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Abstract. Fault activities modelling holds vital importance for earthquake monitoring, risk management, and early alert. 

Studies on laboratory earthquakes are instrumental in the modelling of natural fault ruptures and in enhancing our grasp of 

natural earthquake dynamics. Recently, deep learning methods have been proven effective in predicting instantaneous fault 10 

stress in laboratory settings and slow slip events on Earth. However, these methods have struggled to conduct steady future 

prediction lacking grasping of the complex dynamics of highly nonlinear laboratory fault slip systems. Addressing this, we 

introduce the Hankel Koopman Auto-encoder (HKAE), a novel method inspired by dynamical system theories. HKAE 

performs dynamic modelling of laboratory fault system and provides a continuous estimation of the future state of the system. 

It has been deployed on experiments with different slip behaviours and shows superior ability to predict shear stress variation 15 

during a slip cycle and also slip activities in longer-term seismic cycles. The HKAE model surpasses conventional time series 

prediction deep learning methods, showing superior statistical evaluation metrics like RMSE and R2 with two prediction 

horizons. Meanwhile, we find that the HKAE can model the slip dynamics better than purely statistical modelling, as evidenced 

by its more accurate modelling of the slip timing, slip cycle intervals and its ability to summarize the quasi-periodic dynamics 

as an operator from a small number of samples to generate more robust beyond-horizon prediction. The capability of HKAE 20 

to decompose and model complex temporal dynamics highlights its potential in and sparse-observed geophysical system with 

quasi-periodic characteristics like natural fault activities. 

1 Introduction 

Modelling fault activities plays a crucial role in understanding the pattern of seismic activities, monitoring and even predicting 

the occurrence of earthquakes, and estimating seismic hazards. Laboratory earthquake studies contribute to modelling natural 25 

fault ruptures and enhancing our understanding of natural earthquakes (Johnson et al., 2021). It indicates the similar mechanism 

between slow and fast slips (Hulbert et al., 2019), and inspire to extract fault physical property changes from a large number 

of earthquake records (Rouet-Leduc et al., 2019). Machine learning has been proven effective in extracting information about 

the rupture behaviour of laboratory earthquakes from acoustic emission signals for instantaneous prediction. Rouet-Leduc et 

al. (2017) firstly found that random forest can accurately predict the time-to-failure using acoustic emissions. Subsequently, 30 
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stress variation, a crucial physical feature of faults, has been identified and evaluated from acoustic emissions using XGBoost, 

enabling further analysis of the acoustic signals (Rouet‐Leduc et al., 2018). Lubbers et al. (2018) found that the event catalogue, 

which is more available in natural earthquake, can also predict the transient fault mechanism. Active source seismic data is 

also a valid data source to predict the instantaneous fault behaviour. Jasperson et al. (2019) and Karimpouli et al. (2023) 

discussed the prediction methods like traditional machine learning methods, neural networks and explainable machine learning 35 

methods. An assessment of the transferability across diverse experiments and simulations was conducted, highlighting its 

critical role in applying laboratory methods to in-field models (Wang et al., 2021; Borate et al., 2023).  

While most studies focus on instantaneous prediction, several have explored future prediction. The state-of-the-art sequence 

modelling architecture, Transformer, has shown promise in extracting future friction information from continuous acoustic 

emission signals (Wang et al., 2022). The model's attention score reveals that the closer the friction is to the rupture moment, 40 

the stronger the indication of stress drop in seismic records. Laurenti et al. (2022) discovered that laboratory fault zone stress 

can be inferred autoregressively. Additionally, spatial dimensions have been introduced for the autoregressive spatiotemporal 

prediction of surface velocity fields during laboratory fault slips (Mastella et al., 2022). Although these studies underscore 

potential for inferring future behaviour of fault slips, they confront challenges in modelling stability and future lead prediction 

owing to the intricate dynamics of laboratory fault slip systems. Gualandi et al. (2023) proposed that the laboratory earthquake 45 

cycle exhibits characteristics of a low-dimensional system, with an average dimension similar to natural slow earthquakes. 

Lyapunov exponent analysis reveals the predictability within a certain period, albeit with deterministic and stochastic chaotic 

behaviours, which are challenging to model using machine learning methods designed from traditional statistical knowledge. 

Physics-informed machine learning methods have been proven to be a framework for geoscientific applications (Degen et al., 

2023) like glacier modelling (Riel et al., 2021), ocean modelling (Hammoud et al., 2022) and also solid-earth (Okazaki et al., 50 

2022). It introduces domain prior knowledge, the key factor in geoscientific analysis while leveraging the benefits of machine 

learning. Recent advancements in dynamic theory, led by Koopman theory (Koopman, 1931), have shown efficacy in 

integrating dynamical insights within a data-driven framework, yielding results more aligned with dynamic situations 

(Karniadakis et al., 2021). Various methods based on Koopman theory have been acknowledged as powerful for modelling 

and deciphering complex nonlinear dynamical systems (Brunton et al., 2022), such as in fluid mechanics (Brunton et al., 2020), 55 

and have found applications in geophysical fields, including climate (Li et al., 2020; Froyland et al., 2021), ocean variability 

(Franzke et al., 2022), and electromagnetic fields (Brunton et al., 2017; Lintner et al., 2023). 

Given the complicated dynamics of laboratory fault slip systems, we propose a deep learning method imbued with Koopman 

theory. Instead of focusing on directly learning a mapping from historical data to future predictions, our model envisions the 

future prediction as the continuous evolution of laboratory fault slip systems. Laboratory fault systems with different slip 60 

behaviours under different prediction horizons are adapted to evaluate the effectiveness of HKAE modelling. 
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2 Materials, methods and models 

2.1 Laboratory stick-slip data 

Our study incorporates two categories of data - one drawn from laboratory experiments carried out with biaxial shear 

equipment, and the other derived via numerical simulation. The experimental data from the biaxial shear equipment comes 65 

from the PSU laboratory (Laurenti et al., 2022). Different shear materials are situated between the two plates to which positive 

pressure and shear force are exerted from each side, and the equipment is used to record the changes in system properties such 

as pressure recorded during the shear process (Figure 1a-b). This results in time series data recorded at a temporal sampling 

rate of 0.001s. We derive the numerical simulation data from a modified rate-and-state friction (RSF) model (Gualandi et al., 

2023). Both types of data record several mechanical variables, but here we mainly focus on the variation of shear stress because 70 

of its direct indication of the onset of laboratory fault slip. Experiment 4581 (Exp. 4581) and Experiment 5198 (Exp. 5198) 

demonstrate quasi-periodic slow and fast slip behaviours, respectively, while Experiment 4679 (Exp. 4679) contains a switch 

between two types of slip behaviours (Figure 1c). We used the simple simulation of the data as an additional validation (Figure 

1d), which shows a robust switch between two slip behaviours with stress variation. 
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 75 
Figure 1: (a) The laboratory fault slip experiment setting and (b) recorded data, acoustic emissions record in gray and shear stress 
time series in blue. (c) Three modelled experiments with different slip behaviours. (d) Simulated shear stress. 
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2.2 Dynamical System Theories 

2.2.1 Koopman Theory 80 

Laboratory earthquake can be conceptualized as being governed by a dynamical system, and shear stress can be regarded as a 

measurement of this system, fits Eq. (1) 

𝑥!"# = 𝐹(𝑥!) (1) 

𝑥! is the shear stress measured from laboratory slip system,  𝐹 presents the governing function of the system. 	
Koopman theory is a mathematical theoretical framework. It states that all finite-dimensional nonlinear systems can evolve in 85 

an alternative space through the mapping 𝑔 of the infinite-dimensional Koopman operator 𝐾. The Koopman operator on the 

transformed space can be used directly to perform the linear evolution of the system state as Eq. (2)-(3) and Figure 2 show. 

𝐾𝑔(𝑥!) = 𝑔*𝐹(𝑥!)+ = 𝑔(𝑥!"#) (2) 

𝑥!"# = 𝑔$#𝐾𝑔(𝑥!) (3) 

Owing to the linear properties of the Koopman operator, linear methods like spectral decomposition can be employed on the 90 

operator for enhanced analysis, prediction, and control. The dimension of the the learned approximate Koopman operator 

indicates the dynamic modes needed to describe the dynamical process, which can be decomposed as follows: 

𝐾 = 𝑉Λ𝑉$# (4) 

Where 𝑉 = [𝑣#, 𝑣%, … , 𝑣&] is the eigen vectors of 𝐾, Λ = [𝜆#, 𝜆%, . . . , 𝜆&] is the eigenvalues of 𝐾. Each eigenvalue describes 

the strength and oscillatory properties of its corresponding dynamical component: 95 

𝑏'& = 𝑏(&𝑒
'
)!*+,-! (5) 

Here 𝒃𝒌 = [𝑏#& , 𝑏%& , . . . , 𝑏/&] represents the temporal evolution of 𝑘!0 dynamic modes. 

Provided we're aware of the current state, we can infer the system's future behaviour incrementally using mapping function 𝑔 

and linear operator 𝐾, and the dynamic characteristic can be explored through the eigen decomposition of 𝐾, for example, to 

explore what are the main driving components in the evolution of control systems, what is the pattern of its growth, and so on. 100 
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Figure 2: Koopman Theory. 

 

2.2.2 Delay Embedding Theory 105 

While Koopman theory best accommodates states or majority observations rich in dynamical system information, the shear 

stress in this context merely provides partial observation of the laboratory slip system. Here we introduce delay embedding 

theory to reconstruct the system behaviour. Delay embedding theory supposes that topological reconstruction of the attractors 

from the original high-dimensional system, also known as phase space reconstruction, can be performed using only the 

observed univariate long time series (Takens, 1981). We define 𝒉 as the embedded variable, taking 𝐻 = [𝐡#, 𝐡%, … , 𝐡1] as the 110 

input. The embedding process is described in Eq. (6) with the parameters, the embedded dimension 𝑑 and delay time	𝜏. The 

delay time 𝜏 usually takes 1 in most situations (Brunton et al., 2017).  
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𝐇 = C

𝑥# 𝑥% … 𝑥1
𝑥#"2 𝑥%"2 … 𝑥1"2
⋮ ⋮ ⋱ ⋮

𝑥#"(4$#)2 𝑥%"(4$#)2 … 𝑥1"(4$#)2

F = C

𝑥# 𝑥% … 𝑥1
𝑥% 𝑥6 … 𝑥1"2
⋮ ⋮ ⋱ ⋮
𝑥4 𝑥4"# … 𝑥1"(4$#)

F = [𝐡#, 𝐡%, … , 𝐡1] (6) 

Here, we aim to utilize historical shear stress observations to evolve future states or to discern the relationship between 

historical shear stress (𝑥!$7 , 𝑥!$7"#, . . . , 𝑥!)	and future states (𝑥!"#, . . . , 𝑥!"8$#, 𝑥!"8). Based on the delay embedding, the 115 

questions lie in determining the relationship from [𝐡#, 𝐡%, … , 𝐡1] to [𝐡1"#, 𝐡1"%, … , 𝐡1"8], which can be deconstructed into the 

mapping function 𝑔 and operator 𝐾. 

As shown in Figure 3, which represents the process of delayed embedding. To verify the retention of the original system's 

phase space topological relations following the delayed embedding, we often resort to the singular value decomposition to 

identify the system's three primary components, and use the corresponding singular vectors to open the space to represent the 120 

system evolution. Taking the Lorentz system as an example, Figure 3a represents the tensor space using the state variables of 

the original system. Observation yields merely a single scalar series, as depicted in Figure 3c. Figure 3b shows the first three 

singular vectors that result from the delayed embedding, which is diffeomorphic with the system represented by Figure 3a, i.e., 

they are considered to represent the same dynamical system behaviour. This approach has been shown to be effective in 

enhancing the feature dimensions from the data, and it has also been shown to be important in governing equation extraction 125 

(Bakarji et al., 2023) and modelling with Dynamic Mode Decomposition (DMD) (Avila and Mezic, 2020). 
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Figure 3: Delay embedding theory. (a) Representation of Lorenz system behavior using original state [𝒙, 𝒚, 𝒛]. (b) Representation of 
Lorenz system behavior using singular vectors [𝒗𝟏, 𝒗𝟐, 𝒗𝟑] from SVD result of delay embedded observation 𝒙. (c) Single Observation 
of Lorenz system. 130 

  

2.3 Architecture of Hankel Koopman Autoencoder (HKAE) 

Here we propose the model named Hankel Koopman Autoencoder (HKAE), synthesizing the inductive bias of dynamical 

system theories and deep learning nonlinear fitting ability. This model encompasses three key modules (Figure 4): 

(1) Delay Embedding Module: Employing delay embedding theory, the shear stress time series (𝑥!$4 , 𝑥!$4"#, . . . , 𝑥!) are 135 

reconstructed in phase space to obtain their Hankel matrix 𝐻 = [𝐡#, 𝐡%, … , 𝐡1] in this module. 

(2) Mapping Learning Module: The powerful nonlinear fitting capabilities of deep learning have been demonstrated to 

effectively learn the mapping, approximating an optimal Koopman operator (Takeishi et al., 2017;   Lusch et al., 2018; Azencot 
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et al., 2020) . Here, we utilize an encoder-decoder backbone incorporating a 3-layer Multi-layer Perceptron (MLP) to learn the 

mapping between phase space and Koopman invariant subspaces. 140 

(3) Koopman Evolution Module: In this module, the Koopman operator is represented as a layer of neurons, consisting solely 

of weights and devoid of bias. Following the encoding process, the system is mapped into Koopman invariant subspaces, 

where the Koopman operator is applied to facilitate system evolution. Multi-step prediction is achieved through the iterative 

application of the same set of operators corresponding to the predefined prediction steps. The decoded evolution results remain 

in phase space. Subsequently, a re-embed process is applied to derive the predicted shear stress, implemented by selecting the 145 

final value of each evolved result. 

The loss of this model includes 2 parts, reconstruction and evolution loss, shown in Eq. (7)-(9). The reconstruction loss is set 

to minimize the loss that occurred during the mapping process, while the evolution loss is to minimize the loss of linear 

evolution achieved by the Koopman operator. 

𝜀9:;+<=!9>;! =
1
2𝑛J ∥ ℎ1 − ℎ?N ∥%%

<

1@#

(7) 150 

𝜀:A+*>!1+< =
1
2𝑛ℎJ	

0

'@#

J∥ ℎ1"' − ℎ
~
1"' ∥%%

<

1@#

(8) 

𝐿𝑜𝑠𝑠 = 𝜀9:;+<=!9>;! + 𝜆𝜀:A+*>!1+< (9) 

 

 

Figure 4: Architecture of HKAE. 155 
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2.4 Time series prediction deep learning models in statistical perspective 

2.4.1 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a widely used deep learning model for sequence modelling to address the challenge of 

vanishing and exploding gradients in long sequence data (Hochreiter and Schmidhuber, 1997).  It has become a powerful tool 160 

in temporal modelling in earth sciences. The core of LSTM is the LSTM cell. A LSTM cell consists of a cell state and a set of 

gates (input, forget and output gates). The input gate determines the new input information to add to cell state while the forget 

gate choose the information to drop in the cell state. The output gate controls how cell state is mapped to the output. The 

structure of a LSTM cell is shown in Figure 5a. The equation expressions of three gates are shown as follows: 

𝑖! = 𝜎(𝜔1[ℎ!$#, 𝑥!] + 𝑏1) (10) 165 

𝑓! = 𝜎*𝜔C[ℎ!$#, 𝑥!] + 𝑏C+ (11) 

𝑜! = 𝜎(𝜔+[ℎ!$#, 𝑥!] + 𝑏+) (12) 

2.4.2 Temporal Convolutional Network (TCN) 

Temporal Convolutional Network (TCN) is a sequence modelling method inspired by convolutional operations widely used 

in the image processing (Bai et al., 2018). It has been regarded as the state-of-the-art model in laboratory fault flip modelling 170 

(Laurenti et al., 2022). The core of TCN is a series of sequence convolution and pooling blocks. In general, the features of 

input sequence are extracted through dilated convolution with sliding window. Pooling layer is adapted to dimension reduction. 

Weight norm, drop out are used to improve the robustness of model. The structure of TCN model and TCN block is shown in 

Figure 5.  

 175 

2.4.3 Multi-layer Perceptron (MLP) 

Except for two sequence modelling method, we also test the simple MLP model. Here we take the historical sequence as input 

feature and predict sequence as output, as shown in Figure 5. In this way, the MLP is equivalent to performing a 1*1 

convolution directly in the time dimension, which is equivalent to a TCN model with dilation set to 1. 

https://doi.org/10.5194/gmd-2024-46
Preprint. Discussion started: 22 March 2024
c© Author(s) 2024. CC BY 4.0 License.



11 
 

 180 
Figure 5: Architecture of comparative deep learning models 
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2.5 Model training and prediction 

In our experiments, we utilized three datasets with distinct slip features and one numerical simulation result to assess the 

robustness of our model. We employed a unified time sampling rate of 0.1s. A ratio of 50%, 10%, and 40% was applied to 185 

each dataset for training, validation, and testing, respectively. The sliding window method was employed to generate data 

sequences for model training and inference. For the input dataset [𝑥!, 𝑥". . . . , 𝑥#], we sample historical 𝐾 steps to predict 

future 𝐿 steps. The sliding window prediction can be presented by: 

(𝑥1 , … , 𝑥1"7) → *𝑥
~
1"7"#, … , 𝑥

~
1"7"8+ (13)	

Where	𝑖 = (1,… ,𝑁 − 𝐾 − 𝐿 + 1)	represents number of times the window slides. 190 

The HKAE model's hyperparameters are divided into three main categories, corresponding to the three model modules. The 

first set comprises the embedding dimension and delay time in the Delay Embedding Module. The optimal embedding 

dimension of 100 and delay time of 1 were confirmed by integrating the optimized parameter confirmation method proposed 

by (Cao, 1997) with the actual prediction results and metrics. The number of MLP layers in the Mapping Learning Module 

was set to 3, based on previous works and results. Lastly, the dimension of the Koopman Operator Module was set to 10, 195 

based on the data and performance. We adopted a batch size of 64, L2 loss as the loss function, and Adam as the optimization 

algorithm. Weight decay and gradient crip skills are adapted to improve the performance. Given the single-step evolutionary 

nature of the Koopman operator, in order to keep it robust on future leading predictions by learning the dynamics, we use a 

multi-step trick on error estimation during model training (Eq. (8)). 

For the comparative models, LSTM and MLP obey the similar setting in Laurenti’s work. The detailed key parameters setting 200 

is listed in Table 1. To achieve multi-step prediction, here we add a Fully Connected Layer as decoder in our LSTM, TCN and 

MLP models, to map the extracted features to prediction window. Temporal Bundling (TB) is adapted to reduce the rate of 

error propagation through reducing the model calls (Brandstetter et al., 2022). 

 
Table 1: Key parameters adapted in the experiments for different models. 205 

LSTM TCN MLP HKAE 

Input_size: 1 Input_size: 1 Input_size: K Embedded Dimension: K 

Num_layer: 3 Num_channel: [64, 256] Hidden_size: [64, 256] Delay Time: 1 

Hidden_size: 128 Kernel_size: 3 Output_size: L Bottleneck: 10 

Output_size: L Drop_out: 0.1  Hidden_size: 16*a, a = 5 

 Output_size: L   
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2.6 Evaluation metrics 

We evaluate the prediction result mainly using R2 and Rooted Mean Square Error (RMSE) metrics. As Eq. (13) shows, the 

predictions are conducted in a certain time window, and the window keep sliding to the end of this lead situation. Then the 

lead time grows to adapt new round of sliding predictions. Here we calculate the difference between the predicted results and 210 

the ground truth corresponding to each prediction leading step case. 

For prediction lead steps	𝑗 = (1,… , 𝐿), we compute the  𝑅'% and 𝑅𝑀𝑆𝐸' as follows: 

𝑅'% = 1 −
J (𝑥?

Db− 𝑥1
')%

/$7$8"#

1@(

J (𝑥' − 𝑥1
')%

/$7$8"#

1@(

(14) 

𝑅𝑀𝑆𝐸' = c
1

𝑁 − 𝐾 − 𝐿 + 1 J (𝑥?
Db− 𝑥1

')%
/$7$8"#

1@(

(15) 

Where 𝑗 is the prediction lead step, 𝑖 is the number of slide windows. 𝑅'% and 𝑅𝑀𝑆𝐸' represents the 𝑅% and 𝑅𝑀𝑆𝐸	for 𝑗!0 lead 215 

predictions. xe, xf, 𝑥 are respectively the predictions, mean and ground truth of 𝑥. 

To assess the efficacy of temporal dynamics modelling, we utilized mean period statistics commonly employed in laboratory 

earthquake system analysis (Veedu et al., 2020). We pick the peaks of shear stress and compute the interval of peaks ∆𝑇 as the 

period of shear stress variation respectively for predictions and ground truth. The R2 metric is used to test whether the stress 

variation period of predictions fit well. The slip interval Δ𝑇 is computed based on the algorithm from (Gualandi et al., 2023), 220 

according to the peaks of shear stress series. The peaks are found based on find_peak function from scipy. 

Δ𝑇! = Δ𝑡 ∗ &𝑠𝑙𝑖𝑝"#$%#&!"#$%!&' − 𝑠𝑙𝑖𝑝"#$%#&!"#$%!, (16) 

𝑠𝑙𝑖𝑝"#$%#&!"#$%! = 𝑠𝑡𝑟𝑒𝑠𝑠%'(!"#$%! + 𝑎𝑟𝑔𝑚𝑖𝑛 89𝑥)%&#))()*!"#$%!
, … , 𝑥)%&#))+)((),!"#$%!&'

9=	 (17) 
The 𝑠𝑙𝑖𝑝_center_𝑖𝑛𝑑𝑒x represents the central moment of a slip behaviour, derived from 𝑠𝑡𝑟𝑒𝑠𝑠_𝑡𝑜𝑝_𝑖𝑛𝑑𝑒x, the positive peaks 

of shear stress series, and 𝑠𝑡𝑟𝑒𝑠𝑠_𝑏𝑜𝑡𝑡𝑜𝑚_𝑖𝑛𝑑𝑒x, the negative peaks of shear stress series. 225 

Then we compute the 𝑅=*1E-
%  for modelled slip intervals for different lead steps:  

𝑅=*1E-
% = 1 − J(∆𝑇?

Db
/./!*

1@(

−
Δ𝑇1

')%

J (Δ𝑇' − Δ𝑇1
')%

/./!*

1@(

(18) 

Where 𝑗 is the prediction lead step, 𝑖 is the number of slips in the 𝑗!0 predictions. Δ𝑇b , Δ𝑇ffff, Δ𝑇 are respectively the predictions, 

mean and ground truth of Δ𝑇. 
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 230 
Figure 6: Calculation of slip interval 𝚫𝑻. 

 

3 Results 

3.1 Evaluation of dynamic modelling process 

We conduct multi-step prediction experiments on three types of shear stress records from laboratory seismic experiments, each 235 

exhibiting different rupture characteristics: fast rupture (Exp. 4581), alternating fast and slow rupture (Exp. 4679), and slow 

slip (Exp. 5179). These experiments illustrate the robustness of our model across various slip modes. To validate the 

effectiveness of the dynamic modelling, here we employ Singular Value Decomposition (SVD) and Eigen Decomposition (ED) 

to check the data status during the model processing. 

Firstly, we adapt SVD on the result after delay embedding, utilizing three dominant right singular vector modes as coordinates 240 

to represent the system's behaviour (Figure 7b). Using simple ODE simulation data as an example, it is evident that the system 

evolves along a “two-cycle-like” stable trajectory. Each cycle represents a slip process with varying stress drop intensities, and 

the system alternates between these two states. The attractors of Exp. 4581 and 5198 do not exhibit concentrated traces but 

rather more complex trajectories, indicative of the quasi-periodic behaviour of slow and fast slips. For the Exp. 4679, the 

attractor displays a more significantly disordered pattern, yet cycles around two main traces, illustrating the bifurcation process  245 

(Veedu et al., 2020). The structure of the attractors is preserved following the nonlinear mapping by the MLP encoder, as 

illustrated in Figure 7c, indicating that the system dynamics are retained post-mapping from the observed space to the Koopman 

subspace.  

Δ"! Δ"!"#

!"#$_&'()'*_#(+',!

!)*'!!_)-$_#(+',!

!)*'!!_.-))-/_#(+',!

https://doi.org/10.5194/gmd-2024-46
Preprint. Discussion started: 22 March 2024
c© Author(s) 2024. CC BY 4.0 License.



15 
 

We apply ED to the learned Koopman operator (Eq. (4)) and get the decomposed complex eigen value (Table 2), representing 

various dynamic modes characterized by distinct amplitudes and periods. We illustrate these modes within a unit circle, which 250 

represents the attraction set. As Figure 7d shows, not all modes are near the unit circle. This may be caused by a single 

observation dimension, or it may be caused by an unstable stick-slip system where the data does not exactly follow the attractor 

trajectory during the experiment (Jasperson et al., 2021). The dynamic modes represented by eigenvalues are discriminated by 

a narrow threshold (0.01) of the distance to unit circle. Eigenvalues that exceed the threshold are considered unstable modes 

if they are large, stable modes if they are small, and neutral if they are within the threshold.  255 

All three experiments decomposed and obtained stable modes (red points, modes close to the unit circle,). Modes with about 

10s and 9s for the quasi-periodic fast slip in Exp. 4581 and slow slip in Exp. 5198. While dual modes with about 6s and 10s 

for the bifurcations of slips in Exp. 4679 are also modelled successfully. There are modes with amplitudes close to 1 and zero 

frequency in Exp. 4581 and 5198, but the amplitude of the zero-frequency mode in Exp. 4679 with slip switch is much lower, 

which reflects the stronger time-varying component in this slip system. 260 
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Figure 7: Dynamic modelling steps and interpretation with HKAE. The rows represent the different modelled experimental data. 
The columns represent the dynamic modelling of the data through the different steps of the model. (a) Shear stress time series from 
Ordinary Differentiation Equation (ODE) Simulation and three lab experiments. (b)-(c) Attractor structure after delay embedding 265 
and HKAE-encoder, using the coordinates expanded by the first three right singular vector modes (Text S3 in Supplementary 
Information S1). The black line illustrates the system evolution under three-dimensional projections.  (d) Eigen Decomposition of 
learned Koopman Operator. Left in (d) illustrates the real and image part of the complex eigen value. Right in (d) convert the value 
to amplitude and period format. 

 270 
Table 2: Learned Koopman operator eigen modes. Only show the eigenvalue with positive periods due to the conjugation. 

 Exp. 4679 Exp. 4581 Exp. 5198 
# Eigenvalue Period(s) Amplitude Period(s) Amplitude Period(s) Amplitude 

1 9.970778 0.999401 9.548719 1.001883 6.388905 0.994914 

2 5.378387 0.993912 0.294214 -0.071703 0.349487 -0.13397 

3 0.258224 -0.34971 0.239758 -0.500562 0.329522 -0.20161 

4 inf 0.091451 inf 0.967017 0.276048 -0.195414 

5 inf 0.193768 inf 0.94443 inf 1.00072 
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3.2 Evaluation of different slip behaviours with different models 

We test two different experimental settings to validate the modelling and prediction capabilities pertaining to slip behaviours. 

The first one focusses on the stress variation. Employing the historical 100 steps (spanning 10s, which encompasses a complete 275 

slip cycle of stress raise and release), we predict the subsequent 30 steps of shear stress (lasting 3s, long enough to include a 

stress raise or drop process). Then we extend the input to 20s and prediction horizon to 10s, to test the skills on seismic cycle 

modelling. We compare our results under 2 experiment settings with 3 comparative deep learning time series prediction 

methods. 

Figure 8 illustrates the evaluation metrics varies with prediction lead steps for the experiment data. First, the slow slip 280 

represented by Exp. 5198, with its relatively gentle stress changes and quasi-periodic characteristics, is not too difficult from 

the perspective of time series prediction, so both LSTM and TCN outperform HKAE in terms of R2 and RMSE. But from the 

results of our slip interval Δ𝑇 modelling metrics, HKAE clearly shows better results. On the other hand, for the other two data 

with more complex slip behaviour, Exp. 4679 with alternating fast and slow slips and Exp. 4581 with predominantly fast 

ruptures, the traditional deep learning methods also appear to have poorer statistical metrics than the HKAE. While it can be 285 

observed that the R2 of HKAE keeps a steady trend although the initial prediction gets a higher miss, showing the ability of 

dynamic extraction and modelling. And from the results of slip interval modelling, on the two experiments with more slip 

characteristics, the HKAE also shows robust results with the growth of the prediction lead. 

In addition, we can find that in the lead prediction of the three experiments, the metric will decay more rapidly in accuracy 

before 1s lead, while the decay slows down after 1s, especially for the traditional machine learning method. Under the “20s-290 

10s” experimental setting (Figure 8a), we believe that the lead prediction can cover 1-2 complete seismic cycles (Laurenti et 

al., 2022), at which point the statistical period of the slip interval will be longer and more representative. Compared with the 

experimental settings of “10s-3s” (Figure 8b), predicting the results for the next 10s, the slip interval scores of the HKAE 

predictions get higher than other methods, which reflects the superiority of HKAE in modeling seismic dynamics.  

Furthermore, unlike the decrease in accuracy with an increasing number of leading steps evident in stress value predictions, 295 

the metrics for slip intervals do not demonstrate a steady decline. This could be attributed to the periodicity of the slip activities. 

Moreover, the capacity of the HKAE model to model slip behaviour more robustly indicates its strength in capturing the long-

term trend in the data. 
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Figure 8: Lead prediction experiments. (a) 3s lead prediction using historical 10s shear stress. (b) 10s lead prediction using historical 300 
20s shear stress. 

 

Besides the evaluation metrics of multi-step lead predictions, we further validate the predicted shear stress under the setting of 

“10s-3s” to check the accuracy of the predicted stress. Figure 9 illustrates the final lead predictions and future prediction for 

the test set from three experiments. We pick the final lead predictions to shows the stability of lead predictions. We choose 305 

two sections for each experiment where the stress indicates typical stress raise-drop during slip behaviours.  Our primary focus 

is on the model's accuracy regarding the timing of stress changes and the magnitude of stress drops. 

Regarding the timing of slip occurrences, Exp. 5198 intuitively exhibits the best prediction, as demonstrated in Figure 9c, f. 

However, Exp. 4581 shows a less accurate prediction, with a notable mismatch in the slip cycle and an “early release” of 

stresses (Figure 9a, d). This discrepancy might be attributed to the absence of creep information, as the rapid stress rupture in 310 

Exp. 4581 occurs immediately at rupture onset, in contrast to the other two experiments where accelerated stress attenuation 

precedes rapid stress drop. Despite successfully modelling the rate of stress release, Exp. 4581 tends to prematurely estimate 

the rupture onset, unlike Exp. 4679, which has a comparable stress release rate. Exp. 4679 (Figure 9b, e) delivers the most 

(a)

(b)

Exp. 4679 Historical 10s Predict 3s Exp. 4581 Historical 10s Predict 3s Exp. 5198 Historical 10s Predict 3s

Exp. 4679 Historical 20s Forecast 10s Exp. 4581 Historical 20s Forecast 10s Exp. 5198 Historical 20s Forecast 10s
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fluctuant prediction results. During the stress raise phase, the model struggles to accurately predict the rate of increase or the 

correct trajectory. This might be due to the strong nonlinear components in the system, hindering the model's ability to learn 315 

the mapping and operator from solely shear stress inputs. Alternatively, the presence of time-variant dynamics or multiple 

invariant subspaces in the theoretical linear evolving space could challenge the single operator's capacity to depict evolution 

accurately (Lan and Mezić, 2013). In terms of modelling the magnitude of stress drop during slips, all three experiments tend 

to underestimate stress drop values when making lead predictions. Notably, Exp. 4679 and Exp. 5198, which include slow 

slips, provide more accurate predictions of maximum stress values during slips, though they tend to overestimate the minimum 320 

value after stress release. Exp. 4581, on the other hand, predicts a narrower range of stress variation, underestimating both the 

maximum and minimum values. These prediction details suggest that the error in stress change values is also linked to the 

misjudgement of slip onset timing. If a stress-drop or stress-raise is predicted prematurely, the stress conversion occurs before 

reaching the threshold value. Comparing to the prediction result of LSTM, HKAE shows more accurate modeling result. In 

exp. 4581, the HKAE predictions indicate similar stress drop rate with ground truth (Figure 9a), while LSTM results predict a 325 

slower rate (Figure 9d). For exp. 4679, the HKAE predict a more accurate moment of stress release.  

 

 
Figure 9: Future 3 seconds multi-step prediction of shear stress in 3 experiments, taking the historical 10s shear stress as input. (a)-
(c) HKAE predicted results. (d)-(f) LSTM predicted results.  330 

 

3.3 Zero-shot prediction out of the model trained horizon 

 

(a)

(b)

(c)

Exp. 4581 3s Lead Predictions

Exp. 4679 3s Lead Predictions

Exp. 5198 3s Lead Predictions

HKAE LSTM

Exp. 4581 3s Lead Predictions

Exp. 4679 3s Lead Predictions

Exp. 5198 3s Lead Predictions

(d)

(e)

(f)
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Figure 10: Zero-shot prediction results of models out of the model trained horizon on different experiments. Gray section indicates 335 
the model trained prediction horizon. 

To further validate our model's efficacy in modelling the dynamics of the slip process, we conducted a zero-shot test. 

Specifically, we incorporate 10s of historical stress data during the training phase and predict 3s of stress change in the future, 

but during the inference phase, we extended the prediction horizon to 10s. This means that the model was only trained to 

perform the prediction for the next 3s while the data samples recorded beyond the initial 3s, which weren't included during the 340 

training phase, are now required to anticipate changes over the subsequent 10s. This necessitates greater generalization 

capability from the model. We executed this manner of testing across all three experimental datasets. The process is depicted 

in Figure 10, where the grey area is the predicted horizon on which the model was trained. HKAE appears to maintain a stable 

prediction score for the unplanned following 7s. In Exp 5198, HKAE starts to outperform the other models in the leading 

prediction after 6s. And in Exp. 4679 and Exp. 4581, two more challenging experiments, HKAE maintains the leading 345 

prediction, and all other prediction methods show more obvious accuracy decay. 

Exp. 4679 Exp. 4581 Exp. 5198
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4 Discussion 

 

 
Figure 11: Zero-shot test for Exp. 4581. (a) evaluation metrics. (b) HKAE modelled dynamic modes. (c) 3s lead evolution of encoded 350 
latent variables. (d)10s lead evolution of encoded latent variables. 

Modelling and predicting the behaviour of fault slip is crucial for understanding natural earthquakes. Studying natural 

earthquakes still presents various challenges like indirect observation, sampling history of shorter fault activity cycles etc. 

(Herrera et al., 2022), while laboratory settings provide new sights in an easier, more controllable and observable manner. 

Machine learning methods have been effective in accurately predicting instantaneous slip behaviour based on near-term 355 

acoustic emissions (Rouet-Leduc et al., 2017; Shokouhi et al., 2021;  Borate et al., 2023). However, attempts to forecast future 

behaviour have encountered temporal limits due to the high nonlinearity of the laboratory fault slip system. 

To address these questions, informed by dynamical system theories, we pioneered a dynamic informed method HKAE, to 

predict the future shear stress of laboratory fault slips. The HKAE model is designed based on the delay embedding theory and 

Koopman theory, leverages the nonlinear fitting capabilities of neural networks and the system perspective of dynamic theories. 360 

The superior performance of HKAE in various timeseries prediction methods and different slip mode experiments may come 

out that the HKAE model is able to recognize the main and stable dynamics of laboratory fault slips, rather than define it as a 

statistical time series prediction task. 

(a) (c) (d)

(b)

Exp. 4679
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Here we further discuss the dynamic modelling skills of HKAE. We implemented the zero-shot approach beyond the model's 

trained horizon, as outlined in Section 3.3. As indicated by (Laurenti et al., 2022), while conventional deep learning methods 365 

falter in untrained prediction horizons, particularly for fast slips as in Exp. 4581 and slip switch in Exp. 4679, HKAE maintains 

a relatively steady trend. We carry out additional dynamic analysis through the latent variable evolution and decomposed 

Koopman dynamic modes. 

Figure 11 illustrates the dynamics unravelled from the learned Koopman Operator. Two identified stable dynamics demonstrate 

steady oscillation, whereas the other three appear relatively disordered. The latent variables (Figure 11c-d) represent the 370 

components ready to evolve linearly after the mapping of encoder. Evolving these components for 3s using the Koopman 

operator reveals that the stabilized oscillatory variables can be estimated relatively well (Figure 11c). Upon expanding the 

evolution window to 10 seconds, these variables continue to evolve relatively stably (Figure 11d), which means the learned 

linear operator with two stable dynamics is able to generally model the slip process. However, the components that are 

insufficiently linearized result in deteriorating predictions over time. These disordered signals might stem from inadequate 375 

mapping; however, they more likely originate from the meta-stable and time-varying dynamics of the laboratory fault slip 

system (Jasperson et al., 2021). 

Significantly, the model anticipates future shear stress without requiring any additional information or labels. Considering the 

laboratory environment and the nature of the earthquake system, integrating external data such as historical acoustic emissions 

or other measurable laboratory observations as forcing factors could enhance the generalizability of the model. Implementing 380 

the HAVOK framework (Brunton et al., 2017) and local dynamic modelling strategy (Liu et al., 2023) might further enhance 

the predictability of the laboratory rupture system with continuous spectrum. 

In regard to the field application, we propose that applying this approach to long-term or modelling of seismic activity would 

be of great interest because of the ability to learn information about the dynamics of the system behind it from fewer samples 

of data. The ability to model dynamical processes as mappings and operators with a small amount of data would be more 385 

advantageous for both future long-term predictions and historical activity reconstructions, which are both important questions 

in seismic research. As for short-term modelling or alert, we believe that HKAE should also perform well on a continuous 

proxy for seismicity (Tong et al., 2023). 

 

5 Conclusion 390 

Drawing upon delay embedding and Koopman theories, we have proposed a dynamic informed machine learning method, the 

Hankel Koopman Auto-Encoder (HKAE), to achieve robust future predictions of complex laboratory earthquake systems. This 

model demonstrates superior performance in terms of prediction accuracy and system dynamic modelling compared to other 

common deep learning time series prediction methods. To the best of our knowledge, this is the first instance of predicting 

laboratory fault shear stress from a dynamical system perspective. Furthermore, HKAE highlights the potential for simplifying 395 
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and decomposing complex geophysical systems with a data-driven approach but combining a dynamical system perspective. 

It also delivers a new approach for modelling, predicting and understanding for the complex geophysical system, especially 

for those with partial and sparse observations, showing great potential in seismicity of fault physical mechanism monitoring 

and modelling. 

 400 

Author contribution 

Enjiang Yue: Conceptualization, Methodology, Writing – original draft, Writing – review & editing, Formal analysis. 

Mengjiao Qin: Writing – review & editing, Conceptualization, Supervision. Linshu Hu: Methodology, Writing – review & 

editing.  Sensen Wu: Supervision, Writing – review & editing. Zhenhong Du: Supervision, Writing – review & editing. 

 405 

Acknowledgments 

This research was supported by the National Key Research and Development Program of China (grant 2021YFB3900900), 

the National Natural Science Foundation of China (42306213) and the Deep-time Digital Earth (DDE) Big Science Program. 

The manuscript was polished by GPT-4 (https://openai.com/gpt-4). 

 410 

Competing interests 

The authors declare that they have no conflict of interest. 

 

Code and data availability 

The laboratory shear stress data is obtained from https://github.com/lauralaurenti/DNN-earthquake-prediction-forecasting and 415 

http://psudata.s3-website.us-east-2.amazonaws.com/ (Last access at 2024-03-21). The ODE simulation data and code is 

obtained from Open Science Framework (OSF) (at DOI 10.17605/OSF.IO/9DQH7) and 

https://github.com/Geolandi/labquakesde (Last access at 2024-03-21). The code to run and analyze the results of the 

experiments are available online (https://zenodo.org/records/10846361).  

 420 

References 

Avila, AllanM. and Mezic, I.: Data-driven analysis and forecasting of highway traffic dynamics., Nature Communications, 
https://doi.org/10.1038/s41467-020-15582-5, 2020. 

Azencot, O., Erichson, N. B., Lin, V., and Mahoney, MichaelW.: Forecasting Sequential Data using Consistent Koopman 
Autoencoders, International Conference on Machine Learning. PMLR, 2020. 425 

Bai, S., Kolter, J. Z., and Koltun, V.: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence 
Modeling, arXiv: Learning, 2018. 

https://doi.org/10.5194/gmd-2024-46
Preprint. Discussion started: 22 March 2024
c© Author(s) 2024. CC BY 4.0 License.



24 
 

Bakarji, J., Champion, K., Kutz, J. N., and Brunton, StevenL.: Discovering Governing Equations from Partial Measurements 
with Deep Delay Autoencoders, Proceedings of the Royal Society A, https://doi.org/10.1098/rspa.2023.0422, 2023 

Borate, P., Rivière, J., Marone, C., Mali, A., Kifer, D., and Shokouhi, P.: Using a physics-informed neural network and fault 430 
zone acoustic monitoring to predict lab earthquakes, Nature Communications, https://doi.org/10.1038/s41467-023-39377-6, 
2023. 

Brandstetter, J., Worrall, D., and Welling, M.: Message Passing Neural PDE Solvers, arXiv: Learning, 2022. 

Brunton, S. L., Brunton, B. W., Proctor, J. L., Kaiser, E., and Kutz, J. N.: Chaos as an Intermittently Forced Linear System, 
Nature Communications, https://doi.org/10.1038/s41467-017-00030-8, 2017. 435 

Brunton, S. L., Noack, B. R., and Koumoutsakos, P.: Machine Learning for Fluid Mechanics, Annual Review of Fluid 
Mechanics, 477–508, https://doi.org/10.1146/annurev-fluid-010719-060214, 2020. 

Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N.: Modern Koopman Theory for Dynamical Systems., SIAM Review, 
229–340, https://doi.org/10.1137/21m1401243, 2022. 

Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series, Physica D: Nonlinear 440 
Phenomena, 43–50, https://doi.org/10.1016/s0167-2789(97)00118-8, 1997. 

Degen, D., Caviedes Voullième, D., Buiter, S., Hendriks Franssen, H.-J., Vereecken, H., González-Nicolás, A., and Wellmann, 
F.: Perspectives of Physics-Based Machine Learning for Geoscientific Applications Governed by Partial Differential Equations, 
https://doi.org/10.5194/gmd-2022-309, 2023. 

Franzke, C., Gugole, F., and Juricke, S.: Systematic multi-scale decomposition of ocean variability using machine learning, 445 
Chaos: An Interdisciplinary Journal of Nonlinear Science, https://doi.org/10.1063/5.0090064, 2022. 

Froyland, G., Giannakis, D., Lintner, BenjaminR., Pike, M., and Slawinska, J.: Spectral analysis of climate dynamics with 
operator-theoretic approaches, Nature Communications, 2021. 

Gualandi, A., Faranda, D., Marone, C., Cocco, M., Mengaldo, G., and Bendick, R.: Deterministic and stochastic chaos 
characterize laboratory earthquakes, Earth and Planetary Science Letters, https://doi.org/10.1016/j.epsl.2023.117995, 2022. 450 

Hammoud, M. A. E. R., Titi, E. S., Hoteit, I., and Knio, O.: CDAnet: A Physics‐Informed Deep Neural Network for 
Downscaling Fluid Flows, Journal of Advances in Modeling Earth Systems, https://doi.org/10.1029/2022ms003051, 2022. 

Herrera, V., Rossello, E., Orgeira, M., Arioni, L., Soon, W., Velasco, G., Cruz, L., Zúñiga, E., and Vera, C.: Long-Term 
Forecasting of Strong Earthquakes in North America, South America, Japan, Southern China and Northern India With Machine 
Learning, Frontiers in Earth Science, https://doi.org/10.3389/feart.2022.905792, 2022. 455 

Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Computation, 1735–1780, 
https://doi.org/10.1162/neco.1997.9.8.1735, 1997. 

Hulbert, C., Rouet-Leduc, B., Johnson, P. A., Ren, C. X., Rivière, J., Bolton, D. C., and Marone, C.: Similarity of fast and 
slow earthquakes illuminated by machine learning, Nature Geoscience, 69–74, https://doi.org/10.1038/s41561-018-0272-8, 
2019. 460 

https://doi.org/10.5194/gmd-2024-46
Preprint. Discussion started: 22 March 2024
c© Author(s) 2024. CC BY 4.0 License.



25 
 

Jasperson, H., Bolton, DavidC., Johnson, PaulA., Guyer, RobertA., Marone, C., and Hoop, MaartenV. de: Attention network 
forecasts time-to-failure in laboratory shear experiments, Journal of Geophysical Research: Solid Earth, 
https://doi.org/10.1029/2021JB022195, 2021. 

Johnson, P. A., Rouet-Leduc, B., Pyrak-Nolte, L. J., Beroza, G. C., Marone, C. J., Hulbert, C., Howard, A., Singer, P., Gordeev, 
D., Karaflos, D., Levinson, C. J., Pfeiffer, P., Puk, K. M., and Reade, W.: Laboratory earthquake forecasting: A machine 465 
learning competition, Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.2011362118, 2021. 

Karimpouli, S., Caus, D., Grover, H., Martínez-Garzón, P., Bohnhoff, M., Beroza, G., Dresen, G., Goebel, T., Weigel, T., 
Kwiatek, G., and Bendick, R.: Explainable machine learning for labquake prediction using catalog-driven features, Earth and 
Planetary Science Letters, https://doi.org/10.1016/j.epsl.2023.118383, 2023. 

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and Yang, L.: Physics-informed machine learning, 470 
Nature Reviews Physics, 422–440, https://doi.org/10.1038/s42254-021-00314-5, 2021. 

Koopman, B. O.: Hamiltonian Systems and Transformation in Hilbert Space, Proceedings of the National Academy of Sciences, 
315–318, https://doi.org/10.1073/pnas.17.5.315, 1931. 

Lan, Y. and Mezić, I.: Linearization in the large of nonlinear systems and Koopman operator spectrum, Physica D: Nonlinear 
Phenomena, 42–53, https://doi.org/10.1016/j.physd.2012.08.017, 2013. 475 

Laurenti, L., Tinti, E., Galasso, F., Franco, L., and Marone, C.: Deep learning for laboratory earthquake prediction and 
autoregressive forecasting of fault zone stress, Earth and Planetary Science Letters, 
https://doi.org/10.1016/j.epsl.2022.117825,2022. 

Li, L., Zuo, H., Chen, B., Yang, G., Ma, M., and Longxiang, D.: Revealing the Dynamical Transition of Anisotropy Behind 
the HOST by Koopman Analysis, Geophysical Research Letters, https://doi.org/10.1029/2020GL091123, 2020. 480 

Lintner, B. R., Giannakis, D., Pike, M., and Slawinska, J.: Identification of the Madden–Julian Oscillation With Data‐Driven 
Koopman Spectral Analysis, Geophysical Research Letters, https://doi.org/10.1029/2023gl102743, 2023. 

Liu, Y., Li, C., Wang, J., and Long, M.: Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors, 
arXiv: Learning, 2023. 

Lubbers, N., Bolton, D. C., Mohd‐Yusof, J., Marone, C., Barros, K., and Johnson, P. A.: Earthquake catalog-based machine 485 
learning identification of laboratory fault states and the effects of magnitude of completeness., Geophysical Research Letters, 
https://doi.org/10.1029/2018gl079712, 2018. 

Lusch, B., Kutz, J. N., and Brunton, S. L.: Deep learning for universal linear embeddings of nonlinear dynamics., Nature 
Communications, https://doi.org/10.1038/s41467-018-07210-0, 2018. 

Mastella, G., Corbi, F., Bedford, J., Funiciello, F., and Rosenau, M.: Forecasting surface velocity fields associated with 490 
laboratory seismic cycles using Deep Learning, Geophysical Research Letters, https://doi.org/10.1029/2022GL099632, 2022. 

Okazaki, T., Hirahara, K., and Ueda, N.: Physics-Informed Deep Learning Approach for Modeling Crustal Deformation, , 
https://doi.org/10.21203/rs.3.rs-1576456/v1, 2022. 

Riel, B., Minchew, B., and Bischoff, T.: Data‐Driven Inference of the Mechanics of Slip Along Glacier Beds Using Physics‐
Informed Neural Networks: Case Study on Rutford Ice Stream, Antarctica, Journal of Advances in Modeling Earth Systems, 495 
https://doi.org/10.1029/2021ms002621, 2021. 

https://doi.org/10.5194/gmd-2024-46
Preprint. Discussion started: 22 March 2024
c© Author(s) 2024. CC BY 4.0 License.



26 
 

Rouet-Leduc, B., Hulbert, C., Lubbers, N., Barros, K., Humphreys, C. J., and Johnson, P. A.: Machine Learning Predicts 
Laboratory Earthquakes, Geophysical Research Letters, 9276–9282, https://doi.org/10.1002/2017gl074677, 2017. 

Rouet‐Leduc, B., Hulbert, C., Bolton, D. C., Ren, C. X., Riviere, J., Marone, C., Guyer, R. A., and Johnson, P. A.: Estimating 
Fault Friction from Seismic Signals in the Laboratory, Geophysical Research Letters, 1321–1329, 500 
https://doi.org/10.1002/2017gl076708, 2018. 

Rouet-Leduc, B., Hulbert, C., and Johnson, P. A.: Continuous chatter of the Cascadia subduction zone revealed by machine 
learning, Nature Geoscience, 75–79, https://doi.org/10.1038/s41561-018-0274-6, 2019. 

Shokouhi, P., Girkar, V., Rivière, J., Shreedharan, S., Marone, C., Giles, C. L., and Kifer, D.: Deep Learning Can Predict 
Laboratory Quakes From Active Source Seismic Data, Geophysical Research Letters, https://doi.org/10.1029/2021gl093187, 505 
2021. 

Takeishi, N., Kawahara, Y., and Yairi, T.: Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition, 
Advances in neural information processing systems, 2017. 

Takens, F.: Detecting strange attractors in turbulence, in: Lecture Notes in Mathematics,Dynamical Systems and Turbulence, 
Warwick 1980, 366–381, https://doi.org/10.1007/bfb0091924, 1981. 510 

Tong, Y., Hong, R., Zhang, Z., Aihara, K., Chen, P., Liu, R., Chen, L., and Kelemen, P.: Earthquake alerting based on spatial 
geodetic data by spatiotemporal information transformation learning, Proceedings of the National Academy of Sciences, 
https://doi.org/10.1073/pnas.230227512, 2023. 

Veedu, D., Giorgetti, C., Scuderi, MarcoM., Barbot, S., Marone, C., and Collettini, C.: Bifurcations at the Stability Transition 
of Earthquake Faulting, Geophysical Research Letters, https://doi.org/10.1029/2020GL087985, 2020. 515 

Wang, K., Johnson, C. W., Bennett, K. C., and Johnson, P. A.: Predicting fault slip via transfer learning., Nature 
Communications, https://doi.org/10.1038/s41467-021-27553-5, 2021. 

Wang, K., Johnson, C., Bennett, K., and Johnson, P.: Predicting Future Laboratory Fault Friction Through Deep Learning 
Transformer Models, Geophysical Research Letters, https://doi.org/10.1029/2022GL098233, 2022. 

 520 

https://doi.org/10.5194/gmd-2024-46
Preprint. Discussion started: 22 March 2024
c© Author(s) 2024. CC BY 4.0 License.


