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Abstract: 10 

Valid simulation results from global hydrological models (GHMs), such as WaterGAP3, are essential to detecting 11 

hotspots or studying patterns in climate change impacts. However, the lack of worldwide monitoring data makes 12 

it challenging to adapt GHMs' parameters to enable such valid simulations globally. Therefore, regionalization 13 

regionalization is necessary to estimate parameters in ungauged basins. This study presents the results of new 14 

regionalization regionalization methods for the first time applied on the GHM WaterGAP3 and. It aims to provide 15 

insights into (1) selecting a suitable regionalization regionalization method method and (2) evaluating its impact 16 

on the runoff simulation. In this study, Our results suggest that machine learning-based methods may be too flex-17 

ible for regionalizing WaterGAP3 due to a significant performance loss between training and testing. four region-18 

alization methods have been identified as appropriate for WaterGAP3. These methods span the full spectrum of 19 

methodologies, i.e., regression-based methods, physical similarity, and spatial proximity, using traditional and 20 

machine learning-based approaches. Moreover, the methods differ in the descriptors used to achieve optimal re-21 

sults, although all utilize climatic and physiographic descriptors. This demonstrates (1) that different methods use 22 

descriptor sets with varying efficiency and (2) that combining climatic and physiographic descriptors is optimal 23 

for regionalizing worldwide basins. In contrast, the most basic regionalization method (using the concept of spatial 24 

proximity) outperforms most of the developed regionalization methods and a pre-defined benchmark-to-beat in an 25 

ensemble of split-sample tests. The method selection, whether spatial proximity-based or regression-based, has a 26 

greater impact on the regionalization than the specific details on how the method is applied. In particular, the 27 

descriptor selection plays a subsidiary role when at least a subset of selected descriptors contains relevant infor-28 

mation. Additionally, our research has shownindicates that regionalization regionalization causes leads to spatially 29 

and temporally varying uncertainty for in ungauged regions. For example, India and Indonesia are particularly 30 

affected by higher uncertaintregionalization highly affects southern South America, e.g., leading to high uncer-31 

tainties in the flood simulation of the Río Deseado.y . The local impact of regionalization regionalization propa-32 

gates through the water system, also affecting in ungauged areas propagates through the water systemglobal esti-33 

mates, e.g.,as evidenced by one water balance componenta changed spread ofby approximately 2400 1,500 km³ 34 

yr-1 across an ensemble of five regionalization methods in simulated global runoff to the oceanon a global scale., 35 

which is in the range of inter-model differences. Thise magnitude of the impact of regionalization discrepancy is 36 

even more pronounced when using a regionalization method deemed unsuitable for WaterGAP3, resulting in a 37 

spread of 4,208 km3 yr-1. This significant increase highlights the importance of carefully choosing regionalization 38 
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methods. Further research is needed to enhance the understanding of the methods' robustness on a global scale.de-39 

pends on the variability in regionalized values and the region's sensitivity for the analysed component.  40 

1. Introduction 41 

Global hydrological models (GHMs) are developed and applied worldwide, e.g., to detect hotspots and examine 42 

patterns of climate change impacts on the terrestrial water cycle (e.g., Barbarossa et al., 2021; Boulange et al., 43 

2021). Valid model results are a prerequisite to draw robust conclusions. For valid modelling results, it is beneficial 44 

to adjust the parameter values to adapt the models to different basin processes (Gupta et al., 1998). This adaptation 45 

is usually modified and evaluated (in a loop) by comparing the simulated model output, often discharge, with the 46 

monitored data. However, this parameter adjustment for GHMs is challenging due to the lack of global monitoring 47 

data. Consequently, parameter adjustment for GHMs can be based not only on monitored data (i.e., calibration) 48 

but also on estimating parameter values for ungauged basins (i.e., regionalizationregionalization).  49 

Regionalization Regionalization defines is the estimation of parameter values in a modelof model parameters for 50 

ungauged basins (Oudin et al., 2008), usually based on information from gauged basins (Oudin et al., 2010). Re-51 

gionalization Regionalization methods generally follow the same principle: basin characteristics (e.g., physio-52 

graphic and/or climatic) are linked to hydrological characteristics and can thus be used to estimate parameter val-53 

ues. Various regionalization regionalization methods exist, and no overall preferred method has been found (Ayzel 54 

et al., 2017; Pool et al., 2021). In contrast, the optimal regionalization regionalization method may differ, for 55 

example, regarding available information (Pagliero et al., 2019) or model structures (Golian et al., 2021). There-56 

fore, different methods should be tested to find an optimal regionalization regionalization method for a specific 57 

use case (e.g., Qi et al., 2020).  58 

Evaluation is needed to assess different regionalization regionalization methods. The eEvaluation of is particularly 59 

challenging for regionalization regionalization methods is particularly challenging because because they are usu-60 

ally applied when there is a lack of monitoring data is missingmonitoring data. Therefore, regionalization region-61 

alization studies often treat gauged basins as “"ungauged” " and perform leave-one-out cross-validation (e.g., 62 

Chaney et al., 2016) or split-sample tests (e.g., Beck et al., 2016; Nijssen et al., 2000; Yoshida et al., 2022). While 63 

at the mesoscale, this evaluation is already an integral part (e.g., McIntyre et al., 2005; Parajka et al., 2005; Oudin 64 

et al., 2008; Yang et al., 2020), this is sometimes not the case in global or continental studies (e.g., Müller Schmied 65 

et al., 2021; Widén-Nilsson et al., 2007). Another reasonable evaluation strategy is the concept of benchmark-to-66 

beat (Schaefli & Gupta, 2007; Seibert, 2001). Applying a benchmark-to-beat supports a comprehensive evaluation 67 

of whether a new approach is functional, e.g., better than a straightforward and thus transparent method or better 68 

than a predecessor. To the authors' knowledge, such a benchmark-to-beat has never been used to evaluate innova-69 

tions in regionalization regionalization at the a global levelscale. 70 

In general, regionalization regionalization methods can be divided into two categories based on the parameter 71 

estimation strategy: (1) regression-based and (2) distance-based (He et al., 2011). Regression-based methods de-72 

rive the relationship between basin characteristics and model parameters through fitted regression models. These 73 

mathematically defined relationships are further applied to estimate model parameters of ungauged basins (e.g., 74 

Kaspar, 2004; Müller Schmied et al., 2021). A significant drawback of regression-based regionalization regional-75 

ization is the difficulty of incorporating parameter interdependencies (Poissant et al., 2017), as . Rregression-based 76 
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approaches often assume that the dependent variables, i.e., the model parameters, are not correlated (Wagener et 77 

al., 2004). Distance-based approaches transfer complete parameter sets from similar or nearby donor basins to 78 

ungauged basins (e.g., Beck et al., 2016; Nijssen et al., 2000; Widén-Nilsson et al., 2007). Using an ensemble of 79 

donor basins, e.g., by averaging the parameter values or model outputs, can improve the performance of such 80 

methods (e.g., Arsenault & Brissette, 2014). A significant disadvantage of such methods is the clustering problem 81 

of ungauged basins, i.e., the unequal distribution of gauging stations worldwide (Krabbenhoft et al., 2022). Thus, 82 

basins exist where distance-based approaches will use incomparable basins to transfer parameter values due to the 83 

lack of close basins.  84 

Recent advances have implemented machine learning-based techniques in the context of regionalizationregional-85 

ization. For example, Chaney et al. (2016) used regression trees as an alternative to least squares regression to 86 

estimate parameter values in ungauged basins. Pagliero et al. (2019) explored supervised and unsupervised clus-87 

tering methods to define the similarity of basins to transfer parameter sets. To the authors' knowledge, no study 88 

has compared several traditional regionalization regionalization methods with machine learning-based methods 89 

for a GHM on a global scale. 90 

Some regionalization regionalization methods do not make a clear distinction between calibration and regionali-91 

zationregionalization. For example, Arheimer et al. (2020) applied a basin grouping beforehand. Then, they jointly 92 

calibrated the group members to define representative parameter sets. Subsequently, the representative parameter 93 

sets are transferred to other basins based on grouping rules. Another approach defines so-called transfer functions 94 

(Samaniego et al., 2010) and calibrates meta-parameters instead of the model parameter values (Beck et al., 2020; 95 

Feigl et al., 2022). These methods, where regionalization regionalization is part of the calibration process, often 96 

require a change in the calibration process itself, which is challenging for GHMs (Schweppe et al., 2022), for 97 

example, due to a lack of code flexibility (e.g., Cuntz et al., 2016). 98 

This study proposes an improved regionalization regionalization method for the state-of-the-art GHM WaterGAP3 99 

(Eisner, 2016). It compares traditional regionalization regionalization methods with machine learning-based meth-100 

ods and uses a “benchmark-to-beat”  and an ensemble of split-sample tests to evaluate the applied methods. Fur-101 

ther, global runoff simulations are compared to analyze the impact of regionalization methods. The overall research 102 

topic is evaluating and selecting the most appropriate regionalization regionalization methods for a GHM. Specif-103 

ically, the study has two objectives. It aims  104 

(1) to propose an improved selection for the regionalizzation method forof WaterGAP3 and 105 

(2) to evaluate the impact of an improved regionalization regionalization methods against a benchmark-to-106 

beaton global runoff simulations.  107 

2. Data and Methods 108 

2.1 The Model: WaterGAP3 109 

The GHM WaterGAP3 simulates the terrestrial water cycle, including the main water storage components and a 110 

simple storage-based routing algorithm. It is a fully distributed model that operates on a five arcmin grid and 111 

simulates at a daily time step. A more detailed model description candescription of the model can be found in 112 

Eisner (2016). 113 
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In WaterGAP3, most model parameter values are set a priori, e.g., using look-up tables for albedo or rooting depth. 114 

Only one parameter, γ, is calibrated, which is part of the soil moisture storage in which runoff generation processes 115 

are present. The model equation for γ, which originates from the HBV-96 model (Lindström et al., 1997), is given 116 

in Eq. (1). Generally, higher values of γ lead to lower runoff volumes, while lower values of γ lead to higher runoff 117 

volumes. Theis model parameter is calibrated per basin within the range of 0.1 and 5. The objective function for 118 

of the calibration is to minimize minimize the deviation between the mean annual simulated and observed river 119 

discharge, i.e., the calibration aims to reduce the error in discharge volume. Given the monotonic relationship 120 

between the model's parameter and the optimization function, a simple search algorithm is applied: The parameter 121 

space is divided into rectangles, which are subsequently subdivided into smaller rectangles depending on the di-122 

rection γ should be modified to achieve closer alignment with the optimization target. TThus, as a result of the 123 

calibration results in one , each basin has a calibrated γ value (γ) between 0.1 and 5 per basin. After the calibration, 124 

a correction is applied to account for high errors in the mass balance, e.g., due to inaccuracies in global meteoro-125 

logical forcing products. This correction can only be applied inis only applicable on gauged basins. It is, therefore, 126 

neglected in this study. 127 

� =  �� ∙ � �	
�	,�� 

�
�

          (1) 128 

where � is the daily runoff, �� is the daily throughfall, �� is the actual soil storage, ��,���   is the maximal soil 129 

storage (given as a global map in Appendix A), and � is the calibration parameter. 130 

Traditionally, the regionalization process in WaterGAP3 is a simple multiple linear regression (MLR) approach to 131 

estimate the calibration parameter γ for ungauged basins (e.g., Döll et al., 2003; Kaspar, 2004). The drawback of 132 

MLR regarding parameter interaction can be neglected: As there is only one parameter to estimate, parameter 133 

interference does not exist. Instead, the approach offers the advantage of a lightweight, transparent application that 134 

can be quickly revised and adapted. 135 

Traditionally, the regionalization process in WaterGAP3 is a simple multiple linear regression (MLR) approach to 136 

estimate the calibration parameter γ for ungauged basins (e.g., Döll et al., 2003; Kaspar, 2004). The drawback of 137 

MLR regarding parameter interaction can be neglected: As there is only one parameter to estimate, parameter 138 

interference does not exist. Instead, the approach offers the advantage of a lightweight, transparent application that 139 

can be quickly revised and adapted. We use the regionalization approach from WaterGAP2.2d as benchmark-to-140 

beat as defined in Müller Schmied et al. (2021). WaterGAP2 has a model structure and calibration process that are 141 

very similar to WaterGAP3. The main difference between these models is that WaterGAP2.2d simulates at 142 

0.5°spatial resolution. Thus, we expect the regionalization approach to be feasible for WaterGAP3.  143 

2.2 Model Data 144 

WaterGAP3 requires various input data, such as soil information, topography, or information on open freshwater 145 

bodies. This study uses the same input data as Kupzig et al. (2023). For meteorological forcing, we use the global 146 

data set EWEMBI (Lange, 2019). This data product includes daily global forcing data with a spatial resolution of 147 

0.5 degrees (latitude and longitude) that covers a period from 1979 to 2016. Specifically, WaterGAP3 uses the 148 

following forcing information from the EWEMBI data set as input: 149 

 daily mean temperature, 150 

 daily precipitation, 151 
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 daily shortwave downward radiation, and 152 

 daily longwave downward radiation. 153 

 154 

The WaterGAP3 calibration requires observed monthly river discharge data. This discharge data is subsequently 155 

transformed into annual discharge sums in the calibration procedure and used as a benchmark in the calibration 156 

procedure. In this study, we used discharge data from 1,861 stations that were manually verified (Eisner, 2016). 157 

To get the best data available, we have updated all available station data with recent data from The Global Runoff 158 

Data Center (GRDC, 2020). All stations have at least five years of complete (monthly) station data between 1979 159 

and 2016. For each station, a contribution area, i.e., a basin, is defined with the gridded flow-direction information 160 

obtained from WaterGAP3, which is based on the HydroSHEDS database (Lehner et al., 2008). 161 

The 1,861 basins are calibrated using the above-described standard calibration approach for WaterGAP3. After 162 

Following the standard calibration procedure, some basins still have an insufficient model performance. In this 163 

context, we define a monthly Kling-Gupta-Efficiency (KGE) below 0.4 or more than 20 % bias in monthly flow 164 

as insufficient model performance. We underscore the importance of minimizing the error in discharge volume by 165 

defining it as an additional criterion corresponding to the optimization target during calibration. , i.e., more than 166 

20% bias in monthly discharge. These Basins not fulfilling the defined conditions regarding bias and KGE basins 167 

are neglected in further analysis to avoid high parameter uncertainty due to errors in input data, model structure, 168 

or discharge data affecting the analysis. . Further, we have excluded all basins with less than 5000 km2  169 

(inter-) basin size to from the next upstream basin. We assume that this inter-basin size is large enough to assume 170 

a certain degree of interdependency between nested basins. In total, 1,236933 basins out of 1,861 basins are se-171 

lected for regionalization regionalization (323 626 are neglected due to insufficient low model performance, and 172 

302 are neglected due to insufficient inadequate basin size).  173 

Figure 1Figure 1a shows a map of thedepicts the worldwide calibrated basins, highlighting gauged and ungauged 174 

regions. Whereas, covering most parts of North and South America are gauged,. However, Africa and Oceania 175 

Australia remain largely ungauged. A cluster of gauged basins is located in Central Europe and in Eastern Asia. 176 

Gauged regions with low insufficient model performance are mainly found in the Mississippi River basin, Southern 177 

Africa,  and Australia, and large parts of Brazil. These regions are known to be challenging for GHMs (e.g., cf. 178 

Fig. 8b in Stacke & Hagemann, 2021). 179 

Figure 1Figure 1b shows the calibrated values for γ. It emerges that the calibrated values tend to bet at the upper 180 

and lower bounds of the parameter space. This misbehaviour is already known (cf. Fig. 4b in Müller Schmied et 181 

al., 2021). A brief sensitivity analysis and discussion of the calibration parameter are included in Appendix B. The 182 

results of this analysis indicate that the clustering of the calibrated parameter value is not related to an inappropriate 183 

selection of the parameter bounds but instead to the absence or an insufficient representation of processes. Thus, 184 

the clustering of the calibrated values does not indicate an inadequate selection of the parameter bounds but  and 185 

highlights the need necessity to further developimprove the model structure and the calibration strategy for Wa-186 

terGAP3, e.g., by implementing multivariate calibration. However, this study focuses solely on analysing analyz-187 

ing and implementing a new regionalization regionalization methods. It does not aim to enhance the model struc-188 

ture or to change the calibration approach procedure of WaterGAP3. Future studies are needed to achieve the latter, 189 

as WaterGAP3 contains many hard-coded parameters or parameters defined by look-up tables that need to be 190 
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analyzed to identify and adjust sensitive parameters more accurately during calibration. To achieve the latter, fu-191 

ture studies are needed to select sensitive parameters or advance the model structure to avoid structural errors that 192 

introduce high parameter uncertainty when applying multivariate calibration (Kupzig et al., 2023). Initial steps in 193 

this direction have already been taken for WaterGAP2 in the form of a multivariate and multi-objective case study 194 

in the Mississippi River basin (Döll et al., 2024). 195 

Figure 1: (a) Map of calibrated Gauged basins calibrated beforehand, highlighting highlighting basins not used for 196 
regionalization regionalization due to low insufficient model performance or too smallinadequate basin size and (b) the 197 
histogram of the calibrated model parameter values of all used basins showing heavy-tails.a cluster of parameter values 198 
at the parameter bounds. 199 

2.3 Basin Descriptors 200 

This study uses basin descriptors as predictors to drive regression-based or distance-based regionalization region-201 

alization approaches. These basin descriptors are based on model data used within the model simulation (as they 202 

are globally available). Theyand are aggregated to basin values using a simple mean method to have the exact 203 

same spatial resolution as the calibrated model parameter.  Thus, in the case of nested basins, the inter-basin area 204 

is used to define the basin descriptors. The selection of the predictors, i.e., basin descriptors that support the esti-205 

mation of γ, is crucial for regionalization regionalization methods (Arsenault & Brissette, 2014). Typically, this 206 

selection aims to obtain the most information with the least number of predictors to (1) improve the model quality 207 

and (2) limit over-parametrizationparametrization. In this study, we use 12 basin descriptors to develop regionali-208 

zation regionalization methods; nine of these descriptors are physiographic, while the remaining three are climatic 209 

(see Table 1Table 1). Most descriptors are not correlated (see Appendix CA), i.e., we avoid minimize redundant 210 

information (Wagener et al., 2004). 211 

A descriptor subset is selected based on correlation analysis between basin descriptors and calibrated γ value and 212 

entropy assessment. Pearson's correlation coefficient detects linear correlation, and Spearman's Rho and Kendall's 213 

Tau detect a non-linear correlation. Shannon entropy (Shannon, 1948) measures the information gain of the pre-214 

dictors explaining the calibrated γ value. The higher the information gain, the more valuable the basin descriptor 215 

is for explaining the variation in the calibrated γ value. The analysis directly evaluates the relationship between 216 

the calibrated parameter and the basin descriptors, as WaterGAP3 uses only one calibration parameter with a clear 217 

global optimum within the parameter space. An alternative would be to use flow characteristics to define the basis 218 

for regionalization (e.g., Pagliero et al., 2019). We decided to use the calibrated parameter instead of flow charac-219 

teristics as it does not need any further assumption on which flow characteristics determine the model's parameter. 220 

The predictor selection is based on correlation analysis and entropy assessment. Pearson's correlation coefficient 221 

detects linear correlation, and Spearman's Rho and Kendall's Tau detect a non-linear correlation between basin 222 

(b) (a) 
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descriptors and calibrated γ values. Shannon entropy (Shannon, 1948) measures the information gain of the pre-223 

dictors explaining the calibrated γ value. The higher the information gain, the more valuable the basin descriptor 224 

is for explaining the variation in the calibrated γ value.  225 

Statistical information of the evaluated basin descriptors and the corresponding The ccorrelation coefficients and 226 

the corresponding information gain are listed in Table 1 Table 1. The basin descriptors demonstrate a considerable 227 

degree of variability, e.g., the basin size ranges from 5000 km2 to 3,112,480 km2 with a median of 13,796 km2. 228 

The mean temperature varies from -19 °C to 29 °C, and the sum of precipitation ranges from 213 mm to 5,716 229 

mm. Although there is a high degree of variability in the analyzed basin descriptors, All the basin descriptors have 230 

exhibita low correlation coefficients with the calibrated values. , e.g.For example, the permafrost coverage shows 231 

the highest strongest Pearson correlation of is -0.37 (and -0.50 for Spearman's Rho)6. The information gain indi-232 

cates the same results as the correlation analysis, i.e., the information gain is generally relatively low, and de-233 

scriptors with a higher correlation tend to have a higher information gain.The information gain shows the same 234 

result for the predictors, i.e., descriptors with a higher correlation tend to have a higher information gain. Never-235 

theless, the information gain is relatively low For example, the mean temperature exhibits the maximal information 236 

gain, with a maximum of 17.6 4.4% and has the second-highest correlation coefficient with a Pearson correlation 237 

of 0.34of the information explained by the temperature descriptor.  238 

Table 1: Basin descriptors: statistical information, correlation, and entropy assessment. Selected physiographic and 239 
climatic basin descriptors are written in bold. 240 

 Basin 

Descriptor 

Attribute Information Entropy & Correlation 

Min Max Mean Median IG (%)1 Pearson Spearman Kendall 

p
h

y
si

o
g

ra
p

h
ic

 

Soil Storage (mm) 12.405 610.469 220.805 195.778 13.07 -0.21 -0.15 -0.11 

Open Water Bodies (%) 0.000 63.960 5.521 1.812 5.65 -0.01 -0.08 -0.05 

Wetlands (%) 0.000 63.466 4.164 0.547 5.01 -0.02 -0.13 -0.09 

Size (km2) 5000 3,112,480 37,572 13,796 1.42 -0.04 -0.04 -0.03 

Slope Class (-) 10.057 67.756 38.668 38.364 16.60 -0.31 -0.37 -0.27 

Altitude (m.a.s.l.) 30.239 4765.166 591.024 394.870 9.30 -0.18 -0.28 -0.20 

Sealed Area (%) 0.000 12.3 0.6 0.1 4.49 0.22 0.38 0.29 

Forest (%) 0.000 100.000 35.340 24.002 13.82 -0.25 -0.18 -0.14 

Permafrost & Glacier (%) 0.000 95.000 16.662 0.000 13.12 -0.37 -0.50 -0.40 

cl
im

at
e
 

Mean Temperature(°C) -18.848 28.823 7.720 7.707 17.56 0.34 0.41 0.30 

Yearly Precipitation (mm) 213.6 5,716.3 996.5 779.5 9.23 0.02 0.21 0.14 

Yearly Shortwave Down-

ward Radiation (Wm-2) 
1,050.6 3,043.2 1,857.9 1,759.7 15.79 0.31 0.33 0.24 

1Information gain is given in percentage of total information content in γ after Shannon (1948) 

In contrast to the findings of Wagener and Wheater (2006), the correlation coefficients between the basin de-241 

scriptors and the calibrated values are relatively low, indicating a weak relationship. One potential explanation for 242 

this discrepancy is that Wagener and Wheater (2006) used a smaller number of basins in southeast England, with 243 

limited versatility (e.g., regarding climate and seasonality) compared to the 933 worldwide basins used in this 244 

study. Studies using a large number of basins likely tend to find a lower correlation between catchment attributes 245 

and model parameters (Merz et al., 2004). Moreover, the clustered calibrated γ values at the bounds of the valid 246 

parameter space may disturb the results of this analysis. A possible reason for the low correlation and information 247 

gain is that the γ values are tailored within the calibration's valid parameter bounds (i.e., 0.1 and 5), resulting in 248 

heavy tails of the calibrated γ distribution. Thus, we expect the correlation to be higher, with calibrated γ reaching 249 

values higher than 5. In addition,As the calibrated value masks the effect of multiple sources of errors, such as 250 
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uncertainty in the input data, model structure, or varying hydrological processes, finding a meaningful relationship 251 

between catchment characteristics and calibrated values is challenging.  252 

Because the basis for the descriptor selection seems uncertain, given the low correlation and the named constraints, 253 

we additionally run the regionalization methods with all descriptors to evaluate the descriptor selection. Further 254 

on, to ascertain the advantage of integrating climatic descriptors, we run the regionalization methods using either 255 

physiographic or climatic descriptors. Thus, there might be more complex relationships between the descriptors 256 

and the calibrated parameter, which are only partially captured by this analysis. Nevertheless, the results of this 257 

analysis indicate descriptors that may be more useful than others in defining a regionalization method. In total, 258 

Wwe used implement regionalization methods using four groups of basin descriptors to implement the regionali-259 

zation methods by selecting basin descriptors with the highest correlation coefficients and information gain:  260 

 “"cl”: ": two correlatedall three climatic descriptors, (mean temperature, annual shortwave radiation), 261 

 “"p”: ": three correlatedall nine physiographic descriptors (slope class, forest %, permafrost %), 262 

 "p+cl": all 12 descriptors, and 263 

 “"p+clsubset”: ": two correlated climatic descriptors (mean temperature, annual shortwave radiation) & 264 

three correlated physiographic descriptors (slope class, forest %, permafrost %)., and 265 

 “all”: all 12 descriptors (as a control group to examine the effect of using correlated descriptors). 266 

 267 

Table 1: Basin descriptors used in the regionalization methods: statistical information, correlation, and entropy assess-268 
ment. Selected physiographic and climatic basin descriptors are shaded in grey. 269 

 Basin 

Descriptor 

Attribute Information Entropy & Correlation 

Min Max Mean Median IG (%) Pearson Spearman Kendall 

p
h

y
si

o
g

ra
p

h
ic

 

Soil Storage (mm) 8.994 677.950 219.071 192.006 10.19 -0.20 -0.16 -0.12 

Open Water Bodies (%) 0.000 77.125 7.979 2.376 5.22 0.01 -0.05 -0.03 

Wetlands (%) 0.000 73.181 6.134 0.721 4.60 0.02 -0.07 -0.05 

Size (km2) 5000 3112480 36811 13850 1.08 -0.03 -0.01 -0.01 

Slope Class (-) 10.057 67.756 37.739 36.986 14.22 -0.27 -0.31 -0.23 

Altitude (m.a.s.l.) 22.324 4765.166 630.826 412.414 7.29 -0.11 -0.19 -0.14 

Sealed Area (%) 0.000 12.3 0.5 0 3.25 0.18 0.34 0.25 

Forest (%) 0.000 100.000 32.037 18.245 11.50 -0.27 -0.21 -0.16 

Permafrost & Glacier (%) 0.000 95.000 15.316 0.000 10.96 -0.36 -0.47 -0.37 

cl
im

at
e
 

Mean Temperature(°C) -18.848 28.998 7.769 6.562 14.36 0.34 0.39 0.29 

Yearly Precipitation (mm) 73.1 5716.3 950.6 743.5 7.95 0,01 0.18 0.13 

Yearly Shortwave Down-

ward Radiation (Wm-2) 
1050.6 33098.4 1887.5 1777.2 13.05 0.33 0.34 0.25 

 270 

2.4 Regionalization Regionalization Methods 271 

In our study, we test several traditional and machine learning-based regionalization regionalization methods 272 

against each other and a defined benchmark-to-beat to find the most suitable regionalization regionalization meth-273 

ods for WaterGAP3. At the global scale, regionalization regionalization is particularly challenging due to (1) the 274 

lack of high-quality data, (2) the diversity of dominant hydrological processes in basins, and (3) the high compu-275 

tational demands of the models. Therefore, a robust regionalization method that applies to a wide variety of basins 276 

and is not computationally demanding should be selected for a global application. Therefore, a regionalization 277 

method that is robust, applicable to a wide variety of basins, and not computationally demanding should be chosen.  278 
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We test three common traditional approaches and two machine learning-based approaches using the concepts of 279 

spatial proximity, physical similarity, and regression-based methods. As WaterGAP3's model calibration is very 280 

rigid and has only one parameter, it is not feasible to implement and test regionalization methods that incorporate 281 

regionalization into the calibration process, such as transfer functions. In addition, we avoid high computational 282 

demands as all evaluated methods are applicable after the calibration, i.e., without running the model.We test three 283 

common traditional approaches: spatial proximity, physical similarity, and regression-based methods, as well as 284 

two machine learning-based approaches. These machine learning-based approaches are alternatives to traditional 285 

physical similarity and regression-based methods. As the model calibration of WaterGAP3 is very rigid and has 286 

only one parameter, it is not feasible to implement and test regionalization methods that incorporate regionalization 287 

into the calibration process, such as transfer functions. In addition, we avoid high computational demands as all 288 

methods can be applied after the calibration, i.e., without running the model. 289 

As the calibration of WaterGAP3 results in a parameter distribution with a cluster of parameter values at the 290 

parameter bounds, we implement a so-called "tuning" to introduce information about the parameter space into 291 

regionalization. In detail, we apply a simple threshold-based approach to shift the regionalized parameter values 292 

to the extremes, i.e., ����  <  �� � ���� = 0.1 and ����  >  �� � ���� = 5.0. The thresholds �� and �� are defined 293 

by applying the k-means algorithm with three centers to the calibrated parameter values. This clustering results in 294 

three clusters: one for low, one for medium, and one for high γ values. Subsequently, �� refers to the highest γ 295 

value of the low cluster and �� refers to the lowest γ value of a high cluster. 296 

To To evaluateevaluate the regionalization regionalization methods, we implement an ensemble of split-sample 297 

tests. Specifically, we randomly split the basins into 50 % gauged (for training) and 50 % pseudo-ungauged (for 298 

testing)basins. Theis split has a relatively high percentage of pseudo-ungauged basins, accounting for many miss-299 

ing gauges worldwide. We fit the methods and apply them to the training and testing data sets. The split-sample 300 

test is repeated 100 times with by randomly selected splitting the basins basins for training and testing to account 301 

for sampling effects.  302 

As there is only one calibration parameter, γ, this parameter has a global optimum per basin. Consequently, the 303 

quality of training and testing is directly assessed by the deviation between the predicted regionalized and the 304 

calibrated value for γ. The closer the regionalized values are to the calibrated ones, the more accurate the predic-305 

tion. We assess the prediction accuracy by the logarithmic version of the mean absolute error (logMAE) to account 306 

for the decreasing sensitivity of γ for higher values (see Appendix B). Thus, the mean absolute error (MAE), an 307 

easy-to-interpret measure, is used to evaluate the prediction accuracy. The lower the logMAE, the better the pre-308 

diction; ana MAE zero valueof zero in logMAE expresses no error. In our case, an MAE of 2.1 corresponds to the 309 

error when using the mean calibrated γ value as the predicted value. The regionalization regionalization method is 310 

robust if the prediction accuracy is similar in training and testing. A generally good performance, i.e., small log-311 

MAE values, indicates that the regionalization regionalization method suits WaterGAP3. The comparison of γ 312 

values enables applying a wide range of regionalization methods and sets of descriptors, as no computationally 313 

intensive model simulation is required. However, it assumes that deviations in γ lead, in turn, to deviations in 314 

discharge, which is only partially true because of varying parameter sensitivity in basins (e.g., Kupzig et al., 2023). 315 

To validate that the logMAE is a sufficient approximator for the regionalization performance in WaterGAP3, we 316 

use one representative split-sample from the ensemble to compare the accuracies in simulated discharge for dif-317 

ferent regionalization methods. 318 



10 

 

Regression-based methods  319 

The traditionally used regionalization approach of WaterGAP3 is a regression-based MLR. As the benchmark-to-320 

beat, we use the regionalization approach from WaterGAP2.2d defined in Müller Schmied et al. (2021). We con-321 

sider it a suitable benchmark-to-beat given that WaterGAP2 has a model structure and calibration process that is 322 

very similar to WaterGAP3. The main difference between these models is that WaterGAP2 simulates at 0.5°spatial 323 

resolution. The benchmark-to-beat consists of "a multiple linear regression approach that relates the natural loga-324 

rithm of γ to basin descriptors (mean annual temperature, mean available soil water capacity, fraction of local and 325 

global lakes and wetlands, mean basin land surface slope, fraction of permanent snow and ice, aquifer-related 326 

groundwater recharge factor)". (Müller Schmied et al., 2021) We fit this regression model to our data and define 327 

the quality of this approach as the benchmark-to-beat. Moreover, we test an independent MLR approach without 328 

using the logarithmical scaling of γ and using the above-defined sets of basin descriptors. For MLR and the bench-329 

mark-to-beat, we use the lm() function of the R package stats (R Core Team, 2020). After applying the regression 330 

model, we adjust the estimated parameter values to ensure that the estimated values range between 0.1 and 5.  331 

For the traditional regression-based methods, we use the lm() function of the R package stats (R Core Team, 2020) 332 

to implement an MLR. After applying the regression model, we adjust the estimated parameter values to ensure 333 

that the estimated values range between 0.1 and 5. As the calibration of WaterGAP3 results in a parameter distri-334 

bution with heavy tails, we implement a so-called “tuning approach” to introduce this information into regionali-335 

zation. In detail, we apply a simple threshold-based approach to adjust the regionalized parameter values to the 336 

extremes, i.e., ����  <  �� � ���� = 0.1 and ����  >  �� � ���� = 5.0. A simple clustering, i.e., the k-means algo-337 

rithm with three centres, defines these thresholds.  338 

Furthermore, a machine learning-based method, namely random forest (RF), is tested for regionalizationregional-339 

ization as an alternative to MLR. Here, we implement the random forest algorithm with the randomForest() func-340 

tion from the R package randomForest (Liam & Wiener, 2002), which is based on Breimann (2001). The algorithm 341 

uses an ensemble of decision trees, making the decision human-like. It is relatively robust because it incorporates 342 

random effects into the training process. To implement this randomness, we define that the algorithme algorithm 343 

as one that can choose between two randomly selected predictors at each node. We use an, using an ensemble of 344 

200 trees., the same combinations of predictors and the same tuning as for MLR. 345 

The benchmark-to-beat defined in Müller Schmied et al. (2021) also uses an MLR approach. This MLR approach 346 

relates the natural logarithm of γ to the following basin descriptors: mean temperature, mean available soil water 347 

capacity, fraction of open freshwater bodies, mean slope, mean fraction of permafrost coverage and an aquifer-348 

related groundwater recharge factor. Thus, the main differences between the benchmark-to-beat and our defined 349 

MLR-based approach are the natural logarithm, our proposed tuning procedure for the method itself, and using the 350 

aquifer-related groundwater recharge factor as a basin descriptor. 351 

Physical Similarity 352 

For As a the traditional physical similarity approach, we use Similarity Indices (in the following named with SI), 353 

applying. We  use the methodology proposed by Beck et al. (2016). The SI (see Eq. (2)) are derived using the 354 

defined basin descriptors  sets,mentioned above, and the parameter of the most similar basin is transferred to the 355 

pseudo-ungauged basin. Additionally, we use an ensemble of basins to control whether an ensemble-based ap-356 

proach leads to more robust results. The optimal number of donor basins may vary between research regions and 357 
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hydrological models (Guo et al., 2020). Here, we use ten donor catchments (noted with “"ensemble10”), ") which 358 

is based on Beck et al. (2016) and McIntyre et al. (20056). Further, we apply a simple mean method for the en-359 

semble-based prediction to aggregate the ensemble of γ values into one predicted parameter value.  360 
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*+,&

-./�           (2) 361 

where �!,"  is the Similarity Index between basin 0 and basin 1, 2.," is the basin descriptor 3 for basin 1, 45�. is the 362 

interquartile range for basin descriptor 3 among all (gauged) basins, and 6 is the number of all basin descriptors 363 

used. 364 

As an alternative a machine learning-based approach, we apply a simple k-means algorithm. We selected the k-365 

means algorithm because it is one of the most widely used clustering algorithms (Tongal & Sivakumar, 2017). It 366 

is easy to understand and use. The algorithm kmeans() is implemented in the R base package stats. It aims to 367 

maximize maximize variation between groups and minimize minimize variation within groups. The number of 368 

clusters to use is determined by multiple indices calculated with the R package NbClust (Charrad et al., 2014). For 369 

all 933 basins and the defined sets of basin descriptors, most indices defined three as the optimal number of clus-370 

ters. Accordingly, wWe use three clusters to generate the groups of basins. As different scales of the predictor 371 

values can affect the clustering, a rescaling with min-max-normalization normalization (see Eq. (3)) is performed 372 

on the training set and applied to the testing set. After the grouping, the mean γ value is assigned as a representative 373 

calibrated value to the corresponding basin group. To estimate the corresponding group for a pseudo-ungauged 374 

basin, the knn algorithm is used, and the representative γ value of the group is assigned to the pseudo-ungauged 375 

basin. This algorithm is implemented by the knn() function of the R package class (Venables & Ripley, 2002). 376 

Since this methodthe k-means method is less flexible than SI, we implement a highly flexible version, using the 377 

knn algorithm directly to define the donor basin most similar to each ungauged basin.  of k-means with 162 groups, 378 

where each ungauged basin is sorted into a very small basin group. Using this highly flexible versionthe knn 379 

algorithm directly of k-means, we test whether the potential differences between SI and k-means are based on the 380 

degree of flexibilityhow beneficial it is to create groups of similar basins using the kmeans algorithm and region-381 

alize the parameter with a representative mean value. 382 

2′.," =  %&,)(�!-)→�(%&,))
���)→�(%&,))(�!-)→�(%&,))          (3) 383 

where 2.,";  is the normalisendormalized basin descriptor 3 for basin 1, 2.,"  is the basin descriptor 3 for the basin 1, 384 

< is the number of (gauged) basins. 385 
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  386 

Figure 2: Experimental setup of the study: regionalization methods, used modifications and information, and the gen-387 
eral workflow (MLR: Multiple Linear Regression, SI: Similarity Indices, SP: Spatial Proximity, RF: RandomForest). 388 

 389 

  390 

Figure 2: Experimental setup of the study: regionalization methods, used modifications and information and the general 391 
workflow (MLR: Multiple Linear Regression, SI: Similarity Indices, SP: Spatial Proximity, RF: RandomForest). 392 

Spatial Proximity 393 

The spatial proximity approach is one of the easiest to regionalize regionalize parameter values. However, it is 394 

also often criticized criticized that nearby basins do not necessarily have the same hydrological behaviour 395 

(Wagener et al., 2004). Furthermore, its performance depends on the density of the network of gauged basins 396 

(Lebecherel et al., 2016). The dependency on network density is particularly challenging for global applications 397 

where large parts of the world are ungauged (e.g., northern Africa). Nevertheless, the approach has been success-398 

fully applied in other studies (e.g., Oudin et al., 2008; Qi et al., 2020), even globally (Widén-Nilsson et al., 2007). 399 



14 

 

Here, we take the distance between the centroids of the basins as thea reference for the spatial distance between 400 

basins, as done by others (Oudin et al., 2008). We use the abbreviation SP in the text below to refer to the spatial 401 

proximity approach. Figure 2 Figure 2 provides an overview of the applied regionalization regionalization methods 402 

and information used for the experimental setup.  403 

3. Results and Discussion 404 

3. Results and Discussion 405 

3.1 Evaluating the effect of Traditional Methodstuning 406 

First, the impact of the tuning approach on the regionalization approaches is evaluated. Therefore, Fig. 3 depicts 407 

the differences in logMAE between the standard and tuned approaches in testing, i.e., using the pseudo-ungauged 408 

basins. A positive difference in logMAE indicates an increase in accuracy, whereas a negative difference indicates 409 

a decrease in accuracy due to the tuning.  410 

Using the tuning thresholds of about 1.1 and 3.4 for γ1 and γ2, respectively, enhances the predictive accuracy for 411 

kmeans, MLR, RF, and the ensemble approach of SI. The most remarkable improvement for kmeans, RF, and SI 412 

ensemble is achieved when all physiographic descriptors are used as input (mean improvement of 0.077, 0.058, 413 

and 0.071, respectively). MLR shows the most significant improvement when using all available descriptors (mean 414 

improvement of 0.038). In contrast, the tuning decreases the performance for knn, SI, and SP, with a mean degra-415 

dation between -0.02 and -0.05. Unlike the enhanced regionalization techniques, these methods transfer single-416 

basin information to ungauged regions. Thus, the tuning disturbs the use of single-basin information yet simulta-417 

neously enhances the performance of methods that transfer multi-basin information. The disturbance or improve-418 

ment is probably related to the capability of the methods representing the clustering of parameter values at the 419 

extremes: Whereas the multi-basin information transfer implies a smoothing and thus suffers from a lack of rep-420 

resenting the extremes, the single-basin information transfer exhibits no such a smoothing. 421 

The exception from the above-defined rule is the benchmark-to-beat approach. The benchmark-to-beat is the only 422 

approach that uses logarithmic scaled γ values when fitting the model. This logarithmic transformation leads to an 423 

increase in estimating small values. Thus, when the benchmark-to-beat is tuned, more basins with higher calibrated 424 

γ values receive low estimates. The tuning intensifies this effect, leading to a decrease in the accuracy of the 425 

logMAE from the standard to the tuned version. Thus, for models using logarithmical transformed γ values, the 426 

defined thresholds for the tuning are not appropriate.  427 

Applying knowledge of the optimal parameter space enhances the quality of regionalization for methods transfer-428 

ring multi-basin information in case the tuning thresholds are appropriate. This positive effect is not surprising, as 429 

incorporating a priori information about parameter distribution strengthens parameter estimation (e.g., described 430 

in Tang et al. (2016) using the Bayes Theorem). However, for single-basin transfer, which already represents the 431 

parameter space well, i.e., the clustering of γ at the extremes, the tuning disturbs the performance. This indicates 432 

that such tuning needs to be cautiously introduced as there is the risk of decreasing the accuracy of regionalization.  433 
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 434 

Figure 3: Changes in performance between standard and tuned versions for all applied regionalization approaches. 435 
Positive values indicate an improvement related to the tuning. 436 

3.2 Evaluating descriptor subsets & algorithm selection 437 

Different descriptor sets yield different performances in regionalizing γ. Table 2 shows the median of all logMAE 438 

values for the testing. For a complete overview of the results of the split-sample test ensemble, see Appendix D. 439 

Evaluating Table 2 reveals that the selected subset or all descriptors consistently yield the best performance across 440 

all regionalization methods. In both variants of the ensemble approach of SI, the tuned version of the no-ensemble 441 

approach of SI, and the standard version of RF, the selected subset yields the best results. For all other methods, 442 

using all descriptors yields the best results. Hence, all methods perform best when combining climatic and physi-443 

ographic descriptors. This benefit of using climatic and physiographic descriptors is consistent with others that 444 

often apply a combination of climatic and physiographic descriptors, achieving optimal regionalization results 445 

(e.g., Oudin et al., 2008; Reichl et al., 2009).  446 

The machine learning-based approaches seem to benefit most when using more information displaying an im-447 

provement for all methods (knn, kmeans, and RF) and both variants (standard and tuned) ranging from "cl", "p", 448 

"subset" to "p+cl". This is not surprising as machine learning is developed to deal with big data sets. The traditional 449 

methods MLR and SI do not exhibit such a distinct pattern. The (weakly) correlated subset of climatic and physi-450 

ographic descriptors yields the best results for SI. As utilizing all descriptors decreases the performance slightly, 451 

the results indicate that uncorrelated descriptors may disturb the performance of this approach. For MLR, the 452 

meaning of physiographic information is highest, resulting in the best ("p+cl") and second best ("p") results. The 453 

disparate performance of the regionalization methods when using different descriptor sets indicates that different 454 

methods use descriptor sets with varying efficiency. It also emphasizes that the selection of descriptors impacts 455 

the regionalization method's results, as noted by others (Arsenault & Brissette, 2014). Consequently, the above-456 

performed analysis defining a descriptor subset lacks universal validity as methods exist where the defined subset 457 

is outperformed. Instead, the validity of this approach is most closely aligned with the SI approaches. 458 

Although the algorithms kmeans and knn are similar, they yield considerably different performances in Table 2. 459 

As knn shows a logMAE of 0.432 at best, the kmeans algorithm performs poorly, resulting in the best logMAE of 460 

0.472. This indicates that applying the kmeans clustering algorithm to transfer averaged parameters is inappropri-461 

ate for WaterGAP3. This may be attributed to the reduced flexibility of the approach, which entails estimating 462 

Independent from  

descriptor set 
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only three γ values due to the optimal, though limited, number of centers. The ensemble SI approach consistently 463 

outperforms the no-ensemble SI approach in almost all variants. The positive effect of an ensemble approach for 464 

SI has already been noted (Oudin et al., 2008). Therefore, it is recommended that the number of donor basins 465 

derived from the literature be adopted in future applications to be optimal for WaterGAP3, likely resulting in 466 

higher performance. 467 

Only a few regionalization methods outperform the benchmark-to-beat. The best descriptor sets of tuned MLR, 468 

RF, and SI ensemble approach have a logMAE of 0.427, 0.403, and 0.409, respectively. The standard version of 469 

knn ("p+cl") and SP yield 0.432 and 0.454 in logMAE, respectively. Additionally, two variants of the standard SI 470 

approaches outperform the benchmark-to-beat yet exhibit inferior results compared to the selected tuned approach. 471 

All other regionalization methods show higher logMAE values than the benchmark-to-beat. These methods are 472 

considered insufficient in terms of performance to regionalize γ in WaterGAP3. As the benchmark-to-beat outper-473 

forms all kmeans approach variants, it is deemed unsuitable for regionalizing γ for WaterGAP3 and, therefore, 474 

excluded from further analysis.  475 

Table 2: Median logMAE of 100 split-samples for pseudo-ungauged basins, i.e., in testing, for all regionalization meth-476 
ods applying four sets of descriptors for a) the standard version and b) the tuned version. The bold numbers indicate a 477 
better performance than the benchmark-to-beat. Thicker edges mark best-performing variants, which are chosen for 478 
further analysis. Grey-shaded cells indicate worst-performing variants, which were taken to validate the assumption 479 
that lower logMAE values result in lower KGE values. 480 

test  

(median) 
MLR RF 

SI 
kmeans knn SP B2B 

no ens. ensemble 

cl 0.552 0.483 0.496 0.483 0.619 0.501 

0.454 0.461 
p 0.479 0.465 0.487 0.480 0.551 0.477 

p+cl 0.464 0.464 0.454 0.462 0.534 0.432 

subset 0.488 0.488 0.461 0.439 0.539 0.467 

                 

test* 

(median) 
MLR RF 

SI 
kmeans knn SP B2B 

no ens. ensemble 

cl 0.529 0.467 0.537 0.459 0.619 0.546 

0.502 0.488 
p 0.441 0.416 0.532 0.455 0.515 0.521 

p+cl 0.427 0.403 0.503 0.435 0.472 0.480 

subset 0.453 0.408 0.501 0.409 0.477 0.509 

The well-performing SP on a global scale is surprising as the distances between basins are potentially long, and 481 

hydrological processes may strongly vary. It is probably beneficial for the SP approach that γ comprises all kinds 482 

of errors, e.g., spatially localized errors in global forcing products (e.g., Beck et al., 2017 reported errors for arid 483 

regions in the precipitation product) or inaccurately represented processes for larger regions. Thus, the estimation 484 

of γ might be appropriate, but not because of the same hydrological behavior but due to the same kind of errors. 485 

The RF approach is outstanding, as it shows a massive loss in performance from training to testing (see Appendix 486 

D). In detail, the logMAE in testing is about twice the logMAE in training. In comparison, other methods show 487 

results from 95.6 % to 101.4 %. This performance loss indicates that RF is not a robust regionalization method for 488 

WaterGAP3. Other studies that reported the good performance of RF for regionalization have not investigated the 489 

(a)
(b) 

(a) 
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stability of the performance from training to testing (Golian et al., 2021; Wu et al., 2023). Likely, the mathematical 490 

problem of predicting the calibrated parameter for WaterGAP3, with all its challenges (e.g., tailored parameter 491 

space, clustered calibrated parameter, and incorporation of many sources of errors), cannot be adequately solved 492 

by RF. Thus, although RF is known to be especially robust among other machine learning-based techniques, it 493 

shows symptoms of over-parameterization. This indicates that the algorithm is too flexible and adjusts to noise in 494 

the data, missing the underlying systematic. This lack of robustness is particularly disadvantageous since, for Wa-495 

terGAP3, regionalization is applied globally, requiring regionalizing large parts of the world. In consequence, the 496 

RF approach is left out from further analysis and defined as not suitable to regionalize γ for WaterGAP3.  497 

3.3 Performance of selected algorithm in pseudo-ungauged basins  498 

To avoid the high risk of sampling effect when applying the split-sample test, we conduct an ensemble of 100 499 

split-sample tests analyzing the median of logMAE between regionalized and calibrated values as an indicator for 500 

performance. Directly using the differences in regionalized and calibrated values is only meaningful when the 501 

calibrated value represents the global optimum. As this is often not the case, e.g., due to equifinality, the perfor-502 

mance of regionalization methods is usually assessed by the accuracy of simulated discharge (e.g., Samaniego et 503 

al., 2010; Arsenault & Brissette, 2014). Because WaterGAP3 requires computationally intensive simulations, run-504 

ning WaterGAP3 for all 100 split-sample tests for the selected methods is not feasible. Therefore, we select a 505 

single representative split-sample to assess the quality of representing the discharge in the pseudo-ungauged basins 506 

using regionalized γ values. The representative split-sample leads to comparable logMAE values to the corre-507 

sponding median of the ensemble for all regionalization methods. For the evaluation, WaterGAP3 was run for the 508 

same period used in calibration (from 1979 to 2016), with the first year simulated ten times to allow for model 509 

warm-up. Using this period ensures the availability of sufficient data for the evaluation (see Chapter 2.2). Further-510 

more, the differences between the monthly simulated and observed discharge are assessed using the KGE. 511 

To evaluate the KGE, we select the best-performing methods that outperform the benchmark-to-beat: tuned MLR 512 

"p+cl", knn "p+cl", tuned SI ensemble "subset", and SP (see Table 2). For the sake of simplicity, we further mark 513 

them with "(best)". Additionally, we select three poorly performing variants to validate the assumption that meth-514 

ods resulting in higher logMAE values tend to result in lower KGE values, i.e., lower accuracy of simulated dis-515 

charge. These methods are tuned SI "cl" (logMAE: 0.537), tuned knn "cl" (logMAE: 0.546), and MLR "cl" (log-516 

MAE: 0.552). Further, we denote these methods with "worst". Applying the selected methods and the benchmark-517 

to-beat method results in eight estimates of γ for the pseudo-ungauged basins, whose performance is further eval-518 

uated in terms of simulated discharge accuracy. 519 

Figure 4a shows the resulting KGE values for the evaluated regionalization methods and the calibrated version as 520 

grouped boxplots for different ranges of calibrated γ. The methods show different performances for different γ 521 

ranges, indicating their strengths and weaknesses. For the smallest γ range, "0.1-0.2", the selected methods that 522 

perform well during the split-sample test outperform the benchmark-to-beat. The better result for minimal γ ranges 523 

is probably partially related to the advantage of the tuning, which leads to more predictions of 0.1 within the 524 

regionalization. The benchmark-to-beat shows the best performance for γ values between 0.2 and 0.5. The good 525 

performance for basins with calibrated γ values between 0.2 and 0.5 is probably related to the benefit of using the 526 

logarithmical version of γ in the benchmark-to-beat, leading to more estimates of smaller values. However, this 527 

affects only 12 % of the basins, as calibrated values between 0.2 and 0.5 are not frequently present in the calibration 528 
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result. Generally, the differences in KGE appear higher for smaller γ values, probably due to the decreasing pa-529 

rameter sensitivity with higher values (see Appendix B). 530 

Given the variability in the performance of the regionalization methods across the depicted γ ranges, it is challeng-531 

ing to identify an overall best regionalization method using Fig. 4a. Therefore, we compare the various metrics of 532 

the KGE values depicted in Fig. 4b. The analyzed metrics are the minimum, maximum, mean, and median. Further, 533 

we count the number of poorly performing basins, defined as basins with a KGE below 0.2. In Fig. 4b, metrics 534 

that exceed the benchmark-to-beat are grey-shaded.  535 

 

  

 

Figure 4: a) KGE values of pseudo-ungauged basins from split-sample test grouped by the range of calibrated γ values, 536 
b) selected metrics of KGE values from the pseudo-ungauged basins (better or equal performance to the benchmark-537 
to-beat is highlighted in grey), and c) histogram of the number of pseudo-ungauged basins with a KGE below 0.2 and 538 
the corresponding number of methods exhibiting this performance loss. 539 

Comparing the KGE metrics in Fig. 4b reveals that the methods showing higher logMAE values in our split-540 

sampling test ensemble also show lower performance in simulating discharge. For example, all mean (and median) 541 

KGE values of the "worst" methods are below the mean KGE of 0.587 from the benchmark-to-beat, ranging from 542 

0.545 to 0.578. This indicates that the used logMAE between regionalized and calibrated values is a valid tool for 543 

a preliminary selection of adequate methods for the regionalization of WaterGAP3. However, for a more compre-544 

hensive analysis, we recommend additionally analyzing the accuracy of simulated discharges, as the logMAE of 545 

calibrated and regionalized parameter values simplifies the inherent complexity between model parameters and 546 

model performance. 547 

Moreover, SI (best) outperforms the benchmark-to-beat in all listed metrics, reducing poorly performing basins 548 

and enhancing well-performing basins. MLR (best) performs very similarly to SI (best), yet it shows a higher 549 

number of basins with KGE values below 0.2. In comparison to the benchmark-to-beat, it outperforms four out of 550 

five criteria. The remaining well-performing methods, SP and knn (best), demonstrate superior or equal perfor-551 

mance to the benchmark-to-beat in three out of five criteria. SP results in an equal number of poorly performing 552 

basins, and the minimal KGE value is lower than for the benchmark-to-beat. The knn (best) approach has a slightly 553 

worse median of KGE, i.e., -0.001, and one additional basin shows a KGE below 0.2.  554 

Method Min Median Mean Max  ≤  0.2

CAL (donor) 0.402 0.679 0.672 0.939 0

CAL (p.-ung.) 0.403 0.674 0.663 0.953 0

B2B -1.060 0.627 0.587 0.944 17

MLR (best) -0.708 0.633 0.606 0.951 22

MLR (worst) -0.555 0.602 0.578 0.951 28

knn (best) -0.955 0.626 0.597 0.953 18

knn (worst) -2.937 0.604 0.545 0.926 37

SI (best) -0.708 0.627 0.607 0.953 13

SI (worst) -2.937 0.607 0.556 0.951 38

SP -9.040 0.628 0.584 0.954 17

GRDC No.: 

4356110 

#106 #57 #64 #63 #176 
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As SI (best) outperforms the benchmark-to-beat in all metrics, we conduct a statistical test to ascertain whether 555 

there is a statistically significant difference in KGE results between the methods. To this end, we use a paired 556 

Wilcoxon rank sum test to test the null hypothesis of whether the KGE differs significantly in central tendency. A 557 

significance level of 0.05 and an adjusted p-value are applied to correct for multiple comparisons (using the cor-558 

rection after Benjamini & Hochberg (1995)). The results demonstrate that SI (best) outperforms all "worst" meth-559 

ods and the benchmark-to-beat. However, the null hypothesis for SP and the "best" options of knn and MLR cannot 560 

be rejected. Consequently, rather than identifying a single alternative to the benchmark-to-beat, we have identified 561 

four. 562 

Notably, all regionalization methods lead to poorly performing basins, as evidenced by the range of basins with a 563 

KGE below 0.2, varying from 13 to 37. In Fig. 4c, we examine whether there are basins that all methods cannot 564 

regionalize, thereby indicating a general insufficiency of the regionalization methods for these basins. The histo-565 

gram indicates that most poorly performing basins belong to a single regionalization method. The high number of 566 

basins, which cannot be estimated well by a single regionalization method, illustrates the diverse shortcomings of 567 

the methods. A single basin shows poor performance across all methods. This is a basin of the river El Platanito 568 

in Mexico. The calibrated γ value is about 1.5, and the corresponding KGE value in calibration is 0.466. This basin 569 

appears to be highly sensitive to γ, with an inaccuracy in the estimated γ having a significant impact on the accuracy 570 

of river discharge. For example, the benchmark-to-beat estimates γ to 1.0, which is close to the calibrated value of 571 

1.5. However, the KGE value of the simulated discharge using the benchmark-to-beat is -0.158 due to a high 572 

overestimation of the variation and mean of the discharge. This high sensitivity seems outstanding and is likely 573 

attributable to the absence of waterbodies and snow, supporting a potentially high impact of γ on the model simu-574 

lation (Kupzig et al., 2023) in conjunction with a relatively small basin size (ca. 6,600 km2). 575 

Here, we examine the traditional methods (MLR, SI, SP) by comparing the ensemble of MAEs from training and 576 

testing to each other and the benchmark-to-beat (see Fig. 3). Thus, applying knowledge of the optimal parameter 577 

space enhances the quality of regionalization. This positive effect is not surprising, as incorporating a-priori infor-578 

mation about parameter distribution strengthens parameter estimation (e.g., described in Tang et al., 2016 using 579 

the Bayes Theorem).As for all traditional methods, there is no significant performance loss between training and 580 

testing, we will further focus on the performance in testing for evaluating the methods. When assessing the MLR 581 

and the SI approach, it becomes apparent that using only the climatic descriptors is insufficient for regionalization 582 

as it provides worse estimates than the benchmark-to-beat. The exclusive selection of physiographic descriptors 583 

(slope class, forest %, and permafrost %) performs better, and yields results comparable to our benchmark-to-beat 584 

for both methods. Using climatic and physiographic descriptors jointly increases the performance of SI by approx-585 

imately 0.1 in median MAE. For MLR, the improvement is almost neglectable.  586 
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 587 

Figure 3: Split-sampling results for the benchmark-to-beat taken from WaterGAP2 (WG2) and different versions of 588 
the traditional regionalization methods: Multiple Linear Regression (MLR), Similarity Indices (SI) and Spatial Prox-589 
imity (SP). 590 

Thus, using only climatic descriptors - in our case, the mean temperature and information about radiation - is 591 

insufficient for regionalization. Instead, physiographic descriptors appear more critical for regionalization than the 592 

selected climatic descriptors. However, the best results are obtained when combining climatic and physiographic 593 

descriptors. Others often apply the combination of climatic and physiographic descriptors, leading to optimal re-594 

gionalization results (e.g., Oudin et al., 2008; Reichl et al., 2009).  595 

The reduced importance of climatic descriptors is surprising, as the climatic descriptors tend to have a higher 596 

information gain and correlation to the model parameter (see Table 1). Moreover, climatic information is often 597 

used as a central part of other regionalization studies, e.g., to assess regionalization (e.g., Parajka et al., 2013; Guo 598 

et al., 2020). One possible reason for this discrepancy in other studies is that we used pure meteorological data as 599 

climatic descriptors for the regionalization method. In contrast, others used derived information such as Köppen-600 

Geiger climate zones or the Aridity Index (e.g., Beck et al., 2016; Yoshida et al., 2022). 601 

When expanding the analysis to all descriptors, the performance changes slightly (i.e., mean MAE +/- ~0.05). 602 

Thus, increasing the number of descriptors does not increase the performance of regionalization at some point (in 603 

line with Oudin et al., 2008 using a comparable Physical Similarity approach). This suggests that uncorrelated, 604 

non-redundant descriptors do not interfere with the regionalization using SI and MLR. Instead, a certain amount 605 

of information is beneficial to increase the regionalization method. After reaching this point, adding descriptors 606 

does not increase the performance, probably because all extractable information is already present in the given 607 

descriptors.  608 

Using an ensemble of ten donor basins for the SI approach results in slightly better MAE values in most cases than 609 

applying a single donor basin (see Appendix B). More remarkably, the variation in the MAE values decreases 610 

significantly for all ensemble approaches (i.e., the reduction in standard deviation in MAEs is about 50%). Thus, 611 

introducing an ensemble approach for SI does not significantly improve the prediction performance. Still, it in-612 

creases the likelihood that the prediction will perform well, i.e., be more robust. The positive effect of an ensemble 613 

approach for SI is already noted (Oudin et al., 2008). However, the literature-based number of donor basins might 614 

be adopted in future applications to be optimal for WaterGAP3, probably leading to higher performance.  615 
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The introduction of tuning led to a significant increase in prediction performance for MLR, i.e., the median MAE 616 

for all MLR approaches improved by 0.04 (“cl”) and ~0.14 (others). For the ensemble-based SI approach, the 617 

tuning improves the median MAE by about 0.07 to 0.12. Thus, applying knowledge of the optimal parameter space 618 

enhances the quality of regionalization. This positive effect is not surprising, as incorporating a-priori information 619 

about parameter distribution strengthens parameter estimation (e.g., described in Tang et al., 2016 using the Bayes 620 

Theorem). 621 

The SP approach is the simplest applied, evaluating distances to the centroids without requiring regression or 622 

clustering. Thus, there is no training performance, only a testing performance. Applying the approach leads to a 623 

median MAE of 1.356, which is better than the benchmark-to-beat (median MAE in the testing of 1.544) and has 624 

the same quality as the best MLR and SI approaches without tuning (median MAE of 1.394 and 1.367, respec-625 

tively). The good performance of SP is in accordance with other studies (e.g., Oudin et al., 2008; Qi et al., 2020). 626 

It indicates that this simple approach is suitable for WaterGAP3. 627 

Nevertheless, the well-performing SP on a global scale is surprising as the distances between basins are potentially 628 

large and hydrological processes may strongly vary. It is probably beneficial for the SP approach that γ comprises 629 

all kinds of errors, e.g., spatially localised errors in global forcing products (e.g., Beck et al., 2017 reported errors 630 

for arid regions in the precipitation product) or inaccurately represented processes for larger regions. Thus, the 631 

estimation of γ might be appropriate, but not because of the same hydrological behaviour but due to the same kind 632 

of errors. 633 

3.2 Evaluating Machine Learning-based Approaches 634 

In this section, we assess whether machine learning-based approaches outperform the benchmark-to-beat and are 635 

suitable as a new regionalization method for WaterGAP3. We compare the ensemble of MAE for training and 636 

testing for RF and k-means with the benchmark-to-beat (see Fig. 4).  637 

 638 

Figure 4: Split-sampling results for the benchmark-to-beat taken from WaterGAP2 (WG2) and different versions of 639 
machine learning-based approaches: k-means (in combination with knn) and RandomForest (RF). 640 

The RF approach is highly accurate within the training, i.e., fitting to calibrated γ values works well for gauged 641 

basins. However, it suffers a significant loss in performance when predicting the γ values for the pseudo-ungauged 642 
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basins. Although RF still has low MAE values in testing, the loss in performance from training to testing is signif-643 

icantly higher compared to other methods. This performance loss indicates that RF is not a robust regionalization 644 

method for WaterGAP3. Other studies which reported good performance of RF in terms of regionalization have 645 

not investigated the stability of the performance from training to testing (Golian et al., 2021; Wu et al., 2023). 646 

Likely, the mathematical problem of predicting the calibrated parameter for WaterGAP3, with all its challenges 647 

(e.g., tailored and heavy-tailed parameter space, incorporation of many sources of errors), cannot be adequately 648 

solved by RF. Thus, although RF is known to be especially robust among other machine learning-based techniques, 649 

it shows symptoms of over-parameterization, meaning that the algorithm is too flexible and adjusts to noise in the 650 

data, missing the underlying systematic. This lack of robustness is particularly disadvantageous since, for Wa-651 

terGAP3, regionalization is applied globally, requiring regionalizing large parts of the world. 652 

The k-means approach does not show such a performance loss between training and testing in almost all variants. 653 

The only variant with comparable performance loss is the “highly flexible” k-means approach. Interestingly, the 654 

“highly flexible” k-means approach was developed to emulate the same flexibility as in SI, which does not show 655 

such performance loss between training and testing. This difference in robustness indicates that the applied k-656 

means algorithm does not extract the information from the descriptors as efficiently as the SI approach. The lack 657 

of efficient data use for some clustering methods in the context of regionalization has already been reported by 658 

Pagliero et al. (2019). This could also contribute to the presented the k-means falling behind the benchmark-to-659 

beat. Therefore, we conclude that the developed clustering is inappropriate for regionalizing WaterGAP3. 660 

3.3 Implications of Regionalization 661 

Finally, we highlight the possible implications of choosing regionalization methods for GHMs, where large parts 662 

of the world need to be regionalized. For this purpose, a local analysis of internal states and fluxes and a continental 663 

and global assessment of the water balance are undertaken. Therefore, we run WaterGAP3 from 1980 to 2016 with 664 

different γ distributions. We choose two equally valid solutions for the regionalization of WaterGAP3 to produce 665 

equally valid global γ distributions: (1) the SP approach because of its simplicity and because it outperforms our 666 

benchmark-to-beat, and (2) the tuned MLR “p+cl” because it outperforms our benchmark-to-beat and its applica-667 

tion is very similar to the original regionalization approach of WaterGAP3. The tuned Similarity Indices “p+cl” 668 

with an ensemble of 10 donor basins is also a valid solution for regionalizing γ. However, its application is more 669 

complex than MLR and SP and differs considerably from the original WaterGAP3 regionalization. Therefore, it 670 

has not been implemented and tested. In addition, we run the model with our benchmark-to-beat as it is our refer-671 

ence for assessing changes. We use the best-performing benchmark-to-beat and MLR models out of the 100 trained 672 

models for the analysis. 673 
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 674 

Figure 5: Global γ distribution for different regionalization methods, highlighting areas of differences (a) γ distribution 675 
using the MLR approach with parameter space tuning, using physiographic and climatic basin descriptors as independ-676 
ent variables, i.e., tuned MLR “p+cl”, (b) benchmark-to-beat, WG2, (c) Spatial Proximity approach, i.e., SP and (d) 677 
global distribution of regionalized and calibrated parameter values. 678 

First, we compare the resulting global distribution of γ values for all three approaches (see Fig. 5). In particular, 679 

ungauged regions such as Indonesia, India and New Zealand exhibit significant differences in the predicted γ value. 680 

For these regions, the regionalized value varies depending on the methods used for regionalization. In contrast, 681 

ungauged areas such as North Africa do not differ much in regionalized values. Regionalization, therefore, appears 682 

to lead to a spatially varying uncertainty in ungauged regions. The differences in the regionalization methods also 683 

become apparent when comparing the resulting distribution of γ (see Fig. 5d). The approach MLR tuned “p+cl” 684 

tends to predict values at the upper bound more often than the other methods, which is probably due to the tuning 685 

within the method. The benchmark-to-beat approach from WaterGAP2 leads to a less heavy-tailed prediction than 686 

others. The SP-based approach shows the highest similarity to the distribution of the calibrated γ values.  687 

   

Figure 6: Differences in monthly internal states and fluxes of WaterGAP3 for one grid cell with varying regionalized 688 
value (SP: 0.325, MLR tuned “p+cl”: 5 and benchmark-to-beat (WG2): 4.467243), located in India 689 

(b) (c) (a) 
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(21.519794°|70.566733°) for a) actual evapotranspiration, b) soil storage and c) groundwater storage for 1989 as an 690 
exemplary year. Note that MLR tuned “p+cl” and WG2 are so close that they appear to be one line. 691 

To highlight the impact of local differences in the parameter value, we examine an exemplary location in India 692 

where the regionalized values are 0.325, 5 and 4.467243 for SP, MLR tuned “p+cl” and the benchmark-to-beat, 693 

respectively. We show the resulting actual evapotranspiration (AET), the filling of the soil storage and the 694 

groundwater storage for one exemplary year (see Fig. 6). The internal states and fluxes from the MLR tuned 695 

“p+cl” and the benchmark-to-beat are not significantly different for all states, as the two lines are very close and 696 

appear to be one single line. However, there are considerable differences between the two MLR-based ap-697 

proaches and SP, particularly in the amplitude of the AET and the soil storage. Acceleration effects cause the 698 

lower amplitudes for these two components. Reducing values of γ leads to a faster outflow of the soil storage, 699 

resulting in lower AET and soil moisture; additionally, smaller values of γ lead to higher groundwater storage 700 

due to accelerated percolation. 701 

   

Figure 7: Simulated monthly runoff using three different regionalization methods for a) the Tiber, b) the Ebro and c) 702 
Rio Negro (in Argentina) for 2010 as an exemplary year. 703 

Further on, we highlight the local effects of regionalization on discharge for the Tiber, the Ebro and Rio Negro 704 

for one exemplary year in Figure 7. Whereas the simulated discharge is higher for SP compared to the other 705 

methods in the Tiber and Rio Negro, the discharge is lower for the Ebro. Thus, one regionalization method does 706 

not always increase or decrease the discharge but results in locally varying effects on the water balance. Moreo-707 

ver, the similar results for MLR tuned “p+cl” and the benchmark-to-beat on the grid cell level (see Figure 6) 708 

propagate to a similar discharge pattern at the basin scale. Further, differences between SP and the other region-709 

alization methods at the grid scale can lead to high differences at the basin scale, i.e., the simulated discharge of 710 

the Tiber is almost doubled for SP in May. 711 

Finally, we evaluate how the observed variation due to different regionalization approaches propagates globally. 712 

Therefore, we assess the quantitative influence of regionalization by comparing a key component of the water 713 

balance, i.e., outflow to the ocean and inland sinks. Table 2 shows the resulting differences in the selected flow 714 

for all three model runs, aggregated to continental and global scales. The results highlight that the differences in 715 

mean annual outflow vary spatially and between the regionalization methods. The results of SP differ signifi-716 

cantly from the two MLR-based approaches in some parts of the world. In Oceania, the SP approach exhibits a 717 

deviation of 7.7 % in the selected flow compared to the benchmark-to-beat. This difference may be attributed to 718 

the significant disparity in γ between the two methods in New Zealand (see Fig. 5). 719 

 720 

Table 2: Mean outflow to the ocean and inland sinks in km³ yr-1 between 1980-2010 721 

(a) (b) (c) 
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Continent benchmark-to-beat MLR SP 

Africa 5005.10 0.972 0.968 

Asia 15977.39 1.005 1.114 

Oceania 1188.42 0.977 0.923 

Europe 3028.47 0.981 1.030 

South America 11612.39 0.997 1.039 

North America 7283.21 0.994 1.025 

Global 44094.97 43876.01 46456.35 

 722 

Similarly, SP exhibits a high deviation of 11.4 % in the mean outflow in Asia, which is likely due to the varia-723 

tion of γ in India (see Fig. 5). In contrast, the southern part of South America, which shows a relatively high de-724 

viation in γ, does not lead to a significant deviation in the mean outflow for the continent. This limited impact of 725 

varying parameter values in southern South America may be attributed to the lower water availability in this re-726 

gion, which only slightly affects the continental water balance. These results suggest that the impact of regionali-727 

zation methods on the continental water balance depends on (1) the variation in predicted parameter values and 728 

(2) the region's sensitivity to the water balance. Examining the global estimates, the differences between the 729 

benchmark-to-beat and SP results in approximately 2400 km³ yr-1, which is in the range of inter-model differ-730 

ences (see Table 2 in Widen-Nilsson et al.,2007).  731 

Although the two newly developed methods performed similarly during the split-sample test, significant differ-732 

ences were observed when simulating the water balance. It was expected that the methods MLR tuned “p+cl” 733 

and SP methods would differ less due to their similar performance during the split-sample tests. However, it be-734 

came apparent that the two MLR-based methods resulted in more closely simulation results than the SP-based 735 

approach. This indicates that the method selection, such as spatial proximity-based or regression-based, has a 736 

greater influence on the regionalization than the details of executing the method. Moreover, the split-sample test 737 

should be extended to get deeper insights into the method's robustness. For example, the SP and SI robustness 738 

check could be extended by the so-called “HDes” approach, which Lebecherel et al. (2016) recommended. In 739 

this approach, the closest basin to the corresponding (pseudo-) ungauged basin would be ignored during the re-740 

gionalization to measure the robustness of the regionalization method.  741 

3.4 Impacts on runoff simulations 742 

To evaluate the impact of runoff simulations, we apply an ensemble of regionalization methods generating γ esti-743 

mates for the worldwide ungauged regions. Within the ensemble, we use the four methods SI (best), knn (best), 744 

MLR (best), and SP that (1) outperform the benchmark-to-beat regarding the logMAE of regionalized and cali-745 

brated values and (2) perform similarly to each other and better than the benchmark-to-beat in KGE for monthly 746 

discharge. Additionally, we use the benchmark-to-beat as the fifth member of our regionalization method ensem-747 

ble. The entire set of 933 gauged basins is used for regionalizing γ, resulting in five distinct worldwide distributions 748 

of γ. The spatially distributed standard deviation of the regionalized values is shown in Fig. 5.  749 

In particular, the southern parts of South America, the northern and southern parts of North America, and Central 750 

Asia reveal differences in γ across the ensemble of regionalization methods (see Fig. 5). In Europe, the highest 751 
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differences in regionalized values are observed in Italy, Great Britain, and northern Portugal. In Oceania, the high-752 

est values in standard deviation of γ are in Tasmania, New Zealand, and the southwest of Australia's coast. In 753 

contrast, a minor variation in γ is apparent in northern Africa, most parts of Australia, and the East of the Dead 754 

Sea. Thus, the uncertainty associated with globally regionalizing γ seem to vary across different regions. 755 

4. Conc756 

 757 

Figure 5: Standard deviation in regionalized γ values using the best approaches of MLR (best), SI (best), SP, knn (best), 758 

and the benchmark-to-beat. Note that dry regions without discharge are set to zero. 759 

An example of how these uncertainties in regionalized values propagate through the water system is presented in 760 

Fig. 6. This figure displays the coefficient of variation of the mean yearly discharge between 1980 and 2016 based 761 

on the five simulation runs. Moreover, we highlight the effect on rivers in ungauged regions by showing the re-762 

sulting seasonal pattern, i.e., the simulated long-term mean of monthly river discharge for three exemplary rivers. 763 

These rivers are the Río Bravo in Mexico, the Tiber in Italy, and the Tamar River in Tasmania. Each river is located 764 

in an ungauged region, where the standard deviation in γ is high (see Fig. 5). 765 

Comparing Fig. 5 and Fig. 6 reveals that regions showing variability in γ tend to exhibit variation in mean yearly 766 

discharge. However, the impact of variation in γ on the simulated discharge appears to vary spatially. Some regions 767 

showing a high degree of variation in γ do not exhibit a correspondingly high degree of variation in discharge. For 768 

example, 45 % of all ungauged regions showing a low variation in discharge, i.e., the coefficient of variation is 769 

below 0.5, exhibit a standard deviation of more than one in γ. In contrast, about 89 % of the ungauged regions 770 

showing a higher discharge variation exhibit a standard deviation of more than one in γ. Thus, variation in γ does 771 

not necessarily lead to variation in river discharge, but it increases the likelihood that a region's discharge is af-772 

fected. The spatially varying impact of γ is likely related to varying sensitivity regarding γ in the ungauged regions, 773 

which depends on numerous aspects, e.g., snow occurrence or waterbodies (see Kupzig et al., 2023).  774 

About 11 % of the ungauged area exhibits variations in yearly river discharge exceeding 50 % of the mean. These 775 

regions are primarily in southern South America and Central Asia. A further 62 % of the ungauged area exhibits 776 

variations in yearly river discharge between 10 % and 50 % of the mean. These regions are mainly located on the 777 

northern coast of Russia and northern Canada, Indonesia, and Tasmania. Other areas, like most ungauged regions 778 

of Africa and Australia, show almost no impact, i.e., the variation in yearly discharge is less than 10 % of the 779 

mean. In northern Africa, one region exhibits higher values in the coefficients of variation. These values are at-780 

tributable to minimal discharge values, resulting in comparatively high coefficients of variation in this region. 781 
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Considering the variation in the seasonality in the selected ungauged river systems (see Fig. 6b-d), the temporal 782 

impact of regionalization varies across the local landscape. For the Tamar River in Tasmania, as illustrated in Fig. 783 

6d, the variation is higher at the start and end of the dry periods in October/November and April/May, respectively. 784 

The spread in monthly mean discharge is about 0.7 m3s-1 to 1 m3s-1 in these periods. The Tiber in Italy and the Río 785 

Bravo in Mexico exhibit a similar pattern: using the regionalized γ values of SP leads to much higher discharge 786 

rates than other ensemble members, introducing broad uncertainty bands. For the Tiber, this leads to seasonal 787 

estimates varying between 1.2 % (in January) and 11 % (in October) of the mean yearly sum. The Río Bravo shows 788 

variations in its seasonal pattern, with values ranging from 2.2 % (in February) to 6.8 % (in October) of the mean 789 

yearly sum. Thus, all rivers display a temporally varying impact. Whereas the main variation in the discharge of 790 

the Río Bravo and the Tiber is mainly attributed to the SP regionalization run, for the Tamaris River, all regional-791 

ization runs contribute to the varying long-term monthly mean in discharge.  792 

 793 

 794 

Figure 6: a) Global map of the coefficient of variation in mean yearly discharge for the applied regionalization methods. 795 
Resulting differences in the regionalization ensemble regarding the long-term mean of monthly discharge are depicted 796 
for: b) the Río Bravo in Mexico, c) the Tiber in Italy and d) the Tamar River in Tasmania. The grey-shaded area 797 
indicates the range of the long-term mean of monthly discharge and the black line indicates the mean off all simulation 798 
runs. 799 

To gain a deeper understanding of the local impact of regionalization on runoff simulations, we analyze the annual 800 

percentiles from 1980 to 2016 for Río Deseado in Argentina, Río Bravo, and Tamar River, displaying the mean 801 

percentile of all years (see Fig. 7a-c). As the Tiber and Río Bravo display high similarities in the resulting patterns 802 

of percentiles, we demonstrate the impact by showing the percentiles from the Río Bravo. Additionally, we com-803 

pare the relative differences in the mean for each percentile using eight ungauged river systems (see Fig. 7d), as 804 

previously done by Gudmundsson et al. (2012) for nine GHMs. To calculate the relative difference, we subtract 805 

the mean annual percentile of a method from the corresponding mean annual percentile of the reference and divide 806 

the resulting difference by the mean annual percentile of the reference. Instead of using observed flow as a refer-807 

ence, we use the annual percentiles of our benchmark-to-beat. As river discharge is already spatially aggregated 808 
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information, it is unnecessary to spatially aggregate grid cells to create results comparable to those of Gudmunds-809 

son et al. (2012), who used cell runoff. The evaluated river systems are Río Chubut, Río Deseado, Río Negro, Río 810 

Bravo, Tamar River, Tiber, Pescara, and Ebro. 811 

 812 

Figure 7: Mean annual percentiles between 1980 and 2016 of simulated discharge using an ensemble of regionalization 813 
methods. The river are a) Río Deseado, b) Tamar River, and c) Río Bravo. In d), the relative differences in mean annual 814 
percentiles to the benchmark-to-beat of eight ungauged river systems are presented. Negative values indicate smaller 815 
mean annual percentiles than the benchmark-to-beat. Note that all data points from Río Deseado for knn and SP are 816 
excluded as the values are above 2.0. 817 

In Fig. 7a, Río Deseado is highly affected by uncertainties in simulated discharge due to the different regionaliza-818 

tion methods; all segments of the percentiles show high variations where the absolute spread is increasing with 819 

increasing percentiles. For SP and knn (best), the discharge is highest, e.g., estimating a median discharge of 13.7 820 

m3s-1 and 19.7 m3s-1
,
 respectively. For the other methods, the simulated discharge is low, e.g., SI and MLR result 821 

in an equal median discharge of 3.6 m3s-1. The Tamar River in Fig. 7b also shows increasing absolute differences 822 

between the methods for higher percentiles, with the benchmark-to-beat approach leading to the highest discharge. 823 

For the Río Bravo, the absolute differences between the highest result of SP and the other methods remain almost 824 

constant until the 75th percentile. For the 95th percentile, the absolute differences increase rapidly from about 40 825 

m3s-1 (75th percentile) to nearly 200 m3s-1 (95th percentile). The exemplary results of Río Deseado and Río Bravo 826 

indicate a potentially high degree of uncertainty regarding the high percentiles in discharge simulation. These 827 

uncertainties put the results of global flood frequency analysis (e.g., Ward et al., 2013) in ungauged regions at risk 828 
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as the time series of annual maxima might be even more uncertain. Thus, the results of flood frequency analysis 829 

should be carefully interpreted in ungauged regions as the impact of parameter regionalization may be significant. 830 

Upon examination of the relative differences to the benchmark-to-beat for eight ungauged river systems, it be-831 

comes evident that the impact of regionalization methods varies between ungauged river systems (e.g., Río Negro 832 

exhibits almost no variation, but Ebro does). Moreover, it becomes apparent that some regionalization methods 833 

contribute more to the variation in estimated discharge than others. The methods contributing most are knn (best) 834 

and SP. For knn (best), 10 of the 40 relative differences are higher than |0.3|. For SP, even 29 out of the 40 relative 835 

differences are higher than |0.3|. The results of SI (best) and MLR (best) are very similar, indicating high similarity 836 

in performance. This is consistent with the KGE evaluation (see Chapter 3.3), in which they performed similarly. 837 

The observation in Fig. 7d that higher relative differences of discharge simulations occur in drier percentiles is 838 

also reported in Gudmundsson et al. (2012). Moreover, the relative differences between the five regionalization 839 

runs seem comparable to the inter-model differences depicted in Gudmundsson et al. (2012), indicating the high 840 

impact of regionalization methods on the evaluated ungauged river systems.  841 

Finally, Table 3 presents the estimated yearly mean runoff to the ocean for all five ensemble members. All esti-842 

mates of global "runoff to ocean" range from 45,622 (SI (best)) to 47,069 (SP). Thus, the differences are on the 843 

scale of smaller inter-model differences (see Table 2 in Widen-Nilsson et al.,2007). The impact of regionalization 844 

becomes even more evident using an unsuitable regionalization method for WaterGAP3. For instance, the tuned 845 

kmeans ("subset") approach results in 42,862 km3 yr-1 "runoff to ocean", increasing the spread between the meth-846 

ods to 4,208 km3 yr-1 being in the scale of inter-model differences. This high impact of regionalization on global 847 

"runoff to ocean" is surprising, given that only 27 % of the world is ungauged, using the GRDC database. From 848 

this 27 %, most regions are in Australia and Africa, where minimal runoff is produced. In studies employing 849 

disparate models, e.g., for inter-model comparison, all regions are simulated in disparate ways.  850 

The most significant deviations in the continental sums of "runoff to ocean" in Table 3 are due to SP. Only for 851 

Europe is the highest deviation related to MLR (best), not SP. Interestingly, the estimated sums of SP occasionally 852 

define the lowest and occasionally the highest extremes for the continents, lacking a systematic pattern. The out-853 

standing role of SP is consistent with previous evaluations in this Chapter, where SP frequently contributes most 854 

to the variation in discharge. This suggests that SP may not be suitable for the global scale. Nevertheless, the 855 

pseudo-ungauged basins in the split-sample tests may also exhibit considerable distances from the observed basins. 856 

Given that SP achieved satisfactory results in both evaluations, using either the logMAE or the KGE, the evaluation 857 

indicates the method's suitability on a global scale. Thus, in the future, the split-sample test must be extended to 858 

gain deeper insights into the method's robustness and make a definitive statement about the method's suitability 859 

on a global scale. For example, the so-called "HDes" approach, recommended by Lebecherel et al. (2016), could 860 

be applied for this purpose. In this approach, the closest basin to the corresponding (pseudo-) ungauged basin is 861 

excluded from the regionalization process, thereby enabling an assessment of the method's robustness. 862 

Table 3: Mean outflow to the ocean and endorheic basins in km³ yr-1 between 1980-2016. The highest continental devi-863 
ation to the benchmark-to-beat is indicated in bold. 864 

Runoff to ocean1 B2B SI (best) knn (best) MLR (best) SP 

Oceania 1,127 -1.80 % -2.20 % -3.40 % -6.60 % 

Europe 3,098 -2.30 % -0.10 % -2.60 % 0.20% 

Asia  16,676 3.50 % 0.30 % 1.60 % 5.50 % 
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Africa 5,203 -1.00 % 0.70 % -0.30 % -3.60 % 

North America 7,517 0.30 % 1.00 % -1.70 % 2.20 % 

South America 12,032 1.30 % 1.40 % -0.20 % 4.90 % 

global  45,653 46,273 45,953 45,622 47,069 

1including endorheic basin      

Conclusion 865 

Valid simulation results from GHMs, such as WaterGAP3, are crucial for detecting hotspots or studying patterns 866 

in climate change impacts. However, the lack of worldwide monitoring data makes adapting GHMs' parameters 867 

for valid global simulations challenging. Therefore, regionalization is necessary to estimate parameters in un-868 

gauged basins. This study applies regionalization methods for the first time to WaterGAP3, aiming to provide 869 

insights into selecting suitable regionalization methods and evaluating their impact on the runoff simulations. Tra-870 

ditional and machine learning-based methods are tested to assess the application of several regionalization tech-871 

niques on a global scale. The concept of benchmark-to-beat and an ensemble of split-sampling tests are employed 872 

for a comprehensive evaluation. Moreover, the impact on runoff simulation is assessed using a wide range of 873 

temporal and spatial scales, i.e., from the daily to the yearly and from the local to the global scale.Valid simulation 874 

results from GHMs, such as WaterGAP3, are crucial for detecting hotspots or studying patterns in climate change 875 

impacts. However, the lack of worldwide monitoring data makes adapting GHMs' parameters for valid global 876 

simulations challenging. Therefore, regionalization is necessary to estimate parameters in ungauged basins. This 877 

study introduces novel regionalization methods for WaterGAP3 and aims to provide insights into selecting a suit-878 

able regionalization method and evaluating its impact on the simulation results. Traditional and machine learning-879 

based methods are tested to assess the advantages of using new techniques on a global scale. The concept of 880 

benchmark-to-beat and an ensemble of split-sampling tests are employed for a comprehensive evaluation. 881 

In this study, four regionalization methods outperform the benchmark-to-beat and thus are considered appropriate 882 

for WaterGAP3. These methods span the complete range of methodologies, i.e., regression-based methods and 883 

methods using the concept of physical similarity and spatial proximity. Moreover, the methods vary in the de-884 

scriptors used to achieve optimal results. This highlights that different methods use descriptor sets with varying 885 

efficiency. All methods perform best when using climatic and physiographic descriptors, indicating that combining 886 

climatic and physiographic descriptors is optimal for regionalizing worldwide basins. Although random forest is 887 

known to be especially robust among other machine learning-based techniques, it shows symptoms of over-pa-888 

rameterization, indicating that the algorithm is too flexible and adjusts to noise in the data, missing the underlying 889 

systematic pattern.  890 

Our results demonstrate that variation in the regionalized parameter value does not necessarily lead to variation in 891 

river discharge. However, it increases the likelihood that a region's runoff is affected. This spatially varying impact 892 

of γ is likely related to the varying sensitivity in ungauged regions regarding γ. Southern South America is a region 893 

identified to be especially sensitive to variation in γ. Furthermore, local effects on runoff simulations indicate a 894 

temporally varying impact. For example, some impacted rivers indicate a high degree of uncertainty regarding the 895 

high percentiles in discharge simulation. These uncertainties potentially lead to a significant impact on flood fre-896 

quency analysis on a global scale, where the lack of gauging stations in certain regions calls for regionalization. 897 

The global impact of regionalization methods that perform well for WaterGAP3 appears to be in the order of minor 898 
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inter-model differences. This impact rigorously increases when using a poorly performing method for WaterGAP3, 899 

underscoring the importance of carefully selecting regionalization methods.  900 

The spatial proximity approach contributes most to the variation in estimated runoff. The outstanding role of this 901 

approach suggests that it may not be suitable for the global scale. However, as the pseudo-ungauged basins in the 902 

split-sample tests may also have considerable large distances to the observed basins, and the method achieves 903 

satisfactory results in all executed evaluations, it is not possible to make a definite statement about the method's 904 

suitability for the global scale. Further research is required to gain deeper insights into the methods' robustness, 905 

e.g., by extending the analysis by applying the recommended "HDes" approach (Lebecherel et al., 2016). 906 

Our results suggest that the basin descriptor selection may not be crucial for regionalization in WaterGAP3 as long 907 

as a subset of the selected descriptors contains relevant information. Additionally, introducing an ensemble ap-908 

proach for Similarity Indices does not necessarily improve the prediction performance but increases the likelihood 909 

of robust predictions. Interestingly, the simplest regionalization method (using the concept of spatial proximity) 910 

outperforms most of the developed regionalization methods and the benchmark-to-beat. In contrast, the more com-911 

plex, machine learning-based approaches deliver insufficient prediction performance. The inadequate performance 912 

may be attributed to an inefficient extraction of available information content from the descriptors and the blurring 913 

relationship between the calibration parameter and basin descriptors, which is caused by including multiple error 914 

sources in the calibration parameter values. This blurring relationship probably poses a high risk of over-parame-915 

terization, which hinders the use of more flexible machine learning-based approaches. 916 

Regionalization appears to result in spatially varying uncertainty for ungauged regions, with India and Indonesia 917 

being particularly affected by higher uncertainty. The local impacts of regionalization in ungauged areas propagate 918 

to the global scale, where the water balance component “outflow to the ocean and inland sinks” changed by about 919 

2400 km³ yr-1, which is in the scale of inter-model differences. As the selected regionalization method influences 920 

the regionalization more than details on the execution of the method, we recommend employing simulation runs 921 

that use multiple regionalization methods to account for the uncertainty induced by the chosen regionalization 922 

method. Considering the uncertainty induced by regionalization is especially important when analysing regions 923 

with a significant proportion of ungauged basins or high sensitivity to the examined target.  924 

Code and data availability. The data and the supporting R-Code to reproduce this study's findings are available at 925 

https://doi.org/10.5281/zenodo.11833447DOI 10.5281/zenodo.10803089.  926 
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Appendix A: Global Map of derived global soil moisture storage 930 

 931 

Figure A1: Global map of the size of soil storage based on Batjes (2012) and land use information (derived from Friedl 932 
& Sulla-Menashe, 2019) 933 

  934 
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Appendix B: Further analysis regarding the clustering of parameter values at the extremes 935 

The clustered calibrated parameter values at the extremes of the valid parameter space (see Fig. 1b) are a known 936 

problem within the calibration. As the parameter space, i.e., the parameter bounds, is crucial for calibration and, 937 

in consequence, for regionalization, we address this issue by a brief sensitivity analysis to demonstrate that the 938 

clustering of the calibrated parameter values is more an issue of missing processes (or using additional parameter 939 

values) than an issue of inappropriate parameter space. As the lower limit of the calibrated parameter (0.1) is 940 

sufficiently small in comparison to other studies using a similar HBV-based approach for runoff generation pro-941 

cesses (e.g., see the beta in Table A2 in Jansen et al., 2022), we focus on the sensitivity analysis on the upper limit 942 

of γ (5.0). 943 

In the sensitivity analysis regarding the upper limit of γ, we applied the model formula (see equation B1) containing 944 

the model's parameter γ and modified it within the bounds of 0.1 and 10. Additionally, we modified the soil satu-945 

ration varying from 1 % to 95 %.  946 

 =>?@A=B =  3CDE030?F?0=6�GG�H�!I�  ∙  J=0A JF?>CF?0=6����� (B1) 

The calculated outflow and its relationship to the soil saturation and γ are depicted in Fig. B1 and B2. The incoming 947 

effective precipitation is defined as constant. As it is a factor in equation B1,, the results regarding incoming 948 

effective precipitation are linearly scalable. 949 

Figure B1: a) Runoff generation in the soil layer (neglecting overflow and evapotranspiration) using different values 950 
for the calibration parameter and increasing the soil-moisture, b) runoff generation for varying soil moisture grouped 951 
in bins of size one. 952 

In the depicted Fig. B1, the runoff generation process differences between differing γ values become more linear 953 

when soil saturation increases. Thus, the non-linear model parameter becomes less critical for high soil moisture. 954 

Generally, the runoff generation process differences for higher γ values are more pronounced for higher soil mois-955 

ture. For lower soil moisture, the smaller values have higher effects on the generated runoff. For example, for 70 % 956 

soil moisture, the differences for γ values ranging from 5 to 10 are between 3 % and 16 %. For the same soil 957 

moisture, the range in runoff generation varies from 16 % to 70 % for γ values between 1 and 5. 958 

(a) (b) 
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High γ values usually occur in dry regions (see Fig. 4b in Müller Schmied et al., 2021). In dry regions, high soil 959 

moisture values are not expected to occur frequently (e.g., see Khosa et al., 2020; Oloruntoba et al., 2024 for 960 

estimated and measured soil moisture in Africa and Draper et al., 2008 for estimated and measured soil moisture 961 

in Australia). It is, therefore, unlikely that higher γ values will significantly enhance the calibration result or de-962 

crease the issue of clustered calibrated parameter values at the higher end of the parameter space. More likely, the 963 

clustering of calibrated parameter values will be resolved in dry regions by incorporating additional (missing) 964 

model processes, such as evaporation from rivers or inaccurate representation of groundwater processes (Eisner, 965 

2016, p. 49). Thus, the parameter bounds of γ (e.g., also used in Eisner 2016, p. 16; Müller Schmied et al., 2021; 966 

Müller Schmied et al., 2023) are not changed in this study.   967 
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Appendix CA: Basin descriptors  968 

Overview of basins descriptors used in this study. All basin descriptors are derived from the original model input 969 

and aggregated with a simple mean method to basin values to produce the same spatial resolution as the calibrated 970 

model parameter.  971 

 Soil Storage: The size of the soil storage, i.e., the maximal water content in the soil reachable for plants 972 

in millimetresmm. The information is the product of rooting depth (defined in a look-up table) and the 973 

total available water content derived from Batjes (20123). 974 

 Open Water Bodies: The fraction of the area covered with open water bodies in the basin is given as a 975 

percentage. The model input is based on the GLWD database (Lehner & Döll, 2004).  976 

 Wetlands: The fraction of area covered with wetlands in a basin is given in percentage. The model input 977 

is based on the GLWD database (Lehner & Döll, 2004). 978 

 Size: Size of a basin in km2. 979 

 Slope: The mean slope class is calculated as described in Döll & Fiedler (2008) and based on GTOPO30 980 

(USGS EROS data centre).  981 

 Altitude: The mean altitude of a basin is given in metres meters above sea level and based on GTOPO30 982 

(USGS EROS data centre). 983 

 Forest: The mean fraction of the area covered with forest is given in percentage and derived from MODIS 984 

data (Friedl & Sulla-Menashe, 2019), where 2001 is used as a reference. All grid cells having a dominant 985 

International Geosphere-Biosphere Programme (IGBP) classification between one and five are defined 986 

as “"forest”.". 987 

 Sealed Area: The mean fraction of sealed area is given in percentage and derived from MODIS data 988 

(Friedl & Sulla-Menashe, 2019), where 2001 is used as a reference. All grid cells having an IGBP clas-989 

sification equal to 13 are defined as they would contain 60% of the sealed area. Note: The different treat-990 

ment of forest and sealed area is based on the required model input; whereas the land cover is a classified 991 

value, the sealed area is a floating-point value. 992 

 Permafrost & Glacier: The mean coverage of permafrost and glacier in a basin is given in percentage. It 993 

is based on the World Glacier Inventory and the Circum-Arctic Map of Permafrost and Ground-Ice Con-994 

ditions. 995 

 Mean Temperature: The mean air temperature is based on the meteorological forcing used to drive the 996 

model (Lange, 2019) covering the period 1979 to 2016 and given in degrees Celsius.  997 

 Yearly Precipitation: The yearly precipitation sum is based on the meteorological forcing used to drive 998 

the model (Lange, 2019) covering the period 1979 to 2016 and given in millimetresmm. 999 

 Yearly Shortwave Downward Radiation: The yearly shortwave downward radiation is based on the me-1000 

teorological forcing used to drive the model (Lange, 2019) covering the period 1979 to 2016 and given 1001 

in Wm-2. 1002 

 1003 

The correlation between the defined basin descriptors is shown in Fig. A1. The variation within each basin de-1004 

scriptor for basins used for regionalization regionalization is shown in Fig. A2. 1005 

 1006 
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 1007 

 1008 

Figure CA1: Correlation between basins descriptors. 1009 

 1010 

 1011 

Figure CA2: Distribution of basins descriptors within all basins used for regionalization regionalization (n=1,236933) 1012 
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Appendix B: Results of split-sample tests 1013 

Table B1: Summarized results of the split-sample tests for all regionalization methods 1014 

input method train (median) train (sd) test (median) test (sd) 

- WG2 1.527 0.042 1.544 0.046 

- SP - - 1.356 0.057 

cl 

MLR 

1.474 0.039 1.485 0.019 

p 1.871 0.034 1.881 0.015 

p+cl 1.457 0.038 1.473 0.018 

all 1.394 0.039 1.425 0.024 

cl 

MLR_t 

1.322 0.040 1.331 0.027 

p 1.830 0.041 1.843 0.030 

p+cl 1.307 0.042 1.337 0.030 

all 1.245 0.042 1.292 0.034 

cl 

RF 

0.688 0.026 1.401 0.029 

p 0.741 0.027 1.579 0.032 

p+cl 0.620 0.020 1.312 0.025 

all 0.624 0.021 1.346 0.023 

cl 

RF_t 

0.465 0.020 1.310 0.039 

p 0.494 0.023 1.540 0.042 

p+cl 0.378 0.017 1.183 0.037 

all 0.345 0.014 1.181 0.034 

cl 

SI_1 

1.477 0.080 1.492 0.056 

p 1.651 0.086 1.661 0.063 

p+cl 1.380 0.066 1.375 0.050 

all 1.367 0.069 1.390 0.064 

cl 

SI_10 

1.398 0.046 1.397 0.029 

p 1.558 0.047 1.556 0.027 

p+cl 1.326 0.044 1.321 0.025 

all 1.398 0.049 1.402 0.028 

cl 

SI_10_t 

1.281 0.053 1.281 0.043 

p 1.497 0.050 1.487 0.037 

p+cl 1.206 0.048 1.201 0.040 

all 1.286 0.053 1.296 0.039 

cl 

k-means 

1.689 0.038 1.699 0.018 

p 1.910 0.051 1.918 0.039 

p+cl 1.632 0.046 1.648 0.022 

all 1.642 0.044 1.638 0.025 

cl 

k-means_t 

1.474 0.111 1.519 0.088 

p 1.909 0.055 1.918 0.040 

p+cl 1.399 0.070 1.425 0.053 

all 1.426 0.068 1.417 0.051 

cl 

k-means 

flexible 

1.065 0.048 1.553 0.097 

p 1.191 0.046 1.991 0.142 

p+cl 0.982 0.040 1.568 0.125 

all 0.957 0.044 1.515 0.114 
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Appendix D: Results of the ensemble of the split-sample tests 1015 

 1016 

 1017 

 1018 

Figure D1: logMAE values for all 100 split-sampling tests using all variants of a) MLR, RF, and benchmark-to-beat, 1019 
b) SI, and c) kmeans, knn, and SP. Note that the asterisk * indicates the tuned version of the method. 1020 

  1021 

(a) 

(b) 

(c) 

benchmark 

benchmark 

benchmark* 

benchmark 
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Table D1: Performance loss in median logMAE of the ensemble of split-sample tests from training to testing expressed 1022 
in % of logMAE in training. 1023 

test  

(% train) 
MLR RF 

SI 

kmeans knn SP B2B 
no ens. 

ensem-

ble 

cl 100.4 202.9 100.6 100.6 100 100 

102.3 102.2 
p 102.1 199.6 101.2 100.6 101.3 101.1 

p+cl 103.1 207.1 101.6 100.9 100.6 95.6 

subset 101.7 223.9 100 100.7 101.3 100.2 

         

test*  

(% train*) 
MLR RF 

SI 
kmeans knn SP B2B 

no ens. 
ensem-

ble 

cl 100.8 266.9 99.8 100.7 100 100.4 

103.1 104.1 
p 103 277.3 101.3 101.3 101.4 101.4 

p+cl 104.4 277.9 102 102.1 102.2 101.7 

subset 102 258.2 99.8 100.5 103 100.2 

 1024 

  1025 
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