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Abstract: 9 

Valid simulation results from global hydrological models (GHMs), such as WaterGAP3, are essential to detecting 10 

hotspots or studying patterns in climate change impacts. However, the lack of worldwide monitoring data makes 11 

it challenging to adapt GHMs' parameters to enable such valid simulations globally. Therefore, regionalization is 12 

necessary to estimate parameters in ungauged basins. This study presents new regionalization methods for Wa-13 

terGAP3 and aims to provide insights into selecting a suitable regionalization method and evaluating its impact on 14 

the simulation. Our results suggest that machine learning-based methods may be too flexible for regionalizing 15 

WaterGAP3 due to a significant performance loss between training and testing. In contrast, the most basic region-16 

alization method (using the concept of spatial proximity) outperforms most of the developed regionalization meth-17 

ods and a pre-defined benchmark-to-beat in an ensemble of split-sample tests. The method selection, whether 18 

spatial proximity-based or regression-based, has a greater impact on the regionalization than the specific details 19 

on how the method is applied. In particular, the descriptor selection plays a subsidiary role when at least a subset 20 

of selected descriptors contains relevant information. Additionally, our research has shown that regionalization 21 

causes spatially varying uncertainty for ungauged regions. For example, India and Indonesia are particularly af-22 

fected by higher uncertainty. The impact of regionalization in ungauged areas propagates through the water system, 23 

e.g., one water balance component changed by approximately 2400 km³ yr-1 on a global scale, which is in the range 24 

of inter-model differences. The magnitude of the impact of regionalization depends on the variability in regional-25 

ized values and the region's sensitivity for the analysed component.  26 

1. Introduction 27 

Global hydrological models (GHMs) are developed and applied worldwide, e.g. to detect hotspots and examine 28 

patterns of climate change impacts on the terrestrial water cycle (e.g., Barbarossa et al., 2021; Boulange et al., 29 

2021). Valid model results are a prerequisite to draw robust conclusions. For valid modelling results, it is beneficial 30 

to adjust the parameter values to adapt the models to different basin processes (Gupta et al., 1998). This adaptation 31 

is usually modified and evaluated (in a loop) by comparing the simulated model output, often discharge, with the 32 

monitored data. However, this parameter adjustment for GHMs is challenging due to the lack of global monitoring 33 

data. Consequently, parameter adjustment for GHMs can be based not only on monitored data (i.e., calibration) 34 

but also on estimating parameter values for ungauged basins (i.e., regionalization).  35 
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Regionalization is the estimation of parameter values in a model for ungauged basins (Oudin et al., 2008), usually 36 

based on information from gauged basins (Oudin et al., 2010). Regionalization methods generally follow the same 37 

principle: basin characteristics (e.g., physiographic and/or climatic) are linked to hydrological characteristics and 38 

can thus be used to estimate parameter values. Various regionalization methods exist, and no overall preferred 39 

method has been found (Ayzel et al., 2017; Pool et al., 2021). In contrast, the optimal regionalization method may 40 

differ, for example, regarding available information (Pagliero et al., 2019) or model structures (Golian et al., 2021). 41 

Therefore, different methods should be tested to find an optimal regionalization method for a specific use case 42 

(e.g., Qi et al., 2020).  43 

Evaluation is needed to assess different regionalization methods. Evaluation is particularly challenging for region-44 

alization methods because they are usually applied when monitoring data is missing. Therefore, regionalization 45 

studies often treat gauged basins as “ungauged” and perform leave-one-out cross-validation (e.g., Chaney et al., 46 

2016) or split-sample tests (e.g., Beck et al., 2016; Nijssen et al., 2000; Yoshida et al., 2022). While at the 47 

mesoscale, this evaluation is already an integral part (e.g. McIntyre et al., 2005; Parajka et al., 2005; Oudin et al., 48 

2008; Yang et al., 2020), this is sometimes not the case in global or continental studies (e.g., Müller Schmied et 49 

al., 2021; Widén-Nilsson et al., 2007). Another reasonable evaluation strategy is the concept of benchmark-to-beat 50 

(Schaefli & Gupta, 2007; Seibert, 2001). Applying a benchmark-to-beat supports a comprehensive evaluation of 51 

whether a new approach is functional, e.g., better than a straightforward and thus transparent method or better than 52 

a predecessor. To the authors' knowledge, such a benchmark-to-beat has never been used to evaluate innovations 53 

in regionalization at the global level. 54 

In general, regionalization methods can be divided into two categories based on the parameter estimation strategy: 55 

(1) regression-based and (2) distance-based (He et al., 2011). Regression-based methods derive the relationship 56 

between basin characteristics and model parameters through fitted regression models. These mathematically de-57 

fined relationships are further applied to estimate model parameters of ungauged basins (e.g. Kaspar, 2004; Müller 58 

Schmied et al., 2021). A significant drawback of regression-based regionalization is the difficulty of incorporating 59 

parameter interdependencies (Poissant et al., 2017). Regression-based approaches often assume that the dependent 60 

variables, i.e., the model parameters, are not correlated (Wagener et al., 2004). Distance-based approaches transfer 61 

complete parameter sets from similar or nearby donor basins to ungauged basins (e.g., Beck et al., 2016; Nijssen 62 

et al., 2000; Widén-Nilsson et al., 2007). Using an ensemble of donor basins, e.g., by averaging the parameter 63 

values or model outputs, can improve the performance of such methods (e.g., Arsenault & Brissette, 2014). A 64 

significant disadvantage of such methods is the clustering problem of ungauged basins, i.e., the unequal distribu-65 

tion of gauging stations worldwide (Krabbenhoft et al., 2022). Thus, basins exist where distance-based approaches 66 

will use incomparable basins to transfer parameter values due to the lack of close basins.  67 

Recent advances have implemented machine learning-based techniques in the context of regionalization. For ex-68 

ample, Chaney et al. (2016) used regression trees as an alternative to least squares regression to estimate parameter 69 

values in ungauged basins. Pagliero et al. (2019) explored supervised and unsupervised clustering methods to 70 

define the similarity of basins to transfer parameter sets. To the authors' knowledge, no study has compared several 71 

traditional regionalization methods with machine learning-based methods for a GHM on a global scale. 72 

Some regionalization methods do not make a clear distinction between calibration and regionalization. For exam-73 

ple, Arheimer et al. (2020) applied a basin grouping beforehand. Then, they jointly calibrated the group members 74 

to define representative parameter sets. Subsequently, the representative parameter sets are transferred to other 75 
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basins based on grouping rules. Another approach defines so-called transfer functions (Samaniego et al., 2010) 76 

and calibrates meta-parameters instead of the model parameter values (Beck et al., 2020; Feigl et al., 2022). These 77 

methods, where regionalization is part of the calibration process, often require a change in the calibration process 78 

itself, which is challenging for GHMs (Schweppe et al., 2022), for example, due to a lack of code flexibility (e.g., 79 

Cuntz et al., 2016). 80 

This study proposes an improved regionalization method for the state-of-the-art GHM WaterGAP3 (Eisner, 2016). 81 

It compares traditional regionalization methods with machine learning-based methods and uses a “benchmark-to-82 

beat” and an ensemble split-sample test to evaluate the applied methods. The overall research topic is evaluating 83 

and selecting the most appropriate regionalization method for a GHM. Specifically, the study has two objectives. 84 

It aims  85 

(1) to propose a selection for the regionalization method of WaterGAP3 and 86 

(2) to evaluate the impact of an improved regionalization method against a benchmark-to-beat.  87 

2. Data and Methods 88 

2.1 The Model: WaterGAP3 89 

The GHM WaterGAP3 simulates the terrestrial water cycle, including the main water storage components and a 90 

simple storage-based routing algorithm. It is a fully distributed model that operates on a five arcmin grid and 91 

simulates at a daily time step. A more detailed model description can be found in Eisner (2016). 92 

In WaterGAP3, most model parameter values are set a priori, e.g., using look-up tables for albedo or rooting depth. 93 

Only one parameter, γ, is calibrated, which is part of the soil moisture storage in which runoff generation processes 94 

are present. The model equation for γ, which originates from the HBV-96 model (Lindström et al., 1997), is given 95 

in Eq. (1). Generally, higher values of γ lead to lower runoff volumes, while lower values of γ lead to higher runoff 96 

volumes. This model parameter is calibrated per basin within the range of 0.1 and 5. The objective function for 97 

calibration is to minimize the deviation between the mean annual simulated and observed river discharge. Thus, 98 

as a result of the calibration, each basin has a calibrated value (γ) between 0.1 and 5. After the calibration, a 99 

correction is applied to account for high errors in the mass balance, e.g., due to inaccuracies in global meteorolog-100 

ical forcing products. This correction can only be applied in gauged basins. It is, therefore, neglected in this study. 101 

� =  �� ∙ � �	
�	,�� 

�
�

          (1) 102 

where � is the daily runoff, �� is the daily throughfall, �� is the actual soil storage, ��,���   is the maximal soil 103 

storage, and � is the calibration parameter. 104 

Traditionally, the regionalization process in WaterGAP3 is a simple multiple linear regression (MLR) approach to 105 

estimate the calibration parameter γ for ungauged basins (e.g., Döll et al., 2003; Kaspar, 2004). The drawback of 106 

MLR regarding parameter interaction can be neglected: As there is only one parameter to estimate, parameter 107 

interference does not exist. Instead, the approach offers the advantage of a lightweight, transparent application that 108 

can be quickly revised and adapted. We use the regionalization approach from WaterGAP2.2d as benchmark-to-109 

beat as defined in Müller Schmied et al. (2021). WaterGAP2 has a model structure and calibration process that are 110 
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very similar to WaterGAP3. The main difference between these models is that WaterGAP2.2d simulates at 111 

0.5°spatial resolution. Thus, we expect the regionalization approach to be feasible for WaterGAP3.  112 

2.2 Model Data 113 

WaterGAP3 requires various input data, such as soil information, topography, or information on open freshwater 114 

bodies. This study uses the same input data as Kupzig et al. (2023). For meteorological forcing, we use the global 115 

data set EWEMBI (Lange, 2019). This data product includes daily global forcing data with a spatial resolution of 116 

0.5 degrees (latitude and longitude) that covers a period from 1979 to 2016. Specifically, WaterGAP3 uses the 117 

following forcing information from the EWEMBI data set as input: 118 

 daily mean temperature, 119 

 daily precipitation, 120 

 daily shortwave downward radiation, and 121 

 daily longwave downward radiation. 122 

 123 

The WaterGAP3 calibration requires observed monthly river discharge data. This discharge data is subsequently 124 

transformed into annual discharge sums in the calibration procedure and used as a benchmark. In this study, we 125 

used discharge data from 1,861 stations that were manually verified (Eisner, 2016). To get the best data available, 126 

we have updated all available station data with recent data from The Global Runoff Data Center (GRDC). All 127 

stations have at least five years of complete (monthly) station data between 1979 and 2016. For each station, a 128 

contribution area, i.e., a basin, is defined with the gridded flow-direction information obtained from WaterGAP3, 129 

which is based on the HydroSHEDS database (Lehner et al., 2008). 130 

The 1,861 basins are calibrated using the standard calibration approach for WaterGAP3. After the standard cali-131 

bration, some basins still have an insufficient model performance, i.e., more than 20% bias in monthly discharge. 132 

These basins are neglected in further analysis to avoid high parameter uncertainty due to errors in input data, model 133 

structure, or discharge data affecting the analysis. Further, we have excluded all basins with less than 5000 km2  134 

(inter-) basin size to the next upstream basin. We assume that this inter-basin size is large enough to assume a 135 

certain degree of interdependency between nested basins. In total, 1,236 basins out of 1,861 basins are selected for 136 

regionalization (323 are neglected due to low model performance, and 302 are neglected due to insufficient basin 137 

size).  138 

Figure 1a shows a map of the worldwide calibrated basins, covering most parts of North and South America. 139 

However, Africa and Oceania remain largely ungauged. A cluster of gauged basins is located in Central Europe 140 

and Eastern Asia. Gauged regions with low model performance are mainly found in the Mississippi River basin, 141 

Southern Africa and Australia. These regions are known to be challenging for GHMs (e.g., cf. Fig. 8b in Stacke & 142 

Hagemann, 2021). 143 

Figure 1b shows the calibrated values for γ. It emerges that the calibrated values tend to bet at the upper and lower 144 

bounds of the parameter space. This misbehaviour is already known (cf. Fig. 4b in Müller Schmied et al., 2021) 145 

and highlights the need to further develop the calibration strategy for WaterGAP3, e.g., by implementing multi-146 

variate calibration. However, this study focuses solely on analysing and implementing a new regionalization 147 

method. It does not aim to change the calibration approach of WaterGAP3. To achieve the latter, future studies are 148 
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needed to select sensitive parameters or advance the model structure to avoid structural errors that introduce high 149 

parameter uncertainty when applying multivariate calibration (Kupzig et al., 2023).  150 

Figure 1: (a) Gauged basins calibrated beforehand, highlighting basins not used for regionalization due to low model 151 
performance or too small basin size and (b) the histogram of the calibrated model parameter values of all used basins 152 
showing heavy-tails. 153 

2.3 Basin Descriptors 154 

This study uses basin descriptors as predictors to drive regression-based or distance-based regionalization ap-155 

proaches. These basin descriptors are based on model data and are aggregated to basin values using a simple mean 156 

method to have the exact spatial resolution as the calibrated model parameter. Thus, in the case of nested basins, 157 

the inter-basin area is used to define the basin descriptors. The selection of the predictors, i.e., basin descriptors 158 

that support the estimation of γ, is crucial for regionalization methods (Arsenault & Brissette, 2014). Typically, 159 

this selection aims to obtain the most information with the least number of predictors to (1) improve the model 160 

quality and (2) limit over-parametrization. In this study, we use 12 basin descriptors to develop regionalization 161 

methods; nine of these descriptors are physiographic, while the remaining three are climatic (see Table 1). Most 162 

descriptors are not correlated (see Appendix A), i.e., we avoid redundant information (Wagener et al., 2004). 163 

The predictor selection is based on correlation analysis and entropy assessment. Pearson's correlation coefficient 164 

detects linear correlation, and Spearman's Rho and Kendall's Tau detect a non-linear correlation between basin 165 

descriptors and calibrated γ values. Shannon entropy (Shannon, 1948) measures the information gain of the pre-166 

dictors explaining the calibrated γ value. The higher the information gain, the more valuable the basin descriptor 167 

is for explaining the variation in the calibrated γ value.  168 

The correlation coefficients and the corresponding information gain are listed in Table 1. All basin descriptors 169 

have a low correlation coefficient, e.g., the highest Pearson correlation is -0.36. The information gain shows the 170 

same result for the predictors, i.e., descriptors with a higher correlation tend to have a higher information gain. 171 

Nevertheless, the information gain is relatively low, with a maximum of 14.4% of the information explained by 172 

the temperature descriptor. A possible reason for the low correlation and information gain is that the γ values are 173 

tailored within the calibration's valid parameter bounds (i.e., 0.1 and 5), resulting in heavy tails of the calibrated γ 174 

distribution. Thus, we expect the correlation to be higher, with calibrated γ reaching values higher than 5. In addi-175 

tion, the calibrated value masks the effect of multiple sources of errors, such as uncertainty in the input data, model 176 

structure, or varying hydrological processes. Thus, there might be more complex relationships between the de-177 

scriptors and the calibrated parameter, which are only partially captured by this analysis. Nevertheless, the results 178 

of this analysis indicate descriptors that may be more useful than others in defining a regionalization method. We 179 

(b) (a) 
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implement regionalization methods using four groups of basin descriptors by selecting basin descriptors with the 180 

highest correlation coefficients and information gain:  181 

 “cl”: two correlated climatic descriptors (mean temperature, annual shortwave radiation), 182 

 “p”: three correlated physiographic descriptors (slope class, forest %, permafrost %), 183 

 “p+cl”: two correlated climatic & three physiographic descriptors, and 184 

 “all”: all 12 descriptors (as a control group to examine the effect of using correlated descriptors). 185 

 186 

Table 1: Basin descriptors used in the regionalization methods: statistical information, correlation, and entropy assess-187 
ment. Selected physiographic and climatic basin descriptors are shaded in grey. 188 

 Basin 

Descriptor 

Attribute Information Entropy & Correlation 

Min Max Mean Median IG (%) Pearson Spearman Kendall 

p
h

y
si

o
g

ra
p

h
ic

 

Soil Storage (mm) 8.994 677.950 219.071 192.006 10.19 -0.20 -0.16 -0.12 

Open Water Bodies (%) 0.000 77.125 7.979 2.376 5.22 0.01 -0.05 -0.03 

Wetlands (%) 0.000 73.181 6.134 0.721 4.60 0.02 -0.07 -0.05 

Size (km2) 5000 3112480 36811 13850 1.08 -0.03 -0.01 -0.01 

Slope Class (-) 10.057 67.756 37.739 36.986 14.22 -0.27 -0.31 -0.23 

Altitude (m.a.s.l.) 22.324 4765.166 630.826 412.414 7.29 -0.11 -0.19 -0.14 

Sealed Area (%) 0.000 12.3 0.5 0 3.25 0.18 0.34 0.25 

Forest (%) 0.000 100.000 32.037 18.245 11.50 -0.27 -0.21 -0.16 

Permafrost & Glacier (%) 0.000 95.000 15.316 0.000 10.96 -0.36 -0.47 -0.37 

cl
im

at
e
 

Mean Temperature(°C) -18.848 28.998 7.769 6.562 14.36 0.34 0.39 0.29 

Yearly Precipitation (mm) 73.1 5716.3 950.6 743.5 7.95 0,01 0.18 0.13 

Yearly Shortwave Down-

ward Radiation (Wm-2) 
1050.6 33098.4 1887.5 1777.2 13.05 0.33 0.34 0.25 

 189 

2.4 Regionalization Methods 190 

In our study, we test several traditional and machine learning-based regionalization methods against each other 191 

and a defined benchmark-to-beat to find the most suitable regionalization method for WaterGAP3. At the global 192 

scale, regionalization is particularly challenging due to (1) the lack of high-quality data, (2) the diversity of dom-193 

inant hydrological processes in basins and (3) the high computational demands of the models. Therefore, a region-194 

alization method that is robust, applicable to a wide variety of basins, and not computationally demanding should 195 

be chosen.  196 

We test three common traditional approaches: spatial proximity, physical similarity, and regression-based meth-197 

ods, as well as two machine learning-based approaches. These machine learning-based approaches are alternatives 198 

to traditional physical similarity and regression-based methods. As the model calibration of WaterGAP3 is very 199 

rigid and has only one parameter, it is not feasible to implement and test regionalization methods that incorporate 200 

regionalization into the calibration process, such as transfer functions. In addition, we avoid high computational 201 

demands as all methods can be applied after the calibration, i.e., without running the model. 202 

To evaluate the regionalization methods, we implement an ensemble of split-sample tests. Specifically, we ran-203 

domly split the basins into 50% gauged and 50% pseudo-ungauged basins. This split has a relatively high percent-204 

age of pseudo-ungauged basins, accounting for many missing gauges worldwide. We fit the methods and apply 205 

them to the training and testing data sets. The split-sample test is repeated 100 times with randomly selected basins 206 

for training and testing to account for sampling effects.  207 
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As there is only one calibration parameter, γ, this parameter has a global optimum per basin. Consequently, the 208 

quality of training and testing is directly assessed by the deviation between the predicted and calibrated γ. Thus, 209 

the mean absolute error (MAE), an easy-to-interpret measure, is used to evaluate the prediction accuracy. The 210 

lower the MAE, the better the prediction; an MAE of zero expresses no error. In our case, an MAE of 2.1 corre-211 

sponds to the error when using the mean calibrated γ value as the predicted value. The regionalization method is 212 

robust if the prediction accuracy is similar in training and testing. A generally good performance, i.e., small MAE 213 

values, indicates that the regionalization method suits WaterGAP3. 214 

Regression-based methods  215 

For the traditional regression-based methods, we use the lm() function of the R package stats (R Core Team, 2020) 216 

to implement an MLR. After applying the regression model, we adjust the estimated parameter values to ensure 217 

that the estimated values range between 0.1 and 5. As the calibration of WaterGAP3 results in a parameter distri-218 

bution with heavy tails, we implement a so-called “tuning approach” to introduce this information into regionali-219 

zation. In detail, we apply a simple threshold-based approach to adjust the regionalized parameter values to the 220 

extremes, i.e., ����  <  �� � ���� = 0.1 and ����  >  �� � ���� = 5.0. A simple clustering, i.e., the k-means algo-221 

rithm with three centres, defines these thresholds.  222 

Furthermore, a machine learning-based method, namely random forest (RF), is tested for regionalization. Here, 223 

we implement the random forest algorithm with the randomForest() function from the R package randomForest 224 

(Liam & Wiener, 2002), which is based on Breimann (2001). The algorithm uses an ensemble of decision trees, 225 

making the decision human-like. It is relatively robust because it incorporates random effects into the training 226 

process. To implement this randomness, we define that the algorithm can choose between two randomly selected 227 

predictors at each node. We use an ensemble of 200 trees, the same combinations of predictors and the same tuning 228 

as for MLR. 229 

The benchmark-to-beat defined in Müller Schmied et al. (2021) also uses an MLR approach. This MLR approach 230 

relates the natural logarithm of γ to the following basin descriptors: mean temperature, mean available soil water 231 

capacity, fraction of open freshwater bodies, mean slope, mean fraction of permafrost coverage and an aquifer-232 

related groundwater recharge factor. Thus, the main differences between the benchmark-to-beat and our defined 233 

MLR-based approach are the natural logarithm, our proposed tuning procedure for the method itself, and using the 234 

aquifer-related groundwater recharge factor as a basin descriptor. 235 

Physical Similarity 236 

For a traditional physical similarity approach, we use Similarity Indices (in the following named with SI). We use 237 

the methodology proposed by Beck et al. (2016). The SI (see Eq. (2)) are derived using the basin descriptors 238 

mentioned above, and the parameter of the most similar basin is transferred to the pseudo-ungauged basin. Addi-239 

tionally, we use an ensemble of basins to control whether an ensemble-based approach leads to more robust results. 240 

The optimal number of donor basins may vary between research regions and hydrological models (Guo et al., 241 

2020). Here, we use ten donor catchments (noted with “10”), which is based on Beck et al. (2016) and McIntyre 242 

et al. (2006). Further, we apply a simple mean method for the ensemble-based prediction to aggregate the ensemble 243 

values into one predicted parameter value.   244 
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�!," = ∑ $%&,'(%&,)$
*+,&

-./�           (2) 245 

where �!,"  is the Similarity Index between basin 0 and basin 1, 2.," is the basin descriptor 3 for basin 1, 45�. is the 246 

interquartile range for basin descriptor 3 among all (gauged) basins, and 6 is the number of all basin descriptors 247 

used. 248 

As a machine learning-based approach, we apply a simple k-means algorithm. We selected the k-means algorithm 249 

because it is one of the most widely used clustering algorithms (Tongal & Sivakumar, 2017). It is easy to under-250 

stand and use. The algorithm kmeans() is implemented in the R base package stats. It aims to maximize variation 251 

between groups and minimize variation within groups. We use three clusters to generate the groups of basins. As 252 

different scales of the predictor values can affect the clustering, a rescaling with min-max-normalization (see Eq. 253 

(3)) is performed on the training set and applied to the testing set. After the grouping, the mean γ value is assigned 254 

as a representative calibrated value to the corresponding basin group. To estimate the corresponding group for a 255 

pseudo-ungauged basin, the knn algorithm is used and the representative γ value of the group is assigned to the 256 

pseudo-ungauged basin. This algorithm is implemented by the knn() function of the R package class (Venables & 257 

Ripley, 2002). Since this method is less flexible than SI, we implement a highly flexible version of k-means with 258 

162 groups, where each ungauged basin is sorted into a very small basin group. Using this highly flexible version 259 

of k-means, we test whether the potential differences between SI and k-means are based on the degree of flexibility. 260 

2′.," =  %&,)(�!-)→�9%&,):
���)→�9%&,):(�!-)→�9%&,):          (3) 261 

where 2.,";  is the normalised basin descriptor 3 for basin 1, 2.,"  is the basin descriptor 3 for the basin 1, < is the 262 

number of (gauged) basins. 263 

  264 

Figure 2: Experimental setup of the study: regionalization methods, used modifications and information and the general 265 
workflow (MLR: Multiple Linear Regression, SI: Similarity Indices, SP: Spatial Proximity, RF: RandomForest). 266 
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Spatial Proximity 267 

The spatial proximity approach is one of the easiest to regionalize parameter values. However, it is also often 268 

criticized that nearby basins do not necessarily have the same hydrological behaviour (Wagener et al., 2004). 269 

Furthermore, its performance depends on the density of the network of gauged basins (Lebecherel et al., 2016). 270 

The dependency on network density is particularly challenging for global applications where large parts of the 271 

world are ungauged (e.g., northern Africa). Nevertheless, the approach has been successfully applied in other 272 

studies (e.g., Oudin et al., 2008; Qi et al., 2020), even globally (Widén-Nilsson et al., 2007). Here, we take the 273 

distance between the centroids of the basins as a reference for the spatial distance between basins, as done by 274 

others (Oudin et al., 2008). We use the abbreviation SP in the text below to refer to the spatial proximity approach. 275 

Figure 2 provides an overview of the applied regionalization methods and information used for the experimental 276 

setup.  277 

3. Results and Discussion 278 

3.1 Evaluating Traditional Methods 279 

Here, we examine the traditional methods (MLR, SI, SP) by comparing the ensemble of MAEs from training and 280 

testing to each other and the benchmark-to-beat (see Fig. 3). As for all traditional methods, there is no significant 281 

performance loss between training and testing, we will further focus on the performance in testing for evaluating 282 

the methods. When assessing the MLR and the SI approach, it becomes apparent that using only the climatic 283 

descriptors is insufficient for regionalization as it provides worse estimates than the benchmark-to-beat. The ex-284 

clusive selection of physiographic descriptors (slope class, forest %, and permafrost %) performs better, and yields 285 

results comparable to our benchmark-to-beat for both methods. Using climatic and physiographic descriptors 286 

jointly increases the performance of SI by approximately 0.1 in median MAE. For MLR, the improvement is 287 

almost neglectable.  288 

 289 

Figure 3: Split-sampling results for the benchmark-to-beat taken from WaterGAP2 (WG2) and different versions of 290 
the traditional regionalization methods: Multiple Linear Regression (MLR), Similarity Indices (SI) and Spatial Prox-291 
imity (SP). 292 
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Thus, using only climatic descriptors - in our case, the mean temperature and information about radiation - is 293 

insufficient for regionalization. Instead, physiographic descriptors appear more critical for regionalization than the 294 

selected climatic descriptors. However, the best results are obtained when combining climatic and physiographic 295 

descriptors. Others often apply the combination of climatic and physiographic descriptors, leading to optimal re-296 

gionalization results (e.g., Oudin et al., 2008; Reichl et al., 2009).  297 

The reduced importance of climatic descriptors is surprising, as the climatic descriptors tend to have a higher 298 

information gain and correlation to the model parameter (see Table 1). Moreover, climatic information is often 299 

used as a central part of other regionalization studies, e.g., to assess regionalization (e.g., Parajka et al., 2013; Guo 300 

et al., 2020). One possible reason for this discrepancy in other studies is that we used pure meteorological data as 301 

climatic descriptors for the regionalization method. In contrast, others used derived information such as Köppen-302 

Geiger climate zones or the Aridity Index (e.g., Beck et al., 2016; Yoshida et al., 2022). 303 

When expanding the analysis to all descriptors, the performance changes slightly (i.e., mean MAE +/- ~0.05). 304 

Thus, increasing the number of descriptors does not increase the performance of regionalization at some point (in 305 

line with Oudin et al., 2008 using a comparable Physical Similarity approach). This suggests that uncorrelated, 306 

non-redundant descriptors do not interfere with the regionalization using SI and MLR. Instead, a certain amount 307 

of information is beneficial to increase the regionalization method. After reaching this point, adding descriptors 308 

does not increase the performance, probably because all extractable information is already present in the given 309 

descriptors.  310 

Using an ensemble of ten donor basins for the SI approach results in slightly better MAE values in most cases than 311 

applying a single donor basin (see Appendix B). More remarkably, the variation in the MAE values decreases 312 

significantly for all ensemble approaches (i.e., the reduction in standard deviation in MAEs is about 50%). Thus, 313 

introducing an ensemble approach for SI does not significantly improve the prediction performance. Still, it in-314 

creases the likelihood that the prediction will perform well, i.e., be more robust. The positive effect of an ensemble 315 

approach for SI is already noted (Oudin et al., 2008). However, the literature-based number of donor basins might 316 

be adopted in future applications to be optimal for WaterGAP3, probably leading to higher performance.  317 

The introduction of tuning led to a significant increase in prediction performance for MLR, i.e., the median MAE 318 

for all MLR approaches improved by 0.04 (“cl”) and ~0.14 (others). For the ensemble-based SI approach, the 319 

tuning improves the median MAE by about 0.07 to 0.12. Thus, applying knowledge of the optimal parameter space 320 

enhances the quality of regionalization. This positive effect is not surprising, as incorporating a-priori information 321 

about parameter distribution strengthens parameter estimation (e.g., described in Tang et al., 2016 using the Bayes 322 

Theorem). 323 

The SP approach is the simplest applied, evaluating distances to the centroids without requiring regression or 324 

clustering. Thus, there is no training performance, only a testing performance. Applying the approach leads to a 325 

median MAE of 1.356, which is better than the benchmark-to-beat (median MAE in the testing of 1.544) and has 326 

the same quality as the best MLR and SI approaches without tuning (median MAE of 1.394 and 1.367, respec-327 

tively). The good performance of SP is in accordance with other studies (e.g., Oudin et al., 2008; Qi et al., 2020). 328 

It indicates that this simple approach is suitable for WaterGAP3. 329 

Nevertheless, the well-performing SP on a global scale is surprising as the distances between basins are potentially 330 

large and hydrological processes may strongly vary. It is probably beneficial for the SP approach that γ comprises 331 

https://doi.org/10.5194/gmd-2024-47
Preprint. Discussion started: 18 March 2024
c© Author(s) 2024. CC BY 4.0 License.



11 

 

all kinds of errors, e.g., spatially localised errors in global forcing products (e.g., Beck et al., 2017 reported errors 332 

for arid regions in the precipitation product) or inaccurately represented processes for larger regions. Thus, the 333 

estimation of γ might be appropriate, but not because of the same hydrological behaviour but due to the same kind 334 

of errors. 335 

3.2 Evaluating Machine Learning-based Approaches 336 

In this section, we assess whether machine learning-based approaches outperform the benchmark-to-beat and are 337 

suitable as a new regionalization method for WaterGAP3. We compare the ensemble of MAE for training and 338 

testing for RF and k-means with the benchmark-to-beat (see Fig. 4).  339 

 340 

Figure 4: Split-sampling results for the benchmark-to-beat taken from WaterGAP2 (WG2) and different versions of 341 
machine learning-based approaches: k-means (in combination with knn) and RandomForest (RF). 342 

The RF approach is highly accurate within the training, i.e., fitting to calibrated γ values works well for gauged 343 

basins. However, it suffers a significant loss in performance when predicting the γ values for the pseudo-ungauged 344 

basins. Although RF still has low MAE values in testing, the loss in performance from training to testing is signif-345 

icantly higher compared to other methods. This performance loss indicates that RF is not a robust regionalization 346 

method for WaterGAP3. Other studies which reported good performance of RF in terms of regionalization have 347 

not investigated the stability of the performance from training to testing (Golian et al., 2021; Wu et al., 2023). 348 

Likely, the mathematical problem of predicting the calibrated parameter for WaterGAP3, with all its challenges 349 

(e.g., tailored and heavy-tailed parameter space, incorporation of many sources of errors), cannot be adequately 350 

solved by RF. Thus, although RF is known to be especially robust among other machine learning-based techniques, 351 

it shows symptoms of over-parameterization, meaning that the algorithm is too flexible and adjusts to noise in the 352 

data, missing the underlying systematic. This lack of robustness is particularly disadvantageous since, for Wa-353 

terGAP3, regionalization is applied globally, requiring regionalizing large parts of the world. 354 

The k-means approach does not show such a performance loss between training and testing in almost all variants. 355 

The only variant with comparable performance loss is the “highly flexible” k-means approach. Interestingly, the 356 

“highly flexible” k-means approach was developed to emulate the same flexibility as in SI, which does not show 357 

such performance loss between training and testing. This difference in robustness indicates that the applied k-358 

means algorithm does not extract the information from the descriptors as efficiently as the SI approach. The lack 359 
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of efficient data use for some clustering methods in the context of regionalization has already been reported by 360 

Pagliero et al. (2019). This could also contribute to the presented the k-means falling behind the benchmark-to-361 

beat. Therefore, we conclude that the developed clustering is inappropriate for regionalizing WaterGAP3. 362 

3.3 Implications of Regionalization 363 

Finally, we highlight the possible implications of choosing regionalization methods for GHMs, where large parts 364 

of the world need to be regionalized. For this purpose, a local analysis of internal states and fluxes and a continental 365 

and global assessment of the water balance are undertaken. Therefore, we run WaterGAP3 from 1980 to 2016 with 366 

different γ distributions. We choose two equally valid solutions for the regionalization of WaterGAP3 to produce 367 

equally valid global γ distributions: (1) the SP approach because of its simplicity and because it outperforms our 368 

benchmark-to-beat, and (2) the tuned MLR “p+cl” because it outperforms our benchmark-to-beat and its applica-369 

tion is very similar to the original regionalization approach of WaterGAP3. The tuned Similarity Indices “p+cl” 370 

with an ensemble of 10 donor basins is also a valid solution for regionalizing γ. However, its application is more 371 

complex than MLR and SP and differs considerably from the original WaterGAP3 regionalization. Therefore, it 372 

has not been implemented and tested. In addition, we run the model with our benchmark-to-beat as it is our refer-373 

ence for assessing changes. We use the best-performing benchmark-to-beat and MLR models out of the 100 trained 374 

models for the analysis. 375 

 376 

Figure 5: Global γ distribution for different regionalization methods, highlighting areas of differences (a) γ distribution 377 
using the MLR approach with parameter space tuning, using physiographic and climatic basin descriptors as independ-378 
ent variables, i.e., tuned MLR “p+cl”, (b) benchmark-to-beat, WG2, (c) Spatial Proximity approach, i.e., SP and (d) 379 
global distribution of regionalized and calibrated parameter values. 380 
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First, we compare the resulting global distribution of γ values for all three approaches (see Fig. 5). In particular, 381 

ungauged regions such as Indonesia, India and New Zealand exhibit significant differences in the predicted γ value. 382 

For these regions, the regionalized value varies depending on the methods used for regionalization. In contrast, 383 

ungauged areas such as North Africa do not differ much in regionalized values. Regionalization, therefore, appears 384 

to lead to a spatially varying uncertainty in ungauged regions. The differences in the regionalization methods also 385 

become apparent when comparing the resulting distribution of γ (see Fig. 5d). The approach MLR tuned “p+cl” 386 

tends to predict values at the upper bound more often than the other methods, which is probably due to the tuning 387 

within the method. The benchmark-to-beat approach from WaterGAP2 leads to a less heavy-tailed prediction than 388 

others. The SP-based approach shows the highest similarity to the distribution of the calibrated γ values.  389 

   

Figure 6: Differences in monthly internal states and fluxes of WaterGAP3 for one grid cell with varying regionalized 390 
value (SP: 0.325, MLR tuned “p+cl”: 5 and benchmark-to-beat (WG2): 4.467243), located in India 391 
(21.519794°|70.566733°) for a) actual evapotranspiration, b) soil storage and c) groundwater storage for 1989 as an 392 
exemplary year. Note that MLR tuned “p+cl” and WG2 are so close that they appear to be one line. 393 

To highlight the impact of local differences in the parameter value, we examine an exemplary location in India 394 

where the regionalized values are 0.325, 5 and 4.467243 for SP, MLR tuned “p+cl” and the benchmark-to-beat, 395 

respectively. We show the resulting actual evapotranspiration (AET), the filling of the soil storage and the ground-396 

water storage for one exemplary year (see Fig. 6). The internal states and fluxes from the MLR tuned “p+cl” and 397 

the benchmark-to-beat are not significantly different for all states, as the two lines are very close and appear to be 398 

one single line. However, there are considerable differences between the two MLR-based approaches and SP, 399 

particularly in the amplitude of the AET and the soil storage. Acceleration effects cause the lower amplitudes for 400 

these two components. Reducing values of γ leads to a faster outflow of the soil storage, resulting in lower AET 401 

and soil moisture; additionally, smaller values of γ lead to higher groundwater storage due to accelerated percola-402 

tion. 403 

   

Figure 7: Simulated monthly runoff using three different regionalization methods for a) the Tiber, b) the Ebro and c) 404 
Rio Negro (in Argentina) for 2010 as an exemplary year. 405 

Further on, we highlight the local effects of regionalization on discharge for the Tiber, the Ebro and Rio Negro for 406 

one exemplary year in Figure 7. Whereas the simulated discharge is higher for SP compared to the other methods 407 

(b) (c) (a) 

(a) (b) (c) 
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in the Tiber and Rio Negro, the discharge is lower for the Ebro. Thus, one regionalization method does not always 408 

increase or decrease the discharge but results in locally varying effects on the water balance. Moreover, the similar 409 

results for MLR tuned “p+cl” and the benchmark-to-beat on the grid cell level (see Figure 6) propagate to a similar 410 

discharge pattern at the basin scale. Further, differences between SP and the other regionalization methods at the 411 

grid scale can lead to high differences at the basin scale, i.e., the simulated discharge of the Tiber is almost doubled 412 

for SP in May. 413 

Finally, we evaluate how the observed variation due to different regionalization approaches propagates globally. 414 

Therefore, we assess the quantitative influence of regionalization by comparing a key component of the water 415 

balance, i.e., outflow to the ocean and inland sinks. Table 2 shows the resulting differences in the selected flow 416 

for all three model runs, aggregated to continental and global scales. The results highlight that the differences in 417 

mean annual outflow vary spatially and between the regionalization methods. The results of SP differ significantly 418 

from the two MLR-based approaches in some parts of the world. In Oceania, the SP approach exhibits a deviation 419 

of 7.7 % in the selected flow compared to the benchmark-to-beat. This difference may be attributed to the signifi-420 

cant disparity in γ between the two methods in New Zealand (see Fig. 5). 421 

 422 

Table 2: Mean outflow to the ocean and inland sinks in km³ yr-1 between 1980-2010 423 

Continent benchmark-to-beat MLR SP 

Africa 5005.10 0.972 0.968 

Asia 15977.39 1.005 1.114 

Oceania 1188.42 0.977 0.923 

Europe 3028.47 0.981 1.030 

South America 11612.39 0.997 1.039 

North America 7283.21 0.994 1.025 

Global 44094.97 43876.01 46456.35 

 424 

Similarly, SP exhibits a high deviation of 11.4 % in the mean outflow in Asia, which is likely due to the variation 425 

of γ in India (see Fig. 5). In contrast, the southern part of South America, which shows a relatively high deviation 426 

in γ, does not lead to a significant deviation in the mean outflow for the continent. This limited impact of varying 427 

parameter values in southern South America may be attributed to the lower water availability in this region, which 428 

only slightly affects the continental water balance. These results suggest that the impact of regionalization methods 429 

on the continental water balance depends on (1) the variation in predicted parameter values and (2) the region's 430 

sensitivity to the water balance. Examining the global estimates, the differences between the benchmark-to-beat 431 

and SP results in approximately 2400 km³ yr-1, which is in the range of inter-model differences (see Table 2 in 432 

Widen-Nilsson et al.,2007).  433 

Although the two newly developed methods performed similarly during the split-sample test, significant differ-434 

ences were observed when simulating the water balance. It was expected that the methods MLR tuned “p+cl” and 435 

SP methods would differ less due to their similar performance during the split-sample tests. However, it became 436 

apparent that the two MLR-based methods resulted in more closely simulation results than the SP-based approach. 437 

This indicates that the method selection, such as spatial proximity-based or regression-based, has a greater influ-438 

ence on the regionalization than the details of executing the method. Moreover, the split-sample test should be 439 
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extended to get deeper insights into the method's robustness. For example, the SP and SI robustness check could 440 

be extended by the so-called “HDes” approach, which Lebecherel et al. (2016) recommended. In this approach, 441 

the closest basin to the corresponding (pseudo-) ungauged basin would be ignored during the regionalization to 442 

measure the robustness of the regionalization method.  443 

4. Conclusion 444 

Valid simulation results from GHMs, such as WaterGAP3, are crucial for detecting hotspots or studying patterns 445 

in climate change impacts. However, the lack of worldwide monitoring data makes adapting GHMs' parameters 446 

for valid global simulations challenging. Therefore, regionalization is necessary to estimate parameters in un-447 

gauged basins. This study introduces novel regionalization methods for WaterGAP3 and aims to provide insights 448 

into selecting a suitable regionalization method and evaluating its impact on the simulation results. Traditional and 449 

machine learning-based methods are tested to assess the advantages of using new techniques on a global scale. 450 

The concept of benchmark-to-beat and an ensemble of split-sampling tests are employed for a comprehensive 451 

evaluation. 452 

Our results suggest that the basin descriptor selection may not be crucial for regionalization in WaterGAP3 as long 453 

as a subset of the selected descriptors contains relevant information. Additionally, introducing an ensemble ap-454 

proach for Similarity Indices does not necessarily improve the prediction performance but increases the likelihood 455 

of robust predictions. Interestingly, the simplest regionalization method (using the concept of spatial proximity) 456 

outperforms most of the developed regionalization methods and the benchmark-to-beat. In contrast, the more com-457 

plex, machine learning-based approaches deliver insufficient prediction performance. The inadequate performance 458 

may be attributed to an inefficient extraction of available information content from the descriptors and the blurring 459 

relationship between the calibration parameter and basin descriptors, which is caused by including multiple error 460 

sources in the calibration parameter values. This blurring relationship probably poses a high risk of over-parame-461 

terization, which hinders the use of more flexible machine learning-based approaches. 462 

Regionalization appears to result in spatially varying uncertainty for ungauged regions, with India and Indonesia 463 

being particularly affected by higher uncertainty. The local impacts of regionalization in ungauged areas propagate 464 

to the global scale, where the water balance component “outflow to the ocean and inland sinks” changed by about 465 

2400 km³ yr-1, which is in the scale of inter-model differences. As the selected regionalization method influences 466 

the regionalization more than details on the execution of the method, we recommend employing simulation runs 467 

that use multiple regionalization methods to account for the uncertainty induced by the chosen regionalization 468 

method. Considering the uncertainty induced by regionalization is especially important when analysing regions 469 

with a significant proportion of ungauged basins or high sensitivity to the examined target.  470 

Code and data availability. The data and the supporting R-Code to reproduce this study's findings are available at 471 

DOI 10.5281/zenodo.10803089.  472 
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Appendix A: Basin descriptors  476 

Overview of basins descriptors used in this study. All basin descriptors are derived from the original model input 477 

and aggregated with a simple mean method to basin values to produce the same spatial resolution as the calibrated 478 

model parameter.  479 

 Soil Storage: The size of the soil storage, i.e., the maximal water content in the soil reachable for plants 480 

in millimetres. The information is the product of rooting depth (defined in a look-up table) and the total 481 

available water content derived from Batjes (2013). 482 

 Open Water Bodies: The fraction of the area covered with open water bodies in the basin is given as a 483 

percentage. The model input is based on the GLWD database (Lehner & Döll, 2004).  484 

 Wetlands: The fraction of area covered with wetlands in a basin is given in percentage. The model input 485 

is based on the GLWD database (Lehner & Döll, 2004). 486 

 Size: Size of a basin in km2 487 

 Slope: The mean slope class is calculated as described in Döll & Fiedler (2008) and based on GTOPO30 488 

(USGS EROS data centre).  489 

 Altitude: The mean altitude of a basin is given in metres above sea level and based on GTOPO30 (USGS 490 

EROS data centre). 491 

 Forest: The mean fraction of the area covered with forest is given in percentage and derived from MODIS 492 

data (Friedl & Sulla-Menashe, 2019), where 2001 is used as a reference. All grid cells having a dominant 493 

International Geosphere-Biosphere Programme (IGBP) classification between one and five are defined 494 

as “forest”. 495 

 Sealed Area: The mean fraction of sealed area is given in percentage and derived from MODIS data 496 

(Friedl & Sulla-Menashe, 2019), where 2001 is used as a reference. All grid cells having an IGBP clas-497 

sification equal to 13 are defined as they would contain 60% of the sealed area. Note: The different treat-498 

ment of forest and sealed area is based on the required model input; whereas the land cover is a classified 499 

value, the sealed area is a floating-point value. 500 

 Permafrost & Glacier: The mean coverage of permafrost and glacier in a basin is given in percentage. It 501 

is based on the World Glacier Inventory and the Circum-Arctic Map of Permafrost and Ground-Ice Con-502 

ditions. 503 

 Mean Temperature: The mean air temperature is based on the meteorological forcing used to drive the 504 

model (Lange, 2019) covering the period 1979 to 2016 and given in degrees Celsius.  505 

 Yearly Precipitation: The yearly precipitation sum is based on the meteorological forcing used to drive 506 

the model (Lange, 2019) covering the period 1979 to 2016 and given in millimetres. 507 

 Yearly Shortwave Downward Radiation: The yearly shortwave downward radiation is based on the me-508 

teorological forcing used to drive the model (Lange, 2019) covering the period 1979 to 2016 and given 509 

in Wm-2. 510 

 511 

The correlation between the defined basin descriptors is shown in Fig. A1. The variation within each basin de-512 

scriptor for basins used for regionalization is shown in Fig. A2. 513 

 514 
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 515 

Figure A1: Correlation between basins descriptors. 516 

 517 

 518 

Figure A2: Distribution of basins descriptors within all basins used for regionalization (n=1,236)  519 
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Appendix B: Results of split-sample tests 520 

Table B1: Summarized results of the split-sample tests for all regionalization methods 521 

input method train (median) train (sd) test (median) test (sd) 

- WG2 1.527 0.042 1.544 0.046 

- SP - - 1.356 0.057 

cl 

MLR 

1.474 0.039 1.485 0.019 

p 1.871 0.034 1.881 0.015 

p+cl 1.457 0.038 1.473 0.018 

all 1.394 0.039 1.425 0.024 

cl 

MLR_t 

1.322 0.040 1.331 0.027 

p 1.830 0.041 1.843 0.030 

p+cl 1.307 0.042 1.337 0.030 

all 1.245 0.042 1.292 0.034 

cl 

RF 

0.688 0.026 1.401 0.029 

p 0.741 0.027 1.579 0.032 

p+cl 0.620 0.020 1.312 0.025 

all 0.624 0.021 1.346 0.023 

cl 

RF_t 

0.465 0.020 1.310 0.039 

p 0.494 0.023 1.540 0.042 

p+cl 0.378 0.017 1.183 0.037 

all 0.345 0.014 1.181 0.034 

cl 

SI_1 

1.477 0.080 1.492 0.056 

p 1.651 0.086 1.661 0.063 

p+cl 1.380 0.066 1.375 0.050 

all 1.367 0.069 1.390 0.064 

cl 

SI_10 

1.398 0.046 1.397 0.029 

p 1.558 0.047 1.556 0.027 

p+cl 1.326 0.044 1.321 0.025 

all 1.398 0.049 1.402 0.028 

cl 

SI_10_t 

1.281 0.053 1.281 0.043 

p 1.497 0.050 1.487 0.037 

p+cl 1.206 0.048 1.201 0.040 

all 1.286 0.053 1.296 0.039 

cl 

k-means 

1.689 0.038 1.699 0.018 

p 1.910 0.051 1.918 0.039 

p+cl 1.632 0.046 1.648 0.022 

all 1.642 0.044 1.638 0.025 

cl 

k-means_t 

1.474 0.111 1.519 0.088 

p 1.909 0.055 1.918 0.040 

p+cl 1.399 0.070 1.425 0.053 

all 1.426 0.068 1.417 0.051 

cl 

k-means 

flexible 

1.065 0.048 1.553 0.097 

p 1.191 0.046 1.991 0.142 

p+cl 0.982 0.040 1.568 0.125 

all 0.957 0.044 1.515 0.114 
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