid 

The derivation in section B1 holds for the case where both the function 𝑓 and its gradients 𝑓$ , 𝑓' are defined on the same 

grid, so that 𝑓B is known. However, if for example we want to calculate the first partial derivative of 𝑓 on the mesh triangles 655 

𝑓$,0 when 𝑓 itself is defined on the mesh vertices (𝑓 ), then this condition does not hold, and a slightly different derivation is 

needed. 

Consider the Taylor series described by Eq. B2. We once again write out the system of linear equations for 𝑓 on the 

collection of neighbouring points, but this time we do not introduce ∆𝑓, so that we obtain the following expression: 
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.    (B12) 660 

Following the same derivation as before, the symmetric 3-by-3 matrix 𝐴d𝑊d𝑊𝐴 that needs to be inverted to find 𝑄 is now 

given by: 

𝐴d𝑊d𝑊𝐴 = ∑ 𝑤_+ ;
1 ∆𝑥_ ∆𝑦_
∆𝑥_+ ⬚ ∆𝑦_+

<-
_e* .        (B13) 

Similarly, 𝛽0 is now given by: 

𝛽0 = ∑ 𝑤_+ �
𝑓_

∆𝑥_∆𝑓_
∆𝑦_∆𝑓_

�-
_e* .          (B14) 665 

This leads to the following expression for the coefficients of the matrices 𝑀`,^,0 , 𝑀$,^,0 , 𝑀',^,0: 

𝑀`,^,0
B,a = �

−∑ [𝑤_+(𝑄(1,1) + 𝑄(1,2)∆𝑥_ + 𝑄(1,3)∆𝑦_)]-
_e* if	𝑖 = 𝑗,
𝑤a+H𝑄(1,1) + 𝑄(1,2)∆𝑥a + 𝑄(1,3)∆𝑦aJ if	𝑗	is	connected	to	𝑖,

0 otherwise,
   (B15) 
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𝑀$,^,0
B,a = �

−∑ [𝑤_+(𝑄(2,1) + 𝑄(2,2)∆𝑥_ + 𝑄(2,3)∆𝑦_)]-
_e* if	𝑖 = 𝑗,
𝑤a+H𝑄(2,1) + 𝑄(2,2)∆𝑥a + 𝑄(2,3)∆𝑦aJ if	𝑗	is	connected	to	𝑖,

0 otherwise,
   (B16) 

𝑀',^,0
B,a = �

−∑ [𝑤_+(𝑄(3,1) + 𝑄(3,2)∆𝑥_ + 𝑄(3,3)∆𝑦_)]-
_e* if	𝑖 = 𝑗,
𝑤a+H𝑄(3,1) + 𝑄(3,2)∆𝑥a + 𝑄(3,3)∆𝑦aJ if	𝑗	is	connected	to	𝑖,

0 otherwise.
   (B17) 

B3: Second-order, regular grid 670 

Here, we extend the discretisation scheme by Syrakos et al. (2017) to include the second-order partial derivatives 

𝑓$$ , 𝑓$', 𝑓''. First, we extend the Taylor expansion of 𝑓 around 𝑖 to include the second-order terms: 

𝑓a = 𝑓B + ∆𝑥a𝑓$,^B + ∆𝑦a𝑓',^B + *
+
∆𝑥a+𝑓$$,^B + ∆𝑥a∆𝑦a𝑓$',^B + *

+
∆𝑦a+𝑓'',^B + 𝑂H∆𝑥aQ, ∆𝑦aQJ.   (B18) 

Writing out the system of linear equations for all neighbours of 𝑖 now yields the following expression: 
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.  (B19) 675 

The symmetric 5-by-5 matrix 𝐴d𝑊d𝑊𝐴 that needs to be inverted to find 𝑄 is now given by: 

𝐴d𝑊d𝑊𝐴 = ∑ 𝑤_+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡∆𝑥_

+ ∆𝑥_∆𝑦_
*
+
∆𝑥_Q ∆𝑥_+∆𝑦_

*
+
∆𝑥_∆𝑦_+

⬚ ∆𝑦_+
*
+
∆𝑥_+∆𝑦_ ∆𝑥_∆𝑦_+

*
+
∆𝑦_Q

⬚ ⬚ *
/
∆𝑥_/

*
+
∆𝑥_Q∆𝑦_

*
/
∆𝑥_+∆𝑦_+

⬚ ⬚ ⬚ ∆𝑥_+∆𝑦_+
*
+
∆𝑥_∆𝑦_Q

⬚ ⬚ ⬚ ⬚ *
/
∆𝑦_/ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

-
_e* .    (B20) 

Similarly, 𝛽0 is now given by: 

𝛽0 = ∑ 𝑤_+

⎣
⎢
⎢
⎢
⎢
⎡
∆𝑥_∆𝑓_
∆𝑦_∆𝑓_
*
+
∆𝑥_+∆𝑓_

∆𝑥_∆𝑦_∆𝑓_
*
+
∆𝑦_+∆𝑓_ ⎦

⎥
⎥
⎥
⎥
⎤

-
_e* .         (B21) 

Expressions for the coefficients of 𝑀$,^,^, 𝑀',^,^, 𝑀$$,^,^, 𝑀$',^,^, 𝑀'',^,^  (which are now fourth-order accurate operators) 680 

can be derived similar as before. 
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Appendix C: Remapping 

Because of the dynamic adaptive grid, data fields must often be remapped between square grids and (different) irregular 

triangular meshes. Extensive preliminary experiments have shown that only second-order conservative remapping results in 

accurate model results (e.g., ice thickness over time that matches the analytical solution in the Halfar dome experiment). 685 

Less accurate remapping schemes (nearest-neighbour, bilinear, biquadratic, binning, Gaussian interpolation) all result in 

much more diffusion during each remapping operation, and additionally violate conservation of mass and energy when 

remapping ice thickness and temperature, as these schemes are generally not conservative. 

The mathematical theory behind conservative remapping is described by Jones (1999), and is relatively straightforward. 

However, Jones (1999) derived the equations in spherical coordinates, whereas UFEMISM uses Cartesian coordinates. 690 

Furthermore, UFEMISM uses a slightly different scheme, which conserves both local and global integrated values (the 

definition of “conservative” used by Jones), as well as extreme values (an important property, as we do not want to end up 

with negative ice thickness after remapping). We will therefore provide a full derivation here. 

C1: Theory 

Let there exist two meshes that both cover the same domain 𝛺: a source mesh (indicated from here by the subscript 𝑠) and a 695 

destination mesh (subscript 𝑑). Suppose the source mesh is the one that existed before a mesh update, and the destination 

mesh is the newly generated mesh. Let 𝑓)7 be a discrete function defined on the vertices of the source mesh. The remapping 

problem then consists of finding a new discrete function 𝑓g7, defined on the vertices of the destination mesh, such that: 

∬ 𝑓g7𝑑𝐴
⬚
i = ∬ 𝑓)7𝑑𝐴

⬚
i ,          (C1) 

∬ 𝑓g7𝑑𝐴
⬚
c8
) = ∬ 𝑓)7𝑑𝐴

⬚
c8
) , where 𝐴gB  are the Voronoi cells of the vertices of the destination mesh,  (C2) 700 

min(𝑓)7) ≤ 𝑓g7 ≤ max(𝑓)7),         (C3) 

Here, Eq. C1 implies conservation of the global integrated value, Eq. C2 implies conservation of local integrated values, and 

Eq. C3 implies conservation of extreme values. 

 

Let 𝑓(𝑥, 𝑦) be a piecewise bilinear function, which is obtained from the discrete source function on the source mesh triangles 705 

𝑓)% by bilinearly interpolating inside the triangles: 

𝑓(𝑥, 𝑦) = 𝑓)% + H𝑥 − 𝑥)%J 5
"3
"$
7
)%
+ H𝑦 − 𝑦)%J 5

"3
"'
7
)%

.      (C4) 

Here, 𝑥)% , 𝑦)% are the coordinates of the geometric centre of source mesh triangle 𝑠0. Note that 𝑓)% can be obtained from 𝑓)7 

using the operator matrices derived in Appendix B: 

𝑓)% = 𝑀`,)7,)%𝑓)7,          (C5) 710 

5"3
"$
7
)%
= 𝑀$,)7,)%𝑓)7,          (C6) 
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5"3
"'
7
)%
= 𝑀',)7,)%𝑓)7.          (C7) 

The discrete function 𝑓g7 on the vertices of the destination mesh is found by simply averaging 𝑓(𝑥, 𝑦) over the Voronoi cells 

𝐴g7 of the vertices of the destination mesh: 

𝑓g7 =
*

c87
∬ 𝑓(𝑥, 𝑦)𝑑𝐴⬚
c87

.         (C8) 715 

Note that, as Eq. C8 implies that 𝑚𝑖𝑛H𝑓(𝑥, 𝑦)J ≤ 𝑓g7 ≤ 𝑚𝑎𝑥H𝑓(𝑥, 𝑦)J, and Eq. C4 implies that 𝑚𝑖𝑛(𝑓)7) ≤ 𝑓(𝑥, 𝑦) ≤

𝑚𝑎𝑥(𝑓)7), this implies that 𝑚𝑖𝑛(𝑓)7) ≤ 𝑓g7 ≤ 𝑚𝑎𝑥(𝑓)7), thus satisfying the conservation of extreme values required by 

Eq. C3. Substituting Eq. C4 into Eq. C8 yields: 

𝑓g7 =
*

c87
∑ ;∬ h𝑓)% + H𝑥 − 𝑥)%J 5

"3
"$
7
)%
+ H𝑦 − 𝑦)%J 5

"3
"'
7
)%
i⬚

c9%87
𝑑𝐴<⬚

)% .    (C9) 

Here, 𝐴)%g7 indicates the area of overlap between the source mesh triangles 𝑠0 and the destination mesh Voronoi cells 𝑑^. 720 

This is illustrated in Fig. C1. 

A B C D 

    
Figure C1: A) the source mesh, with triangle j indicated. B) the destination mesh, with the Voronoi cell of vertex i indicated. C) the 
two meshes superimposed on one another. D) the area of overlap 𝑨𝒔𝒃𝒋𝒅𝒂𝒊 between source mesh triangle j and destination mesh 
vertex i is indicated by the thick blue line. The perimeter of this area consists of sections of the perimeter of source mesh triangle j, 
and the Voronoi cell of destination mesh vertex i. 725 

Eq. C9 can be rearranged to read: 

𝑓g7 =
*

c87
∑ ;𝑓)%∬ 𝑑𝐴⬚

c9%87
+ 5"3

"$
7
)%
∬ H𝑥 − 𝑥)%J𝑑𝐴

⬚
c9%87

+ 5"3
"'
7
)%
∬ H𝑦 − 𝑦)%J𝑑𝐴
⬚
c9%87

<⬚
)% , 

*
c87

∑ ;h𝑓)% − 𝑥)% 5
"3
"$
7
)%
− 𝑦)% 5

"3
"'
7
)%
i∬ 𝑑𝐴⬚

c9%87
+ 5"3

"$
7
)%
∬ 𝑥𝑑𝐴⬚
c9%87

+ 5"3
"'
7
)%
∬ 𝑦𝑑𝐴⬚
c9%87

<⬚
)% . (C10) 

Since the area of overlap 𝐴)%g7  between a triangle of the source mesh and a Voronoi cell of the destination mesh will 

generally be an irregularly-shaped polygon, Eq. C10 is generally not easy to evaluate. However, the problem can be 730 

simplified by applying the divergence theorem, rewriting the three surface integrals in Eq. C10 into line integrals: 

∬ 𝑑𝐴⬚
c = ∮ 𝑥𝑑𝑦⬚

"c ,          (C11) 

∬ 𝑥𝑑𝐴⬚
c = −∮ 𝑥𝑦𝑑𝑥⬚

"c ,          (C12) 
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∬ 𝑦𝑑𝐴⬚
c = ∮ 𝑥𝑦𝑑𝑦⬚

"c .          (C13) 

Note that, as the perimeters of both the source mesh triangles and the destination mesh Voronoi cells are piecewise linear 735 

curves, the perimeter of the area of overlap 𝐴)%g7 must therefore also be a piecewise linear curve. The expressions for the 

three line integrals along a straight line from 𝑝 = ¡𝑥[, 𝑦[¢ to 𝑞 = ¡𝑥j , 𝑦j¢ are given by: 

∫ 𝑥𝑑𝑦j
[ = 𝑥[∆𝑦 − 𝑦[∆𝑥 +

∆$
+∆'

H𝑦j+ − 𝑦[+J,        (C14) 

∫ −𝑥𝑦𝑑𝑥j
[ = *

+
5𝑥[

∆'
∆$
− 𝑦[7 H𝑥j+ − 𝑥[+J −

*
Q
∆'
∆$
H𝑥jQ − 𝑥[QJ,      (C15) 

∫ 𝑥𝑦𝑑𝑦j
[ = *

+
5𝑥[ − 𝑦[

∆$
∆'
7 H𝑦j+ − 𝑦[+J +

*
Q
∆$
∆'
H𝑦jQ − 𝑦[QJ.      (C16) 740 

Here, ∆𝑥 = 𝑥j − 𝑥[, ∆𝑦 = 𝑦j − 𝑞[. Substituting Eqs. C11 – 13 into Eq. C10 yields: 

𝑓g7 =
*

c87
∑ ;h𝑓)% − 𝑥)% 5

"3
"$
7
)%
− 𝑦)% 5

"3
"'
7
)%
i∮ 𝑥𝑑𝑦⬚

"c9%87
− 5"3

"$
7
)%
∮ 𝑥𝑦𝑑𝑥⬚
"c9%87

+ 5"3
"'
7
)%
∮ 𝑥𝑦𝑑𝑦⬚
"c9%87

<⬚
)% .(C17) 

This implies that, in order to find the remapped value of 𝑓 on a destination vertex, we need to find all the source triangles 

overlapping with that vertex’ Voronoi cell, and calculate the three line integrals around the perimeter of the area of overlap 

between that source triangle and the destination Voronoi cell. 745 

As can be seen from Eq. C17, the remapped function 𝑓g7 is a linear combination of the triangle source function values 𝑓)% 

and its gradients 5"3
"$
7
)%
, 5"3
"'
7
)%

, which are in turn linear combinations of the vertex source function values 𝑓)7. We can 

therefore rewrite Eq. C17 as a matrix equation. First, we define the three matrices 𝐵$g', 𝐵,$'g$, and 𝐵$'g', which contain 

the line integrals around the areas of overlap between the source triangles 𝑠0 and the destination Voronoi cells 𝑑^: 

𝐵$g'
Ba = ∮ 𝑥𝑑𝑦⬚

"c9%687)
,          (C18) 750 

𝐵,$'g$
Ba = −∮ 𝑥𝑦𝑑𝑥⬚

"c9%687)
,         (C19) 

𝐵$'g'
Ba = ∮ 𝑥𝑦𝑑𝑦⬚

"c9%687)
.          (C20) 

Note that 𝐵$g'
Ba , 𝐵,$'g$

Ba , and 𝐵$'g'
Ba  are non-zero if and only if source triangle 𝑗 and destination Voronoi cell 𝑖 overlap. 

These three matrices can be combined to yield the three remapping weights matrices 𝑊:, 𝑊*,$, and 𝑊*,': 

𝑊:
Ba =

k:8;
)6

c87)
,           (C21) 755 

𝑊*,$
Ba =

k":;8:
)6

c87)
−𝑊:

Ba𝑥)%6,          (C22) 

𝑊*,'
Ba =

k:;8:
)6

c87)
−𝑊:

Ba𝑦)%6.          (C23) 

Substituting Eqs. C21 – 23 into Eq. C17 yields: 
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𝑓g7 = 𝑊:𝑓)% +𝑊*,$ 5
"3
"$
7
)%
+𝑊*,' 5

"3
"'
7
)%

.        (C24) 

Substituting Eqs. C5 – 7 into Eq. C24 yields: 760 

𝑓g7 = H𝑊:𝑀`,)7,)% +𝑊*,$𝑀$,)7,)% +𝑊*,'𝑀',)7,)%J𝑓)7 = 𝑀)7,g7𝑓)7.     (C25) 

Here, 𝑀)7,g7 = 𝑊:𝑀`,)7,)% +𝑊*,$𝑀$,)7,)% +𝑊*,'𝑀',)7,)%  is an 𝑛𝑉g -by- 𝑛𝑉) matrix that represents the second-order 

conservative remapping operation from the source mesh vertices to the destination mesh vertices. 

C2: Implementation 

In order to calculate the remapping matrix 𝑀)7,g7, the three line integrals in Eqs. C11 – 13 need to be calculated around the 765 

areas of overlap between all source mesh triangles and destination mesh Voronoi cells. While the line integrals themselves 

are simple enough (Eqs. C14 – 16), determining which sources triangles overlap with which destination Voronoi cells is not 

straightforward. Given the large numbers of vertices and triangles involved in high-resolution meshes (easily several tens of 

thousands of both), it is necessary to pay attention to computational efficiency. 

The perimeter 𝜕𝐴)%6g7) of the area of overlap 𝐴)%6g7) between source triangle 𝑠0a and destination Voronoi cell 𝑑^B consists 770 

of part of the perimeter 𝜕𝐴)%6 of source triangle 𝑠0a, and part of the perimeter 𝜕𝐴g7) of destination Voronoi cell 𝑑^B. This 

means that, in order calculate the coefficients of the three matrices in Eqs. C18 – 20, it suffices to integrate once around 

every source triangle and around every destination Voronoi cell, carefully keeping track of the triangle or Voronoi cell of the 

opposite mesh with which it overlaps. 

In UFEMISM, this is done using a collection of “line tracing” subroutines. Given a line [𝑝, 𝑞], the model “traces” that line 775 

through a mesh, and returns a list of all the Voronoi cells or triangles through which that line passes, and the line integrals 

for all the individual line segments lying within them. Great care is taken to detect cases where the perimeters of source 

triangles and destination Voronoi cells coincide, to prevent double-counting. By actively “tracing” the line, finding the index 

of the next triangle or Voronoi cell it crosses into from the connectivity lists of the triangle or cell it departs, instead of 

performing a mesh-wide search operation every time, computational expense is greatly reduced. Thus, calculating the 780 

remapping matrix only takes a fraction of the computation time required to create a new mesh. 

Appendix D: Terrain-following coordinate transformation 

In order to solve the BPA, the heat equation, and conservation of mass, the vertical dimension must be discretised as well. In 

UFEMISM, this is done by introducing a terrain-following coordinate transformation: 

 𝑥(𝑥, 𝑦, 𝑧, 𝑡) = 𝑥,           (D1a) 785 

 𝑦(𝑥, 𝑦, 𝑧, 𝑡) = 𝑦,           (D1b) 

 𝜁(𝑥, 𝑦, 𝑧, 𝑡) = )($,',A),&
6($,',A)

,          (D1c) 
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 �̂�(𝑥, 𝑦, 𝑧, 𝑡) = 𝑡.           (D1d) 

Eq. D1c implies that 𝜁 = 0 at the ice surface, and 𝜁 = 1 at the ice base. Note that, in order to transform the heat equation, the 

time dimension is transformed as well. Applying this coordinate transformation results in the following expressions for the 790 

gradient operators: 

 "
"$
= "

"$̂
+ "L

"$
"
"L

,           (D2a) 

 "
"'
= "

"'̂
+ "L

"'
"
"L

,           (D2b) 

 "
"&
= "L

"&
"
"L

,           (D2c) 

 "
"A
= "

"Â
+ "L

"A
"
"L

.           (D2d) 795 

Applying the chain rule to Eq. D1c yields the following expressions for the gradients of 𝜁: 

 "L
"$
= *

6
5")
"$
− 𝜁 "6

"$
7,          (D3a) 

 "L
"'
= *

6
5")
"'
− 𝜁 "6

"'
7,          (D3b) 

 "L
"&
= ,*

6
.            (D3c)  

 "L
"A
= *

6
5")
"A
− 𝜁 "6

"A
7,          (D3b) 800 

The gradient operators in Eqs. D2a – d can be represented by matrices as derived in Appendix B, by multiplying their 

untransformed equivalents with the gradients of 𝜁, e.g.: 

 𝑀$,^,0 = 𝑀$̂,^,0 +𝐷 5
"L
"$
7𝑀L,^,0.         (D4) 

Here, 𝐷(𝑓) represents a diagonal matrix with the elements of the vector 𝑓 on the diagonal, i.e. 𝐷Ba = 𝜕Ba𝑓B (with 𝜕Ba being 

the Kronecker delta). By thus calculating the matrices for all the gradient operators, the stiffness matrix representing the 805 

momentum balance can be assembled. 

 

The scaled vertical coordinate 𝜁 is discretised using an irregular, log-linear grid: 

𝜁X = 1 − m<
#"=
#"!>,*
m,*

, 𝑘 ∈ [1, 𝑛].         (D5) 

This implies that the ratio between the grid spacings at the ice surface and ice base is approximately equal to 𝑅, which is a 810 

configurable number with a default value of 𝑅 = 10. This scheme results in improved accuracy of the solution near the ice 

base, where the strain rates (in the BPA) and the temperature gradients (in the heat equation) are highest, without requiring 

additional vertical grid points. The number of vertical layers is configurable, and is by default set to 12. 
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Appendix E: vertical ice velocities 

Applying the terrain-following coordinate transformation from Appendix D to the expression for conservation of mass in Eq. 815 

14 yields: 

 "%
"$̂
+ "L

"$
"%
"L
+ "(

"'̂
+ "L

"'
"(
"L
+ "L

"&
"#
"L
= 0.        (E1) 

The terms "%
"$̂
+ "(

"'̂
 describe the divergence in the two-dimensional plane, in scaled coordinates: 

"%
"$̂
+ "(

"'̂
= 𝛻𝑢.           (E2) 

Averaging this divergence over the Voronoi cell of a mesh vertex yields: 820 

 𝛻𝑢 = *
c∬ H𝛻𝑢J𝑑𝐴⬚

c .          (E3) 

By applying the divergence theorem, this integral can be transformed to a loop integral around the boundary of the Voronoi 

cell: 

 𝛻𝑢 = *
c ∮ (𝑢 ∙ 𝑛)𝑑𝑆⬚

"c .          (E4) 

Here, 𝑛 is the outward normal vector to the Voronoi cell boundary. Substituting this expression into Eq. 15 yields: 825 

 "#
"L
= ,*

"L "&⁄ 3*
c ∮ (𝑢 ∙ 𝑛)𝑑𝑆⬚

"c + "L
"$

"%
"L
+ "L

"'
"(
"L
8.        (E5) 

This expression can then be integrated over the transformed vertical dimension to find 𝑤: 

 𝑤(𝜁) = 𝑤(𝜁 = 1) − ∫ "#
"L

L
* 𝑑𝜁.         (E6) 

Note that the minus sign in Eq. E6 arises from the fact that 𝜁 runs from 0 at the ice surface, to 1 at the ice base, meaning that 

integrating upwards from the ice base means integrating in the negative 𝜁 direction. The vertical velocity at the base is given 830 

by: 

 𝑤(𝜁 − 1) = 𝑤0 = 𝑢0 5
")
"$
− "6

"$
7 + 𝑣0 5

")
"'
− "6

"'
7 + ")

"A
− "6

"A
.      (E7) 

Appendix F: calculating the ice flux divergence operator 

Conservation of ice mass for a shallow layer of ice in the 2-D plane is expressed mathematically as: 
"6
"A
= −∇ ∙ (𝒖𝐻) +𝑚.          (F1) 835 

Here, 𝑚 is the net mass balance, including terms at the ice base, the ice surface, and the lateral boundaries. This equation is 

discretised spatially using the finite volume scheme that lent UFEMISM its name. Averaging Eq. F1 over the Voronoi cell of 

vertex 𝑖 (the control volume of the finite volume scheme) yields: 

 "6
"A

B
= ,*

c) ∬ ∇ ∙ (𝒖𝐻)𝑑𝐴⬚
c) +𝑚B.         (F2) 

Using the divergence theorem, the double integral in Eq. F2 can be transformed: 840 
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 "6
"A

B
= ,*

c) ∮ (𝒖𝐻) ∙ 𝒏¬𝑑𝑆⬚
"c) +𝑚B.         (F3) 

Here, 𝑛 is the outward unit normal to the boundary𝜕𝐴B of the Voronoi cell of vertex 𝑖. Let (𝑢𝐻)Ba be average ice flux on the 

shared Voronoi cell boundary of vertices 𝑖 and 𝑗. Then the loop integral Eq. F3 can be transformed to a sum: 

 "6
"A

B
= ,*

c)
∑ [(𝒖𝐻)Ba ∙ 𝒏¬Ba𝐿Ba]-
ae* +𝑚B.        (F4) 

Here, 𝑛Ba is the unit normal vector pointing from vertex 𝑖 to vertex 𝑗, 𝐿Ba is the length of their shared Voronoi cell boundary, 845 

and ∑ ⬚-
ae*  sums over only those vertices 𝑗 that are connected to 𝑖. We then introduce an upwind scheme for the ice flux 

𝒖𝐻: 

(𝒖𝐻)Ba = ®𝒖
Ba𝐻B if	𝒖Ba ∙ 𝒏¬Ba > 0,

𝒖Ba𝐻a otherwise.
         (F5) 

This implies that, if the ice flows from vertex 𝑖 to vertex 𝑗, the ice thickness in vertex 𝑖 determines the flux, and vice versa. 

This scheme offers better numerical stability than using the average ice thickness of 𝑖 and 𝑗 regardless of the flow direction. 850 

Eqs. F4 and F5 imply that "6
"A

B
 is a linear combination of the ice thicknesses 𝐻B. Eq. F4 can therefore be represented by a 

matrix equation: 

 "6
"A

B
= −𝑀CDEF𝐻B +𝑚B.          (F6) 

Here, 𝑀gB(n is a matrix whose coefficients depend on the mesh geometry and the ice velocities, which can be multiplied with 

the ice thickness vector 𝐻B to find the ice flux divergence 𝛻 ∙ (𝒖𝐻). The coefficients of 𝑀gB(n are given by: 855 

 𝑀CDEF
Ba = ¯

*
c)
∑ [𝐿Bamax(𝒖Ba ∙ 𝒏¬Ba , 0)]-
ae* if	𝑖 = 𝑗,
o)6

c)
min(𝒖Ba ∙ 𝒏¬Ba , 0) if	𝑖	is	connected	to	𝑗,

0 otherwise.

     (F7) 
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