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Abstract: 9 

Valid simulation results from global hydrological models (GHMs), such as WaterGAP3, are essential to detecting 10 

hotspots or studying patterns in climate change impacts. However, the lack of worldwide monitoring data makes 11 

it challenging to adapt GHMs' parameters to enable such valid simulations globally. Therefore, regionalization is 12 

necessary to estimate parameters in ungauged basins. This study presents the results of regionalization methods 13 

for the first time applied on the GHM WaterGAP3. It aims to provide insights into (1) selecting a suitable region-14 

alization method and (2) evaluating its impact on runoff simulation. In this study, four regionalization methods 15 

have been identified as appropriate for WaterGAP3. These methods span the full spectrum of methodologies, i.e., 16 

regression-based methods, physical similarity, and spatial proximity, using traditional and machine learning-based 17 

approaches. Moreover, the methods differ in the descriptors used to achieve optimal results, although all utilize 18 

climatic and physiographic descriptors. This demonstrates (1) that different methods use descriptor sets with var-19 

ying efficiency and (2) that combining climatic and physiographic descriptors is optimal for regionalizing world-20 

wide basins. Additionally, our research indicates that regionalization leads to spatially and temporally varying 21 

uncertainty in ungauged regions. For example, regionalization highly affects southern South America, e.g., leading 22 

to high uncertainties in the flood simulation of the Río Deseado. The local impact of regionalization propagates 23 

through the water system, also affecting global estimates, as evidenced by a spread of 1,500 km³ yr-1 across an 24 

ensemble of five regionalization methods in simulated global runoff to the ocean. This discrepancy is even more 25 

pronounced when using a regionalization method deemed unsuitable for WaterGAP3, resulting in a spread of 26 

4,208 km3 yr-1. This significant increase highlights the importance of carefully choosing regionalization methods. 27 

Further research is needed to enhance the understanding of the methods' robustness on a global scale. 28 

1. Introduction 29 

Global hydrological models (GHMs) are developed and applied worldwide, e.g., to detect hotspots and examine 30 

patterns of climate change impacts on the terrestrial water cycle (e.g., Barbarossa et al., 2021; Boulange et al., 31 

2021). Valid model results are a prerequisite to draw robust conclusions. For valid modeling results, it is beneficial 32 

to adjust the parameter values to adapt the models to different basin processes (Gupta et al., 1998). This adaptation 33 

is usually modified and evaluated (in a loop) by comparing the simulated model output, often discharge, with the 34 

monitored data. However, this parameter adjustment for GHMs is challenging due to the lack of global monitoring 35 

data. Consequently, parameter adjustment for GHMs can be based not only on monitored data (i.e., calibration) 36 

but also on estimating parameter values for ungauged basins (i.e., regionalization).  37 
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Regionalization defines the estimation of model parameters for ungauged basins (Oudin et al., 2008), usually based 38 

on information from gauged basins (Oudin et al., 2010). Regionalization methods generally follow the same prin-39 

ciple: basin characteristics (e.g., physiographic and/or climatic) are linked to hydrological characteristics and can 40 

thus be used to estimate parameter values. Various regionalization methods exist, and no overall preferred method 41 

has been found (Ayzel et al., 2017; Pool et al., 2021). In contrast, the optimal regionalization method may differ, 42 

for example, regarding available information (Pagliero et al., 2019) or model structures (Golian et al., 2021). 43 

Therefore, different methods should be tested to find an optimal regionalization method for a specific use case 44 

(e.g., Qi et al., 2020).  45 

Evaluation is needed to assess different regionalization methods. The evaluation of regionalization methods is 46 

particularly challenging because they are usually applied when there is a lack of monitoring data. Therefore, re-47 

gionalization studies often treat gauged basins as "ungauged" and perform leave-one-out cross-validation (e.g., 48 

Chaney et al., 2016) or split-sample tests (e.g., Beck et al., 2016; Nijssen et al., 2000; Yoshida et al., 2022). While 49 

at the mesoscale, this evaluation is already an integral part (e.g., McIntyre et al., 2005; Parajka et al., 2005; Oudin 50 

et al., 2008; Yang et al., 2020), this is sometimes not the case in global or continental studies (e.g., Müller Schmied 51 

et al., 2021; Widén-Nilsson et al., 2007). Another reasonable evaluation strategy is the concept of benchmark-to-52 

beat (Schaefli & Gupta, 2007; Seibert, 2001). Applying a benchmark-to-beat supports a comprehensive evaluation 53 

of whether a new approach is functional, e.g., better than a straightforward and thus transparent method or better 54 

than a predecessor. To the authors' knowledge, such a benchmark-to-beat has never been used to evaluate innova-55 

tions in regionalization at a global scale. 56 

In general, regionalization methods can be divided into two categories based on the parameter estimation strategy: 57 

(1) regression-based and (2) distance-based (He et al., 2011). Regression-based methods derive the relationship 58 

between basin characteristics and model parameters through fitted regression models. These mathematically de-59 

fined relationships are further applied to estimate model parameters of ungauged basins (e.g., Kaspar, 2004; Müller 60 

Schmied et al., 2021). A significant drawback of regression-based regionalization is the difficulty of incorporating 61 

parameter interdependencies (Poissant et al., 2017), as regression-based approaches often assume that the depend-62 

ent variables, i.e., the model parameters, are not correlated (Wagener et al., 2004). Distance-based approaches 63 

transfer complete parameter sets from similar or nearby donor basins to ungauged basins (e.g., Beck et al., 2016; 64 

Nijssen et al., 2000; Widén-Nilsson et al., 2007). Using an ensemble of donor basins, e.g., by averaging the pa-65 

rameter values or model outputs, can improve the performance of such methods (e.g., Arsenault & Brissette, 2014). 66 

A significant disadvantage of such methods is the clustering problem of ungauged basins, i.e., the unequal distri-67 

bution of gauging stations worldwide (Krabbenhoft et al., 2022). Thus, basins exist where distance-based ap-68 

proaches will use incomparable basins to transfer parameter values due to the lack of close basins.  69 

Recent advances have implemented machine learning-based techniques in the context of regionalization. For ex-70 

ample, Chaney et al. (2016) used regression trees as an alternative to least squares regression to estimate parameter 71 

values in ungauged basins. Pagliero et al. (2019) explored supervised and unsupervised clustering methods to 72 

define the similarity of basins to transfer parameter sets. To the authors' knowledge, no study has compared several 73 

traditional regionalization methods with machine learning-based methods for a GHM on a global scale. 74 

Some regionalization methods do not make a clear distinction between calibration and regionalization. For exam-75 

ple, Arheimer et al. (2020) applied a basin grouping beforehand. Then, they jointly calibrated the group members 76 

to define representative parameter sets. Subsequently, the representative parameter sets are transferred to other 77 
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basins based on grouping rules. Another approach defines so-called transfer functions (Samaniego et al., 2010) 78 

and calibrates meta-parameters instead of the model parameter values (Beck et al., 2020; Feigl et al., 2022). These 79 

methods, where regionalization is part of the calibration process, often require a change in the calibration process 80 

itself, which is challenging for GHMs (Schweppe et al., 2022), for example, due to a lack of code flexibility (e.g., 81 

Cuntz et al., 2016). 82 

This study proposes an improved regionalization method for the state-of-the-art GHM WaterGAP3 (Eisner, 2016). 83 

It compares traditional regionalization methods with machine learning-based methods and uses a benchmark-to-84 

beat and an ensemble of split-sample tests to evaluate the applied methods. Further, global runoff simulations are 85 

compared to analyze the impact of regionalization methods. The overall research topic is evaluating and selecting 86 

regionalization methods for a GHM. Specifically, the study has two objectives. It aims  87 

(1) to propose an improved regionalization method for WaterGAP3 and 88 

(2) to evaluate the impact of regionalization methods on global runoff simulations.  89 

2. Data and Methods 90 

2.1 The Model: WaterGAP3 91 

The GHM WaterGAP3 simulates the terrestrial water cycle, including the main water storage components and a 92 

simple storage-based routing algorithm. It is a fully distributed model that operates on a five arcmin grid and 93 

simulates at a daily time step. A more detailed description of the model can be found in Eisner (2016). 94 

In WaterGAP3, most model parameter values are set a priori, e.g., using look-up tables for albedo or rooting depth. 95 

Only one parameter, γ, is calibrated, which is part of the soil moisture storage in which runoff generation processes 96 

are present. The model equation for γ, which originates from the HBV-96 model (Lindström et al., 1997), is given 97 

in Eq. (1). Generally, higher values of γ lead to lower runoff volumes, while lower values of γ lead to higher runoff 98 

volumes. The model parameter is calibrated per basin within the range of 0.1 and 5. The objective function of the 99 

calibration is to minimize the deviation between the mean annual simulated and observed river discharge, i.e., the 100 

calibration aims to reduce the error in discharge volume. Given the monotonic relationship between the model's 101 

parameter and the optimization function, a simple search algorithm is applied: The parameter space is divided into 102 

rectangles, which are subsequently subdivided into smaller rectangles depending on the direction γ should be 103 

modified to achieve closer alignment with the optimization target. The calibration results in one calibrated γ value 104 

between 0.1 and 5 per basin. After the calibration, a correction is applied to account for high errors in the mass 105 

balance, e.g., due to inaccuracies in global meteorological forcing products. This correction is only applicable on 106 

gauged basins. It is, therefore, neglected in this study. 107 

� =  �� ∙ � �	
�	,��
 

�
�

          (1) 108 

where � is the daily runoff, �� is the daily throughfall, �� is the actual soil storage, ��,��� is the maximal soil 109 

storage (given as a global map in Appendix A), and � is the calibration parameter. 110 

Traditionally, the regionalization process in WaterGAP3 is a simple multiple linear regression (MLR) approach to 111 

estimate the calibration parameter γ for ungauged basins (e.g., Döll et al., 2003; Kaspar, 2004). The drawback of 112 

MLR regarding parameter interaction can be neglected: As there is only one parameter to estimate, parameter 113 
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interference does not exist. Instead, the approach offers the advantage of a lightweight, transparent application that 114 

can be quickly revised and adapted. 115 

2.2 Model Data 116 

WaterGAP3 requires various input data, such as soil information, topography, or information on open freshwater 117 

bodies. This study uses the same input data as Kupzig et al. (2023). For meteorological forcing, we use the global 118 

data set EWEMBI (Lange, 2019). This data product includes daily global forcing data with a spatial resolution of 119 

0.5 degrees (latitude and longitude) that covers a period from 1979 to 2016. Specifically, WaterGAP3 uses the 120 

following forcing information from the EWEMBI data set as input: 121 

 daily mean temperature, 122 

 daily precipitation, 123 

 daily shortwave downward radiation, and 124 

 daily longwave downward radiation. 125 

The WaterGAP3 calibration requires observed monthly river discharge data. This discharge data is subsequently 126 

transformed into annual discharge sums and used as a benchmark in the calibration procedure. In this study, we 127 

used discharge data from 1,861 stations that were manually verified (Eisner, 2016). To get the best data available, 128 

we have updated all available station data with recent data from The Global Runoff Data Center (GRDC, 2020). 129 

All stations have at least five years of complete (monthly) station data between 1979 and 2016. For each station, 130 

a contribution area, i.e., a basin, is defined with the gridded flow-direction information obtained from WaterGAP3, 131 

based on the HydroSHEDS database (Lehner et al., 2008). 132 

The 1,861 basins are calibrated using the above-described standard calibration approach for WaterGAP3. Follow-133 

ing the standard calibration procedure, some basins still have an insufficient model performance. In this context, 134 

we define a monthly Kling-Gupta-Efficiency (KGE) below 0.4 or more than 20 % bias in monthly flow as insuf-135 

ficient model performance. We underscore the importance of minimizing the error in discharge volume by defining 136 

it as an additional criterion corresponding to the optimization target during calibration. Basins not fulfilling the 137 

defined conditions regarding bias and KGE are neglected in further analysis to avoid high parameter uncertainty 138 

due to errors in input data, model structure, or discharge data affecting the analysis. Further, we have excluded all 139 

basins with less than 5000 km2 (inter-) basin size from the next upstream basin. We assume that this inter-basin 140 

size is large enough to assume a certain degree of interdependency between nested basins. In total, 933 out of 141 

1,861 basins are selected for regionalization (626 are neglected due to insufficient model performance, and 302 142 

are neglected due to inadequate basin size).  143 

Figure 1a depicts the worldwide calibrated basins, highlighting gauged and ungauged regions. Whereas most parts 144 

of North and South America are gauged, Africa and Australia remain largely ungauged. A cluster of gauged basins 145 

is in Central Europe and in Eastern Asia. Gauged regions with insufficient model performance are mainly in the 146 

Mississippi River basin, Southern Africa, Australia, and large parts of Brazil. These regions are known to be chal-147 

lenging for GHMs (e.g., cf. Fig. 8b in Stacke & Hagemann, 2021). 148 

Figure 1b shows the calibrated values for γ. It emerges that the calibrated values tend to be at the upper and lower 149 

bounds of the parameter space. This behavior is already known (cf. Fig. 4b in Müller Schmied et al., 2021). A 150 

brief sensitivity analysis and discussion of the calibration parameter are included in Appendix B. The results of 151 
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this analysis indicate that the clustering of the calibrated parameter value is not related to an inappropriate selection 152 

of the parameter bounds but instead to the absence or an insufficient representation of processes. Thus, the clus-153 

tering of the calibrated values does not indicate an inadequate selection of the parameter bounds but highlights the 154 

necessity to improve the model structure and the calibration strategy for WaterGAP3. However, this study focuses 155 

solely on analyzing and implementing regionalization methods. It does not aim to enhance the model structure or 156 

to change the calibration procedure of WaterGAP3. Future studies are needed to achieve the latter, as WaterGAP3 157 

contains many hard-coded parameters or parameters defined by look-up tables that need to be analyzed to identify 158 

and adjust sensitive parameters more accurately during calibration. Initial steps in this direction have already been 159 

taken for WaterGAP2 in the form of a multivariate and multi-objective case study in the Mississippi River basin 160 

(Döll et al., 2024). 161 

Figure 1: (a) Map of calibrated basins, highlighting basins not used for regionalization due to insufficient model per-162 
formance or inadequate basin size and (b) the histogram of the calibrated model parameter values of all used basins 163 
showing a cluster of parameter values at the parameter bounds. 164 

2.3 Basin Descriptors 165 

This study uses basin descriptors as predictors to drive regression-based or distance-based regionalization ap-166 

proaches. These basin descriptors are based on data used within the model simulation (as they are globally avail-167 

able). They are aggregated to basin values using a simple mean method to have the same spatial resolution as the 168 

calibrated model parameter. Thus, in the case of nested basins, the inter-basin area is used to define the basin 169 

descriptors. The selection of the predictors, i.e., basin descriptors that support the estimation of γ, is crucial for 170 

regionalization methods (Arsenault & Brissette, 2014). Typically, this selection aims to obtain the most infor-171 

mation with the least number of predictors to (1) improve the model quality and (2) limit over-parametrization. In 172 

this study, we use 12 basin descriptors to develop regionalization methods; nine of these descriptors are physio-173 

graphic, while the remaining three are climatic (see Table 1). Most descriptors are not correlated (see Appendix 174 

C), i.e., we minimize redundant information (Wagener et al., 2004). 175 

A descriptor subset is selected based on correlation analysis between basin descriptors and calibrated γ value and 176 

entropy assessment. Pearson's correlation coefficient detects linear correlation, and Spearman's Rho and Kendall's 177 

Tau detect a non-linear correlation. Shannon entropy (Shannon, 1948) measures the information gain of the pre-178 

dictors explaining the calibrated γ value. The higher the information gain, the more valuable the basin descriptor 179 

is for explaining the variation in the calibrated γ value. The analysis directly evaluates the relationship between 180 

the calibrated parameter and the basin descriptors, as WaterGAP3 uses only one calibration parameter with a clear 181 

global optimum within the parameter space. An alternative would be to use flow characteristics to define the basis 182 

(b) (a) 
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for regionalization (e.g., Pagliero et al., 2019). We decided to use the calibrated parameter instead of flow charac-183 

teristics as it does not need any further assumption on which flow characteristics determine the model's parameter.  184 

Statistical information of the evaluated basin descriptors and the corresponding correlation coefficients and infor-185 

mation gain are listed in Table 1. The basin descriptors demonstrate a considerable degree of variability, e.g., the 186 

basin size ranges from 5000 km2 to 3,112,480 km2 with a median of 13,796 km2. The mean temperature varies 187 

from -19 °C to 29 °C, and the sum of precipitation ranges from 213 mm to 5,716 mm. Although there is a high 188 

degree of variability in the analyzed basin descriptors, the basin descriptors exhibit low correlation coefficients 189 

with the calibrated values. For example, the permafrost coverage shows the strongest Pearson correlation of -0.37 190 

(and -0.50 for Spearman's Rho). The information gain indicates the same results as the correlation analysis, i.e., 191 

the information gain is generally relatively low, and descriptors with a higher correlation tend to have a higher 192 

information gain. For example, the mean temperature exhibits the maximal information gain of 17.6 % and has 193 

the second-highest correlation coefficient with a Pearson correlation of 0.34.  194 

Table 1: Basin descriptors: statistical information, correlation, and entropy assessment. Selected physiographic and 195 
climatic basin descriptors are written in bold. 196 

 Basin 

Descriptor 

Attribute Information Entropy & Correlation 

Min Max Mean Median IG (%)1 Pearson Spearman Kendall 

p
h

y
si

o
g

ra
p

h
ic

 

Soil Storage (mm) 12.405 610.469 220.805 195.778 13.07 -0.21 -0.15 -0.11 

Open Water Bodies (%) 0.000 63.960 5.521 1.812 5.65 -0.01 -0.08 -0.05 

Wetlands (%) 0.000 63.466 4.164 0.547 5.01 -0.02 -0.13 -0.09 

Size (km2) 5000 3,112,480 37,572 13,796 1.42 -0.04 -0.04 -0.03 

Slope Class (-) 10.057 67.756 38.668 38.364 16.60 -0.31 -0.37 -0.27 

Altitude (m.a.s.l.) 30.239 4765.166 591.024 394.870 9.30 -0.18 -0.28 -0.20 

Sealed Area (%) 0.000 12.3 0.6 0.1 4.49 0.22 0.38 0.29 

Forest (%) 0.000 100.000 35.340 24.002 13.82 -0.25 -0.18 -0.14 

Permafrost & Glacier (%) 0.000 95.000 16.662 0.000 13.12 -0.37 -0.50 -0.40 

cl
im

at
e
 

Mean Temperature(°C) -18.848 28.823 7.720 7.707 17.56 0.34 0.41 0.30 

Yearly Precipitation (mm) 213.6 5,716.3 996.5 779.5 9.23 0.02 0.21 0.14 

Yearly Shortwave Down-

ward Radiation (Wm-2) 
1,050.6 3,043.2 1,857.9 1,759.7 15.79 0.31 0.33 0.24 

1Information gain is given in percentage of total information content in γ after Shannon (1948) 

In contrast to the findings of Wagener and Wheater (2006), the correlation coefficients between the basin de-197 

scriptors and the calibrated values are relatively low, indicating a weak relationship. One potential explanation for 198 

this discrepancy is that Wagener and Wheater (2006) used a smaller number of basins in southeast England, with 199 

limited versatility (e.g., regarding climate and seasonality) compared to the 933 worldwide basins used in this 200 

study. Studies using a large number of basins likely tend to find a lower correlation between catchment attributes 201 

and model parameters (Merz et al., 2004). Moreover, the clustered calibrated γ values at the bounds of the valid 202 

parameter space may disturb the results of this analysis. As the calibrated value masks the effect of multiple sources 203 

of errors, such as uncertainty in the input data, model structure, or varying hydrological processes, finding a mean-204 

ingful relationship between catchment characteristics and calibrated values is challenging.  205 

Because the basis for the descriptor selection seems uncertain, given the low correlation and the named constraints, 206 

we additionally run the regionalization methods with all descriptors to evaluate the descriptor selection. Further 207 

on, to ascertain the advantage of integrating climatic descriptors, we run the regionalization methods using either 208 

physiographic or climatic descriptors. In total, we used four groups of basin descriptors to implement the region-209 

alization methods:  210 
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 "cl": all three climatic descriptors, 211 

 "p": all nine physiographic descriptors, 212 

 "p+cl": all 12 descriptors, and 213 

 "subset": two correlated climatic descriptors (mean temperature, annual shortwave radiation) & three 214 

correlated physiographic descriptors (slope class, forest %, permafrost %). 215 

2.4 Regionalization Methods 217 

In our study, we test several traditional and machine learning-based regionalization methods against each other 218 

and a defined benchmark-to-beat to find suitable regionalization methods for WaterGAP3. At the global scale, 219 

regionalization is particularly challenging due to (1) the lack of high-quality data, (2) the diversity of dominant 220 

hydrological processes in basins, and (3) the high computational demands of the models. Therefore, a robust re-221 

gionalization method that applies to a wide variety of basins and is not computationally demanding should be 222 

selected for a global application.  223 

We test three common traditional approaches and two machine learning-based approaches using the concepts of 224 

spatial proximity, physical similarity, and regression-based methods. As WaterGAP3's model calibration is very 225 

rigid and has only one parameter, it is not feasible to implement and test regionalization methods that incorporate 226 

regionalization into the calibration process, such as transfer functions. In addition, we avoid high computational 227 

demands as all evaluated methods are applicable after the calibration, i.e., without running the model. 228 

As the calibration of WaterGAP3 results in a parameter distribution with a cluster of parameter values at the 229 

parameter bounds, we implement a so-called "tuning" to introduce information about the parameter space into 230 

regionalization. In detail, we apply a simple threshold-based approach to shift the regionalized parameter values 231 

to the extremes, i.e., ����  <  �� � ���� = 0.1 and ����  >  �� � ���� = 5.0. The thresholds �� and �� are defined 232 

by applying the k-means algorithm with three centers to the calibrated parameter values. This clustering results in 233 

three clusters: one for low, one for medium, and one for high γ values. Subsequently, �� refers to the highest γ 234 

value of the low cluster and �� refers to the lowest γ value of a high cluster. 235 

To evaluate the regionalization methods, we implement an ensemble of split-sample tests. Specifically, we ran-236 

domly split the basins into 50 % gauged (for training) and 50 % pseudo-ungauged (for testing). The split has a 237 

relatively high percentage of pseudo-ungauged basins, accounting for many missing gauges worldwide. We fit the 238 

methods and apply them to the training and testing data sets. The split-sample test is repeated 100 times by ran-239 

domly splitting the basins to account for sampling effects.  240 

As there is only one calibration parameter, γ, this parameter has a global optimum per basin. Consequently, the 241 

quality of training and testing is directly assessed by the deviation between the regionalized and the calibrated 242 

value for γ. The closer the regionalized values are to the calibrated ones, the more accurate the prediction. We 243 

assess the prediction accuracy by the logarithmic version of the mean absolute error (logMAE) to account for the 244 

decreasing sensitivity of γ for higher values (see Appendix B). The lower the logMAE, the better the prediction; a 245 

zero value in logMAE expresses no error. The regionalization method is robust if the prediction accuracy is similar 246 

in training and testing. A generally good performance, i.e., small logMAE values, indicates that the regionalization 247 

method suits WaterGAP3. The comparison of γ values enables applying a wide range of regionalization methods 248 

and sets of descriptors, as no computationally intensive model simulation is required. However, it assumes that 249 

deviations in γ lead, in turn, to deviations in discharge, which is only partially true because of varying parameter 250 
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sensitivity in basins (e.g., Kupzig et al., 2023). To validate that the logMAE is a sufficient approximator for the 251 

regionalization performance in WaterGAP3, we use one representative split-sample from the ensemble to compare 252 

the accuracies in simulated discharge for different regionalization methods. 253 

Regression-based methods  254 

The traditionally used regionalization approach of WaterGAP3 is a regression-based MLR. As the benchmark-to-255 

beat, we use the regionalization approach from WaterGAP2.2d defined in Müller Schmied et al. (2021). We con-256 

sider it a suitable benchmark-to-beat given that WaterGAP2 has a model structure and calibration process that is 257 

very similar to WaterGAP3. The main difference between these models is that WaterGAP2 simulates at 0.5°spatial 258 

resolution. The benchmark-to-beat consists of "a multiple linear regression approach that relates the natural loga-259 

rithm of γ to basin descriptors (mean annual temperature, mean available soil water capacity, fraction of local and 260 

global lakes and wetlands, mean basin land surface slope, fraction of permanent snow and ice, aquifer-related 261 

groundwater recharge factor)". (Müller Schmied et al., 2021) We fit this regression model to our data and define 262 

the quality of this approach as the benchmark-to-beat. Moreover, we test an independent MLR approach without 263 

using the logarithmical scaling of γ and using the above-defined sets of basin descriptors. For MLR and the bench-264 

mark-to-beat, we use the lm() function of the R package stats (R Core Team, 2020). After applying the regression 265 

model, we adjust the estimated parameter values to ensure that the estimated values range between 0.1 and 5.  266 

Furthermore, a machine learning-based method, random forest (RF), is tested for regionalization as an alternative 267 

to MLR. Here, we implement the random forest algorithm with the randomForest() function from the R package 268 

randomForest (Liam & Wiener, 2002), which is based on Breimann (2001). The algorithm uses an ensemble of 269 

decision trees, making the decision human-like. It is relatively robust because it incorporates random effects into 270 

the training process. To implement this randomness, we define the algorithm as one that can choose between two 271 

randomly selected predictors at each node, using an ensemble of 200 trees. 272 

Physical Similarity 273 

As the traditional physical similarity approach, we use Similarity Indices (in the following named with SI), apply-274 

ing the methodology proposed by Beck et al. (2016). The SI (see Eq. (2)) are derived using the defined basin 275 

descriptors sets, and the parameter of the most similar basin is transferred to the pseudo-ungauged basin. Addi-276 

tionally, we use an ensemble of basins to control whether an ensemble-based approach leads to more robust results. 277 

The optimal number of donor basins may vary between research regions and hydrological models (Guo et al., 278 

2020). Here, we use ten donor catchments (noted with "ensemble") based on Beck et al. (2016) and McIntyre et 279 

al. (2005). Further, we apply a simple mean method for the ensemble-based prediction to aggregate the ensemble 280 

of γ values into one predicted parameter value.  281 

�!," = ∑ $%&,'(%&,)$
*+,&

-./�           (2) 282 

where �!,"  is the Similarity Index between basin 0 and basin 1, 2.," is the basin descriptor 3 for basin 1, 45�. is the 283 

interquartile range for basin descriptor 3 among all (gauged) basins, and 6 is the number of all basin descriptors 284 

used. 285 

As an alternative machine learning-based approach, we apply a simple k-means algorithm. We selected the k-286 

means algorithm because it is one of the most widely used clustering algorithms (Tongal & Sivakumar, 2017). It 287 
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is easy to understand and use. The algorithm kmeans() is implemented in the R base package stats. It aims to 288 

maximize variation between groups and minimize variation within groups. The number of clusters to use is deter-289 

mined by multiple indices calculated with the R package NbClust (Charrad et al., 2014). For all 933 basins and 290 

the defined sets of basin descriptors, most indices defined three as the optimal number of clusters. Accordingly, 291 

we use three clusters to generate the groups of basins. As different scales of the predictor values can affect the 292 

clustering, a rescaling with min-max-normalization (see Eq. (3)) is performed on the training set and applied to 293 

the testing set. After the grouping, the mean γ value is assigned as a representative calibrated value to the corre-294 

sponding basin group. To estimate the corresponding group for a pseudo-ungauged basin, the knn algorithm is 295 

used, and the representative γ value of the group is assigned to the pseudo-ungauged basin. This algorithm is 296 

implemented by the knn() function of the R package class (Venables & Ripley, 2002). Since the k-means method 297 

is less flexible than SI, we implement a highly flexible version, using the knn algorithm directly to define the donor 298 

basin most similar to each ungauged basin. Using the knn algorithm directly, we test how beneficial it is to create 299 

groups of similar basins using the kmeans algorithm and regionalize the parameter with a representative mean 300 

value. 301 

2′.," =  %&,)(�!-)→�9%&,):
���)→�9%&,):(�!-)→�9%&,):          (3) 302 

where 2.,";  is the normalized basin descriptor 3 for basin 1, 2.,"  is the basin descriptor 3 for the basin 1, < is the 303 

number of (gauged) basins. 304 

  305 

Figure 2: Experimental setup of the study: regionalization methods, used modifications and information, and the gen-306 
eral workflow (MLR: Multiple Linear Regression, SI: Similarity Indices, SP: Spatial Proximity, RF: RandomForest). 307 
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Spatial Proximity 308 

The spatial proximity approach is one of the easiest to regionalize parameter values. However, it is also often 309 

criticized that nearby basins do not necessarily have the same hydrological behavior (Wagener et al., 2004). Fur-310 

thermore, its performance depends on the density of the network of gauged basins (Lebecherel et al., 2016). The 311 

dependency on network density is particularly challenging for global applications where large parts of the world 312 

are ungauged (e.g., northern Africa). Nevertheless, the approach has been successfully applied in other studies 313 

(e.g., Oudin et al., 2008; Qi et al., 2020), even globally (Widén-Nilsson et al., 2007). Here, we take the distance 314 

between the centroids of the basins as the reference for the spatial distance between basins, as done by others 315 

(Oudin et al., 2008). We use the abbreviation SP in the text below to refer to the spatial proximity approach. 316 

Figure 2 provides an overview of the applied regionalization methods and information used for the experimental 317 

setup.  318 

3. Results and Discussion 319 

3.1 Evaluating the effect of tuning 320 

First, the impact of the tuning approach on the regionalization approaches is evaluated. Therefore, Fig. 3 depicts 321 

the differences in logMAE between the standard and tuned approaches in testing, i.e., using the pseudo-ungauged 322 

basins. A positive difference in logMAE indicates an increase in accuracy, whereas a negative difference indicates 323 

a decrease in accuracy due to the tuning.  324 

Using the tuning thresholds of about 1.1 and 3.4 for γ1 and γ2, respectively, enhances the predictive accuracy for 325 

kmeans, MLR, RF, and the ensemble approach of SI. The most remarkable improvement for kmeans, RF, and SI 326 

ensemble is achieved when all physiographic descriptors are used as input (mean improvement of 0.077, 0.058, 327 

and 0.071, respectively). MLR shows the most significant improvement when using all available descriptors (mean 328 

improvement of 0.038). In contrast, the tuning decreases the performance for knn, SI, and SP, with a mean degra-329 

dation between -0.02 and -0.05. Unlike the enhanced regionalization techniques, these methods transfer single-330 

basin information to ungauged regions. Thus, the tuning disturbs the use of single-basin information yet simulta-331 

neously enhances the performance of methods that transfer multi-basin information. The disturbance or improve-332 

ment is probably related to the capability of the methods representing the clustering of parameter values at the 333 

extremes: Whereas the multi-basin information transfer implies a smoothing and thus suffers from a lack of rep-334 

resenting the extremes, the single-basin information transfer exhibits no such a smoothing. 335 

The exception from the above-defined rule is the benchmark-to-beat approach. The benchmark-to-beat is the only 336 

approach that uses logarithmic scaled γ values when fitting the model. This logarithmic transformation leads to an 337 

increase in estimating small values. Thus, when the benchmark-to-beat is tuned, more basins with higher calibrated 338 

γ values receive low estimates. The tuning intensifies this effect, leading to a decrease in the accuracy of the 339 

logMAE from the standard to the tuned version. Thus, for models using logarithmical transformed γ values, the 340 

defined thresholds for the tuning are not appropriate.  341 

Applying knowledge of the optimal parameter space enhances the quality of regionalization for methods transfer-342 

ring multi-basin information in case the tuning thresholds are appropriate. This positive effect is not surprising, as 343 

incorporating a priori information about parameter distribution strengthens parameter estimation (e.g., described 344 

in Tang et al. (2016) using the Bayes Theorem). However, for single-basin transfer, which already represents the 345 
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parameter space well, i.e., the clustering of γ at the extremes, the tuning disturbs the performance. This indicates 346 

that such tuning needs to be cautiously introduced as there is the risk of decreasing the accuracy of regionalization.  347 

 348 

Figure 3: Changes in performance between standard and tuned versions for all applied regionalization approaches. 349 
Positive values indicate an improvement related to the tuning. 350 

3.2 Evaluating descriptor subsets & algorithm selection 351 

Different descriptor sets yield different performances in regionalizing γ. Table 2 shows the median of all logMAE 352 

values for the testing. For a complete overview of the results of the split-sample test ensemble, see Appendix D. 353 

Evaluating Table 2 reveals that the selected subset or all descriptors consistently yield the best performance across 354 

all regionalization methods. In both variants of the ensemble approach of SI, the tuned version of the no-ensemble 355 

approach of SI, and the standard version of RF, the selected subset yields the best results. For all other methods, 356 

using all descriptors yields the best results. Hence, all methods perform best when combining climatic and physi-357 

ographic descriptors. This benefit of using climatic and physiographic descriptors is consistent with others that 358 

often apply a combination of climatic and physiographic descriptors, achieving optimal regionalization results 359 

(e.g., Oudin et al., 2008; Reichl et al., 2009).  360 

The machine learning-based approaches seem to benefit most when using more information displaying an im-361 

provement for all methods (knn, kmeans, and RF) and both variants (standard and tuned) ranging from "cl", "p", 362 

"subset" to "p+cl". This is not surprising as machine learning is developed to deal with big data sets. The traditional 363 

methods MLR and SI do not exhibit such a distinct pattern. The (weakly) correlated subset of climatic and physi-364 

ographic descriptors yields the best results for SI. As utilizing all descriptors decreases the performance slightly, 365 

the results indicate that uncorrelated descriptors may disturb the performance of this approach. For MLR, the 366 

meaning of physiographic information is highest, resulting in the best ("p+cl") and second best ("p") results. The 367 

disparate performance of the regionalization methods when using different descriptor sets indicates that different 368 

methods use descriptor sets with varying efficiency. It also emphasizes that the selection of descriptors impacts 369 

the regionalization method's results, as noted by others (Arsenault & Brissette, 2014). Consequently, the above-370 

performed analysis defining a descriptor subset lacks universal validity as methods exist where the defined subset 371 

is outperformed. Instead, the validity of this approach is most closely aligned with the SI approaches. 372 

Independent from  

descriptor set 
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Although the algorithms kmeans and knn are similar, they yield considerably different performances in Table 2. 373 

As knn shows a logMAE of 0.432 at best, the kmeans algorithm performs poorly, resulting in the best logMAE of 374 

0.472. This indicates that applying the kmeans clustering algorithm to transfer averaged parameters is inappropri-375 

ate for WaterGAP3. This may be attributed to the reduced flexibility of the approach, which entails estimating 376 

only three γ values due to the optimal, though limited, number of centers. The ensemble SI approach consistently 377 

outperforms the no-ensemble SI approach in almost all variants. The positive effect of an ensemble approach for 378 

SI has already been noted (Oudin et al., 2008). Therefore, it is recommended that the number of donor basins 379 

derived from the literature be adopted in future applications to be optimal for WaterGAP3, likely resulting in 380 

higher performance. 381 

Only a few regionalization methods outperform the benchmark-to-beat. The best descriptor sets of tuned MLR, 382 

RF, and SI ensemble approach have a logMAE of 0.427, 0.403, and 0.409, respectively. The standard version of 383 

knn ("p+cl") and SP yield 0.432 and 0.454 in logMAE, respectively. Additionally, two variants of the standard SI 384 

approaches outperform the benchmark-to-beat yet exhibit inferior results compared to the selected tuned approach. 385 

All other regionalization methods show higher logMAE values than the benchmark-to-beat. These methods are 386 

considered insufficient in terms of performance to regionalize γ in WaterGAP3. As the benchmark-to-beat outper-387 

forms all kmeans approach variants, it is deemed unsuitable for regionalizing γ for WaterGAP3 and, therefore, 388 

excluded from further analysis.  389 

Table 2: Median logMAE of 100 split-samples for pseudo-ungauged basins, i.e., in testing, for all regionalization meth-390 
ods applying four sets of descriptors for a) the standard version and b) the tuned version. The bold numbers indicate a 391 
better performance than the benchmark-to-beat. Thicker edges mark best-performing variants, which are chosen for 392 
further analysis. Grey-shaded cells indicate worst-performing variants, which were taken to validate the assumption 393 
that lower logMAE values result in lower KGE values. 394 

test  

(median) 
MLR RF 

SI 
kmeans knn SP B2B 

no ens. ensemble 

cl 0.552 0.483 0.496 0.483 0.619 0.501 

0.454 0.461 
p 0.479 0.465 0.487 0.480 0.551 0.477 

p+cl 0.464 0.464 0.454 0.462 0.534 0.432 

subset 0.488 0.488 0.461 0.439 0.539 0.467 

                 

test* 

(median) 
MLR RF 

SI 
kmeans knn SP B2B 

no ens. ensemble 

cl 0.529 0.467 0.537 0.459 0.619 0.546 

0.502 0.488 
p 0.441 0.416 0.532 0.455 0.515 0.521 

p+cl 0.427 0.403 0.503 0.435 0.472 0.480 

subset 0.453 0.408 0.501 0.409 0.477 0.509 

The well-performing SP on a global scale is surprising as the distances between basins are potentially long, and 395 

hydrological processes may strongly vary. It is probably beneficial for the SP approach that γ comprises all kinds 396 

of errors, e.g., spatially localized errors in global forcing products (e.g., Beck et al., 2017 reported errors for arid 397 

regions in the precipitation product) or inaccurately represented processes for larger regions. Thus, the estimation 398 

of γ might be appropriate, but not because of the same hydrological behavior but due to the same kind of errors. 399 

(b) 

(a) 
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The RF approach is outstanding, as it shows a massive loss in performance from training to testing (see Appendix 400 

D). In detail, the logMAE in testing is about twice the logMAE in training. In comparison, other methods show 401 

results from 95.6 % to 101.4 %. This performance loss indicates that RF is not a robust regionalization method for 402 

WaterGAP3. Other studies that reported the good performance of RF for regionalization have not investigated the 403 

stability of the performance from training to testing (Golian et al., 2021; Wu et al., 2023). Likely, the mathematical 404 

problem of predicting the calibrated parameter for WaterGAP3, with all its challenges (e.g., tailored parameter 405 

space, clustered calibrated parameter, and incorporation of many sources of errors), cannot be adequately solved 406 

by RF. Thus, although RF is known to be especially robust among other machine learning-based techniques, it 407 

shows symptoms of over-parameterization. This indicates that the algorithm is too flexible and adjusts to noise in 408 

the data, missing the underlying systematic. This lack of robustness is particularly disadvantageous since, for Wa-409 

terGAP3, regionalization is applied globally, requiring regionalizing large parts of the world. In consequence, the 410 

RF approach is left out from further analysis and defined as not suitable to regionalize γ for WaterGAP3.  411 

3.3 Performance of selected algorithm in pseudo-ungauged basins  412 

To avoid the high risk of sampling effect when applying the split-sample test, we conduct an ensemble of 100 413 

split-sample tests analyzing the median of logMAE between regionalized and calibrated values as an indicator for 414 

performance. Directly using the differences in regionalized and calibrated values is only meaningful when the 415 

calibrated value represents the global optimum. As this is often not the case, e.g., due to equifinality, the perfor-416 

mance of regionalization methods is usually assessed by the accuracy of simulated discharge (e.g., Samaniego et 417 

al., 2010; Arsenault & Brissette, 2014). Because WaterGAP3 requires computationally intensive simulations, run-418 

ning WaterGAP3 for all 100 split-sample tests for the selected methods is not feasible. Therefore, we select a 419 

single representative split-sample to assess the quality of representing the discharge in the pseudo-ungauged basins 420 

using regionalized γ values. The representative split-sample leads to comparable logMAE values to the corre-421 

sponding median of the ensemble for all regionalization methods. For the evaluation, WaterGAP3 was run for the 422 

same period used in calibration (from 1979 to 2016), with the first year simulated ten times to allow for model 423 

warm-up. Using this period ensures the availability of sufficient data for the evaluation (see Chapter 2.2). Further-424 

more, the differences between the monthly simulated and observed discharge are assessed using the KGE. 425 

To evaluate the KGE, we select the best-performing methods that outperform the benchmark-to-beat: tuned MLR 426 

"p+cl", knn "p+cl", tuned SI ensemble "subset", and SP (see Table 2). For the sake of simplicity, we further mark 427 

them with "(best)". Additionally, we select three poorly performing variants to validate the assumption that meth-428 

ods resulting in higher logMAE values tend to result in lower KGE values, i.e., lower accuracy of simulated dis-429 

charge. These methods are tuned SI "cl" (logMAE: 0.537), tuned knn "cl" (logMAE: 0.546), and MLR "cl" (log-430 

MAE: 0.552). Further, we denote these methods with "worst". Applying the selected methods and the benchmark-431 

to-beat method results in eight estimates of γ for the pseudo-ungauged basins, whose performance is further eval-432 

uated in terms of simulated discharge accuracy. 433 

Figure 4a shows the resulting KGE values for the evaluated regionalization methods and the calibrated version as 434 

grouped boxplots for different ranges of calibrated γ. The methods show different performances for different γ 435 

ranges, indicating their strengths and weaknesses. For the smallest γ range, "0.1-0.2", the selected methods that 436 

perform well during the split-sample test outperform the benchmark-to-beat. The better result for minimal γ ranges 437 

is probably partially related to the advantage of the tuning, which leads to more predictions of 0.1 within the 438 
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regionalization. The benchmark-to-beat shows the best performance for γ values between 0.2 and 0.5. The good 439 

performance for basins with calibrated γ values between 0.2 and 0.5 is probably related to the benefit of using the 440 

logarithmical version of γ in the benchmark-to-beat, leading to more estimates of smaller values. However, this 441 

affects only 12 % of the basins, as calibrated values between 0.2 and 0.5 are not frequently present in the calibration 442 

result. Generally, the differences in KGE appear higher for smaller γ values, probably due to the decreasing pa-443 

rameter sensitivity with higher values (see Appendix B). 444 

Given the variability in the performance of the regionalization methods across the depicted γ ranges, it is challeng-445 

ing to identify an overall best regionalization method using Fig. 4a. Therefore, we compare the various metrics of 446 

the KGE values depicted in Fig. 4b. The analyzed metrics are the minimum, maximum, mean, and median. Further, 447 

we count the number of poorly performing basins, defined as basins with a KGE below 0.2. In Fig. 4b, metrics 448 

that exceed the benchmark-to-beat are grey-shaded.  449 

 

  

 

Figure 4: a) KGE values of pseudo-ungauged basins from split-sample test grouped by the range of calibrated γ values, 450 
b) selected metrics of KGE values from the pseudo-ungauged basins (better or equal performance to the benchmark-451 
to-beat is highlighted in grey), and c) histogram of the number of pseudo-ungauged basins with a KGE below 0.2 and 452 
the corresponding number of methods exhibiting this performance loss. 453 

Comparing the KGE metrics in Fig. 4b reveals that the methods showing higher logMAE values in our split-454 

sampling test ensemble also show lower performance in simulating discharge. For example, all mean (and median) 455 

KGE values of the "worst" methods are below the mean KGE of 0.587 from the benchmark-to-beat, ranging from 456 

0.545 to 0.578. This indicates that the used logMAE between regionalized and calibrated values is a valid tool for 457 

a preliminary selection of adequate methods for the regionalization of WaterGAP3. However, for a more compre-458 

hensive analysis, we recommend additionally analyzing the accuracy of simulated discharges, as the logMAE of 459 

calibrated and regionalized parameter values simplifies the inherent complexity between model parameters and 460 

model performance. 461 

Moreover, SI (best) outperforms the benchmark-to-beat in all listed metrics, reducing poorly performing basins 462 

and enhancing well-performing basins. MLR (best) performs very similarly to SI (best), yet it shows a higher 463 

number of basins with KGE values below 0.2. In comparison to the benchmark-to-beat, it outperforms four out of 464 

Method Min Median Mean Max  ≤  0.2

CAL (donor) 0.402 0.679 0.672 0.939 0

CAL (p.-ung.) 0.403 0.674 0.663 0.953 0

B2B -1.060 0.627 0.587 0.944 17

MLR (best) -0.708 0.633 0.606 0.951 22

MLR (worst) -0.555 0.602 0.578 0.951 28

knn (best) -0.955 0.626 0.597 0.953 18

knn (worst) -2.937 0.604 0.545 0.926 37

SI (best) -0.708 0.627 0.607 0.953 13

SI (worst) -2.937 0.607 0.556 0.951 38

SP -9.040 0.628 0.584 0.954 17

GRDC No.: 

4356110 

#106 #57 #64 #63 #176 

(a) (b)

(c)
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five criteria. The remaining well-performing methods, SP and knn (best), demonstrate superior or equal perfor-465 

mance to the benchmark-to-beat in three out of five criteria. SP results in an equal number of poorly performing 466 

basins, and the minimal KGE value is lower than for the benchmark-to-beat. The knn (best) approach has a slightly 467 

worse median of KGE, i.e., -0.001, and one additional basin shows a KGE below 0.2.  468 

As SI (best) outperforms the benchmark-to-beat in all metrics, we conduct a statistical test to ascertain whether 469 

there is a statistically significant difference in KGE results between the methods. To this end, we use a paired 470 

Wilcoxon rank sum test to test the null hypothesis of whether the KGE differs significantly in central tendency. A 471 

significance level of 0.05 and an adjusted p-value are applied to correct for multiple comparisons (using the cor-472 

rection after Benjamini & Hochberg (1995)). The results demonstrate that SI (best) outperforms all "worst" meth-473 

ods and the benchmark-to-beat. However, the null hypothesis for SP and the "best" options of knn and MLR cannot 474 

be rejected. Consequently, rather than identifying a single alternative to the benchmark-to-beat, we have identified 475 

four. 476 

Notably, all regionalization methods lead to poorly performing basins, as evidenced by the range of basins with a 477 

KGE below 0.2, varying from 13 to 37. In Fig. 4c, we examine whether there are basins that all methods cannot 478 

regionalize, thereby indicating a general insufficiency of the regionalization methods for these basins. The histo-479 

gram indicates that most poorly performing basins belong to a single regionalization method. The high number of 480 

basins, which cannot be estimated well by a single regionalization method, illustrates the diverse shortcomings of 481 

the methods. A single basin shows poor performance across all methods. This is a basin of the river El Platanito 482 

in Mexico. The calibrated γ value is about 1.5, and the corresponding KGE value in calibration is 0.466. This basin 483 

appears to be highly sensitive to γ, with an inaccuracy in the estimated γ having a significant impact on the accuracy 484 

of river discharge. For example, the benchmark-to-beat estimates γ to 1.0, which is close to the calibrated value of 485 

1.5. However, the KGE value of the simulated discharge using the benchmark-to-beat is -0.158 due to a high 486 

overestimation of the variation and mean of the discharge. This high sensitivity seems outstanding and is likely 487 

attributable to the absence of waterbodies and snow, supporting a potentially high impact of γ on the model simu-488 

lation (Kupzig et al., 2023) in conjunction with a relatively small basin size (ca. 6,600 km2). 489 

3.4 Impacts on runoff simulations 493 

To evaluate the impact of runoff simulations, we apply an ensemble of regionalization methods generating γ esti-494 

mates for the worldwide ungauged regions. Within the ensemble, we use the four methods SI (best), knn (best), 495 

MLR (best), and SP that (1) outperform the benchmark-to-beat regarding the logMAE of regionalized and cali-496 

brated values and (2) perform similarly to each other and better than the benchmark-to-beat in KGE for monthly 497 

discharge. Additionally, we use the benchmark-to-beat as the fifth member of our regionalization method ensem-498 

ble. The entire set of 933 gauged basins is used for regionalizing γ, resulting in five distinct worldwide distributions 499 

of γ. The spatially distributed standard deviation of the regionalized values is shown in Fig. 5.  500 

In particular, the southern parts of South America, the northern and southern parts of North America, and Central 501 

Asia reveal differences in γ across the ensemble of regionalization methods (see Fig. 5). In Europe, the highest 502 

differences in regionalized values are observed in Italy, Great Britain, and northern Portugal. In Oceania, the high-503 

est values in standard deviation of γ are in Tasmania, New Zealand, and the southwest of Australia's coast. In 504 

contrast, a minor variation in γ is apparent in northern Africa, most parts of Australia, and the East of the Dead 505 

Sea. Thus, the uncertainty associated with globally regionalizing γ seem to vary across different regions. 506 
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 507 

Figure 5: Standard deviation in regionalized γ values using the best approaches of MLR (best), SI (best), SP, knn (best), 508 

and the benchmark-to-beat. Note that dry regions without discharge are set to zero. 509 

An example of how these uncertainties in regionalized values propagate through the water system is presented in 510 

Fig. 6. This figure displays the coefficient of variation of the mean yearly discharge between 1980 and 2016 based 511 

on the five simulation runs. Moreover, we highlight the effect on rivers in ungauged regions by showing the re-512 

sulting seasonal pattern, i.e., the simulated long-term mean of monthly river discharge for three exemplary rivers. 513 

These rivers are the Río Bravo in Mexico, the Tiber in Italy, and the Tamar River in Tasmania. Each river is located 514 

in an ungauged region, where the standard deviation in γ is high (see Fig. 5). 515 

Comparing Fig. 5 and Fig. 6 reveals that regions showing variability in γ tend to exhibit variation in mean yearly 516 

discharge. However, the impact of variation in γ on the simulated discharge appears to vary spatially. Some regions 517 

showing a high degree of variation in γ do not exhibit a correspondingly high degree of variation in discharge. For 518 

example, 45 % of all ungauged regions showing a low variation in discharge, i.e., the coefficient of variation is 519 

below 0.5, exhibit a standard deviation of more than one in γ. In contrast, about 89 % of the ungauged regions 520 

showing a higher discharge variation exhibit a standard deviation of more than one in γ. Thus, variation in γ does 521 

not necessarily lead to variation in river discharge, but it increases the likelihood that a region's discharge is af-522 

fected. The spatially varying impact of γ is likely related to varying sensitivity regarding γ in the ungauged regions, 523 

which depends on numerous aspects, e.g., snow occurrence or waterbodies (see Kupzig et al., 2023).  524 

About 11 % of the ungauged area exhibits variations in yearly river discharge exceeding 50 % of the mean. These 525 

regions are primarily in southern South America and Central Asia. A further 62 % of the ungauged area exhibits 526 

variations in yearly river discharge between 10 % and 50 % of the mean. These regions are mainly located on the 527 

northern coast of Russia and northern Canada, Indonesia, and Tasmania. Other areas, like most ungauged regions 528 

of Africa and Australia, show almost no impact, i.e., the variation in yearly discharge is less than 10 % of the 529 

mean. In northern Africa, one region exhibits higher values in the coefficients of variation. These values are at-530 

tributable to minimal discharge values, resulting in comparatively high coefficients of variation in this region. 531 

Considering the variation in the seasonality in the selected ungauged river systems (see Fig. 6b-d), the temporal 532 

impact of regionalization varies across the local landscape. For the Tamar River in Tasmania, as illustrated in Fig. 533 

6d, the variation is higher at the start and end of the dry periods in October/November and April/May, respectively. 534 

The spread in monthly mean discharge is about 0.7 m3s-1 to 1 m3s-1 in these periods. The Tiber in Italy and the Río 535 

Bravo in Mexico exhibit a similar pattern: using the regionalized γ values of SP leads to much higher discharge 536 
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rates than other ensemble members, introducing broad uncertainty bands. For the Tiber, this leads to seasonal 537 

estimates varying between 1.2 % (in January) and 11 % (in October) of the mean yearly sum. The Río Bravo shows 538 

variations in its seasonal pattern, with values ranging from 2.2 % (in February) to 6.8 % (in October) of the mean 539 

yearly sum. Thus, all rivers display a temporally varying impact. Whereas the main variation in the discharge of 540 

the Río Bravo and the Tiber is mainly attributed to the SP regionalization run, for the Tamaris River, all regional-541 

ization runs contribute to the varying long-term monthly mean in discharge.  542 

 543 

 544 

Figure 6: a) Global map of the coefficient of variation in mean yearly discharge for the applied regionalization methods. 545 
Resulting differences in the regionalization ensemble regarding the long-term mean of monthly discharge are depicted 546 
for: b) the Río Bravo in Mexico, c) the Tiber in Italy and d) the Tamar River in Tasmania. The grey-shaded area 547 
indicates the range of the long-term mean of monthly discharge and the black line indicates the mean off all simulation 548 
runs. 549 

To gain a deeper understanding of the local impact of regionalization on runoff simulations, we analyze the annual 550 

percentiles from 1980 to 2016 for Río Deseado in Argentina, Río Bravo, and Tamar River, displaying the mean 551 

percentile of all years (see Fig. 7a-c). As the Tiber and Río Bravo display high similarities in the resulting patterns 552 

of percentiles, we demonstrate the impact by showing the percentiles from the Río Bravo. Additionally, we com-553 

pare the relative differences in the mean for each percentile using eight ungauged river systems (see Fig. 7d), as 554 

previously done by Gudmundsson et al. (2012) for nine GHMs. To calculate the relative difference, we subtract 555 

the mean annual percentile of a method from the corresponding mean annual percentile of the reference and divide 556 

the resulting difference by the mean annual percentile of the reference. Instead of using observed flow as a refer-557 

ence, we use the annual percentiles of our benchmark-to-beat. As river discharge is already spatially aggregated 558 

information, it is unnecessary to spatially aggregate grid cells to create results comparable to those of Gudmunds-559 

son et al. (2012), who used cell runoff. The evaluated river systems are Río Chubut, Río Deseado, Río Negro, Río 560 

Bravo, Tamar River, Tiber, Pescara, and Ebro. 561 

 562 
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Figure 7: Mean annual percentiles between 1980 and 2016 of simulated discharge using an ensemble of regionalization 563 
methods. The river are a) Río Deseado, b) Tamar River, and c) Río Bravo. In d), the relative differences in mean annual 564 
percentiles to the benchmark-to-beat of eight ungauged river systems are presented. Negative values indicate smaller 565 
mean annual percentiles than the benchmark-to-beat. Note that all data points from Río Deseado for knn and SP are 566 
excluded as the values are above 2.0. 567 

In Fig. 7a, Río Deseado is highly affected by uncertainties in simulated discharge due to the different regionaliza-568 

tion methods; all segments of the percentiles show high variations where the absolute spread is increasing with 569 

increasing percentiles. For SP and knn (best), the discharge is highest, e.g., estimating a median discharge of 13.7 570 

m3s-1 and 19.7 m3s-1
,
 respectively. For the other methods, the simulated discharge is low, e.g., SI and MLR result 571 

in an equal median discharge of 3.6 m3s-1. The Tamar River in Fig. 7b also shows increasing absolute differences 572 

between the methods for higher percentiles, with the benchmark-to-beat approach leading to the highest discharge. 573 

For the Río Bravo, the absolute differences between the highest result of SP and the other methods remain almost 574 

constant until the 75th percentile. For the 95th percentile, the absolute differences increase rapidly from about 40 575 

m3s-1 (75th percentile) to nearly 200 m3s-1 (95th percentile). The exemplary results of Río Deseado and Río Bravo 576 

indicate a potentially high degree of uncertainty regarding the high percentiles in discharge simulation. These 577 

uncertainties put the results of global flood frequency analysis (e.g., Ward et al., 2013) in ungauged regions at risk 578 

as the time series of annual maxima might be even more uncertain. Thus, the results of flood frequency analysis 579 

should be carefully interpreted in ungauged regions as the impact of parameter regionalization may be significant. 580 

Upon examination of the relative differences to the benchmark-to-beat for eight ungauged river systems, it be-581 

comes evident that the impact of regionalization methods varies between ungauged river systems (e.g., Río Negro 582 

exhibits almost no variation, but Ebro does). Moreover, it becomes apparent that some regionalization methods 583 

(a) (b)

(d)(c)
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contribute more to the variation in estimated discharge than others. The methods contributing most are knn (best) 584 

and SP. For knn (best), 10 of the 40 relative differences are higher than |0.3|. For SP, even 29 out of the 40 relative 585 

differences are higher than |0.3|. The results of SI (best) and MLR (best) are very similar, indicating high similarity 586 

in performance. This is consistent with the KGE evaluation (see Chapter 3.3), in which they performed similarly. 587 

The observation in Fig. 7d that higher relative differences of discharge simulations occur in drier percentiles is 588 

also reported in Gudmundsson et al. (2012). Moreover, the relative differences between the five regionalization 589 

runs seem comparable to the inter-model differences depicted in Gudmundsson et al. (2012), indicating the high 590 

impact of regionalization methods on the evaluated ungauged river systems.  591 

Finally, Table 3 presents the estimated yearly mean runoff to the ocean for all five ensemble members. All esti-592 

mates of global "runoff to ocean" range from 45,622 (SI (best)) to 47,069 (SP). Thus, the differences are on the 593 

scale of smaller inter-model differences (see Table 2 in Widen-Nilsson et al.,2007). The impact of regionalization 594 

becomes even more evident using an unsuitable regionalization method for WaterGAP3. For instance, the tuned 595 

kmeans ("subset") approach results in 42,862 km3 yr-1 "runoff to ocean", increasing the spread between the meth-596 

ods to 4,208 km3 yr-1 being in the scale of inter-model differences. This high impact of regionalization on global 597 

"runoff to ocean" is surprising, given that only 27 % of the world is ungauged, using the GRDC database. From 598 

this 27 %, most regions are in Australia and Africa, where minimal runoff is produced. In studies employing 599 

disparate models, e.g., for inter-model comparison, all regions are simulated in disparate ways.  600 

The most significant deviations in the continental sums of "runoff to ocean" in Table 3 are due to SP. Only for 601 

Europe is the highest deviation related to MLR (best), not SP. Interestingly, the estimated sums of SP occasionally 602 

define the lowest and occasionally the highest extremes for the continents, lacking a systematic pattern. The out-603 

standing role of SP is consistent with previous evaluations in this Chapter, where SP frequently contributes most 604 

to the variation in discharge. This suggests that SP may not be suitable for the global scale. Nevertheless, the 605 

pseudo-ungauged basins in the split-sample tests may also exhibit considerable distances from the observed basins. 606 

Given that SP achieved satisfactory results in both evaluations, using either the logMAE or the KGE, the evaluation 607 

indicates the method's suitability on a global scale. Thus, in the future, the split-sample test must be extended to 608 

gain deeper insights into the method's robustness and make a definitive statement about the method's suitability 609 

on a global scale. For example, the so-called "HDes" approach, recommended by Lebecherel et al. (2016), could 610 

be applied for this purpose. In this approach, the closest basin to the corresponding (pseudo-) ungauged basin is 611 

excluded from the regionalization process, thereby enabling an assessment of the method's robustness. 612 

Table 3: Mean outflow to the ocean and endorheic basins in km³ yr-1 between 1980-2016. The highest continental devi-613 
ation to the benchmark-to-beat is indicated in bold. 614 

Runoff to ocean1 B2B SI (best) knn (best) MLR (best) SP 

Oceania 1,127 -1.80 % -2.20 % -3.40 % -6.60 % 

Europe 3,098 -2.30 % -0.10 % -2.60 % 0.20% 

Asia  16,676 3.50 % 0.30 % 1.60 % 5.50 % 

Africa 5,203 -1.00 % 0.70 % -0.30 % -3.60 % 

North America 7,517 0.30 % 1.00 % -1.70 % 2.20 % 

South America 12,032 1.30 % 1.40 % -0.20 % 4.90 % 

global  45,653 46,273 45,953 45,622 47,069 

1including endorheic basin      
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Conclusion 615 

Valid simulation results from GHMs, such as WaterGAP3, are crucial for detecting hotspots or studying patterns 616 

in climate change impacts. However, the lack of worldwide monitoring data makes adapting GHMs' parameters 617 

for valid global simulations challenging. Therefore, regionalization is necessary to estimate parameters in un-618 

gauged basins. This study applies regionalization methods for the first time to WaterGAP3, aiming to provide 619 

insights into selecting suitable regionalization methods and evaluating their impact on the runoff simulations. Tra-620 

ditional and machine learning-based methods are tested to assess the application of several regionalization tech-621 

niques on a global scale. The concept of benchmark-to-beat and an ensemble of split-sampling tests are employed 622 

for a comprehensive evaluation. Moreover, the impact on runoff simulation is assessed using a wide range of 623 

temporal and spatial scales, i.e., from the daily to the yearly and from the local to the global scale. 624 

In this study, four regionalization methods outperform the benchmark-to-beat and thus are considered appropriate 625 

for WaterGAP3. These methods span the complete range of methodologies, i.e., regression-based methods and 626 

methods using the concept of physical similarity and spatial proximity. Moreover, the methods vary in the de-627 

scriptors used to achieve optimal results. This highlights that different methods use descriptor sets with varying 628 

efficiency. All methods perform best when using climatic and physiographic descriptors, indicating that combining 629 

climatic and physiographic descriptors is optimal for regionalizing worldwide basins. Although random forest is 630 

known to be especially robust among other machine learning-based techniques, it shows symptoms of over-pa-631 

rameterization, indicating that the algorithm is too flexible and adjusts to noise in the data, missing the underlying 632 

systematic pattern.  633 

Our results demonstrate that variation in the regionalized parameter value does not necessarily lead to variation in 634 

river discharge. However, it increases the likelihood that a region's runoff is affected. This spatially varying impact 635 

of γ is likely related to the varying sensitivity in ungauged regions regarding γ. Southern South America is a region 636 

identified to be especially sensitive to variation in γ. Furthermore, local effects on runoff simulations indicate a 637 

temporally varying impact. For example, some impacted rivers indicate a high degree of uncertainty regarding the 638 

high percentiles in discharge simulation. These uncertainties potentially lead to a significant impact on flood fre-639 

quency analysis on a global scale, where the lack of gauging stations in certain regions calls for regionalization. 640 

The global impact of regionalization methods that perform well for WaterGAP3 appears to be in the order of minor 641 

inter-model differences. This impact rigorously increases when using a poorly performing method for WaterGAP3, 642 

underscoring the importance of carefully selecting regionalization methods.  643 

The spatial proximity approach contributes most to the variation in estimated runoff. The outstanding role of this 644 

approach suggests that it may not be suitable for the global scale. However, as the pseudo-ungauged basins in the 645 

split-sample tests may also have considerable large distances to the observed basins, and the method achieves 646 

satisfactory results in all executed evaluations, it is not possible to make a definite statement about the method's 647 

suitability for the global scale. Further research is required to gain deeper insights into the methods' robustness, 648 

e.g., by extending the analysis by applying the recommended "HDes" approach (Lebecherel et al., 2016). 649 

Code and data availability. The data and the supporting R-Code to reproduce this study's findings are available at 650 

https://doi.org/10.5281/zenodo.11833447.  651 
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Appendix A: Global Map of derived global soil moisture storage 655 

 656 

Figure A1: Global map of the size of soil storage based on Batjes (2012) and land use information (derived from Friedl 657 
& Sulla-Menashe, 2019) 658 

  659 
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Appendix B: Further analysis regarding the clustering of parameter values at the extremes 660 

The clustered calibrated parameter values at the extremes of the valid parameter space (see Fig. 1b) are a known 661 

problem within the calibration. As the parameter space, i.e., the parameter bounds, is crucial for calibration and, 662 

in consequence, for regionalization, we address this issue by a brief sensitivity analysis to demonstrate that the 663 

clustering of the calibrated parameter values is more an issue of missing processes (or using additional parameter 664 

values) than an issue of inappropriate parameter space. As the lower limit of the calibrated parameter (0.1) is 665 

sufficiently small in comparison to other studies using a similar HBV-based approach for runoff generation pro-666 

cesses (e.g., see the beta in Table A2 in Jansen et al., 2022), we focus on the sensitivity analysis on the upper limit 667 

of γ (5.0). 668 

In the sensitivity analysis regarding the upper limit of γ, we applied the model formula (see equation B1) containing 669 

the model's parameter γ and modified it within the bounds of 0.1 and 10. Additionally, we modified the soil satu-670 

ration varying from 1 % to 95 %.  671 

 =>?@A=B =  3CDE030?F?0=6�GG�H�!I�  ∙  J=0A JF?>CF?0=6����� (B1) 

The calculated outflow and its relationship to the soil saturation and γ are depicted in Fig. B1 and B2. The incoming 672 

effective precipitation is defined as constant. As it is a factor in equation B1,, the results regarding incoming 673 

effective precipitation are linearly scalable. 674 

Figure B1: a) Runoff generation in the soil layer (neglecting overflow and evapotranspiration) using different values 675 
for the calibration parameter and increasing the soil-moisture, b) runoff generation for varying soil moisture grouped 676 
in bins of size one. 677 

In the depicted Fig. B1, the runoff generation process differences between differing γ values become more linear 678 

when soil saturation increases. Thus, the non-linear model parameter becomes less critical for high soil moisture. 679 

Generally, the runoff generation process differences for higher γ values are more pronounced for higher soil mois-680 

ture. For lower soil moisture, the smaller values have higher effects on the generated runoff. For example, for 70 % 681 

soil moisture, the differences for γ values ranging from 5 to 10 are between 3 % and 16 %. For the same soil 682 

moisture, the range in runoff generation varies from 16 % to 70 % for γ values between 1 and 5. 683 

(a) (b) 
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High γ values usually occur in dry regions (see Fig. 4b in Müller Schmied et al., 2021). In dry regions, high soil 684 

moisture values are not expected to occur frequently (e.g., see Khosa et al., 2020; Oloruntoba et al., 2024 for 685 

estimated and measured soil moisture in Africa and Draper et al., 2008 for estimated and measured soil moisture 686 

in Australia). It is, therefore, unlikely that higher γ values will significantly enhance the calibration result or de-687 

crease the issue of clustered calibrated parameter values at the higher end of the parameter space. More likely, the 688 

clustering of calibrated parameter values will be resolved in dry regions by incorporating additional (missing) 689 

model processes, such as evaporation from rivers or inaccurate representation of groundwater processes (Eisner, 690 

2016, p. 49). Thus, the parameter bounds of γ (e.g., also used in Eisner 2016, p. 16; Müller Schmied et al., 2021; 691 

Müller Schmied et al., 2023) are not changed in this study.   692 
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Appendix C: Basin descriptors  693 

Overview of basins descriptors used in this study. All basin descriptors are derived from the original model input 694 

and aggregated with a simple mean method to basin values to produce the same spatial resolution as the calibrated 695 

model parameter.  696 

 Soil Storage: The size of the soil storage, i.e., the maximal water content in the soil reachable for plants 697 

in mm. The information is the product of rooting depth (defined in a look-up table) and the total available 698 

water content derived from Batjes (2012). 699 

 Open Water Bodies: The fraction of the area covered with open water bodies in the basin is given as a 700 

percentage. The model input is based on the GLWD database (Lehner & Döll, 2004).  701 

 Wetlands: The fraction of area covered with wetlands in a basin is given in percentage. The model input 702 

is based on the GLWD database (Lehner & Döll, 2004). 703 

 Size: Size of a basin in km2. 704 

 Slope: The mean slope class is calculated as described in Döll & Fiedler (2008) and based on GTOPO30 705 

(USGS EROS data centre).  706 

 Altitude: The mean altitude of a basin is given in meters above sea level and based on GTOPO30 (USGS 707 

EROS data centre). 708 

 Forest: The mean fraction of the area covered with forest is given in percentage and derived from MODIS 709 

data (Friedl & Sulla-Menashe, 2019), where 2001 is used as a reference. All grid cells having a dominant 710 

International Geosphere-Biosphere Programme (IGBP) classification between one and five are defined 711 

as "forest". 712 

 Sealed Area: The mean fraction of sealed area is given in percentage and derived from MODIS data 713 

(Friedl & Sulla-Menashe, 2019), where 2001 is used as a reference. All grid cells having an IGBP clas-714 

sification equal to 13 are defined as they would contain 60% of the sealed area. Note: The different treat-715 

ment of forest and sealed area is based on the required model input; whereas the land cover is a classified 716 

value, the sealed area is a floating-point value. 717 

 Permafrost & Glacier: The mean coverage of permafrost and glacier in a basin is given in percentage. It 718 

is based on the World Glacier Inventory and the Circum-Arctic Map of Permafrost and Ground-Ice Con-719 

ditions. 720 

 Mean Temperature: The mean air temperature is based on the meteorological forcing used to drive the 721 

model (Lange, 2019) covering the period 1979 to 2016 and given in degrees Celsius.  722 

 Yearly Precipitation: The yearly precipitation sum is based on the meteorological forcing used to drive 723 

the model (Lange, 2019) covering the period 1979 to 2016 and given in mm. 724 

 Yearly Shortwave Downward Radiation: The yearly shortwave downward radiation is based on the me-725 

teorological forcing used to drive the model (Lange, 2019) covering the period 1979 to 2016 and given 726 

in Wm-2. 727 

 728 

The correlation between the defined basin descriptors is shown in Fig. A1. The variation within each basin de-729 

scriptor for basins used for regionalization is shown in Fig. A2. 730 

 731 



26 

 

 732 

 733 

Figure C1: Correlation between basins descriptors. 734 

 735 

 736 

Figure C2: Distribution of basins descriptors within all basins used for regionalization (n=933)  737 
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Appendix D: Results of the ensemble of the split-sample tests 739 

738 

 740 

 741 

 742 

Figure D1: logMAE values for all 100 split-sampling tests using all variants of a) MLR, RF, and benchmark-to-beat, 743 
b) SI, and c) kmeans, knn, and SP. Note that the asterisk * indicates the tuned version of the method. 744 

  745 

(a) 

(b) 

(c) 

benchmark 

benchmark 

benchmark* 

benchmark 
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Table D1: Performance loss in median logMAE of the ensemble of split-sample tests from training to testing expressed 746 
in % of logMAE in training. 747 

test  

(% train) 
MLR RF 

SI 

kmeans knn SP B2B 
no ens. 

ensem-

ble 

cl 100.4 202.9 100.6 100.6 100 100 

102.3 102.2 
p 102.1 199.6 101.2 100.6 101.3 101.1 

p+cl 103.1 207.1 101.6 100.9 100.6 95.6 

subset 101.7 223.9 100 100.7 101.3 100.2 

         

test*  

(% train*) 
MLR RF 

SI 
kmeans knn SP B2B 

no ens. 
ensem-

ble 

cl 100.8 266.9 99.8 100.7 100 100.4 

103.1 104.1 
p 103 277.3 101.3 101.3 101.4 101.4 

p+cl 104.4 277.9 102 102.1 102.2 101.7 

subset 102 258.2 99.8 100.5 103 100.2 

 748 

  749 
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