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Abstract: 9 

Valid simulation results from global hydrological models (GHMs), such as WaterGAP3, are essential to detecting 10 

hotspots or studying patterns in climate change impacts. However, the lack of worldwide monitoring data makes 11 

it challenging to adapt GHMs' parameters to enable such valid simulations globally. Therefore, regionalization is 12 

necessary to estimate parameters in ungauged basins. This study presents the results of regionalization methods 13 

for the first time applied on the GHM WaterGAP3. It aims to provide insights into (1) selecting a suitable region-14 

alization method for a GHM and (2) evaluating its impact on runoff simulation. In this study, four new regionali-15 

zation methods have been identified as appropriate for WaterGAP3. These methods span the full spectrum of 16 

methodologies, i.e., regression-based methods, physical similarity, and spatial proximity, using traditional and 17 

machine learning-based approaches. Moreover, the methods differ in the descriptors used to achieve optimal re-18 

sults, although all utilize climatic and physiographic descriptors. This demonstrates (1) that different methods use 19 

descriptor sets with varying efficiency and (2) that combining climatic and physiographic descriptors is optimal 20 

for regionalizing worldwide basins. Additionally, our research indicates that regionalization leads to spatially and 21 

temporally varying uncertainty in ungauged regions. For example, regionalization highly affects southern South 22 

America, e.g., leading to high uncertainties in the flood simulation of the Río Deseado. The local impact of re-23 

gionalization propagates through the water system, also affecting global estimates, as evidenced by a spread of 24 

1,500 km³ yr-1 across an ensemble of five regionalization methods in simulated global runoff to the ocean. This 25 

discrepancy is even more pronounced when using a regionalization method deemed unsuitable for WaterGAP3, 26 

resulting in a spread of 4,208 km3 yr-1. This significant increase highlights the importance of carefully choosing 27 

regionalization methods. Further research is needed to enhance the predictor selection and the understanding of 28 

the methods' robustness on a global scale. 29 

1. Introduction 30 

Global hydrological models (GHMs) are developed and applied worldwide, e.g., to detect hotspots and examine 31 

patterns of climate change impacts on the terrestrial water cycle (e.g., Barbarossa et al., 2021; Boulange et al., 32 

2021). Valid model results are a prerequisite to draw robust conclusions. For valid modeling results, it is beneficial 33 

to adjust the parameter values to adapt the models to different basin processes (Gupta et al., 1998). This adaptation 34 

is usually modified and evaluated (in a loop) by comparing the simulated model output, often discharge, with the 35 

monitored data. However, this parameter adjustment for GHMs is challenging due to the lack of global monitoring 36 
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data. Consequently, parameter adjustment for GHMs can be based not only on monitored data (i.e., calibration) 37 

but also on estimating parameter values for ungauged basins (i.e., regionalization).  38 

Regionalization defines the estimation of model parameters for ungauged basins (Oudin et al., 2008), usually based 39 

on information from gauged basins (Oudin et al., 2010). Regionalization methods generally follow the same prin-40 

ciple: basin characteristics (e.g., physiographic and/or climatic) are linked to hydrological characteristics and can 41 

thus be used to estimate parameter values. Various regionalization methods exist, and no overall preferred method 42 

has been found (Ayzel et al., 2017; Pool et al., 2021). In contrast, the optimal regionalization method may differ, 43 

for example, regarding available information (Pagliero et al., 2019) or model structures (Golian et al., 2021). 44 

Therefore, different methods should be tested to find an optimal regionalization method for a specific use case 45 

(e.g., Qi et al., 2020).  46 

Evaluation is needed to assess different regionalization methods. The evaluation of regionalization methods is 47 

particularly challenging because they are usually applied when there is a lack of monitoring data. Therefore, re-48 

gionalization studies often treat gauged basins as "ungauged" and perform leave-one-out cross-validation (e.g., 49 

Chaney et al., 2016) or split-sample tests (e.g., Beck et al., 2016; Nijssen et al., 2000; Yoshida et al., 2022). While 50 

at the mesoscale, this evaluation is already an integral part (e.g., McIntyre et al., 2005; Parajka et al., 2005; Oudin 51 

et al., 2008; Yang et al., 2020), this is sometimes not the case in global or continental studies (e.g., Müller Schmied 52 

et al., 2021; Widén-Nilsson et al., 2007). Another reasonable evaluation strategy is the concept of benchmark-to-53 

beat (Schaefli & Gupta, 2007; Seibert, 2001). Applying a benchmark-to-beat supports a comprehensive evaluation 54 

of whether a new approach is functional, e.g., better than a straightforward and thus transparent method or better 55 

than a predecessor. To the authors' knowledge, such a benchmark-to-beat has never been used to evaluate innova-56 

tions in regionalization at a global scale. 57 

In general, regionalization methods can be divided into two categories based on the parameter estimation strategy: 58 

(1) regression-based and (2) distance-based (He et al., 2011). Regression-based methods derive the relationship 59 

between basin characteristics and model parameters through fitted regression models. These mathematically de-60 

fined relationships are further applied to estimate model parameters of ungauged basins (e.g., Kaspar, 2004; Müller 61 

Schmied et al., 2021). A significant drawback of regression-based regionalization is the difficulty of incorporating 62 

parameter interdependencies (Poissant et al., 2017), as regression-based approaches often assume that the depend-63 

ent variables, i.e., the model parameters, are not correlated (Wagener et al., 2004). Distance-based approaches 64 

transfer complete parameter sets from similar or nearby donor basins to ungauged basins (e.g., Beck et al., 2016; 65 

Nijssen et al., 2000; Widén-Nilsson et al., 2007). Using an ensemble of donor basins, e.g., by averaging the pa-66 

rameter values or model outputs, can improve the performance of such methods (e.g., Arsenault & Brissette, 2014). 67 

A significant disadvantage of such methods is the clustering problem of ungauged basins, i.e., the unequal distri-68 

bution of gauging stations worldwide (Krabbenhoft et al., 2022). Thus, basins exist where distance-based ap-69 

proaches will use incomparable basins to transfer parameter values due to the lack of close basins.  70 

Recent advances have implemented machine learning-based techniques in the context of regionalization. For ex-71 

ample, Chaney et al. (2016) used regression trees as an alternative to least squares regression to estimate parameter 72 

values in ungauged basins. Pagliero et al. (2019) explored supervised and unsupervised clustering methods to 73 

define the similarity of basins to transfer parameter sets. To the authors' knowledge, no study has compared several 74 

traditional regionalization methods with machine learning-based methods for a GHM on a global scale. 75 
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Some regionalization methods do not make a clear distinction between calibration and regionalization. For exam-76 

ple, Arheimer et al. (2020) applied a basin grouping beforehand. Then, they jointly calibrated the group members 77 

to define representative parameter sets. Subsequently, the representative parameter sets are transferred to other 78 

basins based on grouping rules. Another approach defines so-called transfer functions (Samaniego et al., 2010) 79 

and calibrates meta-parameters instead of the model parameter values (Beck et al., 2020; Feigl et al., 2022). These 80 

methods, where regionalization is part of the calibration process, often require a change in the calibration process 81 

itself, which is challenging for GHMs (Schweppe et al., 2022), for example, due to a lack of code flexibility (e.g., 82 

Cuntz et al., 2016). 83 

This study proposes an improved regionalization method for the state-of-the-art GHM WaterGAP3 (Eisner, 2016). 84 

It compares traditional regionalization methods with machine learning-based methods and uses a benchmark-to-85 

beat and an ensemble of split-sample tests to evaluate the applied methods. Further, global runoff simulations are 86 

compared to analyze the impact of regionalization methods. The overall research topic is evaluating and selecting 87 

regionalization methods for a GHM. Specifically, the study has two objectives. It aims  88 

(1) to propose an improved regionalization method for WaterGAP3 and 89 

(2) to evaluate the impact of regionalization methods on global runoff simulations.  90 

2. Data and Methods 91 

2.1 The Model: WaterGAP3 92 

The GHM WaterGAP3 simulates the terrestrial water cycle, including the main water storage components and a 93 

simple storage-based routing algorithm. It is a fully distributed model that operates on a five arcmin grid and 94 

simulates at a daily time step. A more detailed description of the model can be found in Eisner (2016). 95 

In WaterGAP3, most model parameter values are set a priori, e.g., using look-up tables for albedo or rooting depth. 96 

Only one parameter, γ, is calibrated, which is part of the soil moisture storage in which runoff generation processes 97 

are present. The model equation for γ, which originates from the HBV-96 model (Lindström et al., 1997), is given 98 

in Eq. (1) (cf. ll. 1223-4 in daily.cpp of the published model (Flörke et al., 2024)). Generally, higher values of γ 99 

lead to lower runoff volumes, while lower values of γ lead to higher runoff volumes. The model parameter is 100 

calibrated per basin within the range of 0.1 and 5. The objective function of the calibration is to minimize the 101 

deviation between the mean annual simulated and observed river discharge, i.e., the calibration aims to reduce the 102 

error in discharge volume. Given the monotonic relationship between the model's parameter and the optimization 103 

function, a simple search algorithm is applied: The parameter space is divided into rectangles, which are subse-104 

quently subdivided into smaller rectangles depending on the direction γ should be modified to achieve closer 105 

alignment with the optimization target. The calibration results in one calibrated γ value between 0.1 and 5 per 106 

basin. After the calibration, a correction is applied to account for high errors in the mass balance, e.g., due to 107 

inaccuracies in global meteorological forcing products. This correction is only applicable on gauged basins. It is, 108 

therefore, neglected in this study. 109 

� =  �� ∙ � �	
�	,�� �

�
          (1) 110 

where � is the daily runoff, �� is the daily throughfall, �� is the actual soil storage, ��,��� is the maximal soil 111 

storage (given as a global map in Appendix A), and � is the calibration parameter. 112 



4 

 

Traditionally, the regionalization process in WaterGAP3 is a simple multiple linear regression (MLR) approach to 113 

estimate the calibration parameter γ for ungauged basins (e.g., Döll et al., 2003; Kaspar, 2004). The drawback of 114 

MLR regarding parameter interaction can be neglected: As there is only one parameter to estimate, parameter 115 

interference does not exist. Instead, the approach offers the advantage of a lightweight, transparent application that 116 

can be quickly revised and adapted. 117 

2.2 Model Data 118 

WaterGAP3 requires various input data, such as soil information, topography, or information on open freshwater 119 

bodies. This study uses the same input data as Kupzig et al. (2023). For meteorological forcing, we use the global 120 

data set EWEMBI (Lange, 2019). This data product includes daily global forcing data with a spatial resolution of 121 

0.5 degrees (latitude and longitude) that covers a period from 1979 to 2016. Specifically, WaterGAP3 uses the 122 

following forcing information from the EWEMBI data set as input: 123 

 daily mean temperature, 124 

 daily precipitation, 125 

 daily shortwave downward radiation, and 126 

 daily longwave downward radiation. 127 

The WaterGAP3 calibration requires observed monthly river discharge data. This discharge data is subsequently 128 

transformed into annual discharge sums and used as a benchmark in the calibration procedure. In this study, we 129 

used discharge data from 1,861 stations that were manually verified (Eisner, 2016). To get the best data available, 130 

we have updated all available station data with recent data from The Global Runoff Data Center (GRDC, 2020). 131 

All stations have at least five years of complete (monthly) station data between 1979 and 2016. For each station, 132 

a contribution area, i.e., a basin, is defined with the gridded flow-direction information obtained from WaterGAP3, 133 

based on the HydroSHEDS database (Lehner et al., 2008). 134 

The 1,861 basins are calibrated using the above-described standard calibration approach for WaterGAP3. Follow-135 

ing the standard calibration procedure, some basins still have an insufficient model performance. In this context, 136 

we define a monthly Kling-Gupta-Efficiency (KGE) (Gupta et al., 2009) below 0.4 or more than 20 % bias in 137 

monthly flow as insufficient model performance. The expression for the KGE is given in Eq. (2). We underscore 138 

the importance of minimizing the error in discharge volume by defining it as an additional criterion corresponding 139 

to the optimization target during calibration. Basins not fulfilling the defined conditions regarding bias and KGE 140 

are neglected in further analysis to avoid high parameter uncertainty due to errors in input data, model structure, 141 

or discharge data affecting the analysis. Further, we have excluded all basins with less than 5000 km2 (inter-) basin 142 

size from the next upstream basin. We assume that this inter-basin size is large enough to assume a certain degree 143 

of interdependency between nested basins. In total, 933 out of 1,861 basins are selected for regionalization (626 144 

are neglected due to insufficient model performance, and 302 are neglected due to inadequate basin size).  145 

��� =  1 − ��1 − ��� + !1 − "#
"$� + !1 − %#

%$�
       (2) 146 

where � is the Pearson correlation coefficient between observed discharge x and simulated discharge y, & denotes 147 

the corresponding standard deviation, and ' the corresponding mean of observed and simulated discharge. 148 
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Figure 1a depicts the worldwide calibrated basins, highlighting gauged and ungauged regions. Whereas most parts 149 

of North and South America are gauged, Africa and Australia remain largely ungauged. A cluster of gauged basins 150 

is in Central Europe and in Eastern Asia. Gauged regions with insufficient model performance are mainly in the 151 

Mississippi River basin, Southern Africa, Australia, and large parts of Brazil. These regions are known to be chal-152 

lenging for GHMs (e.g., cf. Fig. 8b in Stacke & Hagemann, 2021). 153 

Figure 1b shows the calibrated values for γ. It emerges that the calibrated values tend to be at the upper and lower 154 

bounds of the parameter space. This behavior is already known (cf. Fig. 4b in Müller Schmied et al., 2021). A 155 

brief sensitivity analysis and discussion of the calibration parameter are included in Appendix B. The results of 156 

this analysis indicate that the clustering of the calibrated parameter value is not related to an inappropriate selection 157 

of the parameter bounds but instead to the absence or an insufficient representation of processes. Thus, the clus-158 

tering of the calibrated values does not indicate an inadequate selection of the parameter bounds but highlights the 159 

necessity to improve the model structure and the calibration strategy for WaterGAP3. However, this study focuses 160 

solely on analyzing and implementing regionalization methods. It does not aim to enhance the model structure or 161 

to change the calibration procedure of WaterGAP3. Future studies are needed to achieve the latter, as WaterGAP3 162 

contains many hard-coded parameters or parameters defined by look-up tables that need to be analyzed to identify 163 

and adjust sensitive parameters more accurately during calibration. Initial steps in this direction have already been 164 

taken for WaterGAP2 in the form of a multivariate and multi-objective case study in the Mississippi River basin 165 

(Döll et al., 2024). 166 

Figure 1: a) Map of calibrated basins, highlighting basins not used for regionalization due to insufficient model perfor-167 
mance or inadequate basin size and b) the histogram of the calibrated γ values for all used basins showing a cluster of 168 
parameter values at the parameter bounds. 169 

2.3 Basin Descriptors 170 

This study uses basin descriptors as predictors to drive regression-based or distance-based regionalization ap-171 

proaches. These basin descriptors are based on data used within the model simulation (as they are globally avail-172 

able). They are aggregated to basin values using a simple mean method to have the same spatial resolution as the 173 

calibrated model parameter. Thus, in the case of nested basins, the inter-basin area is used to define the basin 174 

descriptors. The selection of the predictors, i.e., basin descriptors that support the estimation of γ, is crucial for 175 

regionalization methods (Arsenault & Brissette, 2014). Typically, this selection aims to obtain the most infor-176 

mation with the least number of predictors to (1) improve the model quality and (2) limit over-parametrization. In 177 

this study, we use 12 basin descriptors to develop regionalization methods; nine of these descriptors are physio-178 

graphic, while the remaining three are climatic (see Table 1). Most descriptors are not correlated (see Appendix 179 

C), i.e., we minimize redundant information (Wagener et al., 2004). 180 

(b) (a) 
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A descriptor subset is selected based on correlation analysis between basin descriptors and calibrated γ value and 181 

entropy assessment. Pearson's correlation coefficient detects linear correlation, and Spearman's Rho and Kendall's 182 

Tau detect a non-linear correlation. Shannon entropy (Shannon, 1948) measures the information gain of the pre-183 

dictors explaining the calibrated γ value. The higher the information gain, the more valuable the basin descriptor 184 

is for explaining the variation in the calibrated γ value. The analysis directly evaluates the relationship between 185 

the calibrated parameter and the basin descriptors, as WaterGAP3 uses only one calibration parameter with a clear 186 

global optimum within the parameter space. An alternative would be to use flow characteristics to define the basis 187 

for regionalization (e.g., Pagliero et al., 2019). We decided to use the calibrated parameter instead of flow charac-188 

teristics as it does not need any further assumption on which flow characteristics determine the model's parameter.  189 

Statistical information of the evaluated basin descriptors and the corresponding correlation coefficients and infor-190 

mation gain are listed in Table 1. The basin descriptors demonstrate a considerable degree of variability, e.g., the 191 

basin size ranges from 5000 km2 to 3,112,480 km2 with a median of 13,796 km2. The mean temperature varies 192 

from -19 °C to 29 °C, and the sum of precipitation ranges from 213 mm to 5,716 mm. Although there is a high 193 

degree of variability in the analyzed basin descriptors, the basin descriptors exhibit low correlation coefficients 194 

with the calibrated values. For example, the permafrost coverage shows the strongest Pearson correlation of -0.37 195 

(and -0.50 for Spearman's Rho). The information gain indicates the same results as the correlation analysis, i.e., 196 

the information gain is generally relatively low, and descriptors with a higher correlation tend to have a higher 197 

information gain. For example, the mean temperature exhibits the maximal information gain of 17.6 % and has 198 

the second-highest correlation coefficient with a Pearson correlation of 0.34.  199 

Table 1: Basin descriptors: statistical information, correlation, and entropy assessment. Selected physiographic and 200 
climatic basin descriptors are written in bold. 201 

 Basin 

Descriptor 

Attribute Information Entropy & Correlation 

Min Max Mean Median IG (%)1 Pearson Spearman Kendall 

p
h

y
si

o
g

ra
p

h
ic

 

Soil Storage (mm) 12.405 610.469 220.805 195.778 13.07 -0.21 -0.15 -0.11 

Open Water Bodies (%) 0.000 63.960 5.521 1.812 5.65 -0.01 -0.08 -0.05 

Wetlands (%) 0.000 63.466 4.164 0.547 5.01 -0.02 -0.13 -0.09 

Size (km2) 5000 3,112,480 37,572 13,796 1.42 -0.04 -0.04 -0.03 

Slope Class (-) 10.057 67.756 38.668 38.364 16.60 -0.31 -0.37 -0.27 

Altitude (m.a.s.l.) 30.239 4765.166 591.024 394.870 9.30 -0.18 -0.28 -0.20 

Sealed Area (%) 0.000 12.3 0.6 0.1 4.49 0.22 0.38 0.29 

Forest (%) 0.000 100.000 35.340 24.002 13.82 -0.25 -0.18 -0.14 

Permafrost & Glacier (%) 0.000 95.000 16.662 0.000 13.12 -0.37 -0.50 -0.40 

cl
im

at
e
 

Mean Temperature(°C) -18.848 28.823 7.720 7.707 17.56 0.34 0.41 0.30 

Yearly Precipitation (mm) 213.6 5,716.3 996.5 779.5 9.23 0.02 0.21 0.14 

Yearly Shortwave Down-

ward Radiation (Wm-2) 
1,050.6 3,043.2 1,857.9 1,759.7 15.79 0.31 0.33 0.24 

1Information gain is given in percentage of total information content in γ after Shannon (1948) 

In contrast to the findings of Wagener and Wheater (2006), the correlation coefficients between the basin de-202 

scriptors and the calibrated values are relatively low, indicating a weak relationship. One potential explanation for 203 

this discrepancy is that Wagener and Wheater (2006) used a smaller number of basins in southeast England, with 204 

limited versatility (e.g., regarding climate and seasonality) compared to the 933 worldwide basins used in this 205 

study. Studies using a large number of basins likely tend to find a lower correlation between catchment attributes 206 

and model parameters (Merz et al., 2004). Moreover, the clustered calibrated γ values at the bounds of the valid 207 

parameter space may disturb the results of this analysis. As the calibrated value masks the effect of multiple sources 208 
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of errors, such as uncertainty in the input data, model structure, or varying hydrological processes, finding a mean-209 

ingful relationship between catchment characteristics and calibrated values is challenging.  210 

Because the basis for the descriptor selection seems uncertain, given the low correlation and the named constraints, 211 

we additionally run the regionalization methods with all descriptors to evaluate the descriptor selection. Further 212 

on, to ascertain the advantage of integrating climatic descriptors, we run the regionalization methods using either 213 

physiographic or climatic descriptors. In total, we used four groups of basin descriptors to implement the region-214 

alization methods:  215 

 "cl": all three climatic descriptors, 216 

 "p": all nine physiographic descriptors, 217 

 "p+cl": all 12 descriptors, and 218 

 "subset": two correlated climatic descriptors (mean temperature, annual shortwave radiation) & three 219 

correlated physiographic descriptors (slope class, forest %, permafrost %). 220 

2.4 Regionalization Methods 221 

In our study, we test several traditional and machine learning-based regionalization methods against each other 222 

and a defined benchmark-to-beat to find suitable regionalization methods for WaterGAP3. At the global scale, 223 

regionalization is particularly challenging due to (1) the lack of high-quality data, (2) the diversity of dominant 224 

hydrological processes in basins, and (3) the high computational demands of the models. Therefore, a robust re-225 

gionalization method that applies to a wide variety of basins and is not computationally demanding should be 226 

selected for a global application.  227 

We test three common traditional approaches and two machine learning-based approaches using the concepts of 228 

spatial proximity, physical similarity, and regression-based methods. As WaterGAP3's model calibration is very 229 

rigid and has only one parameter, it is not feasible to implement and test regionalization methods that incorporate 230 

regionalization into the calibration process, such as transfer functions. In addition, we avoid high computational 231 

demands as all evaluated methods are applicable after the calibration, i.e., without running the model. 232 

As the calibration of WaterGAP3 results in a parameter distribution with a cluster of parameter values at the 233 

parameter bounds, we implement a so-called "tuning" to introduce information about the parameter space into 234 

regionalization. In detail, we apply a simple threshold-based approach to shift the regionalized parameter values 235 

to the extremes, i.e., �(��  <  �* � �+(, = 0.1 and �(��  >  �� � �+(, = 5.0. The thresholds �* and �� are defined 236 

by applying the k-means algorithm with three centers to the calibrated parameter values. This clustering results in 237 

three clusters: one for low, one for medium, and one for high γ values. Subsequently, �* refers to the highest γ 238 

value of the low cluster and �� refers to the lowest γ value of a high cluster. 239 

To evaluate the regionalization methods, we implement an ensemble of split-sample tests. Specifically, we ran-240 

domly split the basins into 50 % gauged (for training) and 50 % pseudo-ungauged (for testing). The split has a 241 

relatively high percentage of pseudo-ungauged basins, accounting for many missing gauges worldwide and the 242 

high importance of generalizability. We fit the methods and apply them to the training and testing data sets. The 243 

split-sample test is repeated 100 times by randomly splitting the basins to account for sampling effects.  244 

As there is only one calibration parameter, γ, this parameter has a global optimum per basin. Consequently, the 245 

quality of training and testing is directly assessed by the deviation between the regionalized and the calibrated 246 
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value for γ. The closer the regionalized values are to the calibrated ones, the more accurate the prediction. We 247 

assess the prediction accuracy by the logarithmic version of the mean absolute error (logMAE) shown in Eq. (3) 248 

to account for the decreasing sensitivity of γ for higher values (see Appendix B). The lower the logMAE, the better 249 

the prediction; a zero value in logMAE expresses no error. The regionalization method is robust if the prediction 250 

accuracy is similar in training and testing. A generally good performance, i.e., small logMAE values, indicates 251 

that the regionalization method suits WaterGAP3. The comparison of γ values enables applying a wide range of 252 

regionalization methods and sets of descriptors, as no computationally intensive model simulation is required. 253 

However, it assumes that deviations in γ lead, in turn, to deviations in discharge, which is only partially true 254 

because of varying parameter sensitivity in basins (e.g., Kupzig et al., 2023). To validate that the logMAE is a 255 

sufficient approximator for the regionalization performance in WaterGAP3, we use one representative split-sample 256 

from the ensemble to compare the accuracies in simulated discharge for different regionalization methods. 257 

12345� =  *
6 ∑8ln ���,; + 1� − ln��<,; + 1�8       (3) 258 

where = is the number of basins in the corresponding sample, ��,; is the calibrated value of γ for the ith basin, and 259 

�<,;  is the estimated value of γ for the ith basin. We applied a Box-Cox-type transformation with λ1=0 and λ2=1 260 

(Box and Cox, 1964) to calculate the logMAE, avoiding negatively transformed values. 261 

Regression-based methods  262 

The traditionally used regionalization approach of WaterGAP3 is a regression-based MLR. As the benchmark-to-263 

beat, we use the regionalization approach from WaterGAP2.2d defined in Müller Schmied et al. (2021). We con-264 

sider it a suitable benchmark-to-beat given that WaterGAP2 has a model structure and calibration process that is 265 

very similar to WaterGAP3. The main difference between these models is that WaterGAP2 simulates at 0.5°spatial 266 

resolution. The benchmark-to-beat consists of "a multiple linear regression approach that relates the natural loga-267 

rithm of γ to basin descriptors (mean annual temperature, mean available soil water capacity, fraction of local and 268 

global lakes and wetlands, mean basin land surface slope, fraction of permanent snow and ice, aquifer-related 269 

groundwater recharge factor)". (Müller Schmied et al., 2021) We fit this regression model to our data and define 270 

the quality of this approach as the benchmark-to-beat. Moreover, we test an independent MLR approach without 271 

using the logarithmical scaling of γ and using the above-defined sets of basin descriptors. For MLR and the bench-272 

mark-to-beat, we use the lm() function of the R package stats (R Core Team, 2020). After applying the regression 273 

model, we adjust the estimated parameter values to ensure that the estimated values range between 0.1 and 5.  274 

Furthermore, a machine learning-based method, random forest (RF), is tested for regionalization as an alternative 275 

to MLR. Here, we implement the random forest algorithm with the randomForest() function from the R package 276 

randomForest (Liam & Wiener, 2002), which is based on Breimann (2001). The algorithm uses an ensemble of 277 

decision trees, making the decision human-like. It is relatively robust because it incorporates random effects into 278 

the training process. To implement this randomness, we define the algorithm as one that can choose between two 279 

randomly selected predictors at each node, using an ensemble of 200 trees. 280 

Physical Similarity 281 

As the traditional physical similarity approach, we use Similarity Indices (in the following named with SI), apply-282 

ing the methodology proposed by Beck et al. (2016). The SI (see Eq. (4)) are derived using the defined basin 283 
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descriptors sets, and the parameter of the most similar basin is transferred to the pseudo-ungauged basin. Addi-284 

tionally, we use an ensemble of basins to control whether an ensemble-based approach leads to more robust results. 285 

The optimal number of donor basins may vary between research regions and hydrological models (Guo et al., 286 

2020). Here, we use ten donor catchments (noted with "ensemble") based on Beck et al. (2016) and McIntyre et 287 

al. (2005). Further, we apply a simple mean method for the ensemble-based prediction to aggregate the ensemble 288 

of γ values into one predicted parameter value.  289 

�;,> = ∑ 8?@,AB?@,C8
DEF@

6GH*           (4) 290 

where �;,>  is the Similarity Index between basin I and basin J, KG,> is the basin descriptor L for basin J, MN�G is the 291 

interquartile range for basin descriptor L among all (gauged) basins, and = is the number of all basin descriptors 292 

used. 293 

As an alternative machine learning-based approach, we apply a simple k-means algorithm. We selected the k-294 

means algorithm because it is one of the most widely used clustering algorithms (Tongal & Sivakumar, 2017). It 295 

is easy to understand and use. The algorithm kmeans() is implemented in the R base package stats. It aims to 296 

maximize variation between groups and minimize variation within groups. The number of clusters to use is deter-297 

mined by multiple indices calculated with the R package NbClust (Charrad et al., 2014). For all 933 basins and 298 

the defined sets of basin descriptors, most indices defined three as the optimal number of clusters. Accordingly, 299 

we use three clusters to generate the groups of basins. As different scales of the predictor values can affect the 300 

clustering, a rescaling with min-max-normalization (see Eq. (5)) is performed on the training set and applied to 301 

the testing set. After the grouping, the mean γ value is assigned as a representative calibrated value to the corre-302 

sponding basin group. To estimate the corresponding group for a pseudo-ungauged basin, the knn algorithm is 303 

used, and the representative γ value of the group is assigned to the pseudo-ungauged basin. This algorithm is 304 

implemented by the knn() function of the R package class (Venables & Ripley, 2002). Since the k-means method 305 

is less flexible than SI, we implement a highly flexible version, using the knn algorithm directly to define the donor 306 

basin most similar to each ungauged basin. Using the knn algorithm directly, we test how beneficial it is to create 307 

groups of similar basins using the kmeans algorithm and regionalize the parameter with a representative mean 308 

value. 309 

K′G,> =  ?@,CB�;6C→��?@,C�
���C→��?@,C�B�;6C→��?@,C�          (5) 310 

where KG,>Q  is the normalized basin descriptor L for basin J, KG,>  is the basin descriptor L for the basin J, R is the 311 

number of (gauged) basins. 312 

Spatial Proximity 313 

The spatial proximity approach is one of the easiest to regionalize parameter values. However, it is also often 314 

criticized that nearby basins do not necessarily have the same hydrological behavior (Wagener et al., 2004). Fur-315 

thermore, its performance depends on the density of the network of gauged basins (Lebecherel et al., 2016). The 316 

dependency on network density is particularly challenging for global applications where large parts of the world 317 

are ungauged (e.g., northern Africa). Nevertheless, the approach has been successfully applied in other studies 318 

(e.g., Oudin et al., 2008; Qi et al., 2020), even globally (Widén-Nilsson et al., 2007). Here, we take the distance 319 

between the centroids of the basins as the reference for the spatial distance between basins, as done by others 320 
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(Oudin et al., 2008; Merz and Blöschl, 2004). We use the abbreviation SP in the text below to refer to the spatial 321 

proximity approach. Figure 2 provides an overview of the applied regionalization methods and information used 322 

for the experimental setup.  323 

  324 

Figure 2: Experimental setup of the study: regionalization methods, used modifications and information, and the gen-325 
eral workflow (MLR: Multiple Linear Regression, SI: Similarity Indices, SP: Spatial Proximity, RF: RandomForest). 326 

3. Results and Discussion 327 

3.1 Evaluating the effect of tuning 328 

First, the impact of the tuning approach on the regionalization approaches is evaluated. Therefore, Fig. 3 depicts 329 

the differences in logMAE between the standard and tuned approaches in testing, i.e., using the pseudo-ungauged 330 

basins. A positive difference in logMAE indicates an increase in accuracy, whereas a negative difference indicates 331 

a decrease in accuracy due to the tuning.  332 

Using the tuning thresholds of about 1.1 and 3.4 for γ1 and γ2, respectively, enhances the predictive accuracy for 333 

kmeans, MLR, RF, and the ensemble approach of SI. The most remarkable improvement for kmeans, RF, and SI 334 

ensemble is achieved when all physiographic descriptors are used as input (mean improvement of 0.077, 0.058, 335 

and 0.071, respectively). MLR shows the most significant improvement when using all available descriptors (mean 336 

improvement of 0.038). In contrast, the tuning decreases the performance for knn, SI, and SP, with a mean degra-337 

dation between -0.02 and -0.05. Unlike the enhanced regionalization techniques, these methods transfer single-338 

basin information to ungauged regions. Thus, the tuning disturbs the use of single-basin information yet simulta-339 

neously enhances the performance of methods that transfer multi-basin information. The disturbance or improve-340 

ment is probably related to the capability of the methods representing the clustering of parameter values at the 341 

extremes: Whereas the multi-basin information transfer implies a smoothing and thus suffers from a lack of rep-342 

resenting the extremes, the single-basin information transfer exhibits no such a smoothing. 343 
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The exception from the above-defined rule is the benchmark-to-beat approach. The benchmark-to-beat is the only 344 

approach that uses logarithmic scaled γ values when fitting the model. This logarithmic transformation leads to an 345 

increase in estimating small values. Thus, when the benchmark-to-beat is tuned, more basins with higher calibrated 346 

γ values receive low estimates. The tuning intensifies this effect, leading to a decrease in the accuracy of the 347 

logMAE from the standard to the tuned version. Thus, for models using logarithmical transformed γ values, the 348 

defined thresholds for the tuning are not appropriate.  349 

Applying knowledge of the optimal parameter space enhances the quality of regionalization for methods transfer-350 

ring multi-basin information in case the tuning thresholds are appropriate. This positive effect is not surprising, as 351 

incorporating a priori information about parameter distribution strengthens parameter estimation (e.g., described 352 

in Tang et al. (2016) using the Bayes Theorem). However, for single-basin transfer, which already represents the 353 

parameter space well, i.e., the clustering of γ at the extremes, the tuning disturbs the performance. This indicates 354 

that such tuning needs to be cautiously introduced as there is the risk of decreasing the accuracy of regionalization.  355 

 356 

Figure 3: Changes in performance between standard and tuned versions for all applied regionalization approaches. 357 
Positive values indicate an improvement related to the tuning. 358 

3.2 Evaluating descriptor subsets & algorithm selection 359 

Different descriptor sets yield different performances in regionalizing γ. Table 2 shows the median of all logMAE 360 

values for the testing. For a complete overview of the results of the split-sample test ensemble, see Appendix D. 361 

Evaluating Table 2 reveals that the selected subset or all descriptors consistently yield the best performance across 362 

all regionalization methods. In both variants of the ensemble approach of SI, the tuned version of the no-ensemble 363 

approach of SI, and the standard version of RF, the selected subset yields the best results. For all other methods, 364 

using all descriptors yields the best results. Hence, all methods perform best when combining climatic and physi-365 

ographic descriptors. This benefit of using climatic and physiographic descriptors is consistent with others that 366 

often apply a combination of climatic and physiographic descriptors, achieving optimal regionalization results 367 

(e.g., Oudin et al., 2008; Reichl et al., 2009).  368 

The machine learning-based approaches seem to benefit most when using more information displaying an im-369 

provement for all methods (knn, kmeans, and RF) and both variants (standard and tuned) ranging from "cl", "p", 370 

"subset" to "p+cl". This is not surprising as machine learning is developed to deal with big data sets. The traditional 371 

Independent from  

descriptor set 
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methods MLR and SI do not exhibit such a distinct pattern. The (weakly) correlated subset of climatic and physi-372 

ographic descriptors yields the best results for SI. As utilizing all descriptors decreases the performance slightly, 373 

the results indicate that uncorrelated descriptors may disturb the performance of this approach. For MLR, the 374 

meaning of physiographic information is highest, resulting in the best ("p+cl") and second best ("p") results. The 375 

disparate performance of the regionalization methods when using different descriptor sets indicates that different 376 

methods use descriptor sets with varying efficiency. It also emphasizes that the selection of descriptors impacts 377 

the regionalization method's results, as noted by others (Arsenault & Brissette, 2014). Consequently, the above-378 

performed analysis defining a descriptor subset lacks universal validity as methods exist where the defined subset 379 

is outperformed. Instead, the validity of this approach is most closely aligned with the SI approaches. 380 

Although the algorithms kmeans and knn are similar, they yield considerably different performances in Table 2. 381 

As knn shows a logMAE of 0.432 at best, the kmeans algorithm performs poorly, resulting in the best logMAE of 382 

0.472. This indicates that applying the kmeans clustering algorithm to transfer averaged parameters is inappropri-383 

ate for WaterGAP3. This may be attributed to the reduced flexibility of the approach, which entails estimating 384 

only three γ values due to the optimal, though limited, number of centers. The ensemble SI approach consistently 385 

outperforms the no-ensemble SI approach in almost all variants. The positive effect of an ensemble approach for 386 

SI has already been noted (Oudin et al., 2008). Therefore, it is recommended that the number of donor basins 387 

derived from the literature be adopted in future applications to be optimal for WaterGAP3, likely resulting in 388 

higher performance. 389 

Table 2: Median logMAE of 100 split-samples for pseudo-ungauged basins, i.e., in testing, for all regionalization meth-390 
ods applying four sets of descriptors for a) the standard version and b) the tuned version. The bold numbers indicate a 391 
better performance than the benchmark-to-beat. Thicker edges mark best-performing variants, which are chosen for 392 
further analysis. Grey-shaded cells indicate worst-performing variants, which were taken to validate the assumption 393 
that lower logMAE values result in lower KGE values. 394 

test  

(median) 
MLR RF 

SI 
kmeans knn SP B2B 

no ens. ensemble 

cl 0.552 0.483 0.496 0.483 0.619 0.501 

0.454 0.461 
p 0.479 0.465 0.487 0.480 0.551 0.477 

p+cl 0.464 0.464 0.454 0.462 0.534 0.432 

subset 0.488 0.488 0.461 0.439 0.539 0.467 

                 

test* 

(median) 
MLR RF 

SI 
kmeans knn SP B2B 

no ens. ensemble 

cl 0.529 0.467 0.537 0.459 0.619 0.546 

0.502 0.488 
p 0.441 0.416 0.532 0.455 0.515 0.521 

p+cl 0.427 0.403 0.503 0.435 0.472 0.480 

subset 0.453 0.408 0.501 0.409 0.477 0.509 

 395 

Only a few regionalization methods outperform the benchmark-to-beat. The best descriptor sets of tuned MLR, 396 

RF, and SI ensemble approach have a logMAE of 0.427, 0.403, and 0.409, respectively. The standard version of 397 

knn ("p+cl") and SP yield 0.432 and 0.454 in logMAE, respectively. Additionally, two variants of the standard SI 398 

approaches outperform the benchmark-to-beat yet exhibit inferior results compared to the selected tuned approach. 399 

(b) 

(a) 
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All other regionalization methods show higher logMAE values than the benchmark-to-beat. These methods are 400 

considered insufficient in terms of performance to regionalize γ in WaterGAP3. As the benchmark-to-beat outper-401 

forms all kmeans approach variants, it is deemed unsuitable for regionalizing γ for WaterGAP3 and, therefore, 402 

excluded from further analysis.  403 

The well-performing SP on a global scale is surprising as the distances between basins are potentially long, and 404 

hydrological processes may strongly vary. It is probably beneficial for the SP approach that γ comprises all kinds 405 

of errors, e.g., spatially localized errors in global forcing products (e.g., Beck et al., 2017 reported errors for arid 406 

regions in the precipitation product) or inaccurately represented processes for larger regions. Thus, the estimation 407 

of γ might be appropriate, but not because of the same hydrological behavior but due to the same kind of errors. 408 

The RF approach is outstanding, as it shows a massive loss in performance from training to testing (see Appendix 409 

D). In detail, the logMAE in testing is about twice the logMAE in training. In comparison, other methods show 410 

values of logMAE in testing ranging from 95.6 % to 101.4 % of logMAE in training. This performance loss indi-411 

cates that RF is not a robust regionalization method for WaterGAP3. Other studies that reported the good perfor-412 

mance of RF for regionalization have not investigated the stability of the performance from training to testing 413 

(Golian et al., 2021; Wu et al., 2023). Likely, the mathematical problem of predicting the calibrated parameter for 414 

WaterGAP3, with all its challenges (e.g., tailored parameter space, clustered calibrated parameter, and incorpora-415 

tion of many sources of errors), cannot be adequately solved by RF. Thus, although RF is known to be especially 416 

robust among other machine learning-based techniques, it shows symptoms of over-parameterization. This indi-417 

cates that the algorithm is too flexible and adjusts to noise in the data, missing the underlying systematic. This lack 418 

of robustness is particularly disadvantageous since, for WaterGAP3, regionalization is applied globally, requiring 419 

regionalizing large parts of the world. In consequence, the RF approach is left out from further analysis and defined 420 

as not suitable to regionalize γ for WaterGAP3.  421 

For the tuned MLR approach and the knn approach, the best performing and, therefore, selected variant employs 422 

all 12 descriptors. This number of predictors for a regionalization method is among the highest found in the liter-423 

ature (e.g., McIntyre et al., 2013, used three predictors; Beck et al., 2016, used eight predictors; Chaney et al., 424 

2010, used 13 predictors). In general, it is advisable to limit the number of degrees of freedom in a model to reduce 425 

the risk of over-parametrization, thus increasing the probability of generalizability (Seibert et al., 2019). As both 426 

model variants exhibit a stable model performance during training and testing (see Table D1), using a high pro-427 

portion of the basins for testing, i.e., 50 %, we consider the two variants robust despite the relatively high number 428 

of predictors used. Therefore, we consider them appropriate for further model evaluation. 429 

Nevertheless, the chosen basin descriptors for knn and tuned MLR could be enhanced in future studies. As the 430 

descriptor set "p+cl" was initially considered as a control group to determine the suitability of the selected subset, 431 

it is not optimal. To indicate potential enhancements regarding the descriptor set for both methods, we calculated 432 

a simple permutation-based feature importance score (cf. Breiman, 2001) by randomly shuffling each predictor 433 

within the testing data set and quantifying the loss in logMAE relative to the logMAE of the original testing data 434 

set. The higher the loss, the more critical the shuffled predictor for the regionalization method. The resulting feature 435 

importance scores are presented in Appendix E, indicating that for the tuned MLR, the subset of (weakly) corre-436 

lated descriptors should be extended by including waterbody information. For the knn approach, the calculated 437 

feature importance scores indicate that it should be extended by including information about the soil storage. 438 
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3.3 Performance of selected algorithm in pseudo-ungauged basins  439 

To avoid the high risk of sampling effect when applying the split-sample test, we conduct an ensemble of 100 440 

split-sample tests analyzing the median of logMAE between regionalized and calibrated values as an indicator for 441 

performance. Directly using the differences in regionalized and calibrated values is only meaningful when the 442 

calibrated value represents the global optimum. As this is often not the case, e.g., due to equifinality, the perfor-443 

mance of regionalization methods is usually assessed by the accuracy of simulated discharge (e.g., Samaniego et 444 

al., 2010; Arsenault & Brissette, 2014). Because WaterGAP3 requires computationally intensive simulations, run-445 

ning WaterGAP3 for all 100 split-sample tests for the selected methods is not feasible. Therefore, we select a 446 

single representative split-sample to assess the quality of representing the discharge in the pseudo-ungauged basins 447 

using regionalized γ values. The representative split-sample leads to comparable logMAE values to the corre-448 

sponding median of the ensemble for all regionalization methods. For the evaluation, WaterGAP3 was run for the 449 

same period used in calibration (from 1979 to 2016), with the first year simulated ten times to allow for model 450 

warm-up. Using this period ensures the availability of sufficient data for the evaluation (see Chapter 2.2). Further-451 

more, the differences between the monthly simulated and observed discharge are assessed using the KGE. 452 

 453 

 

  

 

Figure 4: a) KGE values of pseudo-ungauged basins from split-sample test grouped by the range of calibrated γ values, 454 
b) selected metrics of KGE values from the pseudo-ungauged basins (better or equal performance to the benchmark-455 
to-beat is highlighted in grey), and c) histogram of the number of pseudo-ungauged basins with a KGE below 0.2 and 456 
the corresponding number of methods exhibiting this performance loss. 457 

To evaluate the KGE, we select the best-performing methods that outperform the benchmark-to-beat: tuned MLR 458 

"p+cl", knn "p+cl", tuned SI ensemble "subset", and SP (see Table 2). For the sake of simplicity, we further mark 459 

them with "(best)". Additionally, we select three poorly performing variants to validate the assumption that meth-460 

ods resulting in higher logMAE values tend to result in lower KGE values, i.e., lower accuracy of simulated dis-461 

charge. These methods are tuned SI "cl" (logMAE: 0.537), tuned knn "cl" (logMAE: 0.546), and MLR "cl" (log-462 

MAE: 0.552). Further, we denote these methods with "worst". Applying the selected methods and the benchmark-463 

to-beat method results in eight estimates of γ for the pseudo-ungauged basins, whose performance is further eval-464 

uated in terms of simulated discharge accuracy. 465 

Method Min Median Mean Max  ≤  0.2

CAL (donor) 0.402 0.679 0.672 0.939 0

CAL (p.-ung.) 0.403 0.674 0.663 0.953 0

B2B -1.060 0.627 0.587 0.944 17

MLR (best) -0.708 0.633 0.606 0.951 22

MLR (worst) -0.555 0.602 0.578 0.951 28

knn (best) -0.955 0.626 0.597 0.953 18

knn (worst) -2.937 0.604 0.545 0.926 37

SI (best) -0.708 0.627 0.607 0.953 13

SI (worst) -2.937 0.607 0.556 0.951 38

SP -9.040 0.628 0.584 0.954 17

GRDC No.: 

4356110 

#106 #57 #64 #63 #176 

(a) (b)

(c)
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Figure 4a shows the resulting KGE values for the evaluated regionalization methods and the calibrated version as 466 

grouped boxplots for different ranges of calibrated γ. The methods show different performances for different γ 467 

ranges, indicating their strengths and weaknesses. For the smallest γ range, "0.1-0.2", the selected methods that 468 

perform well during the split-sample test outperform the benchmark-to-beat. The better result for minimal γ ranges 469 

is probably partially related to the advantage of the tuning, which leads to more predictions of 0.1 within the 470 

regionalization. The benchmark-to-beat shows the best performance for γ values between 0.2 and 0.5. The good 471 

performance for basins with calibrated γ values between 0.2 and 0.5 is probably related to the benefit of using the 472 

logarithmical version of γ in the benchmark-to-beat, leading to more estimates of smaller values. However, this 473 

affects only 12 % of the basins, as calibrated values between 0.2 and 0.5 are not frequently present in the calibration 474 

result. Generally, the differences in KGE appear higher for smaller γ values, probably due to the decreasing pa-475 

rameter sensitivity with higher values (see Appendix B). 476 

Given the variability in the performance of the regionalization methods across the depicted γ ranges, it is challeng-477 

ing to identify an overall best regionalization method using Fig. 4a. Therefore, we compare the various metrics of 478 

the KGE values depicted in Fig. 4b. The analyzed metrics are the minimum, maximum, mean, and median. Further, 479 

we count the number of poorly performing basins, defined as basins with a KGE below 0.2. In Fig. 4b, metrics 480 

that exceed the benchmark-to-beat are grey-shaded. Comparing the KGE metrics in Fig. 4b reveals that the meth-481 

ods showing higher logMAE values in our split-sampling test ensemble also show lower performance in simulating 482 

discharge. For example, all mean (and median) KGE values of the "worst" methods are below the mean KGE of 483 

0.587 from the benchmark-to-beat, ranging from 0.545 to 0.578. This indicates that the used logMAE between 484 

regionalized and calibrated values is a valid tool for a preliminary selection of adequate methods for the regional-485 

ization of WaterGAP3. However, for a more comprehensive analysis, we recommend additionally analyzing the 486 

accuracy of simulated discharges, as the logMAE of calibrated and regionalized parameter values simplifies the 487 

inherent complexity between model parameters and model performance. 488 

Moreover, SI (best) outperforms the benchmark-to-beat in all listed metrics, reducing poorly performing basins 489 

and enhancing well-performing basins. MLR (best) performs very similarly to SI (best), yet it shows a higher 490 

number of basins with KGE values below 0.2. In comparison to the benchmark-to-beat, it outperforms four out of 491 

five criteria. The remaining well-performing methods, SP and knn (best), demonstrate superior or equal perfor-492 

mance to the benchmark-to-beat in three out of five criteria. SP results in an equal number of poorly performing 493 

basins, and the minimal KGE value is lower than for the benchmark-to-beat. The knn (best) approach has a slightly 494 

worse median of KGE, i.e., -0.001, and one additional basin shows a KGE below 0.2.  495 

As SI (best) outperforms the benchmark-to-beat in all metrics, we conduct a statistical test to ascertain whether 496 

there is a statistically significant difference in KGE results between the methods. To this end, we use a one-sided 497 

paired Wilcoxon rank sum test to test the null hypothesis of whether the KGE differs significantly in central ten-498 

dency. A significance level of 0.05 and an adjusted p-value are applied to correct for multiple comparisons (using 499 

the correction after Benjamini & Hochberg (1995)). The results (cf. Figure F1c) demonstrate that SI (best) outper-500 

forms all "worst" methods and the benchmark-to-beat. However, the null hypothesis for SP and the "best" options 501 

of knn and MLR cannot be rejected. Consequently, rather than identifying a single alternative to the benchmark-502 

to-beat, we have identified four. 503 

Notably, all regionalization methods lead to poorly performing basins, as evidenced by the range of basins with a 504 

KGE below 0.2, varying from 13 to 37. In Fig. 4c, we examine whether there are basins that all methods cannot 505 



16 

 

regionalize, thereby indicating a general insufficiency of the regionalization methods for these basins. The histo-506 

gram indicates that most poorly performing basins belong to a single regionalization method. The high number of 507 

basins, which cannot be estimated well by a single regionalization method, illustrates the diverse shortcomings of 508 

the methods. A single basin shows poor performance across all methods. This is a basin of the river El Platanito 509 

in Mexico. The calibrated γ value is about 1.5, and the corresponding KGE value in calibration is 0.466. This basin 510 

appears to be highly sensitive to γ, with an inaccuracy in the estimated γ having a significant impact on the accuracy 511 

of river discharge. For example, the benchmark-to-beat estimates γ to 1.0, which is close to the calibrated value of 512 

1.5. However, the KGE value of the simulated discharge using the benchmark-to-beat is -0.158 due to a high 513 

overestimation of the variation and mean of the discharge. This high sensitivity seems outstanding and is likely 514 

attributable to the absence of waterbodies and snow, supporting a potentially high impact of γ on the model simu-515 

lation (Kupzig et al., 2023) in conjunction with a relatively small basin size (ca. 6,600 km2). 516 

Model evaluation is at least partially subjective (Ritter & Muñoz-Carpena, 2013), and the choice of evaluation 517 

criteria represents a source of uncertainty in model performance evaluation (Onyutha, 2024). Furthermore, the 518 

choice should reflect the intended model use (Janssen & Heuberger, 1995). As GHMs are often applied to evaluate 519 

monthly simulated discharge (e.g., Herbert and Döll, 2023; Jones et al., 2023; Tilahun et al., 2024), we assess the 520 

model performance using monthly data. Moreover, GHMs are generalists rather than expert models; thus, the 521 

model evaluation should encompass a range of aspects related to streamflow to obtain an overall metric. Therefore, 522 

we applied the monthly KGE, which comprises information about the streamflow's variability, bias, and timing. 523 

As we use monthly values, we expect that outliers, i.e., single flood events, are less influential than in daily data 524 

sets. Consequently, we expect the disadvantage of the KGE exhibiting sampling uncertainty to be less significant 525 

(cf. Clark et al., 2021). 526 

Nevertheless, to reduce the risk that disadvantages of the evaluation criteria influence the model evaluation, we 527 

conducted an additional model evaluation using a modified version of the Nash-Sutcliff efficiency (NSE) (Nash 528 

& Sutcliff, 1970). This modified NSE uses absolute differences instead of squared terms, leading to a metric that 529 

is especially suitable as an overall measure (Krause et al., 2005). The results of the analysis are in Appendix F. 530 

The high boxplot similarity between the modified NSE and the KGE confirms that the monthly KGE represents 531 

the overall monthly model quality. Moreover, the statistical metrics of the modified NSE indicate that MLR (best), 532 

in particular, outperforms the benchmark-to-beat. Applying the one-sided paired Wilcoxon rank sum test on the 533 

modified NSE reveals that knn (best), SI (best), and the benchmark-to-beat deliver no statistically significant dif-534 

ferences in the central tendency to the well-performing MLR (best). These differences in results illustrate that the 535 

choice of evaluation criteria can significantly impact the experimental outcome. Moreover, it underpins the use-536 

fulness of evaluating ensemble approaches to account for this inherent uncertainty. 537 

3.4 Impacts on runoff simulations 538 

To evaluate the impact of runoff simulations, we apply an ensemble of regionalization methods generating γ esti-539 

mates for the worldwide ungauged regions. Within the ensemble, we use the four methods SI (best), knn (best), 540 

MLR (best), and SP that (1) outperform the benchmark-to-beat regarding the logMAE of regionalized and cali-541 

brated values and (2) perform similarly to each other and better than the benchmark-to-beat in KGE for monthly 542 

discharge. Additionally, we use the benchmark-to-beat as the fifth member of our regionalization method ensem-543 

ble, as it shows no significantly weaker performance than the well-performing MLR (best) for the modified NSE. 544 
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The entire set of 933 gauged basins is used for regionalizing γ, resulting in five distinct worldwide distributions of 545 

γ. The spatially distributed standard deviation of the regionalized values is shown in Fig. 5.  546 

In particular, the southern parts of South America, the northern and southern parts of North America, and Central 547 

Asia reveal differences in γ across the ensemble of regionalization methods (see Fig. 5). In Europe, the highest 548 

differences in regionalized values are observed in Italy, Great Britain, and northern Portugal. In Oceania, the high-549 

est values in standard deviation of γ are in Tasmania, New Zealand, and the southwest of Australia's coast. In 550 

contrast, a minor variation in γ is apparent in northern Africa, most parts of Australia, and the East of the Dead 551 

Sea. Thus, the uncertainty associated with globally regionalizing γ seems to vary across different regions. 552 

 553 

Figure 5: Standard deviation in regionalized γ values using the best approaches of MLR (best), SI (best), SP, knn (best), 554 

and the benchmark-to-beat. Note that dry regions without discharge are set to zero. 555 

An example of how these uncertainties in regionalized values propagate through the water system is presented in 556 

Fig. 6. This figure displays the coefficient of variation of the mean yearly discharge between 1980 and 2016 based 557 

on the five simulation runs. Moreover, we highlight the effect on rivers in ungauged regions by showing the re-558 

sulting seasonal pattern, i.e., the simulated long-term mean of monthly river discharge for three exemplary rivers. 559 

These rivers are the Río Bravo in Mexico, the Tiber in Italy, and the Tamar River in Tasmania. Each river is located 560 

in an ungauged region, where the standard deviation in γ is high (see Fig. 5). 561 

Comparing Fig. 5 and Fig. 6 reveals that regions showing variability in γ tend to exhibit variation in mean yearly 562 

discharge. However, the impact of variation in γ on the simulated discharge appears to vary spatially. Some regions 563 

showing a high degree of variation in γ do not exhibit a correspondingly high degree of variation in discharge. For 564 

example, 45 % of all ungauged regions showing a low variation in discharge, i.e., the coefficient of variation is 565 

below 0.5, exhibit a standard deviation of more than one in γ. In contrast, about 89 % of the ungauged regions 566 

showing a higher discharge variation exhibit a standard deviation of more than one in γ. Thus, variation in γ does 567 

not necessarily lead to variation in river discharge, but it increases the likelihood that a region's discharge is af-568 

fected. The spatially varying impact of γ is likely related to varying sensitivity regarding γ in the ungauged regions, 569 

which depends on numerous aspects, e.g., snow occurrence or waterbodies (see Kupzig et al., 2023).  570 

About 11 % of the ungauged area exhibits variations in yearly river discharge exceeding 50 % of the mean. These 571 

regions are primarily in southern South America and Central Asia. A further 62 % of the ungauged area exhibits 572 

variations in yearly river discharge between 10 % and 50 % of the mean. These regions are mainly located on the 573 

northern coast of Russia and northern Canada, Indonesia, and Tasmania. Other areas, like most ungauged regions 574 
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of Africa and Australia, show almost no impact, i.e., the variation in yearly discharge is less than 10 % of the 575 

mean. In northern Africa, one region exhibits higher values in the coefficients of variation. These values are at-576 

tributable to minimal discharge values, resulting in comparatively high coefficients of variation in this region. 577 

Considering the variation in the seasonality in the selected ungauged river systems (see Fig. 6b-d), the temporal 578 

impact of regionalization varies across the local landscape. For the Tamar River in Tasmania, as illustrated in Fig. 579 

6d, the variation is higher at the start and end of the dry periods in October/November and April/May, respectively. 580 

The spread in monthly mean discharge is about 0.7 m3s-1 to 1 m3s-1 in these periods. The Tiber in Italy and the Río 581 

Bravo in Mexico exhibit a similar pattern: using the regionalized γ values of SP leads to much higher discharge 582 

rates than other ensemble members, introducing broad uncertainty bands. For the Tiber, this leads to seasonal 583 

estimates varying between 1.2 % (in January) and 11 % (in October) of the mean yearly sum. The Río Bravo shows 584 

variations in its seasonal pattern, with values ranging from 2.2 % (in February) to 6.8 % (in October) of the mean 585 

yearly sum. Thus, all rivers display a temporally varying impact. Whereas the main variation in the discharge of 586 

the Río Bravo and the Tiber is mainly attributed to the SP regionalization run, for the Tamaris River, all regional-587 

ization runs contribute to the varying long-term monthly mean in discharge.  588 

 589 

 590 

Figure 6: a) Global map of the coefficient of variation in mean yearly discharge for the applied regionalization methods. 591 
Resulting differences in the regionalization ensemble regarding the long-term mean of monthly discharge are depicted 592 
for: b) the Río Bravo in Mexico, c) the Tiber in Italy and d) the Tamar River in Tasmania. The grey-shaded area 593 
indicates the range of the long-term mean of monthly discharge and the black line indicates the mean off all simulation 594 
runs. 595 

To gain a deeper understanding of the local impact of regionalization on runoff simulations, we analyze the annual 596 

percentiles from 1980 to 2016 for Río Deseado in Argentina, Río Bravo, and Tamar River, displaying the mean 597 

percentile of all years (see Fig. 7a-c). As the Tiber and Río Bravo display high similarities in the resulting patterns 598 

of percentiles, we demonstrate the impact by showing the percentiles from the Río Bravo. Additionally, we com-599 

pare the relative differences in the mean for each percentile using eight ungauged river systems (see Fig. 7d), as 600 
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previously done by Gudmundsson et al. (2012) for nine GHMs. To calculate the relative difference, we subtract 601 

the mean annual percentile of a method from the corresponding mean annual percentile of the reference and divide 602 

the resulting difference by the mean annual percentile of the reference. Instead of using observed flow as a refer-603 

ence, we use the annual percentiles of our benchmark-to-beat. As river discharge is already spatially aggregated 604 

information, it is unnecessary to spatially aggregate grid cells to create results comparable to those of Gudmunds-605 

son et al. (2012), who used cell runoff. The evaluated river systems are Río Chubut, Río Deseado, Río Negro, Río 606 

Bravo, Tamar River, Tiber, Pescara, and Ebro. 607 

 608 

Figure 7: Mean annual percentiles between 1980 and 2016 of simulated discharge using an ensemble of regionalization 609 
methods. The rivers are a) Río Deseado, b) Tamar River, and c) Río Bravo. In d), the relative differences in mean annual 610 
percentiles to the benchmark-to-beat of eight ungauged river systems are presented. Negative values indicate smaller 611 
mean annual percentiles than the benchmark-to-beat. Note that all data points from Río Deseado for knn and SP are 612 
excluded as the values are above 2.0. 613 

In Fig. 7a, Río Deseado is highly affected by uncertainties in simulated discharge due to the different regionaliza-614 

tion methods; all segments of the percentiles show high variations where the absolute spread is increasing with 615 

increasing percentiles. For SP and knn (best), the discharge is highest, e.g., estimating a median discharge of 13.7 616 

m3s-1 and 19.7 m3s-1
,
 respectively. For the other methods, the simulated discharge is low, e.g., SI and MLR result 617 

in an equal median discharge of 3.6 m3s-1. The Tamar River in Fig. 7b also shows increasing absolute differences 618 

between the methods for higher percentiles, with the benchmark-to-beat approach leading to the highest discharge. 619 

For the Río Bravo, the absolute differences between the highest result of SP and the other methods remain almost 620 

constant until the 75th percentile. For the 95th percentile, the absolute differences increase rapidly from about 40 621 

(a) (b)

(d)(c)
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m3s-1 (75th percentile) to nearly 200 m3s-1 (95th percentile). The exemplary results of Río Deseado and Río Bravo 622 

indicate a potentially high degree of uncertainty regarding the high percentiles in discharge simulation. These 623 

uncertainties put the results of global flood frequency analysis (e.g., Ward et al., 2013) in ungauged regions at risk 624 

as the time series of annual maxima might be even more uncertain. Thus, the results of flood frequency analysis 625 

should be carefully interpreted in ungauged regions as the impact of parameter regionalization may be significant. 626 

Upon examination of the relative differences to the benchmark-to-beat for eight ungauged river systems, it be-627 

comes evident that the impact of regionalization methods varies between ungauged river systems (e.g., Río Negro 628 

exhibits almost no variation, but Ebro does). Moreover, it becomes apparent that some regionalization methods 629 

contribute more to the variation in estimated discharge than others. The methods contributing most are knn (best) 630 

and SP. For knn (best), 10 of the 40 relative differences are higher than |0.3|. For SP, even 29 out of the 40 relative 631 

differences are higher than |0.3|. The results of SI (best) and MLR (best) are very similar, indicating high similarity 632 

in performance. This is consistent with the KGE evaluation (see Chapter 3.3), in which they performed similarly. 633 

The observation in Fig. 7d that higher relative differences of discharge simulations occur in drier percentiles is 634 

also reported in Gudmundsson et al. (2012). Moreover, the relative differences between the five regionalization 635 

runs seem comparable to the inter-model differences depicted in Gudmundsson et al. (2012), indicating the high 636 

impact of regionalization methods on the evaluated ungauged river systems.  637 

Finally, Table 3 presents the estimated yearly mean runoff to the ocean for all five ensemble members. All esti-638 

mates of global "runoff to ocean" range from 45,622 (SI (best)) to 47,069 (SP). Thus, the differences are on the 639 

scale of smaller inter-model differences (see Table 2 in Widen-Nilsson et al.,2007). The impact of regionalization 640 

becomes even more evident using an unsuitable regionalization method for WaterGAP3. For instance, the tuned 641 

kmeans ("subset") approach results in 42,862 km3 yr-1 "runoff to ocean", increasing the spread between the meth-642 

ods to 4,208 km3 yr-1 being in the scale of inter-model differences. This high impact of regionalization on global 643 

"runoff to ocean" is surprising, given that only 27 % of the world is ungauged, using the GRDC database. From 644 

this 27 %, most regions are in Australia and Africa, where minimal runoff is produced. In studies employing 645 

disparate models, e.g., for inter-model comparison, all regions are simulated in disparate ways.  646 

Table 3: Mean outflow to the ocean and endorheic basins in km³ yr-1 between 1980-2016. The highest continental devi-647 
ation to the benchmark-to-beat is indicated in bold. 648 

Runoff to ocean1 B2B SI (best) knn (best) MLR (best) SP 

Oceania 1,127 -1.80 % -2.20 % -3.40 % -6.60 % 

Europe 3,098 -2.30 % -0.10 % -2.60 % 0.20% 

Asia  16,676 3.50 % 0.30 % 1.60 % 5.50 % 

Africa 5,203 -1.00 % 0.70 % -0.30 % -3.60 % 

North America 7,517 0.30 % 1.00 % -1.70 % 2.20 % 

South America 12,032 1.30 % 1.40 % -0.20 % 4.90 % 

global  45,653 46,273 45,953 45,622 47,069 

1including endorheic basin      
 649 

The most significant deviations in the continental sums of "runoff to ocean" in Table 3 are due to SP. Only for 650 

Europe is the highest deviation related to MLR (best), not SP. Interestingly, the estimated sums of SP occasionally 651 

define the lowest and occasionally the highest extremes for the continents, lacking a systematic pattern. The out-652 

standing role of SP is consistent with previous evaluations in this Chapter, where SP frequently contributes most 653 
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to the variation in discharge. This suggests that SP may not be suitable for the global scale. Nevertheless, the 654 

pseudo-ungauged basins in the split-sample tests may also exhibit considerable distances from the observed basins. 655 

Given that SP achieved satisfactory results in both evaluations, using either the logMAE or the KGE, the evaluation 656 

indicates the method's suitability on a global scale. Thus, in the future, the split-sample test must be extended to 657 

gain deeper insights into the method's robustness and make a definitive statement about the method's suitability 658 

on a global scale. For example, the so-called "HDes" approach, recommended by Lebecherel et al. (2016), could 659 

be applied for this purpose. In this approach, the closest basin to the corresponding (pseudo-) ungauged basin is 660 

excluded from the regionalization process, thereby enabling an assessment of the method's robustness. 661 

3.5 Challenges & Future Directions 662 

Regionalization is an inevitable step when parameterizing GHMs. However, only a few studies exist that conduct 663 

regionalization experiments with GHMs, often focusing on a single or two distinct regionalization strategies (e.g., 664 

Beck et al., 2016; Beck et al., 2020; Yoshida et al., 2022). A significant challenge in developing and testing dif-665 

ferent regionalization methods for GHMs is the time-consuming runtime of these models. This extensive runtime 666 

impedes comprehensive testing of different regionalization methods, as evaluating the regionalization methods, 667 

e.g., by using streamflow, demands a considerable number of simulation runs. This study addressed this challenge 668 

using the differences between calibrated and regionalized parameter values as an approximator for the suitability 669 

of the regionalization methods. Thereby, we considered the varying sensitivity of the parameter within the param-670 

eter space using the logMAE as the evaluation criterion. Using the differences between calibrated and estimated 671 

values is the most straightforward approach, given that WaterGAP3 uses a single calibration parameter, leading to 672 

a clear global optimum. However, this approach might not apply to GHMs using multiple calibration parameters 673 

due to equifinality. For example, Ayzel et al. (2017) found varying estimated parameter values when regionalizing 674 

11 parameters of the SWAP model using different regionalization methods. They concluded that the difference 675 

between regionalized and calibrated values cannot be regarded as a performance measure due to parameter com-676 

pensation. Thus, further research is required to tackle the challenge of GHMs' time-consuming runtimes to enable 677 

comprehensive testing of regionalization methods, especially for GHMs using multiple calibration parameters.  678 

Another challenge in regionalizing hydrological models is the optimal selection of predictors for the regionaliza-679 

tion methods. Various approaches exist regarding the predictor selection for the regionalization methods (Razavi 680 

& Coulibaly, 2013), resulting in a lack of consensus. This study used a predictor selection based on correlation 681 

coefficients and an entropy assessment. The results indicate that the approach is particularly well-suited to the 682 

Similarity Indices. However, further research on predictor selection is needed to find the optimal descriptor set 683 

per method, as regionalization methods use predictors with varying efficiency. For example, future studies might 684 

integrate feature importance bars, e.g., by using permutation, to identify the most critical descriptors per method. 685 

Moreover, future research should explicitly account for the issue of multicollinearity. Multicollinearity can affect 686 

MLR (and potentially other techniques), resulting in ungeneralizable predictions. This phenomenon is more 687 

likely to occur when the number of predictor variables is large relative to the number of observation units and 688 

when the predictor variables are highly collinear (Kiers & Smilde, 2007). To account for the high importance of 689 

the generalizability of regionalization methods for GHMs, we used a high proportion of the basins for testing, 690 

i.e., 50 %. Moreover, we used a large sample size (50 % of 933 basins) relative to the number of predictors 691 

(maximum 12), lowering the risk of multicollinearity interfering with the results. However, future studies might 692 
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use methods such as Principal Component Analysis (PCA) or Partial Least Square (PLS), explicitly accounting 693 

for the issue of multicollinearity (e.g., Kroll & Song, 2013). An alternative approach to using PCA or PLS is ex-694 

plicitly testing for multicollinearity in predictor sets using the variance inflation factor and avoiding using pre-695 

dictors with values exceeding a pre-defined threshold (e.g., Kroll et al., 2004).  696 

4. Conclusion 697 

Valid simulation results from GHMs, such as WaterGAP3, are crucial for detecting hotspots or studying patterns 698 

in climate change impacts. However, the lack of worldwide monitoring data makes adapting GHMs' parameters 699 

for valid global simulations challenging. Therefore, regionalization is necessary to estimate parameters in un-700 

gauged basins. This study applies regionalization methods for the first time to WaterGAP3, aiming to provide 701 

insights into selecting suitable regionalization methods and evaluating their impact on the runoff simulations. Tra-702 

ditional and machine learning-based methods are tested to assess the application of several regionalization tech-703 

niques on a global scale. The concept of benchmark-to-beat and an ensemble of split-sampling tests are employed 704 

for a comprehensive evaluation. Moreover, the impact on runoff simulation is assessed using a wide range of 705 

temporal and spatial scales, i.e., from the daily to the yearly and from the local to the global scale. 706 

In this study, four regionalization methods outperform the benchmark-to-beat in monthly KGE and are thus con-707 

sidered appropriate for WaterGAP3. These methods span the complete range of methodologies, i.e., regression-708 

based methods and methods using the concept of physical similarity and spatial proximity. Moreover, the methods 709 

vary in the descriptors used to achieve the highest accuracy. This highlights that different methods use descriptor 710 

sets with varying efficiency. All methods perform best when using climatic and physiographic descriptors, indi-711 

cating that combining climatic and physiographic descriptors is optimal for regionalizing worldwide basins. 712 

Mainly for two selected regionalization methods (tuned MLR and knn), the suggested descriptor selection based 713 

on correlation coefficients and entropy assessment is not optimal. Further research might integrate variable im-714 

portance scores or PCA to enhance the predictor selection. Although random forest is known to be especially 715 

robust among other machine learning-based techniques, it shows symptoms of over-parameterization, indicating 716 

that the algorithm is too flexible and adjusts to noise in the data, missing the underlying systematic pattern.  717 

Our results demonstrate that variation in the regionalized parameter value does not necessarily lead to variation in 718 

river discharge. However, it increases the likelihood that a region's runoff is affected. This spatially varying impact 719 

of γ is likely related to the varying sensitivity in ungauged regions regarding γ. Southern South America is a region 720 

identified to be especially sensitive to variation in γ. Furthermore, local effects on runoff simulations indicate a 721 

temporally varying impact. For example, some impacted rivers indicate a high degree of uncertainty regarding the 722 

high percentiles in discharge simulation. These uncertainties potentially lead to a significant impact on flood fre-723 

quency analysis on a global scale, where the lack of gauging stations in certain regions calls for regionalization. 724 

The global impact of regionalization methods that perform well for WaterGAP3 appears to be in the order of minor 725 

inter-model differences. This impact rigorously increases when using a poorly performing method for WaterGAP3, 726 

underscoring the importance of carefully selecting regionalization methods.  727 

The spatial proximity approach contributes most to the variation in estimated runoff. The outstanding role of this 728 

approach suggests that it may not be suitable for the global scale. However, as the pseudo-ungauged basins in the 729 

split-sample tests may also have considerable large distances to the observed basins, and the method achieves 730 



23 

 

satisfactory results in all executed evaluations, it is not possible to make a definite statement about the method's 731 

suitability for the global scale. Further research is required to gain deeper insights into the methods' robustness, 732 

e.g., by extending the analysis by applying the recommended "HDes" approach (Lebecherel et al., 2016). 733 
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https://doi.org/10.5281/zenodo.12808527.  735 

Authors contribution. JK developed, designed, and drafted the study. NK helped to design the experiment. MF 736 

provided feedback throughout the entire process and supported the writing. 737 

Competing interests. The authors declare that they have no conflict of interest.   738 



24 

 

Appendix A: Global Map of derived global soil moisture storage 739 

 740 

Figure A1: Global map of the size of soil storage based on Batjes (2012) and land use information (derived from Friedl 741 
& Sulla-Menashe, 2019) 742 

  743 
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Appendix B: Further analysis regarding the clustering of parameter values at the extremes 744 

The clustered calibrated parameter values at the extremes of the valid parameter space (see Fig. 1b) are a known 745 

problem within the calibration. As the parameter space, i.e., the parameter bounds, is crucial for calibration and, 746 

in consequence, for regionalization, we address this issue by a brief sensitivity analysis to demonstrate that the 747 

clustering of the calibrated parameter values is more an issue of missing processes (or using additional parameter 748 

values) than an issue of inappropriate parameter space. As the lower limit of the calibrated parameter (0.1) is 749 

sufficiently small in comparison to other studies using a similar HBV-based approach for runoff generation pro-750 

cesses (e.g., see the beta in Table A2 in Jansen et al., 2022), we focus on the sensitivity analysis on the upper limit 751 

of γ (5.0). 752 

In the sensitivity analysis regarding the upper limit of γ, we applied the model formula (see equation B1) containing 753 

the model's parameter γ and modified it within the bounds of 0.1 and 10. Additionally, we modified the soil satu-754 

ration varying from 1 % to 95 %.  755 

 2STU12V =  L�WXILITYTI2=(ZZ([�;\(  ∙  ]2I1 ]YTS�YTI2=,���� (B1) 

The calculated outflow and its relationship to the soil saturation and γ are depicted in Fig. B1 and B2. The incoming 756 

effective precipitation is defined as constant. As it is a factor in equation B1,, the results regarding incoming 757 

effective precipitation are linearly scalable. 758 

Figure B1: a) Runoff generation in the soil layer (neglecting overflow and evapotranspiration) using different values 759 
for the calibration parameter and increasing the soil-moisture, b) runoff generation for varying soil moisture grouped 760 
in bins of size one. 761 

In the depicted Fig. B1, the runoff generation process differences between differing γ values become more linear 762 

when soil saturation increases. Thus, the non-linear model parameter becomes less critical for high soil moisture. 763 

Generally, the runoff generation process differences for higher γ values are more pronounced for higher soil mois-764 

ture. For lower soil moisture, the smaller values have higher effects on the generated runoff. For example, for 70 % 765 

soil moisture, the differences for γ values ranging from 5 to 10 are between 3 % and 16 %. For the same soil 766 

moisture, the range in runoff generation varies from 16 % to 70 % for γ values between 1 and 5. 767 

(a) (b) 
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High γ values usually occur in dry regions (see Fig. 4b in Müller Schmied et al., 2021). In dry regions, high soil 768 

moisture values are not expected to occur frequently (e.g., see Khosa et al., 2020; Oloruntoba et al., 2024 for 769 

estimated and measured soil moisture in Africa and Draper et al., 2008 for estimated and measured soil moisture 770 

in Australia). It is, therefore, unlikely that higher γ values will significantly enhance the calibration result or de-771 

crease the issue of clustered calibrated parameter values at the higher end of the parameter space. More likely, the 772 

clustering of calibrated parameter values will be resolved in dry regions by incorporating additional (missing) 773 

model processes, such as evaporation from rivers or inaccurate representation of groundwater processes (Eisner, 774 

2016, p. 49). Thus, the parameter bounds of γ (e.g., also used in Eisner 2016, p. 16; Müller Schmied et al., 2021; 775 

Müller Schmied et al., 2023) are not changed in this study.   776 
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Appendix C: Basin descriptors  777 

Overview of basins descriptors used in this study. All basin descriptors are derived from the original model input 778 

and aggregated with a simple mean method to basin values to produce the same spatial resolution as the calibrated 779 

model parameter.  780 

 Soil Storage: The size of the soil storage, i.e., the maximal water content in the soil reachable for plants 781 

in mm. The information is the product of rooting depth (defined in a look-up table) and the total available 782 

water content derived from Batjes (2012). 783 

 Open Water Bodies: The fraction of the area covered with open water bodies in the basin is given as a 784 

percentage. The model input is based on the GLWD database (Lehner & Döll, 2004).  785 

 Wetlands: The fraction of area covered with wetlands in a basin is given in percentage. The model input 786 

is based on the GLWD database (Lehner & Döll, 2004). 787 

 Size: Size of a basin in km2. 788 

 Slope: The mean slope class is calculated as described in Döll & Fiedler (2008) and based on GTOPO30 789 

(USGS EROS data centre).  790 

 Altitude: The mean altitude of a basin is given in meters above sea level and based on GTOPO30 (USGS 791 

EROS data centre). 792 

 Forest: The mean fraction of the area covered with forest is given in percentage and derived from MODIS 793 

data (Friedl & Sulla-Menashe, 2019), where 2001 is used as a reference. All grid cells having a dominant 794 

International Geosphere-Biosphere Programme (IGBP) classification between one and five are defined 795 

as "forest". 796 

 Sealed Area: The mean fraction of sealed area is given in percentage and derived from MODIS data 797 

(Friedl & Sulla-Menashe, 2019), where 2001 is used as a reference. All grid cells having an IGBP clas-798 

sification equal to 13 are defined as they would contain 60% of the sealed area. Note: The different treat-799 

ment of forest and sealed area is based on the required model input; whereas the land cover is a classified 800 

value, the sealed area is a floating-point value. 801 

 Permafrost & Glacier: The mean coverage of permafrost and glacier in a basin is given in percentage. It 802 

is based on the World Glacier Inventory and the Circum-Arctic Map of Permafrost and Ground-Ice Con-803 

ditions. 804 

 Mean Temperature: The mean air temperature is based on the meteorological forcing used to drive the 805 

model (Lange, 2019) covering the period 1979 to 2016 and given in degrees Celsius.  806 

 Yearly Precipitation: The yearly precipitation sum is based on the meteorological forcing used to drive 807 

the model (Lange, 2019) covering the period 1979 to 2016 and given in mm. 808 

 Yearly Shortwave Downward Radiation: The yearly shortwave downward radiation is based on the me-809 

teorological forcing used to drive the model (Lange, 2019) covering the period 1979 to 2016 and given 810 

in Wm-2. 811 

 812 

The correlation between the defined basin descriptors is shown in Fig. A1. The variation within each basin de-813 

scriptor for basins used for regionalization is shown in Fig. A2. 814 

 815 
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 816 

 817 

Figure C1: Correlation (using Pearson’s correlation) between basins descriptors. 818 

 819 

 820 

Figure C2: Distribution of basins descriptors within all basins used for regionalization (n=933)  821 
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Appendix D: Results of the ensemble of the split-sample tests 822 

 823 

 824 

 825 

Figure D1: logMAE values for all 100 split-sampling tests using all variants of a) MLR, RF, and benchmark-to-beat, 826 

b) SI, and c) kmeans, knn, and SP. Note that the asterisk * indicates the tuned version of the method. 827 

  828 

(a) 

(b) 

(c) 

benchmark 

benchmark 

benchmark* 

benchmark 
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Table D1: Performance loss in median logMAE of the ensemble of split-sample tests from training to testing expressed 829 
in % of logMAE in training. 830 

test  

(% train) 
MLR RF 

SI 

kmeans knn SP B2B 
no ens. 

ensem-

ble 

cl 100.4 202.9 100.6 100.6 100 100 

102.3 102.2 
p 102.1 199.6 101.2 100.6 101.3 101.1 

p+cl 103.1 207.1 101.6 100.9 100.6 95.6 

subset 101.7 223.9 100 100.7 101.3 100.2 

         

test*  

(% train*) 
MLR RF 

SI 
kmeans knn SP B2B 

no ens. 
ensem-

ble 

cl 100.8 266.9 99.8 100.7 100 100.4 

103.1 104.1 
p 103 277.3 101.3 101.3 101.4 101.4 

p+cl 104.4 277.9 102 102.1 102.2 101.7 

subset 102 258.2 99.8 100.5 103 100.2 

 831 

  832 
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Appendix E: Feature importance bars for MLR (best) and knn(best) using the descriptor set "p+cl" 833 

 834 

  

 835 

Figure E1: Decrease in logMAE for testing using one representative split-sample when randomly shuffling each pre-836 
dictor for a) MLR (best) and b) knn (best). Note that the asterisk indicates the basin descriptors used in the (weakly) 837 
correlated subset. 838 

  839 

(a) (b) 
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Appendix F: Model performance for pseudo-ungauged basins using a modified version of the NSE 840 

Krause et al. (2005) suggested a modified version of the NSE that is especially suitable as an overall metric, leading 841 

to results between NSE versions focusing on low and high flows. The applied equation for the modified version is 842 

given below (see Eq. F1). 843 

R2^IUIW^ _�� = 1 − ∑|<aB�a|
∑8<aB%#8         (F1) 844 

where bc is the simulated monthly discharge for the timestep d and ec  is the observed discharge for the timestep 845 

d, and '< is the mean of the discharge for the evaluated period. 846 

The evaluation of the modified NSE for all pseudo-ungauged basins of a representative split-sample are summa-847 

rized in Figure F1. Note that the figure includes also the results of the applied one-sided paired Wilcoxon rank 848 

sum test for the KGE values, mentioned in Section 3.3. 849 

 

 

 

Figure F1: a) modified NSE values of pseudo-ungauged basins from split-sample test grouped by the range 850 

of calibrated γ values, b) selected metrics of modified NSE values from the pseudo-ungauged basins (bet-851 

ter or equal performance to the benchmark-to-beat is highlighted in grey), and c) p-values of the one-sided 852 

paired Wilcoxon rank sum test, testing the best performing methods MLR (best) and SI (best) against all 853 

other regionalization methods. (Note that p-values greater than 0.05 are highlighted in bold, indicating 854 

that the null hypothesis cannot be rejected, thus the difference in central tendency is not statistically sig-855 

nificant; cases where the results of modified NSE and KGE indicate the same are shaded grey.) 856 

857 

Method Min Median Mean Max

CAL (donor) -0.263 0.442 0.424 0.746

CAL (p.-ung.) -0.170 0.440 0.425 0.826

B2B -0.774 0.419 0.377 0.753

MLR (best) -1.005 0.427 0.385 0.766

MLR (worst) -1.241 0.415 0.374 0.783

knn (best) -5.493 0.417 0.360 0.788

knn (worst) -3.232 0.382 0.279 0.736

SI (best) -2.137 0.419 0.374 0.777

SI (worst) -3.232 0.383 0.290 0.788

SP -8.015 0.410 0.349 0.813

mod. NSE KGE mod. NSE KGE

B2B 0.382 0.005 0.478 0.068

MLR (best) 1 0.33 - -

MLR (worst) 0.106 < 0.000 0.005 < 0.000

knn (best) 0.063 0.349 0.052 0.733

knn (worst) < 0.000 0.001 < 0.000 0.002

SI (best) - - 0.374 0.935

SI (worst) < 0.000 < 0.000 < 0.000 < 0.000

SP 0.106 0.661 0.021 0.829

SI (best) MLR (best)
p-values

(a) (b) 

(c) 
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