
Reply to Review for “A dynamic informed deep learning method for future estimation of laboratory stick- slip” 
by Yue et al. 
[Review]: 
Yue et al. developed an algorithm (HKAE) to perform time series forecasting. The algorithm exploits concepts derived 

from dynamical systems theory and Koopman theory, and it uses an autoencoder architecture to realise the link 

between the two. They decided to apply the algorithm to laboratory earthquakes data, and in particular to shear stress 

time series. 

 

I think that the idea and the results are interesting. Nonetheless, there are several points that need to be better explained 

and/or further developed. 

 

I have two major concerns about the manuscript. 

 

1) The first problem that I see comes from your interpretations. You state that your algorithm outperforms the existing 

ones (e.g., you tested LSTM, TCN and MLP). But in many occasions this is not true. Your Figures 8 and 10 show that, 

especially for the immediate next future, LSTM performs better than HKAE. I would recommend you to not oversell 

the HKAE algorithm. 

 

2) The second problem comes from the pre-processing of the data. Reading the code, I noted that there is a pre-

processing step to smooth the data. In the manuscript you do not mention any filtering or smoothing step. The 

smoothing function that you use is taken from the statsmodels package, and it takes the closest data to perform a local 

linear regression. The closest data in a 1-dim time series can come from both the past and the future. This means that 

when you smooth the data you are introducing information from the future. This is a problem if you want to evaluate 

forecasting performances. You need to clarify how many data from the future are used to smooth the data. 

 

Other two, less critical but still important, problems are the following. 

 

One concerns the reproducibility. In order to reproduce the results, it is important that you add a README.txt file in 

your repository. Furthermore, you should add a requirements.txt file with the details of the packages that you used. It 

is a good practice to do it so that people can create a local virtual environment and reproduce your results. Some 

comments in your code are not in English, and you should translate them. 

 

Finally, it is not easy to follow the reasoning and the various steps mainly because of the overall poor English structure. 

I was trying to write down the correction myself, but after line 70 I gave up because there were too many corrections 

to suggest. In the Acknowledgments section you mention that the manuscript was polished with GPT-4. Sometimes 

the feeling is that entire paragraphs were written automatically, without a proper logical connection with the next part. 

I highly recommend you ask a native English speaker to review and edit the manuscript. 

 

For detailed comments, please see the attached file. 

  



[Response]:  

Thank you for your affirmation of our ideas and for your very detailed review comments, which are extremely 

helpful for improving our results. In response to your review comments, we will make the following responses: 

 

First about your two major concerns: 

1. The most important feature of HKAE is that it considers laboratory earthquake slip from the perspective of 

dynamical system, rather than using purely statistical methods or black-box deep learning methods. 

Specifically, it achieves: 

（1） Multi-scale modeling of laboratory slip system under limited observations: By modeling the 

dynamics of the HKAE, we are able to obtain estimates of the future state of the system in two 

aspects: between slip cycles, the HKAE is able to better estimate the period of the events, shown in 

Figure 8; and get more accurate estimate of stress variation within the slip cycle, especially during 

the stress-release phase, shown in Figure 9. Noticed that we only use shear stress series to reconstruct 

the system, which will be a potential characteristic when the observations are scarce in field. 

（2） Interpretability and insights of laboratory slip from a dynamical system perspective: By 

approximating the Koopman operator, we are able to further understand the dynamics of laboratory 

stick-slip. From the amplitudes and periods of dynamic modes obtained from the HKAE, it can be 

found that there are stable dynamical modes in all the meta-stable slip systems. and the systems with 

pure fast slips and slow slips are more stable. In terms of specific modes, the systems with fast slip 

and slow slip are more stable than those with alternating fast and slow slip, which is consistent with 

the previous understanding obtained for laboratory slip systems under different normal stress 

loadings. 

Based on your comments, we realize that there is some ambiguity in our statement, and we adjusted it in the 

revised version. 

 

2. Regarding the data smoothing issue, we must clarify that we did not use data smoothing in our actual 

experiments. Instead, we directly used the preprocessing method in Laurenti’s work (2022), where we 

resampled the stress sampling data from 0.001s to 0.1s, taking only the first point of the 100 sampling 

points as the resampled result, thus avoiding information leakage. The smoothing part retained in the code 

is from our historical processing, and we have removed it in the updated code version. 
 

Then in response to your other two concerns: 

1. Thank you very much for emphasizing reproducibility. In the updated code version, we have added a 

requirements document and included a README for quick experimental reproduction. The comments in 

the code have also been fully translated into English. The new URL of our code is: 

https://zenodo.org/records/12627258. 

2. Thank you very much for your detailed correction suggestions. From your attachment, we can see that you 

have provided very detailed comments on the entire manuscript, which greatly helps improve our results 

and manuscripts. Once again, thank you for your patience. Additionally, we apologize for the somewhat 

poor language expression. Considering GPT-4's excellent performance in language polishing, we used it to 

refine our manuscript, but it may have altered the original meaning during content adjustments. In the 



revised version, we have comprehensively checked the content expression and had it re-polished. However, 

the current interactive response does not allow for the submission of a revised version, so we have provided 

partial responses to the textual portions of your queries within the response manuscript. 
 

Once again, thank you for your detailed and fair review comments. For the detailed review comments in your 

attachment, our responses are as follows: 

（Black bold text: Reviewers’ comments; Purple text: Our responses; Red text: changes in manuscript） 

 
Reference: 

[1] Laurenti, L., Tinti, E., Galasso, F., Franco, L., and Marone, C.: Deep learning for laboratory earthquake 

prediction and autoregressive forecasting of fault zone stress, Earth and Planetary Science Letters, 

https://doi.org/10.1016/j.epsl.2022.117825,2022. 
  



Section 1: Abstract & Introduction 

1. Line 11: As far as I know, there is no actual successful application to real-world slow slip events.  
[Response]:  

Thank you for your valuable suggestion. Upon checking of recent work, we have turned our statements into 

“Recently, machine learning methods have been proven effective in predicting instantaneous fault stress in 

laboratory settings and fault activities on Earth”. 

(1) The point we intended to convey is that machine learning has been successfully applied to the prediction of 

stress changes, using GNSS signals as a proxy under natural conditions (Rouet-Leduc et al., 2019). Also, 

the long-term seismicity variation (Velasco et al., 2022). 

(2) We have also noted recent work that employs data-driven methods such as EnKF to estimate future slow 

slip events (Hamed et al., 2023). However, it is true that there are currently no cases of deep learning being 

applied to SSEs in real-world scenarios.  

 

Reference: 

[1] Rouet-Leduc, B., Hulbert, C., and Johnson, P. A.: Continuous chatter of the Cascadia subduction zone 

revealed by machine learning, Nature Geoscience, 75–79, 2019. 

[2] Velasco Herrera, V. M., Rossello, E. A., Orgeira, M. J., et al.: Long-term forecasting of strong earthquakes 

in North America, South America, Japan, southern China and northern India with machine learning, Frontiers in 

Earth Science, 10, 905792, 2022. 

[3] Diab-Montero, H. A., Li, M., van Dinther, Y., et al.: Estimating the occurrence of slow slip events and 

earthquakes with an ensemble Kalman filter, Geophysical Journal International, 234(3), 1701-1721, 2023. 

 

2. Line 22: Natural fault activity is not quasi-periodic. 
[Response]:  

Thank you for your valuable suggestion. We changed our statements into “The capability of HKAE 

to decompose and model complex temporal dynamics highlights its potential in and sparse-observed geophysical 

system with cyclic characteristics like natural fault activities”. 

 

3. Line 30: Remove “firstly”. 
[Response]:  

Thanks to your suggestion, we have removed "firstly" from the revised version. 

 

4. Lines 32-33: Lubbers et al. (2018) worked on laboratory earthquake: this needs to be specified 
because it is otherwise misleading. 

[Response]:  

Thanks to your comments, we have added the following scope of work for Lubbers: “Lubbers et al. (2018) found 

that the event catalogue, which is more available in natural earthquake, can also predict the transient fault 

mechanism in laboratory earthquake.” 

 

5. Line 41: “discovered” -> “showed”.  



[Response]:  

Thank you for your valuable suggestion. We changed our statements into “Laurenti et al. (2022) showed that 

laboratory fault zone stress can be inferred autoregressively.” 

 

Section 2: Materials, methods and models 

1. Line 66: Remove “shear”. 
[Response]:  

Thanks for your suggestion, we have removed "shear" in the revised version. 

 

2. Lines 67-68: “and the equipment is used to record the changes in system properties such as pressure 
recorded during the shear process” is too vague. What observables are you using? 

[Response]:  

(1) According to the original data records, the actual recorded mechanism data including "Normal stress”, 

“Shear stress”, “displacement” etc. (Table 1). Here, we only used the term “Shear Stress”. 

(2) We add the observables during the experiments and changed our statements into “…and the equipment is 

used to record the mechanism changes (SI. Table 1) in system during the shear process (Figure 1a-b).” 

 

Table 1: Observables in shear experiments. 

No.  Observables Dimension 
(unit) 

1 LP Displacement mic 

2 Shear Stress MPa 

3 Normal Displacement Micron 

4 Normal Stress MPa 

5 Friction Coefficient (Mu) / 

6 Layer Thickness Mircon 

7 Sample Frequency Hz 

8 Time sec 

 

3. Line 69: “modified”: How did you modify the model? 
[Response]:  

Here "modified" means that the equations used in the work of Gualandi (2023) are modified based on the original 

Rate-State-Function model. To avoid ambiguity, we have adapted the statement here to: 

"We derive the numerical simulation data from the model (Figure 1d) in Gualandi’s work (2023)". 

 

4. Line 72: To claim that the system is quasi-periodic you should run a frequency analysis. The system 
is likely not quasi-periodic in a strict sense, and it’s more appropriate to say that it is cyclic. 

[Response]:  

Thank you for your suggestion. We agree that the system is not quasi-periodic in a strict sense or mathematically.  

(1) Firstly, the "quasi-periodic" characterization of laboratory earthquakes is discussed in the Veedu’s work 



(2020). Here we refer the key figure of their work as follows, which showed the quasi-periodic 

characteristic of slow and fast slip events. 

 
Figure 1. part of Figure. 4 from Veedu’s work (2020) 

(2) To further explain the “quasi-periodic” feature of data used in our experiments, we supplemented the data 

with time-domain and frequency analysis. Specifically, we follow the approach in Fig. 2 to find the highest 

and lowest points of the stress change, and use their midpoints as the time point at which the event occurs, 

defining the time to next event as Period T. We analyze all three data in this way in the time domain, and 

obtain a plot of the distribution of event periods in the data from the three experiments (left-down figure in 

panel(b)-(d)). In the frequency domain we performed a Fourier analysis (right-down figure in panel(b)-(d)) 

on all three data and picked the peaks from the spectrum and calculated the corresponding period values. 

In the frequency domain, it can be found that for 3 experiments with different slip behaviours they have 

dominant frequencies. From the time domain, it can be found that there will be a certain period range with 

prominent number of event periods. Thus, we adopt “quasi-periodic” here and in later part. 

 

 
Figure 2. (a) Event instant and period picking rules. (b)-(d) event period histogram and frequency analysis for 

3 experiments. 

 

Reference: 

[1] Veedu, D., Giorgetti, C., Scuderi, MarcoM., Barbot, S., Marone, C., and Collettini, C.: Bifurcations at the 

Stability Transition of Earthquake Faulting, Geophysical Research Letters, 

https://doi.org/10.1029/2020GL087985, 2020. 

 

5. Line 74: “robust” ->“clear” 
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[Response]:  

Thank you for your valuable suggestion. We changed our statements into: 

“We used the simple simulation of the data as an additional validation (Figure 1d), which shows a clear switch 

between two slip behaviours with stress variation.” 

 

6. Figure 1: caption: remove “fault slip”. 
[Response]:  

Thank you for your valuable suggestion. We have removed “fault slip” of Fig. 1’s caption in the revised version. 
 
7. Line 82: “fits” seems the inappropriate verb here. Maybe “described by”? 

Line 83: Eq. 1 is wrong. The shear stress at time ! + 1 is not a function of solely the shear stress at time 

!. 
[Response]:  

Thank you for your valuable suggestion. We reclaimed the representation of state, observation, shear stress and 

their relationship in text and equations.  

What we are trying to convey here is that the state " of the laboratory seismic system can be viewed as a dynamic 

system change, and the shear stress can be viewed as an observation of the state. We change the statements into: 

“Laboratory earthquake can be conceptualized as being governed by a dynamical system, described by Eq. (1)”.  
!!"# = #(!!) (1) 

#! is the state of laboratory slip system,  $ presents the governing function of the system. The shear stress "" 
can be viewed as an observation of the laboratory slip system state #!.” 
 

8. Line 86: The mapping % is not the mapping of the Koopman operator. The wording is unclear. From 

eq. 2, the Koopman operator maps one step ahead the system described by the function % applied to 

the variables that describe the system. 
[Response]:  

Thank you for your comments. We have changed the text in the revised version. 

Here we want to claim that % is a mapping from the observation mapping to the Koopman operator performing 

space where it is located, the current expression is not proper and we change it to "It states that all finite-

dimensional nonlinear systems can evolve in an alternative space through the mapping ' and the infinite-

dimensional Koopman operator (." in the updated version. 

 

9. Lines 91-92: Technically, you need infinite modes to properly describe with a linear operator a 
generic non-linear dynamic. 

[Response]:  

Thank you for your comments.  

Theoretically accurate Koopman operators are infinite dimensional. The current related methods around 

Koopman operators, such as DMD, Deep Koopman methods, found that the finite-dimensional linear matrices 

are able to efficiently approximate the infinite-dimensional Koopman operators in applications.  

Here, we also emphasize that our operator is approximate ("the learned approximate Koopman operator" in Line 

91 of manuscript). We added a note on the approximate Koopman operator in the manuscript to avoid 



misunderstandings. 

 

10. Line 94: “are the eigenvector” and “are the eigenvalues”.  
[Response]:  

Thank you for your valuable suggestion. We change the words into “eigenvectors” and “eigenvalues” in the 

revised version. 

 

11. Line 96: Is & the time step? 

Line 97: “of the k-th dynamic mode”.  
[Response]:  

Thank you for your valuable suggestion. Yes, & here represents time step. 

We have added and adjusted the notation of eq. 5 as follows: 

“… 

)$% = )&%*
$
'()*+,! (5) 

Here '# = [*$% , *&% , . . . , *'% ] represents the temporal evolution of . − !ℎ dynamic modes, and & represents the 
time step…” 
 
12. Line 98: “we’re aware of” -> “we know”;  

Line 98: “the mapping function”;  
Line 99: “the linear operator”. 

[Response]:  

Thank you for your valuable suggestion. We have changed these words in the revised version. 

 

13. Section 2.2.1 needs references. You are largely taking the description from existing literature, and it 
needs to be cited. 
Line 100: You are now talking about control systems, but you do not have a controlled system in eqs. 
1-3. It seems like you copy-pasted from existing literature, but it is not an accurate description of 
what you are actually doing. 

[Response]:  

Thank you for your valuable suggestion. We have added related references of Koopman theory and related 

applications in the revised version. 

“Koopman theory is a mathematical theoretical framework. It states that all finite-dimensional nonlinear systems can 

evolve in an alternative space through the mapping g of the infinite-dimensional Koopman operator K (Koopman, 

1931; Brunton et al., 2021).” 
“…for example, to explore what are the main driving components in the evolution of dynamical systems (Brunton 

et al., 2021), what is the pattern of its growth (Schmid et al., 2010), and so on.” 

 
14. Figure 2: The caption is too synthetic. You need to explain what the panels represent. You need to 

add letters to the various panels. All the panels need labels for the axes. You are using the Lorenz63 
system time series, but never mentioned it in the text. If you are using the figure taken from another 
publication, you need to state it and you need to have the permission to reproduce it here. 



[Response]: 

Thank you for your valuable suggestion. Here we are trying to reflect the conceptual design of Koopman's theory 

in section 2.2.1 to make it easier understanding.  

Based on your suggestions, we have refined the Figure 2 as follows: 

(1) We add the panel letters and captions respectively.  

(2) We add the Lorenz system and formal reference in the caption text. 

 

 
Figure 3. Replotted Fig.2 in manuscript.  

Illustration of the transformation between nonlinear trajectory of high dimensional state with # (a) and a linear 

operator ( represented dynamics (b), taking Lorenz63 system for example. Lorenz63 system observations are used 

for representation the transformation (Lorenz, 1963). 

 
 
15. Line 106: What are “majority observations”? 
[Response]:  

Thank you for your valuable suggestion. The “majority observations” represents the “observations that carry a 

lot of information about system state changing”. 

Here we would like to express the observations that contain major information about state variations, and 

"majority observations" may cause misunderstanding, so in the updated version, we change the expression to: 

 "For analyzing dynamical systems using Koopman theory, it would be nice to have states directly of the system, 

or observables that carry information about the main changes in the system. However, in the real world we often 

obtain state quantities with a limited signal-to-noise ratio, or observations that do not carry all the information 

about the changes in the system, i.e., partial observations. Here, inferring the state change of a laboratory slip 

system from the shear stress can be viewed as inferring the future evolution of the system from a very limited 

number of partial observations. " 

 

16. Line 118: What “As shown in Figure 3”? The sentence is incomplete. Figure 3 does not show % and 
1. It is unclear what is the link with the previous sentence. 

Figure 3: I find the usage of the Lorenz system as an example not appropriate. The Lorenz system is 

Time (s)

x " + $ = &(( " ) * ((" + $) = +* ((")

!

!!"

!(#) %

(a) (b)

Time (s)



not the focus of this work, and you could (and, in my opinion, should) use the dynamical system that 
mimics the laboratory earthquakes instead. 

[Response]:  

Thank you for your valuable and justified suggestions.  

(1) We rewrite this sentence and adjust the notation in Figure 2、3, Eq.6 and text for consistency. 

(2) We use the laboratory earthquake system synthetics instead in revised Figure 3 refer to Gualandi’s work 

(2023). We use the Lorenz system considering its widely recognized representation of the dynamical 

system. It makes more sense for laboratory earthquake system appear in this manuscript. 

“Figure 3 represents the process of delayed embedding.” 

 
Figure 4. Revised Fig 3 in the manuscript. 

 

17. Line 121: “Lorentz” -> “Lorenz”. Furthermore, it needs a citation. 
[Response]:  

Thank you for your valuable suggestion. We change the text and add the citation of Lorenz System (Lorenz, 

1963). 

 

18. Figure 4: My understanding is that the output of the Koopman operator applied to %("!) is %("!"#), 

so this should be the reconstruction in the embedding space. From your figure this reconstruction 

comes after the application of %$#(∙), but this should give you a signal back in the original input 
space (and indeed you have an arrow coming back down as “One-step Evolution”). I think that this 

figure is inaccurate and needs to be corrected. 
[Response]: 
Thank you for your feedback. We replotted the Figure 4 for clear expression of HKAE model. 

(1) Actually, the Figure 4 is organized based on the design of loss function. First of all, it’s true that the output 

of Koopman operator module applied to %("")  is %(""($) . Here the “Reconstruction” in Figure 4 

represents the procedure without applying Koopman operator. By this, we can compute the 

Observe Delay Embedding
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!!"
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!!

!"

!#!
"

#

(a) (b)

(c)



“Reconstruction loss”, to make sure that the mapping pair % and %)$ can achieve mapping between 

embedding space and original space. The output of this procedure is actually the input itself, so we didn’t 

represent it in the figure. 

(2) The narrow below % shows another procedure with applying Koopman operator, which actually achieve 

future estimation, and further get the lead predictions as outputs (as Figure 4 shows). 

(3) We replotted the figure as follows: 

 
Figure 5. Modified Figure 4 in manuscript. 

 

19. Lines 197-199: What is a multi-step trick? 

Eqs. 8-9: Is the running index 4 going to 5 instead of 6? What is 6? Furthermore, I think there is an 

error about the & running index. Shouldn’t it go to 7 instead of ℎ? 

[Response]:  

Thank you for your comments. We corrected the equations and text in the revised version. 

(1) 4 represents running index in historical input 7 (also 6 in Eq. 7, and embedded dimension 5 when delay 

time 8 = 1). 

(2) & represents prediction steps in forecast horizon 1. The notation ℎ is not correct in the Eq.8.  

(3) The multi-step trick refers to the fact that for each sliding window, we make 7-step future predictions for 

all time index within the entire window, instead of only predicting 7-step in the future for the last moment 

within the sliding window. Thus, each sliding window in our loss term computes all steps (7) of the multi-

step prediction (1) results, which is why Eq. 8 is summed for twice. 

(4) For consistency, we adjusted the Eqs.7-8 and Figure 4 in the revised version: 
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20. Line 159: “to address” -> “that addresses”.  
Line 161: “earth” -> “Earth”. 
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[Response]:  

Thank you for your valuable suggestion. We changed these words in the revised version. 

 

21. Eqs. 10-12: Either you describe what :, ; and * are, or you do not show the equations and just refer 
to the literature. 
[Response]:  

Thank you for your valuable suggestion. Considering the generality of LSTM in time series modeling, we 

removed Eqs. 10-12 in the revised version. 

 

22. Lines 192-194: You should show the results (for example, with a figure) to confirm that an 
embedding dimension of 100 is suggested by the method that you mention (Cao, 1997). The optimal 
time delay embedding is likely not 1, but you are using a value of 1 in order to build the Hankel 
matrix. The fact that the dimension of the Koopman operator is set to 10 further suggests that the 
dimensionality of the system is likely not of the order of 100, so it is difficult to understand how Cao’s 
method could provide such a high minimal embedding dimension. The reason is likely because there 
is a lot of redundant information with the small time delay embedding of 1. 

[Response]:  

Thank you for your valuable suggestion.  

(1) The parameters we ultimately adopt are not confirmed by Cao's method, and we refined the 

statement of parameter selection to: 

“For the delay time, we took 1, on the one hand to construct the Hankel matrix to satisfy the 

prediction requirements, and on the other hand Brunton et al. (2017) reported that based on 

practice, they found that most of the systems have a delay time of 1. With a delay time setting of 

1, the embedding dimensions in our model architecture are numerically equal to the number of 

steps in which the historical information is used. Given the experimental setup in Laurenti's work 

(2022), we suggest that sufficient historical information is needed to predict future changes. To 

evaluate both intra- and inter-cycle scenarios of slip, we set up an experimental setup using 20s of 

historical data to predict 10s in the future and 10s of historical data to predict 3s in the future, 

corresponding to embedded dimensions with 200 and 100.” 

(2) We tested Cao’s method to generate theoretically optimized parameters as Table 2 shows. It’s true 

that Cao’s method gives a recommendation embedded dimension at 11 when delay time ! = #, 

which is similar to the dimension of Koopman operator we adopted in HKAE. 

As Figure 3 illustrated, we fixed the delay time ! = #, and test 30 step lead forecast with 

embedded dimension $ from 5 to 150, and used colors to represent different dimensions. For 

Exp. 5198, there’s accuracy decrease trend with the embedded dimension increasing. But for Exp. 

4581 and Exp. 4679, the metrics show more complex situations. Generally lower embedded 

dimension ($ < 70, blue to cyan lines) brings better performance in short-term (around 10 step 

leads), while higher embedded dimension ($ > 100, yellow to red lines) brings more steady 



result. The embedded dimension (+ = ##), calculated by Cao’ method and dimension we 

adopted in the manuscript (+ = #--), are highlighted with black stars and yellow stars 

respectively. Noticed that, the metrics when + = ## get a better short-term performance, while 

the metrics when + = #-- get more steady result when the prediction leads increasing. Except 

for Exp. 5198, the metrics are generally better when + = ##.  

It indicates that for short-term forecasts, a small embedding dimension is efficient, while also 

pointing out that for longer-term forecasts, a small embedding dimension may be insufficient. For 

this interesting phenomenon, we plan to discuss it in our further work. 

 

Table 2: Parameters combination results calculated based on Cao’s methods (1997). Parameters searching with 
< = [=, >… , =@] and A = [=, >, B… , =C@]. With the increase of delay time, the embedded dimension become 

null, which is not listed in this table. 

 Exp. 4679 Exp. 4581 Exp. 5198 
# No. Delay time (!) Embedded 

Dimension 
(") 

Delay time (!) Embedded 
Dimension 

(") 

Delay time (!) Embedded 
Dimension 

(") 
1 1 11 1 11 1 11 
2 2 26 2 26 2 11 
3 3 21 3 36 3 21 
4 4 16 4 26 4 16 
5 5 21 5 26 5 16 
6 6 36 6 21 6 21 
7 7 31 7 16 7 11 
8 8 21 8 26 8 16 
9 9 26 9 36 9 16 
10 10 26   10 16 

 



 
Figure 6. Embedded dimension (A) test for HKAE. The Optimized A = 	== and A = =@@ adopted in the 

manuscript are highlighted in black star and yellow star respectively. 

 

HKAE Embedded Dimension Test for Exp. 4581

HKAE Embedded Dimension Test for Exp. 5198

HKAE Embedded Dimension Test for Exp. 4679



23. Line 197: How are they adapted? Just by trial and error? Or with some consistent procedure?  
[Response]:  

Thank you for your feedback. They are continuous pathways for model regularization during training (Hoffer et 

al., 2017).  

The weight decay is a skill implemented by subtracting a value proportional to the size of the weights at each 

weight update. 

The gradient clip is a means that limiting the size of the gradient vector before updating the model weights. 

They are the commonly used techniques to prevent overfitting in neural network training, and therefore we do 

not go into detail in the text. 

 

Reference: 

[1] Hoffer, E., Hubara, I., & Soudry, D.: Train longer, generalize better: closing the generalization gap in large 

batch training of neural networks, in: Advances in Neural Information Processing Systems, vol. 30, 2017. 

 
24. Tab. 1: adopted instead of adapted? These parameters are fixed, not adapting. 

[Response]: 
Thank you for your valuable suggestion. We used “adopted” in the revised version. 

 
25. Eq. 14: Is the mean the mean over the whole time series or in the window used to make the forecast? 

Using the whole time series mean seems wrong to me: why should the forecast tend to the mean of 
the whole time series when using a specific window that has a subset of the whole time series? 

[Response]: 
Thank you for your valuable suggestion. The mean is the mean in the forecast window, not the whole time series. 

In order to express the assessment approach more precisely, we adjusted the formulation of Eqs. 14-15 and add 

information about sliding window prediction in Figure 4:  

For prediction lead steps & = (1,… , 7) we generate forecast window 4 = (1,… ,E − 1 − 7 + 1), we compute 

the  G*& and GHIJ* as follows: 

G*& = 1 −
K ("+,L− "-*)&

').)/($

-01

K ("* − "-
*)&

').)/($

-01

(14) 

GHIJ* = N 1
E − 1 − 7 + 1 K ("+,L− "-

*)&
').)/($

-01
(15) 

Where &  is the prediction lead step in the 4 − !ℎ  forecast window. G*&  and GHIJ*  represents the G&  and 

GHIJ	for & − !ℎ lead predictions. xQ, xR, " are respectively the predictions, mean and ground truth of ". 

 
26. Eq. 17: The notation is quite odd. What you name “slip” or “stress” it’s actually just the index, so it 

is a time. When writing “slip_center_index” what is typically understood is that that is the value 
taken by the slip at the time index given by the index. Furthermore, “the central moment of a slip 
behaviour” is not clear. What is a “slip behaviour”? 



[Response]: 
Thank you for your valuable suggestion.  

(1) It’s true. The indexes in the notation of Eq.17 points to the time nor the stress value at the time index. And 

"-2345 represents the stress value at certain time index. 

(2) The slip behaviour typically refers to the characteristics and patterns of movement observed when two 

surfaces, often on a fault or an interface, slide past one another. It is usually accompanied by stress relief. 

And “the central moment of a slip behaviour” represents the denotes the closest points during a slip event 

to the average value of the shear stress (Gualandi et al., 2023).  

(3) We simplified the notations and changed the text in Eqs.16-17 and Figure 6 in the revised version: 
 

Δ83 = Δ9 ∗ (93"8/.0 −	93/.0) (16) 
	93/.0 =	 93(*< + =>'?@A(|CD93(*<E, … , CD93"8=*(E|) (17) 

 

 
Figure 7. Revised Fig. 6 in manuscript. 

 
27. Eq. 18: The fraction and parenthesis are likely wrong: check the consistency of your equation.  
[Response]: 
Thank you for your feedback. We corrected Eq. 18 in the revised version: 

H1)3<"5 = 1 −
/ (∆84>J

?#$!%

37&
− Δ83$)5

/ (Δ8$ − Δ83
$)5

?#$!%

37&

(18) 

Where K is the prediction lead step, @ is the number of slips in the K(@ predictions. Δ8J , Δ8LLLL, Δ8 are respectively 

the predictions, mean and ground truth of Δ8. 

 

Section 3: Results 

 
1. Lines 237-239: SVD is not applied to validate the effectiveness of the dynamic modelling. 
[Response]: 
Thank you for your valuable suggestion. We think that SVD is a necessary tool to test the validity of the dynamic 

Δ"! Δ"!"#

!!"#$!!%&' !!(&%



modeling process. It verifies the degree of information retention before and after encoding (nonlinear mapping) 

in the HKAE framework by extracting the main components. It is manifested in the fact that the system 

trajectories are still preserved, which can be clearly observed in Figure 7b-c, especially for ODE simulation.  

We believe that SVD is a necessary part of effectiveness validation, although it does not provide a direct 

indication. To avoid ambiguity, we modify the statement to: 

“We further check the data status during the model procedure. We employ Singular Value Decomposition (SVD) 

to confirm the trajectory of system, and Eigen Decomposition (ED) to learned operator.” 

 
2. Lines 243-244: Is it really quasi-periodic? 
[Response]: 
Thank you for your feedback. Regarding the statement of “quasi-periodic”, we have included in the Response 4 

in Section 2, mainly by referring to existing work and performing time-frequency domain analysis. 

 
3. Lines 249-253: The wording is very cryptic. What do you mean by “a single observation 

dimension”? Furthermore, a dynamical system will follow a trajectory that defines the attractor. 

How is it possible to have an unstable stick-slip system where the data does not exactly follow the 
attractor trajectory during the experiment? 

[Response]: 

Thank you for your feedback.  

(1) The term "a single observation dimension" refers to the fact that for a dynamical system such as a 

laboratory earthquake, we used only a single observation of shear stress in our experiments. According to 

previous studies, this observation is a good indicator of the state change of the laboratory seismic system 

(Gualandi et al., 2023). 

(2) The use of term “unstable” is inaccurate and we replaced “unstable” with “metastable” in the revised 

version. We gain the conclusion of a laboratory earthquake system as a “meta-stable system” from 

Jasperson’ work (2021).  

 

Reference: 

[1] Gualandi, A., Faranda, D., Marone, C., Cocco, M., Mengaldo, G., and Bendick, R.: Deterministic and 

stochastic chaos characterize laboratory earthquakes, Earth and Planetary Science Letters, 

https://doi.org/10.1016/j.epsl.2023.117995, 2022. 

[2] Jasperson, H., Bolton, DavidC., Johnson, PaulA., Guyer, RobertA., Marone, C., and Hoop, MaartenV. de: 

Attention network forecasts time-to-failure in laboratory shear experiments, Journal of Geophysical 

Research: Solid Earth, https://doi.org/10.1029/2021JB022195, 2021. 
 

4. Line 257: Experiment p5198 does not have a stable mode at 9 s. 
[Response]: 

Thank you for your feedback. The mode for Exp. 5198 is actually around 6.39s (Table 2). We modified it in the 

revised version. 

 
5. Lines 259-260: Why a zero-frequency mode with low amplitude is representative of a strong time- 



varying component? What does it mean “strong time-varying component”? 
[Response]: 

Thank you for your feedback. Our original statement might be ambiguous and we corrected it in the revised 

version as follows: 

“…but the amplitude of the zero-frequency mode in Exp. 4679 with slip switch is much lower, which means the 

static component is a small percentage of the shear stress variation comparing to the other 2 experiments. This 

may indicate that when a laboratory earthquake system is in a state of alternating fast and slow slips, the time-

varying dynamics of the system itself will be significantly enhanced.” 

 
6. Line 278: Why only two experiment settings? 
[Response]: 
Thank you for your feedback. The experiment settings here represent the setting of the prediction task above 

(“historical 10s to predict future 3s; historical 20s to predict future 10s”), not the actual shear experiment shown 

in Figure 1a. To avoid confusion, we have claimed the details in the revised version: 

“We compare our results under 2 prediction settings with 3 laboratory stick-slip datasets and 3 comparative deep 

learning time series prediction methods.” 

 
7. Line 284: You claim that the HKAE results are clearly better when using the DeltaT evaluation 

metric. OK, it is better, but the R2 is most of the time negative, and, in the best situation, slightly 

positive. This seems to be a very poor result for all the architectures. Even if for the HKAE it is 
better, it is still a poor result. 

[Response]: 
Thank you for your feedback. 

First of all, we recognize that the performance of statistical metrics isn’t good. But objectively speaking, it is 

undeniable that autoregressive prediction of stress changes in laboratory earthquake systems over a certain time 

window is a difficult task. The following figure shows the prediction evaluations from the Laurenti’s work (2022). 

 



 
Figure 8. Fig. 6, 7 from Laurenti et al., 2022 

 
From 2 figures above, we find that the future predictions of shear stress are not that accurate as we hoped. The 

R-square also keeps relatively low, even negative for the Exp. 4581, which also happened in our work. On the 

one hand the sudden and rapid release of stress can be regarded as a “switch” of system, which is more difficult 

to predict; on the other hand, the statistical criteria are also sensitive to the data with rapid changes. This is one 

of the reasons that we developed new evaluation metrics (ΔT evaluation) that consider the timing of event. 

Note that, we adopt different prediction evaluation strategies with Laurenti. We used an evaluation method 

commonly used in fields such as weather forecasting, where the results are evaluated across all windows at 

different prediction leads, to fairly assess the model's performance against an increasing number of prediction 

leads. However, in Laurenti's case it is a direct averaging of the content prediction results for different prediction 

windows, so her statistical score performance will differ from ours. 

 

Reference: 

[1] Laurenti, L., Tinti, E., Galasso, F., Franco, L., and Marone, C.: Deep learning for laboratory earthquake 

prediction and autoregressive forecasting of fault zone stress, Earth and Planetary Science Letters, 

https://doi.org/10.1016/j.epsl.2022.117825,2022. 

 
8. Line 285-287: The sentence is unclear. It is surprising that the RMSE and R2 metrics are worse for 

the HKAE in the first few forecasted steps. This would suggest that for short term predictions 
LSTM and TCN are better. But the dynamics that you are extracting should degrade with longer 
lead prediction times. Something that instead is not really observed. 

[Response]: 
Thank you for your feedback.  

(1) We further investigated the short-term prediction performance of LSTM and HKAE, taking Exp.4581 as 

example. We illustrated 3s lead predictions during different stress release phase, and marked the 10-step 

predictions in gray whereas HKAE has poorer R2 and RMSE. We believe that the main reason for the good 

performance of LSTM in the short-term prediction is that, thanks to the ability of LSTM in modeling short-

term time-series dependence, more accurate results can be obtained in the stress-raise phase. For HKAE, it 

lacks in numerical precision, and at the same time, there will be slight perturbations, which leads to a lower 

final score than that of LSTM. However, we can also find that the prediction of LSTM in the stage of stress 



release is much worse than that of HKAE. 

And since the percentage of the stress-release phase is larger than that of the stress-release in our data, it 

ultimately leads to a better result for LSTM when averaged over a sliding window. After 1s, the advantage 

of HKAE for dynamics modeling is demonstrated, and the predictions in the stress-release phase converge 

to the true value, thus appearing to essentially equal as well as exceed the LSTM. 

On the other hand, from delay embedding test of HKAE, it’s able for HKAE to generate competitive short-

term prediction results with a lower embedding dimension (Detail in Response 21 in Sec. 2). In general, 

methods like LSTM do have an advantage in modeling short-term temporal dependencies, but when we 

focus on the scenario-specific predictions (e.g., stress-release phases) as well as longer-term dependencies, 

HKAE's performance is better. 

We add the Figure 9 in revised version to show the modeling ability of HKAE during stress release phase . 

 

 
Figure 9. Historical 10s predict future 3s experiment details extension, more sections are added to show 

prediction difference between HKAE and LSTM. The first 10 steps (1s) lead predictions are masked in gray 

patches. Using R2 and RMSE as evaluation metrics, and predictions with higher metrics are highlighted in red. 

 

(2) Regarding the attenuation of prediction accuracy with lead prediction steps, theoretically such a 

phenomenon should occur, and in fact it occurs in all 6 cases (2 prediction settings and 3 experimental 

data) that we evaluated (manifested by the decrease of R2 with lead and the increase of RMSE with lead). 

The HKAE method tends to show a weaker decay trend, which reflects the effectiveness of HKAE in 

capturing dynamic information. The dynamic modes in Figure.11 b, on the other hand, is the evolution of 

the individual eigenmodes over time after approximating the Koopman operator eigen decomposition. The 

amplitude of the first two modes is less than 1, and it should be essentially stable over time (Detail in 

Response 14 in Sec.3). And it is because of the existence of such stable modes that it is possible to get still 

more stable predictions (i.e., slower decay of accuracy) over longer lead times.  

(3) Regarding to your comments, we revised the text as follows for clearer statements: 

LSTM 3s lead predictions for Exp. 4581

HKAE 3s lead predictions for Exp. 4581

R2 = 0.9794
RMSE = 0.0097

R2 = 0.9891
RMSE = 0.0091

R2 = 0. 8731
RMSE = 0.0484

R2 = 0.9116
RMSE = 0.0310

R2 = -0.4118
RMSE = 0.2632

R2 = 0.9812
RMSE = 0.0163

R2 = 0.7359
RMSE = 0.1508

R2 = 0.9865
RMSE = 0.0116

R2 = 0.8176
RMSE = 0.0288

R2 = 0.9839
RMSE = 0.0111

R2 = 0. 6315
RMSE = 0.0825

R2 = 0.9638
RMSE = 0.0198

R2 = 0.7855
RMSE = 0.1026

R2 = 0.5882
RMSE = 0.0761

R2 = 0.9440
RMSE = 0.0694

R2 = 0.9863
RMSE = 0.0117

(a)

(b)



“But from the results of our slip interval ΔT modelling metrics…the traditional deep learning methods 

appear to have poorer future estimates of future event periods than the HKAE. The HKAE holds a higher 

initial miss but get more steady result as prediction leads increases. Specifically, for HKAE it is a slower 

increase in RMSE with predicted steps, slower raise in R2, and a steadier result in R2 of event periods. We 

attribute this more robust future estimation of to HKAE's modeling of the dynamics of the system as it 

evolves.” 

 

 

9. Lines 289-294: Which metric? You tested more than one. The setting 20-10 s is shown in Fig. 8b, not 
8a.  

Finally, how can you claim that the lead prediction can cover 1-2 complete cycles? When we look at 
Fig. 8b, the DeltaT metric shows that many points are not on the diagonal, meaning that the 
prediction is wrong in many cases regarding the timing of the events. This class misrepresentation 
(DeltaT small or large are the two classes) indicates that your lead prediction cannot cover multiple 
cycles. 

[Response]: 

Thank you for your feedback.  

(1) We have corrected unspecified metrics and incorrectly labeled figures in the revised version: 
In addition, we can find that in the lead prediction of the three experiments, the R2 metric will decay more rapidly 

in accuracy before 1s lead, while the decay slows down after 1s, especially for the traditional machine learning 

method. Under the “20s-10s” experimental setting (Figure 8b), we believe that the lead prediction can cover 1-2 

complete seismic cycles (Laurenti et al., 2022), at which point the statistical period of the slip interval will be 

longer and more representative. Compared with the experimental settings of “10s-3s” (Figure 8a), predicting the 

results for the next 10s, the slip interval scores of the HKAE predictions get higher than other methods, which 

reflects the superiority of HKAE in modeling seismic dynamics. 

(2) First of all, we want to claim is that the original text “the lead prediction can cover 1-2 complete seismic 

cycles” in the manuscript is for the setting of the prediction window is long enough to cover 1~2 cycles (1 

cycle for Exp. 4581, 2 cycles for Exp. 4679 and Expo. 5198, as shown in following Figure 7).  

And the reason that the M8 index exhibits both large and small values (for Exp. 4679) is because there are 

alternating fast and slow stresses in Exp. 4679, so there will be two large categories of M8 indicating 

different types of slip behavior. Our test data for Exp. 4679 reveals the existence of two major groups of 

M8, too (Figure 1c in Sec.1 Response 4).  



 
Figure 10. Illustration of lead prediction horizons for 3 experimental data. 

 

(3) Being able to accurately predict 1-2 complete cycles in the future is difficult. We admit that the 

performance of HKAE is not good enough, but what we want to emphasize here is that it is possible to 

predict future event cycles more accurately with HKAE than with LSTM represented machine learning 

methods (for statistical methods, we test in Sec.3 Response 13). We think this is already an improvement. 

(4) To avoid ambiguity, we modified statements here: 

“Under the “20s-10s” experimental setting (Figure 8a), which the horizon can cover 1-2 complete seismic 

cycles (Laurenti et al., 2022), at which point the statistical period of the slip interval will be longer and 

more representative.” 

 
10. Line 296: If the slip events were periodic, it would be very easy to predict them, and you should 

have zero error. The events are not periodic. 
[Response]: 
Thank you for your feedback. 

We agree that slip events are not periodic. Here we use “periodicity” to represent the certain degree of regularity, 

which does not mean that it is entirely periodic. To avoid misunderstanding, we replace "periodicity" with 

“cyclicity”. 

 
11. Figure 8: In the main text you start from experiment 5198, and this should be the first to appear in 

the figure (i.e., on the left).  
Furthermore, you have also shown ODE simulations earlier on. You should show the results on the 
simulations as well. They are periodic, so you should be able to recover them perfectly. If not, this 
would cast some doubts on the procedure. 

[Response]: 
Thank you for your valuable suggestions.  

We adjusted the order of experiment in the figure, and add the ODE experiment in the Supplementary Information. 

(1) Our purpose of using ODE simulation data is that its performance in reconstructing the attractor subspace 

Prediction setting 2: 10s prediction windowPrediction setting 1: 3s prediction window



is more homogeneous to facilitate readers' understanding of Figure7. Thus, the results of ODE are not 

shown in the results part.  

(2) Taking your suggestions into account, we have supplemented the experimental results of the ODE 

simulations below, and we can find that the ODE simulations of HKAE keeps a high accuracy, which 

further proves the validity of the HKAE modeling. 

 
Figure 11. Historical 10s predict future 3s using ODE simulations. 

 
12. Lines 318-322: There is confusion on what you mean by underestimation. For example, if you say 

that the minimum value is underestimated, it means that the predicted shear stress is smaller than 
the actual minimum shear stress. But the figure shows that the predicted minimum shear stress is 
higher. What you mean is that the stress drop is underestimated. Please be consistent and describe 
properly the results. 

[Response]: 
Thank you for your suggestions. 

What we were trying to convey is that the absolute value of the stress drop was underestimated, as evidenced by 

the fact that the minimum value of the predicted stress was higher than the minimum value of the actual stress, 

and the statement has been updated in the revised version: 

“Notably, Exp. 4679 and Exp. 5198, which include slow slips, provide more accurate predictions of maximum 

stress values during slips, though they tend to overestimate the minimum value after stress release. Exp. 4581, 

on the other hand, predicts a narrower range of stress variation, with a lower maximum and a higher minimum 

stress value”. 

 
13. Line 326: “moment of” -> “instant for”. 
[Response]: 
Thank you for your valuable suggestion. We have modified it in the revised version. 

 
14. Line 343-346: I disagree with the way you are reading the figure. In Exp. 4679 LSTM clearly has a 

better RMSE for most of the lead time between 3 and 10 s (non-grey area). It is not even clear how 
you are drawing those lines. If you look at just the points (and not the interpolated line, which is not 
an actual result), LSTM is in fact comparable to HKAE until 4.5 s, and then always better or with 
same results. For Exp. 4581 the RMSE is basically the same for all algorithms. Finally, for Exp.5198 
the RMSE of LSTM is the best until about 7 s, where it becomes like the one of HKAE, and only 



slightly worse after 9 s. But what does it mean to be able to have a slightly better forecast at 9- 10 s 
lead time? Based on your results, if I had to pick an algorithm to make earthquake forecasts, I 
would use LSTM: it clearly outperforms HKAE in the forecast of the immediate next steps, which is 
what matters the most. For long-term forecasts (like 9-10 s, which is a full cycle ahead), one can very 
likely use purely statistical methods and obtain similar results. 

 

Thank you for your comments. To avoid ambiguity, we have decided to remove the Section 3.3 in the revised 

version, and discuss the out-horizon prediction in our further work. We provide the following analysis for 

response.  

(1) Considering the ambiguity caused by this section, we plan to temporarily remove section 3.3 from the 

revised manuscript. Additional experiments for this section are as follows, which we plan to discuss in 

further work. 

(2) During our experiments, we realized that we can't use simple metrics to evaluate the estimated results of 

laboratory slip, because we don't just focus on the numerical change of shear stress, but also on other 

points, such as when the stress is released and how long it takes for the release to start recovering. You 

evaluated our results mainly from RMSE from your comments. However, in reality, we arrived at our 

conclusion by combining the three scores as well as the actual predicted results. In the modified Figure 10, 

we have labeled HKAE's dominant lead steps for different metrics (Translucent red vertical lines).  

For Exp. 4581 (Laurenti et al., 2022), which is the most difficult to predict, HKAE has better performance 

in R2, R2 of ∆T in leading steps after 4s, although its RMSE results do not differ much from other 

methods. From the actual leading prediction results, HKAE is better than LSTM in both stability and 

accuracy of prediction results.  

For Exp. 4679 and Exp. 5198, HKAE is not as bright as Exp. 4581 in R2 and RMSE, but from the results 

of R2 of ∆T, HKAE still has good performance in more leading steps. We also note that for Exp. 4679, 

HKAE final prediction results will have larger numerical fluctuations compared to LSTM. We performed 

a short-time Fourier transform on the stress data of Exp. 4679 and found that its frequency components in 

the test set portion changed considerably, leading to the fact that it is more difficult for HKAE to stably 

estimate systematic variations with the global operator modeled from the training set, whereas LSTM is 

able to obtain relatively better results through the ability of short time-series dependent modeling. 



 
Figure 12. Modified Fig. 10 in manuscript. 

 

 
Figure 13. Short-Time Fourier Transform for Exp. 4679. Red box indicates the changes in frequency 

components in the test set. 

Out horizon lead predictions evaluation for Exp. 5198

Out horizon lead predictions evaluation for Exp. 4581

Out horizon lead predictions evaluation for Exp. 4679

LSTM Lead predictions for Exp. 4581 HKAE Lead predictions for Exp. 4581

LSTM Lead predictions for Exp. 4679 HKAE Lead predictions for Exp. 4679

LSTM Lead predictions for Exp. 5198 HKAE Lead predictions for Exp. 5981



 

For Exp. 5198, we believe HKAE generates comparable to other methods in terms of final prediction 

results (Figure 14). LSTM gets more accurate results in the initial leads (0-5s), while the HKAE results are 

comparable in terms of prediction results. For the better results predicted by HKAE in the later prediction 

leads, we believe is highly correlated with its ability to model the system dynamics. We further extend the 

prediction horizon to 20 s and find this characteristic more clearly manifested (Figure 15). 

 
Figure 14. predictions of 10s out horizon experiment for Exp. 5198. 

 

 
Figure 15. Evaluations and predictions of 20s out horizon experiment for Exp. 5198. HKAE shows more 

robust performance over a longer predict horizon. 

 

(3) We supplemented our experiments with ARIMA, the commonly used statistical method in time series 

prediction, under the same prediction settings (Figure 12), and we can find that it achieves competitive 

results to LSTM, HKAE, and other methods under near-instantaneous prediction (prediction lead < 0.5s), 

but the accuracy decays more severely as the prediction lead increases. We think that they may not work 

as well as you would expect when discussing longer period prediction scenario. 

 

LSTM 10s lead predictions for Exp. 5198

HKAE 10s lead predictions for Exp. 5198

HKAE 20s lead predictions for Exp. 5198

LSTM 20s lead predictions for Exp. 5198Extend out horizon lead predictions evaluation for Exp. 5198



 

Figure 16. Historical 10s predict future 3s experiment evaluations, ARIMA experiments are added. 

 
15. Lines 369-370: The two “stable” dynamics clearly show an amplification over time, which makes 

them not as stable as you depict them.  
From Fig. 11b it is not clear what they represent. What do you mean with “input”? These are modes 
obtained after processing the input data in some way. 

[Response]: 

Thank you for your valuable suggestion. We provide the following analysis for response.  

(1) Firstly, the stability of the dynamic mode is determined by the amplitude of the eigenvalue (Brunton et al., 

2022). The dynamic modes can be considered as stable mode when its norm of eigenvalue keeps a narrow 

threshold (1±0.001 in Avila and Mezic, 2020). The former 2 eigenvalue are 1.0007324 and 1.001387, 

which are very close to the threshold. We think it indicates that systems with alternating fast-slow slips are 

more unstable than systems with fast and slow rupture. 

(2) The “input” here is the latent variables after HKAE encoding. We modified the legend for clear 

representation. 

 

Reference: 

[1] Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N.: Modern Koopman Theory for Dynamical Systems., 

SIAM Review, 229–340, https://doi.org/10.1137/21m1401243, 2022. 

[2] Avila, AllanM. and Mezic, I.: Data-driven analysis and forecasting of highway traffic dynamics., Nature 

Communications, https://doi.org/10.1038/s41467-020-15582-5, 2020. 

 

16. Lines 387-388: This is not true. For short-term predictions HKAE seems to perform poorly 
compared to other algorithms. If we look at either Fig. 8 or Fig. 10, we see that for the first few 
time-steps of forecast the HKAE is consistently not the best, with LSTM being often the best, 
followed by TCN. 

[Response]: 
Thank you for your valuable suggestions.  

From the test of embedded dimensions, we found that HKAE under small embedded dimension is able to get 

comparable results to LSTM in the short-term prediction situation. Considering the emphasis in this paper on 

HKAE's ability to model system dynamics, we have adjusted the statements in the revised version:  

“Considering recent success on dynamic system embedded real-word earthquake applications (Tong et al., 2023) 

and dynamic modeling skills of HKAE, it would be of potential to modeling seismicity over a certain period for 

reconstruction or prediction based on HKAE.” 

Exp. 4581 Exp. 4679 Exp. 5198



 
17. Lines 392-394: This is not true. On many occasions HKAE was not showing superior performance 

in terms of prediction accuracy. 
[Response]: 
Thank you for your valuable suggestions. Original statement may be misleading and we have more objectively 

expressed the modeling results and advantages of HKAE in the revised version: 

“Drawing upon delay embedding and Koopman theories, we have proposed a dynamic informed machine 

learning method, the Hankel Koopman Auto-Encoder (HKAE), to achieve future predictions of complex 

laboratory earthquake systems. The model reconstructs the phase space of the slip system through stress 

variations and executes the system's dynamic evolution by approximated Koopman operator. Through 

experiments with varying slip characteristics, it is found that HKAE achieves comparable results to deep learning 

methods in predicting the future states of the slip system, particularly excelling in stress estimation during the 

stress release phase and in modeling event intervals over long-term. Due to HKAE being a modeling approach 

driven by dynamical systems theory, it provides insights into the system's dynamics that are inaccessible to 

traditional deep learning methods. HKAE indicates the presence of stable dynamic modes within the laboratory 

slip system, with the stability of the alternating fast-slow slip system being weaker than that of the fast or slow 

rupture systems alone. HKAE's modeling performance from single observation and interpretability holds 

significant potential for monitoring fault behavior and future activity assessment under real-world observational 

constraints.” 
 



Reply to Review for “A dynamic informed deep learning method for future estimation of laboratory stick- slip” 
by Yue et al. 
[Review]: 
This manuscript explores a novel model that integrates dynamic systems theory with the nonlinear fitting capabilities 

of deep learning. The HKAE model utilizes the Koopman operator and an autoencoder framework to reconstruct the 

dynamic behavior of laboratory slip systems, with a specific emphasis on shear stress variations. Through a synthesis 

of theoretical analysis and experimental validation, the HKAE model showcases exceptional performance in 

predicting complex nonlinear systems. This study underscores the HKAE model’s advantages in handling intricate 

nonlinear dynamic systems and proposes promising directions for future research and applications. The following 

issues could enhance the manuscript’s quality. 

 

In Lines 70-71, the statement “our model envisions the future prediction as the continuous evolution of laboratory 

fault slip systems” lacks clarity and requires a detailed explanation. 

In Section 2.1, simple simulation data was utilized. Did the model explore more intricate numerical simulations, and 

what were the specific outcomes? More details about the simulation should be given. Where is the laboratory data 

coming from? At least the references should be provided. 

In Section 2.2, please elucidate the advantages of Koopman theory and delay embedding theory in managing the 

intricate dynamics of laboratory fault slip systems. 

Line 97, “we’re” should be “we are”. No contraction is allowed in formal English writing. Line 340, as well, among 

others. 

In Section 2.3, how do the functions of these three model modules impact the model’s performance? 

Line 305, “to shows” should be “to show”. The authors should carefully check the whole paper regarding typos. 

In Figure 9, RMSE and R2 should be included. 

In Line 339, the model exhibits subpar performance in Exp. 4581. Is the model particularly sensitive to specific 

types of data? 

In Section 4, what is the interpretability of the HKAE model? Are there specialized methods or techniques for 

elucidating the model’s predictions? 

In Section 5, the HKAE model has demonstrated robust predictive capabilities. What are the potential directions for 

future research? 

The fonts in some figures are extremely large, while in others are too small to read. I highly recommend that the 

authors re-draw most figures to enhance their quality.   



[Response]:  

Thank you so much for your valuable comments, which are very helpful for improving our manuscript. 

In response to your review comments, we will make the following responses: 

（Black bold text: Reviewers’ comments; Purple text: Our responses; Red text: changes in manuscript） 

 

1. In Lines 70-71, the statement “our model envisions the future prediction as the continuous evolution 

of laboratory fault slip systems” lacks clarity and requires a detailed explanation.  
[Response]:  
Thank you for your comments. Here we want to emphasize that we do not define the problem as a time series forecast 

from a statistical point of view, but rather from a dynamical system perspective. Specifically, we take the shear stress 

time series as one of the observations of a laboratory slip system, and infer changes in the future state of the system 

through methods inspired by dynamical systems theory. To this end, we reconstruct the phase space of the system 

using delayed embedding theory and linearize its complex dynamics using Koopman theory to perform future 

inference and dynamical analysis. 

To explain more clearly, we changed the statements to: “Instead of defining the problem as a statistical time series 

forecast task, we take the shear stress time series as one of the observations of a laboratory slip system, and infer 

changes in the future state of the system through methods inspired by dynamical systems theory. Generally, we 

reconstruct the phase space of the system using delayed embedding theory and linearize its complex dynamics using 

Koopman theory to perform future inference and further dynamical analysis.” 

 

2. In Section 2.1, simple simulation data was utilized. Did the model explore more intricate numerical 
simulations, and what were the specific outcomes? More details about the simulation should be 
given. Where is the laboratory data coming from? At least the references should be provided. 

[Response]: 
Thank you for your comments. The simulation data is conducted with code from Gualandi’s work (2023) with 

these following equations: 
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*$#
]  represents the system state. Here we set the 

normal stress initial as <.# = 17.003	ABC  and state vector initial as [)#, -#, 4#, ,#] = [0.05, 0.0,0.0,0.0]to 

generate fast-slow-switching slips as simulation examples. We supplied the equations and parameters used above 

during simulation in the revised version. 

We mainly focus on the actual laboratory data, while the simulation data is used as a conceptual and pure sample, 

to make the further dynamic analysis easier to understand. More complex numerical simulation data, e.g., weak 

cyclicity data (Wang et al., 2021) we consider to discuss in our further work. 

The laboratory data comes from Laurenti’s work (2022), the original source is http://psudata.s3-website.us-east-



2.amazonaws.com/. We have annotated in Section 2.1 as “The experimental data from the biaxial shear equipment 

comes from the PSU laboratory (Laurenti et al., 2022)” and in Code and data availability. 

 

Reference: 

[1] Gualandi, A., Faranda, D., Marone, C., Cocco, M., Mengaldo, G., and Bendick, R.: Deterministic and 

stochastic chaos characterize laboratory earthquakes, Earth and Planetary Science Letters, 

https://doi.org/10.1016/j.epsl.2023.117995, 2022 

[2] Laurenti, L., Tinti, E., Galasso, F., Franco, L., and Marone, C.: Deep learning for laboratory earthquake 

prediction and autoregressive forecasting of fault zone stress, Earth and Planetary Science Letters, 

https://doi.org/10.1016/j.epsl.2022.117825,2022 

[3] Wang, K., Johnson, C. W., Bennett, K. C., and Johnson, P. A.: Predicting fault slip via transfer learning., 

Nature Communications, https://doi.org/10.1038/s41467-021-27553-5, 2021 

 

3. In Section 2.2, please elucidate the advantages of Koopman theory and delay embedding theory in 
managing the intricate dynamics of laboratory fault slip systems. 

[Response]: 
Thank you for your suggestions. We have further elucidated the advantages in the revised version. 

(1) The advantage of delay embedding theory is that using only the shear stress observations to reconstruct the 

phase space of laboratory system. Considering the limited observation of fault system, it’s potential to use 

stress series (or stress proxy like displacement observations) to recover the system behaviours. 

(2) The advantage of Koopman theory is to linearize the dynamics from complex laboratory fault system, then 

support the analysis of system behavior using linear analysis tools (e.g., singular value decomposition), 

which will offer the interpretability and insights from the dynamical system perspective. 

 

4. Line 97, “we’re” should be “we are”. No contraction is allowed in formal English writing. Line 340, 
as well, among others. 

[Response]: 
Thank you for your suggestions. We have adjusted these informal expressions in revised version. 

 

5. In Section 2.3, how do the functions of these three model modules impact the model’s performance? 
[Response]: 
Thank you for your comments. Since the HKAE is designed inspired by dynamical systems theory, the modules 

are more closely connected, making it more difficult to discuss a thorough separation. We discuss the roles of the 

modules theoretically and perform alternative ablation experiments. 

(1) The delay embedding module reconstructs the phase space of system. Without delayed embedding to 

provide embedding coordinates, the latter two modules are unable to construct stable mappings and 

approximate Koopman operators from univariate data alone. Without delayed embedding to provide 

embedding coordinates, the latter two modules are hard to construct stable mappings and approximate 

Koopman operators from univariate data alone (Brunton et al., 2021). 

(2) The mapping learning module performs the necessary nonlinear mapping, which, if removed, becomes a 

linear moving-average-like method. We’ve tested the ARIMA for the most challenging fast-slow-switching 



slips and the results shows that the linear methods do not perform well (Figure 1). 

 
Figure 1. Ablation study using historical 10s to predict future 3s. Green line illustrates the performance of ARIMA, 

representing linear methods without nonlinear mapping. 

 

(3) The Koopman operator achieve linear evolution of system in the latent space, and offer dynamic 

interpretability. We change the Koopman operator into a linear layer of equal size but with bias, and test 

the “10-3s” predictions for the most challenging fast-slow-switching slips. The statistical metrics illustrate 

that HKAE performs better than the model without Koopman evolution module. More importantly, 

removing this module makes it impossible to analyze the dynamical patterns of the system. 

 

Figure 2. Ablation study using historical 10s to predict future 3s. Blue line represents the HKAE model whose 

operator in Koopman Evolution module is replaced by a normal linear layer with activation. 

 

Reference: 

[1] Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N.: Modern Koopman Theory for Dynamical 

Systems., SIAM Review, 229–340, https://doi.org/10.1137/21m1401243, 2022. 

 

6. Line 305, “to shows” should be “to show”. The authors should carefully check the whole paper 

regarding typos. 
[Response]: 
Thank you for your suggestions. We have checked the typos in revised version. 

 

7. In Figure 9, RMSE and R2 should be included. 

Exp. 4679

Exp. 4679



[Response]: 
Thank you for your suggestions. We have added statistical metrics in the figure. 

 

8. In Line 339, the model exhibits subpar performance in Exp. 4581. Is the model particularly sensitive 
to specific types of data? 

[Response]: 
Thank you for your comments. Theoretically, the model is designed entirely from dynamical systems theory, 

which is a generalized structure and therefore not sensitive to specific data. 

Theoretically, the model is designed entirely from dynamical systems theory, which is a generalized structure 

and therefore not sensitive to specific data. Objectively, HKAE's results on the Exp.4581 are poor because of its 

high prediction difficulty, but compared to other methods, HKAE actually has a more competitive edge (Figure 

9 in manuscript). We infer the true dimension of the laboratory slip system will also have a certain impact on the 

performance of HKAE. We analyze slow slip experiments (Exp. 5198) that are statistically average in terms of 

competitiveness in performance, and find that they are significantly better able to achieve better performance in 

low embedding dimensions (Figure 3).  

Taking into account your suggestions for more complex simulation data, we will further discuss the sensitivity 

of HKAE to data with different characteristics in our follow-up work. 

 
Figure 3. Embedded dimension test for slow slip system. Black line indicates the embedded dimension calculated by 

Cao et al., while yellow line represents the embedded dimension used in the manuscript. 

 

 

9. In Section 4, what is the interpretability of the HKAE model? Are there specialized methods or 
techniques for elucidating the model’s predictions? 

[Response]: 
Thank you for your comments. To enhance the expression of HKAE interpretability, we have provided a more 

detailed explanation in the revised version. 

The interpretability of HKAE comes from the delay embedding theory and Koopman theory. The encoder of 

HKAE mapped the phase space of input shear stress into a latent space, where we think the evolution of the 

system is linear. And the linear dynamics are controlled by the matrix-like approximate Koopman operator. Thus， 

HKAE Embedded Dimension Test for Exp. 5198



the characteristic of system can be discussed. The Similar interpretations can be found in works by Lusch et al. 

(2018), Azencot et al. (2020) and Ouala et al. (2023). 

The amplitude and of dynamic are shown in Figure 7 and introduced in Section 3.1. Section 4 further discuss the 

dynamics evolution characteristics (Figure 11a). Then Figure 11c and 11d discussed the latent variables evolution 

under the approximate koopman operator, which indicates that the HKAE can obtain components that can be 

linearly modeled in the latent space (the first 7 subplots), but there will still be some components that are difficult 

to describe with linear dynamics. There could be two reasons for this result: one is the limitation of modeling 

due to insufficient observations, where some of the system's dynamics need to be explained as nonlinear forcing 

(Brunton et al., 2017); the other is the complexity of the system's dynamic characteristics. We’ve been considering 

discuss it in our further work. 

 

Reference: 

[1] Lusch, B., Kutz, J. N., and Brunton, S. L.: Deep learning for universal linear embeddings of nonlinear 

dynamics., Nature Communications, https://doi.org/10.1038/s41467-018-07210-0, 2018 

[2] Azencot, O., Erichson, N. B., Lin, V., and Mahoney, MichaelW.: Forecasting Sequential Data using 

Consistent Koopman Autoencoders, International Conference on Machine Learning. PMLR, 2020. 

[3] Bounded nonlinear forecasts of partially observed geophysical systems with physics-constrained deep 

learning 

 

10. In Section 5, the HKAE model has demonstrated robust predictive capabilities. What are the 
potential directions for future research? 

[Response]:  
Thank you for your suggestion. We’d like to further discuss 2 directions: 

(1) One of the potential directions is considering the time-vary dynamics in the system. There’re time-vary 

dynamics since we analyze the time-frequency analysis of the shear stress of Exp. 4679. It’ s challenging 

for HKAE to model the time-vary dynamics since the Koopman operator is trained to become a “global 

operator” (Brunton et al., 2022; Liu et al., 2023). The global operator is less likely to make accurate 

predictions when there are large changes in the dynamical features. 

(2) The second one is to optimize the modeling framework in the presence of only a single observation to 

obtain more accurate estimates of the system dynamics. For example, considering the laboratory system as 

a forced system (Brunton et al., 2017), whose force may be processed acoustic emissions. 

 

Reference: 

[1] Brunton, S. L., Brunton, B. W., Proctor, J. L., Kaiser, E., and Kutz, J. N.: Chaos as an Intermittently 

Forced Linear System, Nature Communications, https://doi.org/10.1038/s41467-017-00030-8, 2017. 

[2] Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N.: Modern Koopman Theory for Dynamical 

Systems., SIAM Review, 229–340, https://doi.org/10.1137/21m1401243, 2022. 

[3] Liu, Y., Li, C., Wang, J., and Long, M.: Koopa: Learning Non-stationary Time Series Dynamics with 

Koopman Predictors, arXiv: Learning, 2023. 

 



11. The fonts in some figures are extremely large, while in others are too small to read. I highly 
recommend that the authors re-draw most figures to enhance their quality.  

[Response]:  

Thank you for your suggestion. We have adjusted the figures and re-drawn the figures in revised version. 
 


