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Abstract. Fault activity modelling is vital for earthquake monitoring, risk management, and early warning. Studies on 

laboratory earthquakes are instrumental for modelling natural fault ruptures and enhancing our understanding of natural 

earthquake dynamics. Recently, machine learning methods have proven effective in predicting instantaneous fault stress in 10 

laboratory settings and fault activities on Earth. However, these methods have struggled to obtain steady future predictions 

because of the lack of understanding of the complex dynamics of highly nonlinear laboratory fault slip systems. To address 

this, we introduce the Hankel–Kopman autoencoder (HKAE), a novel method inspired by dynamic system theories. The HKAE 

performs dynamic modelling of laboratory fault systems and provides a continuous estimation of the future state of the system. 

It has been used in experiments with different slip behaviours and has the ability to predict shear stress variation during a slip 15 

cycle and slip activity during long-term seismic cycles. The HKAE outperforms traditional statistical methods, and the results 

are comparable to those of cutting-edge deep learning methods at different scales of prediction, especially in estimating 

interevent cycles. More importantly, through dynamic theory and operator analysis in latent space, the HKAE provides insights 

into the stability of laboratory slip systems rather than full end-to-end black-box predictions. The ability of the HKAE to 

decompose and model complex temporal dynamics highlights its potential in sparsely observed geophysical systems with 20 

cyclic characteristics, such as natural faults. 

1 Introduction 

Modelling fault activity is crucial for understanding patterns of seismic activity, monitoring and predicting earthquakes, and 

estimating seismic hazards. Laboratory earthquake studies have contributed to modelling natural fault ruptures and enhancing 

our understanding of natural earthquakes (Johnson et al., 2021). These studies indicate a similar mechanism between slow and 25 

fast slip (Hulbert et al., 2019) and aid in extracting physical property changes in faults from dense earthquake records (Rouet-

Leduc et al., 2019). Machine learning has proven effective in extracting information about the rupture behaviour of laboratory 

earthquakes from acoustic emission signals for instantaneous prediction. Rouet-Leduc et al. (2017) reported that the random 

forest method can be used to accurately predict the time-to-failure via acoustic emissions. Subsequently, stress variation, which 

is a crucial physical feature of faults, has been identified and evaluated from acoustic emissions via XGBoost, enabling further 30 
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analysis of the acoustic signals (Rouet‐Leduc et al., 2018). Lubbers et al. (2018) reported that the event catalogue, which is 

more available for natural earthquakes, can also be used to predict the transient fault mechanism during laboratory earthquakes. 45 

Active-source seismic data are also valid data sources for predicting instantaneous fault behaviour (Shokouhi et al., 2021). 

Jasperson et al. (2019) and Karimpouli et al. (2023) discussed prediction methods, such as traditional machine learning 

methods, neural networks and explainable machine learning methods. An assessment of the transferability across diverse 

experiments and simulations was conducted, highlighting the critical role of applying laboratory methods to in-field models 

(Wang et al., 2021; Borate et al., 2023). 50 

While most studies have focused on instantaneous predictions, several have explored future predictions. The state-of-the-art 

sequence modelling architecture, namely, the transformer, has shown promise in extracting information for predicting friction 

in the future from continuous acoustic emission signals (Wang et al., 2022). The model's attention score reveals that the closer 

the fault is to the rupture moment, on the basis of the friction data, the stronger the stress drop in seismic records. Laurenti et 

al. (2022) reported that laboratory fault zone stress can be autoregressively inferred. Additionally, spatial dimensions have 55 

been introduced for autoregressively predicting surface velocity fields during laboratory fault slips (Mastella et al., 2022). 

Although these studies underscore the potential for inferring the future behaviour of fault slips, they face challenges in 

modelling stability and predicting future behaviour owing to the complex dynamics of laboratory fault slip systems. Gualandi 

et al. (2023) proposed that earthquake cycles in laboratory experiments can be characterized as systems with average 

dimensions similar to those of natural earthquakes. The Lyapunov exponent analysis reveals the predictability within a certain 60 

period, albeit with deterministic and stochastic chaotic behaviours, which are challenging to model via machine learning 

methods designed from traditional statistical knowledge. 

Physics-informed machine learning methods constitute a framework for geoscientific applications (Degen et al., 2023) such 

as glacier modelling (Riel et al., 2021), ocean modelling (Hammoud et al., 2022) and solid-Earth modelling (Okazaki et al., 

2022). These methods introduce prior domain knowledge, which is the key factor in geoscientific analysis, while leveraging 65 

the benefits of machine learning. Recent advancements in dynamic theory, on the basis of Koopman theory (Koopman, 1931), 

have shown efficacy in integrating dynamic insights within a data-driven framework, yielding results that are more aligned 

with dynamic situations (Karniadakis et al., 2021). Various methods based on the Koopman theory have been acknowledged 

as powerful for modelling and deciphering complex nonlinear dynamic systems (Brunton et al., 2022), such as fluid mechanics 

(Brunton et al., 2020), and have found applications in geophysical fields, including climate (Li et al., 2020; Froyland et al., 70 

2021), ocean variability (Franzke et al., 2022), and electromagnetic fields (Brunton et al., 2017; Lintner et al., 2023). 

Given the complicated dynamics of laboratory fault slip systems, we propose a deep learning method that involves the 

Koopman theory. Instead of defining the problem as a statistical time series forecast task, we take the shear stress time series 

as one of the observations in a laboratory slip system and infer changes in the future state of the system through methods 

inspired by dynamic systems theory. Generally, we reconstruct the phase space of the system via delayed embedding theory 75 

and linearize its complex dynamics via the Koopman theory to perform future inference and further dynamic analysis. 
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Laboratory fault systems with different slip behaviours under different prediction horizons are adapted to evaluate the 

effectiveness of Hankel–Kopman autoencoder (HKAE) modelling. 

2 Materials, methods and models 

2.1 Laboratory stick‒slip data 

Our study incorporates two categories of data: data drawn from laboratory experiments carried out with biaxial shear equipment 100 

and data derived via numerical simulations. The experimental data from the biaxial shear equipment were obtained from Chris 

Marone's laboratory (Laurenti et al., 2022). Different shear materials are situated between the two plates to which positive 

pressure and shear force are exerted from each side, and the equipment is used to record the mechanistic changes (Supporting 

Information. Table 1) in the system during the shear process (Figure 1a-b). This results in time series data recorded at a 

temporal sampling rate of 0.001 s. Here, we focus mainly on the variation in shear stress because of its direct indication of the 105 

onset of fault slip in the laboratory. Experiments 4581 (Exp. 4581) and 5198 (Exp. 5198) demonstrate cyclic slow and fast slip 

behaviours, respectively, whereas Experiment 4679 (Exp. 4679) involves a switch between two types of slip behaviours 

(Figure 1c). We derive numerical simulation data from the model (Figure 1d) in Gualandi’s work (2023). This model is based 

on the rate-state-friction law (Dieterich et al., 1979), and we set the initial normal stress to 𝜏!" = 17.003	𝑀𝑝𝑎 and the initial 

state vector to [𝑥", 𝑦", 𝑧", 𝑢"] = [0.05, 0.0,0.0,0.0] to generate fast-slow-switching slips as examples in the simulation. 110 

删除了: behaviours

删除了: o

删除了: modelling

删除了: modeling

删除了: stick-slip115 

删除了: come

删除了: the 

删除了: labs



4 
 

 
Figure 1: (a) Laboratory fault slip experimental settings and (b) recorded data. Acoustic emission data are recorded in grey, and 120 
shear stress time series are recorded in blue. (c) Three modelling experiments with different slip behaviours. (d) Simulated shear 
stress, where [𝒙, 𝒚, 𝒛, 𝒖] = [𝒍𝒏	 ,

𝝂
𝝂∗- ,

𝝉𝒇#𝝉𝟎
𝒂𝝈𝒏𝟎

, 𝟏
𝝀𝜷𝝈𝒏𝟎 (𝝓 −𝝓𝟎), −

𝟏
𝝀

𝒑
𝝈𝒏𝟎
] represents the system state. 
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2.2 Dynamic system theories 

2.2.1 Koopman theory 

Laboratory earthquakes can be conceptualized as being governed by a dynamic system, and shear stress can be regarded as a 

measurement within this system and is described by Eq. (1): 

𝑠#$% = 𝐹(𝑠#) (1) 135 

where	𝑠# is the state of the laboratory slip system and where 𝐹 represents the governing function of the system. The shear 

stress 𝑥# can be viewed as an observation of the laboratory slip system state 𝑠#. 

Koopman theory is a mathematical theoretical framework. All finite-dimensional nonlinear systems can evolve in an 

alternative space through the mapping function 𝑔 and the infinite-dimensional Koopman operator 𝐾 (Koopman, 1931; Brunton 

et al., 2021). The Koopman operator in the transformed space can be used directly to perform the linear evolution of the system 140 

state, as shown in Eqs. (2)-(3) and Figure 2. 

𝐾𝑔(𝑥#) = 𝑔>𝐹(𝑥#)? = 𝑔(𝑥#$%) (2) 

𝑥#$% = 𝑔&%𝐾𝑔(𝑥#) (3) 

Owing to the linear properties of the Koopman operator, linear methods such as spectral decomposition can be employed in 

the operator for enhanced analysis, prediction, and control. The dimension of the learned approximate Koopman operator 145 

indicates the dynamic modes needed to describe the dynamic process, which can be decomposed as follows: 

𝐾 = 𝑉Λ𝑉&% (4) 

where 𝑉 = [𝑣%, 𝑣', … , 𝑣(] are the eigenvectors of 𝐾 and where Λ = [𝜆%, 𝜆', . . . , 𝜆(] are the eigenvalues of 𝐾. Each eigenvalue 

describes the strength and oscillatory properties of its corresponding dynamic component: 

𝑏)( = 𝑏"(𝑒
)
*#+,-.! (5) 150 

Here, 𝒃𝒌 = [𝑏%( , 𝑏'( , . . . , 𝑏0(] represents the temporal evolution of the 𝑘#1 dynamic mode, and 𝑗 represents the time step. 

Provided that we know the current state, we can infer the system's future behaviour incrementally via the mapping function 𝑔 

and the linear operator 𝐾, and the dynamic characteristic can be explored through the eigen decomposition of 𝐾, for example, 

to explore the main components driving the evolution of dynamic systems (Brunton et al., 2021), the pattern of its growth 

(Schimid et al., 2010), etc. 155 

The most important advantage of Koopman theory is that it linearizes the dynamics from complex laboratory slip systems and 

then supports the analysis of system behaviour via linear analysis tools (e.g., singular value decomposition), which offers 

interpretability and insights from the perspective of dynamic systems. 
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Figure 2: Conceptual illustration of the transformation between the nonlinear trajectory of the high-dimensional state, with F (a) 
and a linear operator K representing dynamics (b), taking the Lorenz63 system as an example. Lorenz63 system observations are 
used to represent the transformation (Lorenz, 1963). 

 165 

2.2.2 Delay embedding theory 

For analysing dynamic systems via Koopman theory, it would be useful to have direct system states or observables that carry 

information about the main changes in the system. However, in the real world, we often obtain state quantities with a limited 

signal-to-noise ratio or observations that do not carry all the information about the changes in the system, i.e., partial 

observations. Inferring the state change of a laboratory slip system from shear stress can be viewed as inferring the future 170 

evolution of the system from very limited observations (Arbabi et al., 2017). Here, we introduce delay embedding theory to 

reconstruct the system behaviour. Delay embedding theory supposes that topological reconstruction of attractors from the 

original high-dimensional system, also known as phase space reconstruction, can be performed using only the observed 

univariate long time series (Takens, 1981). We define 𝒉 as the embedded variable, taking 𝐻 = [𝐡%, 𝐡', … , 𝐡2] as the input. The 

embedding process is described in Eq. (6) with the parameters, the embedded dimension 𝑑 and the delay time	𝜏. The delay 175 

time 𝜏 is usually 1 in most situations (Brunton et al., 2017). 

𝐇 =
Q

𝑥% 𝑥' … 𝑥2
𝑥%$3 𝑥'$3 … 𝑥2$3
⋮ ⋮ ⋱ ⋮

𝑥%$(5&%)3 𝑥'$(5&%)3 … 𝑥2$(5&%)3
T
=
Q

𝑥% 𝑥' … 𝑥2
𝑥' 𝑥7 … 𝑥2$3
⋮ ⋮ ⋱ ⋮
𝑥5 𝑥5$% … 𝑥2$(5&%)

T
= [𝐡%, 𝐡', … , 𝐡2] (6) 

Here, we aim to utilize historical shear stress observations to ascertain the evolution of future states or to discern the 

relationship between historical shear stress (𝑥#&8 , 𝑥#&8$%, . . . , 𝑥#)		and future states (𝑥#$%, . . . , 𝑥#$9&%, 𝑥#$9). On the basis of 
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delay embedding, the relationship between [𝐡%, 𝐡', … , 𝐡2] and [𝐡2$%, 𝐡2$', … , 𝐡2$9] can be deconstructed to determine the 

mapping function 𝑔 and operator 𝐾. 

Figure 3 shows the process of delayed embedding. To verify the retention of the original system's topological relations in the 185 

phase space following delayed embedding, we often resort to singular value decomposition to identify the system's three 

primary components and use the corresponding singular vectors to open the space to represent the evolution of the system. 

Taking the Lorenz system as an example (Lorenz, 1963), Figure 3a represents the tensor space using the state variables of the 

original system. The observations yield only a single scalar series, as depicted in Figure 3c. Figure 3b shows the first three 

singular vectors that result from delayed embedding, which is diffeomorphic with the system represented by Figure 3a, i.e., 190 

they are considered to represent the same dynamic system behaviour. This approach has been shown to be effective in 

enhancing the feature dimensions from the data, and it has also been shown to be important in governing equation extraction 

(Bakarji et al., 2023) and modelling with dynamic mode decomposition (DMD) (Avila and Mezic, 2020). In summary, we 

utilize delay embedding theory to reconstruct a laboratory slip system represented by a single shear stress variable, thereby 

supporting subsequent Koopman mode decomposition and prediction. 195 

 
Figure 3: Conceptual process of delay embedding theory. (a) Representation of laboratory system behaviour using the original state 
[𝒖, 𝒙, 𝒚]. (b) Representation of laboratory slip system behaviour via singular vectors [𝒗𝟏, 𝒗𝟐, 𝒗𝟑] from the SVD result of delay 
embedded observations 𝒙. (c) Single observation of the laboratory slip system and shear stress used in this system. The data are 
simulated on the basis of Gualandi’s model (2023). 200 
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2.3 Architecture of the Hankel–Kopman autoencoder (HKAE) 

Here, we propose the Hankel–Kopman autoencoder (HKAE), which synthesizes the inductive bias of dynamic system theories 

and the nonlinear fitting ability of deep learning. This model encompasses three key modules (Figure 4): 

(1) For the delay embedding module, by employing delay embedding theory, the shear stress time series (𝑥#&5 , 𝑥#&5$%, . . . , 𝑥#) 

are reconstructed in phase space to obtain their Hankel matrix 𝐻 = [𝐡%, 𝐡', … , 𝐡2] in this module. 210 

(2) For the mapping learning module, the powerful nonlinear fitting capabilities of deep learning have been demonstrated to 

effectively learn the mapping, thereby approximating an optimal Koopman operator (Takeishi et al., 2017; Lusch et al., 2018; 

Azencot et al., 2020). Here, we utilize an encoder‒decoder backbone incorporating a 3-layer multilayer perceptron (MLP) to 

learn the mapping between the phase space and Koopman invariant subspaces. 

(3) For the Koopman evolution module, in this module, the Koopman operator is represented as a layer of neurons consisting 215 

solely of weights and devoid of bias. Following the encoding process, the system is mapped into Koopman invariant subspaces, 

where the Koopman operator is applied to facilitate system evolution. Multistep prediction is achieved through the iterative 

application of the same set of operators corresponding to the predefined prediction steps. The decoded evolution results remain 

in phase space. A re-embedding process is subsequently applied to derive the predicted shear stress, which is implemented by 

selecting the final value of each evolved result. 220 

The loss of this model includes 2 parts, namely, reconstruction and evolution loss, as shown in Eqs. (7)-(9). The reconstruction 

loss is set to minimize the loss that occurred during the mapping process, whereas the evolution loss is set to minimize the loss 

of linear evolution achieved by the Koopman operator. 

𝜀:;<,!=#:><# =
1
2𝐿X ∥ ℎ2 − ℎ?\ ∥''

9

2@%
(7) 

𝜀;A,+>#2,! =
1
2𝐾𝐿X	

8

)@%
X∥ ℎ2$) − ℎ

~
2$) ∥''

9

2@%
(8) 225 

𝐿𝑜𝑠𝑠 = 𝜀:;<,!=#:><# + 𝜆𝜀;A,+>#2,! (9) 
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 230 
Figure 4: Architecture of the HKAE. 

 

2.4 Time series prediction models from a statistical perspective 

2.4.1 Long short-term memory (LSTM) 

Long short-term memory (LSTM) is a widely used deep learning model for sequence modelling that addresses the challenge 235 

of vanishing and exploding gradients in long sequence data (Hochreiter and Schmidhuber, 1997). It has become a powerful 

tool in temporal modelling in the Earth sciences (Feng et al., 2023). The core of the LSTM is the LSTM cell. An LSTM cell 

consists of a cell state and a set of gates (input, forget and output gates). The input gate determines the new input information 

to add to the cell state, whereas the forget gate chooses the information to drop in the cell state. The output gate controls how 

the cell state is mapped to the output. The structure of an LSTM cell is shown in Figure 5a. 240 

2.4.2 Temporal convolutional network (TCN) 

A temporal convolutional network (TCN) is a sequence modelling method inspired by convolutional operations that are widely 

used in image processing (Bai et al., 2018). It has been regarded as a state-of-the-art model in laboratory fault slip modelling 

(Laurenti et al., 2022). The core of the TCN is a series of sequence convolution and pooling blocks. In general, the features of 

the input sequence are extracted through dilated convolution with a sliding window. The pooling layer is adapted for 245 

dimensional reduction. The weight norm and drop out are used to improve the robustness of the model. The structures of the 

TCN model and TCN block are shown in Figure 5b. 
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2.4.3 Multilayer perceptron (MLP) 

In addition to the two-sequence modelling method, we also test the simple MLP model. Here, we take the historical sequence 

as the input feature and predict the sequence as the output, as shown in Figure 5. In this way, the MLP is equivalent to 

performing a 1*1 convolution directly in the time dimension, which is equivalent to a TCN model with the dilation set to 1. 260 
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Figure 5: Architecture of comparative deep learning models 
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 265 

2.5 Experimental settings and evaluation 

In our experiments, we utilized three datasets with distinct slip features and one numerical simulation result to assess the 

robustness of our model. Numerical simulation data are primarily used to illustrate the dynamic modelling process (Figure 7) 

because of their relatively simple system trajectories. 

We employed a unified time sampling rate of 0.1 s. Percentages of 50%, 10%, and 40% were applied to each dataset for 270 

training, validation, and testing, respectively. The sliding window method was employed to generate data sequences for model 

training and inference. For the input dataset [𝑥!, 𝑥". . . . , 𝑥#], we sample the historical 𝐾 steps to predict the future 𝐿 steps. 

The prediction of the sliding window can be presented as follows: 

(𝑥2 , … , 𝑥2$8) → >𝑥
~
2$8$%, … , 𝑥

~
2$8$9? (13)	

where	𝑖 = (1,… ,𝑁 − 𝐾 − 𝐿 + 1)	represents the number of times the window slides. 275 

The hyperparameters of the HKAE model were divided into three main categories corresponding to the three model modules. 

The first set comprises the embedding dimension and delay time in the delay embedding module. For the delay time, we took 

a value of 1, on the one hand, to construct the Hankel matrix to satisfy the prediction requirements, and on the other hand, 

Brunton et al. (2017) reported that, in practice, most of the systems have a delay time of 1. With a delay time setting of 1, the 

embedding dimensions in our model architecture are numerically equal to the number of steps in which the historical 280 

information is used. Given the experimental setup in Laurenti's work (2022), we suggest that sufficient historical information 

is needed to predict future changes. To evaluate both intra- and intercycle scenarios of slip, we constructed an experimental 

setup using 10 s of historical data to predict 3 s in the future and 20 s of historical data to predict 10 s in the future (Figure 1 

in the Supplementary Information), corresponding to embedded dimensions of 200 and 100. Considering that the slip system 

experiences an instantaneous increase in system dimension during the sliding process, we retain a higher embedding dimension 285 

setting (Gualandi et al., 2023). For comparison, we used consistent parameter settings across different slip data. 

The number of MLP layers in the mapping learning module was set to 3 on the basis of previous works and results. Finally, 

the dimension of the Koopman operator module was set to 10 on the basis of the data and performance. We adopted a batch 

size of 64, L2 loss as the loss function, and Adam as the optimization algorithm. Weight decay and gradient crip skills were 

adopted to improve performance. Given the single-step evolutionary nature of the Koopman operator, to keep it robust for 290 

future leading predictions by learning the dynamics, we used a multistep trick for error estimation during model training (Eq. 

(8)). 

For the comparative models, LSTM and MLP obey similar settings in Laurenti’s work. The detailed key parameter settings 

are listed in Table 1. To achieve multistep prediction, we add a fully connected layer as a decoder in our LSTM, TCN and 

MLP models to map the extracted features to the prediction window. Temporal bundling (TB) is adopted to reduce the rate of 295 

error propagation by reducing the number of model calls (Brandstetter et al., 2022). 
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Table 1: Key parameters adopted in the experiments for different models. 

LSTM TCN MLP HKAE 

Input_size: 1 Input_size: 1 Input_size: K Embedded Dimension: K 

Num_layer: 3 Num_channel: [64, 256] Hidden_size: [64, 256] Delay Time: 1 

Hidden_size: 128 Kernel_size: 3 Output_size: L Bottleneck: 10 

Output_size: L Drop_out: 0.1  Hidden_size: 16*a, a = 5 

 Output_size: L   
 

 305 

We evaluated the prediction results via the R2 and root mean square error (RMSE) metrics. As Eq. (13) shows, the predictions 

are conducted in a certain time window, and the window keeps sliding to the end of this lead situation. Then, the lead time 

increases to adapt to a new round of sliding predictions. In this study, we calculated the difference between the predicted results 

and the ground truth corresponding to each case of leading prediction steps. 

For leading prediction steps	𝑗 = (1,… , 𝐿), we generate a forecast window 𝑖 = (1,… ,𝑁 − 𝐾 − 𝐿 + 1) and compute 𝑅)' and 310 

𝑅𝑀𝑆𝐸) as follows: 

𝑅$" = 1 −
* (𝑥%

&,− 𝑥'
$)"

#()(*+!

',-

* (𝑥$ − 𝑥'
$)"

#()(*+!

',-

(14) 

𝑅𝑀𝑆𝐸$ =
2

1
𝑁 − 𝐾 − 𝐿 + 1 * (𝑥%

&,− 𝑥'
$)"

#()(*+!

',-
(15) 

where 𝑗 is the leading prediction step in the 𝑖 − 𝑡ℎ forecast window. 𝑅)' and 𝑅𝑀𝑆𝐸) represent 𝑅' and 𝑅𝑀𝑆𝐸	, respectively,	for 

𝑗#1 leading predictions. xi, xj, and 𝑥 are the prediction, mean and ground truth of 𝑥, respectively. 315 

To assess the efficacy of temporal dynamics modelling, we utilized mean-period statistics that are commonly employed in the 

analysis of laboratory earthquake systems (Veedu et al., 2020). We pick the shear stress peaks and compute the interval of 

peaks ∆𝑇 as the period of shear stress variation for the predictions and ground truth. The R2 metric is used to test whether the 

period of stress variation of the predictions fits well. The slip interval Δ𝑇 is computed via the algorithm from Gualandi et al. 

(2023), according to the timing of the shear stress peaks. The peaks are found via the find_peak function from scipy. 320 

𝛥𝑇! = 𝛥𝑡 ∗ (𝑡!"#$%& −	𝑡!$%&) (16) 

	𝑡!$%& =	 𝑡!
'() + 𝑎𝑟𝑔𝑚𝑖𝑛(|𝑥5𝑡!

'()
6, … , 𝑥5𝑡!"#

*('
6|) (17) 
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where	𝑡!$%& represents the central moment of slip behaviour derived from 𝑥5𝑡!
'()
6, which are the maximum peaks of the shear 

stress series, and where 𝑥5𝑡!"#
*('
6 represents the minimum peaks of the shear stress series. 

Then, we compute the 𝑅=+2C"
'  (or R2 of the event period) for the modelled slip intervals for different leading steps: 

𝑅=+2C"
' = 1 −

X (∆𝑇?
Dn

0#$!%

2@"
− 𝛥𝑇2

))'

X (𝛥𝑇) − 𝛥𝑇2
))'

0#$!%

2@"

(18) 330 

where 𝑗 is the leading prediction step and where 𝑖  is the number of slips in the 𝑗#1  predictions. Δ𝑇n , Δ𝑇jjjj, and Δ𝑇  are the 

prediction, mean and ground truth of Δ𝑇, respectively. 

 
Figure 6: Calculation of the slip interval 𝚫𝑻. 

 335 

3 Results 

3.1 Evaluation of the dynamic modelling process 

We conduct multistep prediction experiments for three types of shear stress recorded in laboratory seismic experiments, and 

each type exhibits different rupture characteristics: fast rupture (Exp. 4581), alternating fast and slow rupture (Exp. 4679), and 

slow slip (Exp. 5198). These patterns essentially cover the types of behaviours of the laboratory slip system and correspond to 340 

real-world seismic activity and slow slip events. Unlike other statistical or deep learning methods, the HKAE is not a 

completely black-box approach. Thus, we can further check the status of the data during the modelling procedure to evaluate 

the effectiveness of HKAE modelling. We employ singular value decomposition (SVD) to illustrate the trajectory of the system 

and eigen-decomposition (ED) to interpret the approximated operator. 
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First, we adopt SVD for the result after delay embedding, utilizing three dominant right singular vector modes as coordinates 

to represent the reconstructed phase space (Figure 7b). The phase space describes the possible state of a dynamic system, and 

the reconstructed results reveal the distinct dynamic behaviours of the slip system under different slip characteristics (Stine et 355 

al., 1996). Using numerical simulation data as an example, it is evident that the system evolves along a “two-cycle-like” stable 

trajectory. Each cycle represents a slip process with varying intensities of stress drop, and the system alternates between these 

two states. The trajectories of Exps. 4581 and 5198 do not exhibit concentrated traces but rather more complex behaviours, 

indicative of the quasiperiodic behaviours of slow and fast slip (Gualandi et al., 2023). For Exp. 4679, the trajectory displays 

a more significantly disordered pattern but cycles around two main traces, illustrating the bifurcation process during the 360 

stability transition (Veedu et al., 2020). The structure of the attractors is preserved following nonlinear mapping by the HKAE 

(Figure 7c), indicating that the system dynamics are retained after mapping from the observed space to the Koopman subspace. 

We apply ED to the learned Koopman operator (Eq. (4)) and obtain the decomposed complex eigenvalue (Table 2), which 

represents eigendynamic modes characterized by distinct amplitudes and periods. We illustrate these modes within a unit circle, 

which represents the attraction set. As Figure 7d shows, not all modes are near the unit circle. This may be caused by a single 365 

observation dimension or by a metastable stick‒slip system in which the data do not exactly follow the attractor trajectory 

during the experiment (Jasperson et al., 2021). The dynamic modes represented by the eigenvalues are limited by a narrow 

threshold (0.01) of the distance to the unit circle. Eigenvalues that exceed the threshold are considered unstable if they are 

large, stable if they are small, and neutral if they are within the threshold (Avila et al., 2020). 

All three experiments decompose and obtain stable modes (red points, which represent modes close to the unit circle). Modes 370 

with approximately 10 s and 6 s for the cyclic fast slip occur in Exp. 4581, and those for slow slip occur in Exp. 5198. The 

dual modes of approximately 6 s and 10 s for the bifurcations of slips in Exp. 4679 are also modelled successfully. There are 

modes with amplitudes close to 1 and zero frequency in Exps. 4581 and 5198, but the amplitude of the zero-frequency (also 

infinite period) mode in Exp. 4679 is much lower, which means that the static component is a small percentage of the shear 

stress variation compared with the other 2 experiments. This may indicate that when a laboratory earthquake system is in a 375 

state of alternating fast and slow slip, the dynamics of the system strongly vary over time, and our execution of the short-time 

Fourier transform (STFT) for the stress observations in Exp. 4679 should confirm this conclusion (Figure 2 in the 

Supplementary Information). 
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 385 
Figure 7: Dynamic modelling steps and interpretation with the HKAE. The rows represent the different modelled experimental data. 
The columns represent the dynamic modelling of the data through the different steps of the model. (a) Shear stress time series from 
the numerical simulation and three laboratory experiments. (b)-(c) Attractor structure after delay embedding and the HKAE, using 
the coordinates expanded by the first three right singular vector modes. The black line illustrates the evolution of the system under 
three-dimensional projections. (d) Eigen decomposition of the learned Koopman operator, described by the real and imaginary parts 390 
of the complex eigenvalue. In (d), the values are directly converted to amplitude and period formats. 

 
Table 2: Learned Koopman operator eigenmodes. Only the eigenvalue with positive periods is shown because of the conjugation. 
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 Exp. 4581 Exp. 4679 Exp. 5198 
# Eigenvalue Period(s) Amplitude Period(s) Amplitude Period(s) Amplitude 

1 9.548719 1.001883 9.970778 0.999401 6.388905 0.994914 

2 0.294214 -0.071703 5.378387 0.993912 0.349487 -0.13397 

3 0.239758 -0.500562 0.258224 -0.34971 0.329522 -0.20161 

4 inf 0.967017 inf 0.091451 0.276048 -0.195414 

5 inf 0.94443 inf 0.193768 inf 1.00072 

 

3.2 Evaluation of the intracycle prediction settings 

We test two different experimental settings to validate the modelling and prediction capabilities pertaining to slip behaviour. 400 

The first focuses on the stress variation. Employing the historical 100 steps (spanning 10 s, which encompasses a complete 

slip cycle of stress increase and release), we predict the subsequent 30 steps of shear stress (spanning 3 s, which is long enough 

to include a process of stress increase or decrease). The prediction settings are illustrated in Supplementary Information Figure 

1. 

Figure 8 shows that the evaluation metrics vary with the leading prediction steps for the experimental data. Generally, the 405 

classical autoregressive moving average (ARIMA) method yields competitive results during the initial 1~5 leads but severely 

degrades the accuracy. The next lowest performer is the TCN, which has temporal convolutional capability, followed by the 

MLP, the LSTM with a relatively simple structure, and the HKAE. This result is also in line with the current knowledge in the 

field of time series prediction, i.e., complex models are not necessarily more suitable for time series prediction tasks (Zeng et 

al., 2023). 410 

For Exp. 4679, with alternating fast and slow slips, and Exp. 4581, with predominantly fast ruptures, the traditional deep 

learning methods appear to have poorer statistical metrics than the HKAE does after a certain number of steps ahead. The R2 

of the HKAE maintains a steady trend, which benefits from the dynamic modelling ability of the HKAE. According to the 

results of slip interval modelling, in the two experiments with more slip characteristics, the HKAE also shows robust results 

with increasing leading predictions. The slow slip represented by Exp. 5198, with its relatively gentle stress changes and more 415 

significant cyclic characteristics, is not too difficult from the perspective of time series prediction, so methods other than 

ARIMA obtain good metrics. In addition, the TCN and LSTM methods outperform the HKAE in terms of scores, and after 

analysing the results, we infer that this difference is related to the complexity of the slow slip system. With an embedding time 

of 1, we set the input length uniformly to 10 s, leading to a large embedding dimension of the HKAE, but empirically, the 

system dimension of the slow slip system is low (Gualandi et al., 2020; 2023). When we use a low embedding dimension, the 420 

modelling effect of the HKAE significantly improves (as shown in Figure 3 in the Supplementary Information). 

In addition to evaluating the metrics for multistep lead prediction, we validate the predicted shear stress accuracy in the range 

of predicted 3 s. Figure 9 shows the final and future lead predictions for the test set on the basis of the three experiments. We 
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compare the final lead predictions to demonstrate the prediction stability. For each experiment, we select two sections where 

the shear stress indicates typical increase or decrease behaviour during slip. We choose LSTM, which performs consistently 

in different experiments, for comparison with the HKAE method. In terms of the individual lead prediction examples (right 

panels in Figure 9), the HKAE and LSTM have similar prediction scores, but the HKAE outputs more accurate predictions 460 

during the stress release phase.In addition, the HKAE models the rate of stress change better. These findings suggest that the 

HKAE models the dynamics of laboratory rupture activity better. We validate several prediction examples for more difficult-

to-predict fast slip experiments and find that the HKAE indeed models the stress release phase better (Figure 4 of the 

Supplementary Information). Since the stress release phase accounts for a relatively small portion of the stress change, this 

feature of the HKAE is masked when assessing the model performance through a sliding time window evaluation. 465 

With respect to the timing of slip beginning, the predictions in Exp. 4581 are less accurate; there is a notable mismatch in the 

slip cycle and an “early release” of stresses (Figure 9a, b). This discrepancy may be attributed to the absence of creep 

information (Laurenti et al., 2022), as the rapid stress rupture in Exp. 4581 occurred immediately at rupture onset, in contrast 

to the other two experiments, where accelerated stress attenuation preceded a rapid stress drop. The HKAE estimates the stress 

change rate in Exp. 4581 more accurately, whereas LSTM tends to predict a lower stress release rate (corresponding to a longer 470 

stress release time). Despite successfully modelling the rate of stress release, the HKAE tends to prematurely estimate the 

rupture onset. For Exp. 4679, both the HKAE and LSTM stress rates are more accurate than those for Exp. 4581. The HKAE 

is more accurate in estimating stress release and recovery timing, but its numerical prediction results in the initial steps are 

weaker than those of LSTM. Therefore, the evaluation scores are relatively low in the first few lead scores (0–0.5 s leads in 

Figure 8b). In addition, although the overall trend is accurately predicted using the HKAE, the numerical results are generally 475 

high. We infer that this is a manifestation of universal operator driven modelling. We did not detrend the data, and Exp. 4679 

has stronger time-varying dynamic components than the other two experiments do (Figure 2 in the Supplementary Information). 

The HKAE uses a global operator estimation strategy, and the presence of time-variant dynamics or multiple invariant 

subspaces in the theoretical linear evolving space could challenge the single universal operator's capacity to depict evolution 

accurately (Lan and Mezić, 2013). For Exp. 5198, the HKAE and LSTM yield similar predictions. 480 
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(a) 3 s Lead Time Predictions 
Using Historical 10 s Shear Stress for Exp. 4581

(b) 3 s Lead Time Predictions 
Using Historical 10 s Shear Stress for Exp. 4679

(c) 3 s Lead Time Predictions 
Using Historical 10 s Shear Stress for Exp. 5198
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Figure 8:  Genenral evaluation for 3 s lead prediction using historical 10 s shear stress, with R2 and RMSE used as evaluation metrics. 610 
(a)-(c) for Exp. 4581, Exp. 4679 and Exp. 5198 respectively. 
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Figure 9: 3 s leading prediction details during different phases of stress variation for different laboratory datasets. (a), (c), 

and (e) show the HKAE results, whereas (b), (d), and (f) show the LSTM results. The left panels present the total 3 s leading 

predictions for the test set. The right panels illustrate the predictions in the 3 s horizon, with R2 and RMSE used as 625 

evaluation metrics. Predictions with higher metrics are highlighted in red. 

3.3 Evaluation of the intercycle prediction settings 

We then extend the input to 20 s and the prediction horizon to 10 s to test the ability of the model to model the seismic cycle. 

This setting is the same as that used by Laurenti (2022) to test the modelling ability of slip events. Furthermore, to assess the 

modelling of the event cycle more intuitively, we introduce a new evaluation metric in this experiment, namely, to assess the 630 

predictive effect of the predicted results with respect to the moment of occurrence of the event. 

Compared with the “10-3 s” experimental settings (Figure 8b), when the results are predicted for the next 10 s, the slip interval 

scores of the HKAE predictions are higher than those of the other methods (right panel in Figure 10), which reflects the 

superiority of the HKAE in modelling seismic dynamics. 

Furthermore, unlike the decrease in accuracy with an increasing number of leading steps that are evident in stress value 635 

predictions, the metrics for slip intervals do not demonstrate a steady decline. This could be attributed to the periodicity of the 

slip activities. Moreover, the capacity of the HKAE model to model slip behaviour more robustly indicates its ability to capture 

long-term trends in the data. 

In terms of R2 scores, the HKAE continuously models fast slip systems, especially for leading predictions after 4 s. The scores 

for the evaluation of the event cycle similarly support this conclusion. Fast slip systems tend to have more complex dynamic 640 

system characteristics and higher instantaneous dimensions (Gualandi et al., 2023), which demonstrates the HKAE's ability to 

model complex dynamic system dynamics. For Exp. 4679, the HKAE does not consistently continue its dominance when it is 

1–3 s ahead of the forecast in terms of R2 and RMSE scores. However, focusing on the event cycle scores, which are more 

meaningful under long-term forecasts, the HKAE shows a steady advantage (left panel of Figure 10b). Considering the event 

cycle predictions over the entire prediction window, the HKAE also has a clear advantage over the LSTM, as demonstrated 645 

by the fact that its cycle predictions are closer to the diagonal (right panel of Figure 10b). For the slow slip represented by Exp. 

5198, we find that the HKAE has a more stable performance in event cycle modelling (Figure 5 in the Supplementary 

Information). Owing to the relatively weak performance of the starting leading window, similar to the findings of the 10–3 s 

experiment described above, we attribute this finding to the relatively low system dimensionality of the slow slip system 

(Gualandi et al., 2020; 2023). 650 
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Figure 10: Genenral evaluation for 10 s lead prediction using historical 20 s shear stress, with R2, RMSE and R2 of event 665 

intervals (Eq. 18)  used as evaluation metrics. (a)-(b) for Exp. 4581, Exp. 4679 respectively. 
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4 Discussion 670 

 

 
Figure 11: Visualization of linear evolution in the latent space for 3 experiments with different slip behaviours. Input shear stress 
series (black), HAKE-encoded latent variables (grey) and latent variables after linear evolution (red). The red box represents the 
components in the latent space that are still difficult to evolve linearly. 675 

 

Modelling and predicting the behaviour of fault slip is crucial for understanding natural earthquakes. The study of natural 

earthquakes still presents various challenges, such as indirect observations, insufficient sampling histories of shorter fault 

activity cycles, etc. (Herrera et al., 2022), whereas laboratory settings provide new insights in an easier, more controllable and 

observable manner. Machine learning methods have been effective for accurately predicting instantaneous slip behaviour on 680 

the basis of near-term acoustic emissions (Rouet-Leduc et al., 2017; Shokouhi et al., 2021; Borate et al., 2023). However, 

attempts to forecast future behaviour have encountered temporal limits due to the high nonlinearity of the fault slip system in 

the laboratory. 

To address these questions, informed by dynamic system theories, we pioneered a dynamic informed method, the HKAE, to 

predict the future shear stress of laboratory fault slips. The HKAE model is designed on the basis of delay embedding theory 685 

and Koopman theory and leverages the nonlinear fitting capabilities of neural networks and the systematic perspective of 

dynamic theories. The advantages of the HKAE include (1) multiscale modelling of laboratory slip systems under limited 

observations and (2) interpretability and insights into laboratory slip from a dynamic systems perspective. 
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Here, we further discuss the dynamic modelling skills of the HKAE by investigating the latent space. The HKAE captures 

lower-complexity, more predictable dynamic components from stress observations of complex laboratory slip systems through 

Koopman theory, which can be visualized directly via the encoded results (Figure 11). 700 

The scalar shear stress is reconstructed in high-dimensional phase space and then encoded by the HKAE for latent variables 

with dimensions equal to the approximated Koopman operator. Figure 11 illustrates different components. Considering the 

conjugate nature of the Koopman eigenvalues, we plot only the latent variables corresponding to half of the eigenvalues shown 

in Table 2. The latent variables corresponding to stable feature modes are more predictable. This is also evident from the results 

of the linear evolution, where the latent variables corresponding to stable modes (red line) match closely with the numerical 705 

values of the latent variables (gray line) after evolution. Moreover, there are always components such as residuals (red box in 

Figure 11), which, from the point of view of the HKAE, are components that are still difficult to characterize with linear 

dynamics after further nonlinear mapping. There could be many reasons for these hard-to-predict components, and we 

hypothesize that the most important reason is the lack of observations, despite the phase space reconstruction using delayed 

embedding. The meta-stable characteristics of laboratory slip systems also contribute (Jasperson et al., 2021). In addition, we 710 

find a greater percentage of hard-to-predict components in Exp. 4679, which is related to the unstable state of Exp. 4679. 

Additionally, the "residual-like" latent variable prediction for Exp. 4679 is more challenging. Considering the absence of stable, 

long-period modes in Exp. 4679 (Table 2), we suggest that, from the perspective of HKAE modelling, the alternating fast and 

slow slippage represented by Exp. 4679 represents a less stable state in the laboratory slip system than that of pure fast or slow 

slip. This conclusion is consistent with the understanding generated from laboratory experiments and numerical simulations, 715 

which state that rapid and slow slip alternate at the critical point of the stability transition (Veedu et al., 2020). 

The mechanisms underlying the occurrence of earthquakes caused by fast slip events, as well as slow slip events caused by 

slow slip, under natural conditions are still unclear. Recently, it was reported that slow slip events (SSEs) may exhibit a certain 

degree of numerical predictability (Gualandi et al., 2020; Truttmann et al., 2024). We suggest that the HKAE can achieve 

competitive modelling of seismic activity and diagnose the dynamic behaviour of regional seismic systems by incorporating 720 

dynamic system theory. Considering the laboratory environment and the nature of the earthquake system, integrating external 

data such as historical acoustic emissions or other measurable laboratory observations as forcing factors could enhance the 

generalizability of the model. Implementing the Hankel alternative view of the Koopman (HAVOK) framework (Brunton et 

al., 2017) and local dynamic modelling strategy (Liu et al., 2023) might further enhance the predictive capability of the HKAE. 

5 Conclusion 725 

Drawing upon delay embedding and Koopman theories, we propose a dynamic informed machine learning method, namely, 

the Hankel–Koopman autoencoder (HKAE), to achieve future predictions in complex laboratory earthquake systems. This 

model demonstrates competitive performance in shear stress variation and slip event modelling compared with other prediction 

models. To our knowledge, this is the first instance of predicting laboratory slip behaviours from a dynamic systems 
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perspective. In addition to the modelling performance, the analysis of the execution process of the HKAE can provide dynamic 

diagnostics for the laboratory slip system operating behind the shear stress observations, such as those of system trajectory 

behaviour, characteristic dynamic modes, and system stability. Furthermore, the HKAE highlights the potential for simplifying 745 

and decomposing complex geophysical systems with a data-driven approach but combining a dynamic systems perspective. It 

also provides a new approach for modelling, predicting and understanding complex geophysical systems, especially those with 

limited observations, showing great potential in seismically monitoring and modelling the physical mechanisms of faults. 
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