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Abstract. Process-based ecosystem models are increasingly important for predicting forest dynamics under future 25 

environmental conditions, which may encompass non-analogous climate coupled with unprecedented disturbance regimes. 

However, challenges persist due to the extensive number of model parameters, scarce calibration data, and the trade-offs 

between the local precision and the model wide-ranging applicability of the model over a wide range. In this paper, we describe 

a protocol that allows a modeller to collect transferable ecosystem properties based on ecosystem characteristic criteria and to 

compile the parameters that need to be described in the field. 30 

We applied the procedure to develop a new parameterization for the European beech (Fagus sylvatica L.) for the Biome-

BGCMuSo model, the most advanced member of the Biome-BGC family. For model calibration and testing, we utilized 

multiyear forest carbon data from 87 plots distributed across five European countries. The initial values of 48 new 

ecophysiological parameters were defined based on the literature review. The final values of 6 calibrated parameters were 

optimised for single sites as well as for multiple sites using the Generalised Likelihood Uncertainty Estimation and model 35 

output conditioning that ensured plausible simulations based on user-defined ranges of carbon stock output variables (carbon 

stock in aboveground wood biomass, soil, and litter) and finding the intersections of site-specific plausible parameter 

hyperspaces. To support the model use, we tested the model performance in simulating tree aboveground wood, soil, and litter 

carbon across a large geographical gradient of Central Europe and evaluated the trade-offs between parameters tailored to 

single plots and parameters estimated using multiple sites.  40 

Our findings indicated that parameter sets derived from single sites provided an improved local accuracy of simulations of 

aboveground wood, soil, and litter carbons stocks by 35 %, 55 %, and 11 % in comparison to the a priori parameter set. 

However, their broader applicability was very limited. A multi-site optimised parameter set, on the other hand, performed 

satisfactorily across the entire geographical domain studied here, including sites not involved in the parameter estimation, but 

the errors were on average by 26 %, 35 % and 9 % greater for the aboveground wood, soil, and litter carbons stocks than those 45 

obtained with the site-specific parameter sets. Importantly, model simulations demonstrated plausible responses across large-

scale environmental gradients, featuring a clear production optimum of beech that aligns with empirical studies. These findings 

suggest that the model is capable of accurately simulating the dynamics of the European beech across its range and can be 

used for more comprehensive experimentations. 

  50 
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1 Introduction 

Forests are dynamic long-lived ecosystems, with the life span of single trees potentially exceeding several centuries (Di Filippo 

et al., 2015). Forests longevity and ecological complexity make studies of their dynamics challenging, mainly under unstable 

environmental conditions, changing ecological interactions and management (Mouquet et al., 2015), due to limited options of 

research repeatability in empirical studies (Schnitzer and Carson, 2016). Computer models have become indispensable in 55 

overcoming these problems since they account for complex interactions, feedback loops, and dependencies between ecosystem 

components (Bugmann and Seidl, 2022; Geary et al., 2020). The development of models was considerably accelerated by 

advances in computer science and the progress in ecophysiological and ecological research, which helped define different 

model structures and parameters (Minunno et al., 2019; Augustynczik et al., 2017). Hence, currently a great number of different 

models using varying methodological approaches, different temporal and spatial scales, and focusing on answering different 60 

primary questions is available (for an overview see e.g. Fabrika et al., 2019; Bosela et al., 2022). 

Over time, the objectives of vegetation dynamics modelling have shifted from supporting practical decision-making towards 

providing novel insights into ecological patterns and processes, ecosystem transformations driven by climate change, and 

complex scenario and effect attribution studies (Geary et al., 2020). An urgency of informing ecosystem management and 

policies about the impacts of climate change and effects of management actions has become a prominent use of ecosystem 65 

models (Pecl et al., 2017). Rapid environmental changes have increasingly favoured process-based ecosystem models (PBM) 

over the empirical ones (Adams et al., 2013), because they incorporate a mechanistic description of physical and biological 

processes and interactions between plants and the environment (Waring and Running, 1998). Hence, they should possess the 

capacity to better address novel and non-analogous conditions, which could occur in the future but were not observed in the 

past (Adams et al., 2013).  70 

Complex process-based models (PBMs) simulating the dynamics of vegetation typically contain many parameters specifying 

physiology, biochemistry, phenology, and allocation patterns of different vegetation types or species (Cameron et al., 2013; 

van Oijen, 2017). Parameter values are estimated based on different field or laboratory measurements, trial-and-error parameter 

adjustments or probabilistic methods (Forrester et al., 2021). A comprehensive review of calibration methods can be found in;  

Hollós et al., (2022). Thereby, each measurable parameter has its intrinsic own variability that emerges from environmental 75 

conditions, sampling and measurement errors. Such a value range can be interpreted as a probability distribution or parameter 

uncertainty (van Oijen, 2017). Calibration is often applied to narrow the initial parameter ranges and capture regional or local 

peculiarities.  

The challenges of model characterisation and calibration include Aa selection of most influential variables to be calibrated 

using a sensitivity analysis (SA) and coping with athe calibration equifinality, i.e. a situation when various combinations of 80 

parameter values produce the same results (Beven, 2006), can challenge calibration efforts. To this end, different calibration 

approaches, such as trial-and-error parameter adjustments or probabilistic methods (Forrester et al., 2021; Hollós et al., 2022) 

including Bayesian methods (Fer et al., 2018; van Oijen, 2017) or the Generalized Likelihood Uncertainty Estimation (GLUE) 
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(Beven and Binley, 2014) have been proposed. The calibration can focus on one or several variables simultaneously. 

Multivariate approaches are generally preferred as they aim to identify parameter values that minimize the differences between 85 

simulated and observed values of multiple variables (Kamali et al., 2022; Wöhling et al., 2013). The spatial aspect may be 

dealt with in a similar manner. The model calibrated for single sites provides model outputs with a high local accuracy, but 

loses the ability to generalize outside the calibration data (Blyth et al., 2011; Kramer et al., 2002; Levins, 1966). Therefore, 

introducing advanced calibration designs that are supposed to maintaining a balance between the local accuracy and 

generalitywide applicability, and providing good performance across multiple variables, is needed, have been developed 90 

(Keenan et al., 2011; Wallach et al., 2021).  

In this study, we focused on creating a calibration workflow that offers improvements beyond the traditional methods detailed 

in (Keenan et al., (2011), and; Wallach et al., (2021). For this prurspose we usedaddressed the process-based model Biome-

BGCMuSo (BBGCMuSo, Hidy et al., 2016, 2022, 2012), which is the most rapidly developing member of the Biome-BGC 

model family (Thornton, 1998). It simulates the storages and fluxes of carbon, nitrogen and waterthese elements within and 95 

between the pools. The model has been extensively used in the research of forest ecosystems concerning their productivity 

(Kimball et al., 1997; Sever et al., 2017), carbon (Churkina et al., 2003; Ostrogović Sever et al., 2021; Yan et al., 2016), water 

(Pietsch et al., 2003), and nitrogen dynamics (Pietsch et al. 2003; Merganičová, Pietsch, and Hasenauer 2005), including effects 

of climate change (Churkina and Running, 2000; Hlásny et al., 2011; Jager et al., 2000; White et al., 1999). The recent 

developments of BBGCMuSo included a multilayer soil profile; complex water cycling between soil, vegetation, and 100 

atmosphere; intra-annual phenology; and complex management operations (Hidy et al., 2012, 2016, 2022). However, robust 

testing of ecological plausibility and model performance in forest ecosystems as well as the regionally calibrated species-

specific parameter sets are still lacking. These tasks are challenging given the substantial increase in model structural 

complexity and the number of parameters, which limits the use of former parameter sets (Pietsch et al., 2005).  

The aim of this study is to develop a multi-objective calibration procedure of model parameters that considers balancing the 105 

trade-off between the local precision of model outputs and a broad applicability of parameters, and to perform a comprehensive 

model benchmarking of the ecological plausibility of model results across large environmental gradients. We hypothesise that 

parameter estimates optimized for single sites are not sufficiently robust to be applied across large geographical space, while 

the multi-site optimisation reduces the ability of model output to capture the phenotypical plasticity of vegetation that causes 

alterations in plant properties, e.g. allocation ratios between different plant organs in response to environmental conditions 110 

(Gratani, 2014). The proposed method was applied to calibrate ecophysiological parameters of BBGCMuSo v6.2 for the 

European beech (Fagus sylvatica L.) to facilitate a large-scale utilization of the model in addressing research questions related 

to alterations in species productivity and carbon cycle under different climatic and management scenarios. The findings should 

serve as a reference for calibrating other tree species and/or models. 
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2. Data and Methods 115 

2.1. Model 

Biome-BGCMuso (Hidy et al., 2012, 2016, 2022) is a descendant of Biome-BGC model (Thornton, 1998). It is a 

biogeochemical model that simulates cycling of carbon, water, nitrogen, and energy in terrestrial ecosystems at a daily time 

step (Thornton, 1998). Biome-BGC was one of the earliest biogeochemical models that included explicit carbon, water and 

nutrient cycles. The represented processes include photosynthesis, evapotranspiration, allocation, respiration, litterfall, and 120 

decomposition (Thornton et al., 2002). These processes are defined for a unit ground area that is considered homogeneous. A 

so-called „two-leaf” representation, i.e. assuming one sunlit and one shaded leaf to represent stand foliage, is used to simulate 

radiation interception, evapotranspiration, and gross primary production for the sunlit and shaded canopy fractions (Thornton 

and Rosenbloom 2005). The modelled ecosystem consists of several components representing different plant parts (leaf, stem, 

roots), litter, soil, and coarse woody debris. The ecosystem status and dynamics are represented by carbon (C), nitrogen (N) 125 

and water (W) pools and fluxes between the pools. The main pools represent leaf (C, W, N), aboveground wood (C, N), coarse 

root (C, N), fine root (C, N), coarse woody debris (C, N), litter (C, N), soil (C, W, N), yield (C, N), standing-dead-biomass (C, 

N) cut-down biomass (C, N). BBGCMuSo contains a number of new features including a multilayer soil representation that 

allows simulating a more realistic dynamics of water, carbon and nitrogen across the soil profile; a possibility of using a 

dynamic annual mortality rates; adjustable intra-annual allocation driven by phenology; improved representation of 130 

transpiration, soil evaporation, and inorganic nitrogen; and flexible simulation of management operations, including forest 

thinning and harvesting (Hidy et al., 2012, 2016, 2022). It can also simulate acclimation to temperature and short-term 

temperature dependence of maintenance respiration, drought legacy effects through reduction of non-structural carbohydrate 

storage pools, and a CO2 concentration-dependent stomatal conductance (Hidy et al., 2016). The model version 6.2 uses 53 

soil-related and 105 ecophysiological parameters (Hidy et al., 2021), of which some are site-specific (e.g. soil depth, soil 135 

texture), while others, such as C:N ratio in different tree compartments, are species-specific. The number of parameters in 

BBGCMuSo has been tripled in comparison to the original model Biome-BGC althoughmostly 17 parameters thanks to the 

fact that the model was also made suitable were specified to allowfor simulations of the crop functioning and are not relevant 

for forest ecosystems. To perform a simulation, a species or a plant functional type needs to be defined, as well as the 

information on site, soil and daily climate data are required. In the case forest ecosystems are to be simulated, stand age, and 140 

the information on past forest management is also used to set up simulations. The model, including its source code, is available 

at https://nimbus.elte.hu/bbgc/.  

2.2. Data 

The dendrometric and environmental data represented 87 forest sites distributed across Central Europe within the distributional 

range of European beech (Figure 1Figure 1). The dataset includes sites from the International Co-operative Programme on 145 

Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests, Michel et al., 2018) long-term forest research 
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plots from thinning trials supervised by different national institutions, and highly-instrumented intensively monitored plots 

equipped with weather stations, dendrometers, instruments measuring sap flow, soil water content, etc. (Table S2Table A2). 

The plots are located in Croatia, Hungary, Slovakia, the Czech Republic, and Poland along an elevation gradient from 20 to 

1,325 m a.s.l. Their mean annual precipitation totals vary from 419 to 1,883 mm, mean annual temperatures range from 3.5 to 150 

13.3°C, and soil depths vary between 0.4 and 2 m (Table 1Table 1). Most plots were of a circular shape with a size from 0.09 

to 1.05 ha. Forest stands were established between 1787 and 1984, i.e. their age in the year 2022 varied from 38 to 235 years. 

Both managed and unmanaged forest stands that originated either from natural or artificial regeneration or a combination of 

both, are represented. Time series lengths and the number of observations differed between the sites depending on the year of 

plot establishment, and the frequency of re-measurements of tree dimensions. The maximum time series length was 60 years, 155 

and the maximum number of observations in a single time series was 30.  

(a) (b) 

 

 

 

Figure 1 Distribution of used forest sites across Europe with the forest cover displayed in the background (CORINE Land Cover, 

2023), a), and in the climatic space of European beech in Europe derived from Caudullo et al. (2017) and indicated by grey dots, b). 

Black dots indicate 87 research sites used for testing model plausibility (realism), red triangles indicate eleven data-rich sites used 

for the calibration of the BBGCMuSo model for simulating European beech forests, and blue crosses and diamonds represent eight 160 
validation sites.  

Out of the whole data set, 11 beech-dominated sites with the most comprehensive data, and balanced coverage of the 

geographical and environmental spacecoverage,  ensuring that each country was represented by at least one site, were used for 

model calibration (hereafter referred as calibration sites, see Figure 1Figure 1, Table 1Table 1). The northern part of the 

selected region is underrepresented due to the insufficient data for model calibration at northern sites.  Eight beech-dominated 165 

sites with repeated stand measurements covering the full ranges of environmental conditions represented in our database (Table 



7 
 

1Table 1) representing all included countries were selected to perform an independent model validation (hereafter as validation 

sites). All 87 sites were used for testing the plausibility (realism) of simulated model output using the calibrated parameter set 

across an extended geographical gradient. The comparison of beech natural distribution ranges (Pagan, 1996) with the covered 

ranges of latitude, elevation, climatic and soil characteristics suggested that the selected sites should be representative of the 170 

Central European beech population.  

 

 

 

 175 

 

 

 

 

Table 1 Summary of site and forest stand characteristics for the whole data set (All), calibration and validation sets. Climate data 180 
represent a period from 1950 to 2018. 

Data set All Calibration Validation 

Number of sites 87 11 8 

Dominant tree species 

Fagus sylvatica,  

Picea abies,  

Pinus sylvestris, 

Quercus spp. 

Fagus sylvatica Fagus sylvatica 

Site variables mean (min - max) 

Years with observations (1990 - 2018) (1949 - 2018) (1990 - 2018) 

Latitude (°) (N 45.4814 - N 54.559) (N 44.8164 - N 50.7349) (N 45.4814 - N 54.5592) 

Longitude (°) (E 14.2736 - E 23.72) (E 14.3000 - E 22.4917) (E 14.2736 - E 19.4701) 

Elevation (m a.s.l.) 544.2 (20 - 1325) 686.8 (240 - 1325) 502.5 (120 - 1180) 

Annual precipitation (mm) 789 (419 – 1884) 1018 (663 – 1884) 784 (458 - 1592) 

Mean temperature (°C) 7.75 (3.52 - 13.28) 7.34 (4.86 - 10.3) 8.37 (6.41 - 11.11) 

Soil depth (m) 0.99 (0.4 - 2) 0.92 (0.45 - 2) 0.99 (0.5 - 1.8) 

Plot size (ha) 0.31 (0.09 - 1.05) 0.45 (0.25 - 1.05) 0.28 (0.09 - 0.84) 

Stand age (yr) 84 (35 - 232) 118 (64 - 232) 79 (41 - 122) 

Aboveground wood carbon (kgC m-2) 8.62 (0.01 - 36.87) 16.92 (0.03 - 35.87) 16.89 (4.30 - 33.74) 

Soil carbon (kgC m-2) 13.31 (1.13 - 16.24) 13.21 (1.13 - 16.24) NA 

Litter carbon (kgC m-2) 0.256 (0.086 - 0.344) 0.256 (0.086 - 0.344) NA 

 

The plot data contain information on site, forest stand structure and development, soil, climate, nitrogen deposition, and 

physiological processes (Table S2Table A2). Site description data comprise plot coordinates (latitude, longitude), elevation, 

aspect, and slope. Forest stand data comprise information on tree species composition, stand age, stand structure, data on 185 
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individual tree dimensions or mean stand characteristics (e.g. mean diameter at breast height (DBH), mean tree height (H)), 

mortality, the applied management and damages. Soil data contain soil depth, texture, pH, nutrient stocks, and indicators of 

water regime. If soil information was not available, it was obtained from the Harmonized World Soil Database (HWSD v 1.21) 

(FAO, 2012) that provides soil attributes, such as soil depth, soil texture, pH, etc., at a grid cell size of approximately 1km.  

Climate data include daily values of minimum and maximum temperature, solar radiation, precipitation, and vapour pressure 190 

deficit (VPD). They were compiled from different data sources including , observationsed at individual sites, nearby 

meteorological stations, or if no local data were available taken from the E-OBS gridded dataset providing daily minimum, 

maximum temperature, and precipitation with 0.1 deg. Resolution was used (Cornes et al., 2018). The climate data cover a 

period from 1950 to 2018. To cope with the varying climate data availability aton the sites, we combined the on-site 

measurements with the E-OBS data. The MTClim model (Hungerford et al., 1989) was used to extrapolate the climate time 195 

series from the nearest E-OBS grid cell to account for the elevation difference between the cell and the site, and to calculate 

daylight values of mean temperature, vapour pressure deficit (VPD), solar radiation, and daylength at individual sites. 

Annual CO2 data were taken from Mauna Loa observations (Keeling et al., 1976). Since nitrogen deposition data were directly 

available only for ICP Forests plots, they were taken from Tian et al. (2018) for the remaining sites.  

Data about site, soil texture, pH, stand age, management, nitrogen deposition, CO2 concentration and daily climate data were 200 

used as model input to run site-specific simulations. Model calibration and validation was based on carbon stocks in 

aboveground wood, litter and soil (AbgwC, SoilC, LitterC). AbgwC was derived from dendrometric characteristics of 

individual trees by calculating the total aboveground wood volume using species-specific two-parameter regressions by Petráš 

and Pajtík (1991) that was subsequently converted to carbon stock using the species-specific basic wood density from Merganič 

et al. (2017, 570 kg m-3 for beech) and 50 % carbon content in biomass (IPCC, 2003).  205 

2.3 Simulation design 

Simulations of forest ecosystem dynamics at each site were performed with BBGCMuSo v6.2 in three steps: (1) spin-up run, 

(2) transient run, and (3) normal run (Hidy et al., 2021). Spin-up was performed with a constant CO2 concentration and nitrogen 

deposition equal to the pre-industrial values of 277.15 ppm and 0.002 kgN m-2 year-1, respectively. During the transient run, 

annual values of CO2 concentration and nitrogen deposition increased from their pre-industrial to the current values. The 210 

transient run started in 1850 and lasted until the year preceding the establishment of the current stand. Hence, the length of the 

transient run varied between sites, and it was used only for the simulations of the stands established after 1850, while the 

maximum length of the transient run was 134 years. Both spin-up and transient runs were performed with no management, no 

fire-induced mortality, and constant natural (background) mortality. 

The normal run was driven by the temporally varying CO2 and N-deposition, and included management reconstructed based 215 

on forest inventory records or yield tables, if no site-specific information on management interventions was available. The 

normal run simulations started at stand age 0 (i.e., the year of stand establishment) and continued to the present day; i.e. the 
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simulation length equalled the actual stand age. In simulation year 1, a clearcut was applied followed by the removal of 90 % 

of the aboveground woody biomass accumulated during the spin-up and transient runs, with all non-woody biomass, i.e. 

foliage, remaining in the stand. Natural mortality was changing annually (Fig. S1Fig. A1). In the first 30 years after the stand 220 

establishment, natural mortality rates followed a decreasing exponential function with the highest annual mortality rate one 

year after the stand establishment and subsequent gradual reduction over time, resembling the survival rates of regeneration 

from experimental studies focusing on beech (Barna et al., 2011; Hülsmann et al., 2018). After 30 years, we used a constant 

annual mortality rate of 0.9 % (Pajtík et al. 2018; Vanoni et al. 2019) to simulate managed forests, while unmanaged sites were 

simulated using the dynamic natural mortality rates that fluctuated between 0.76 and 4.1 % during a cycle of 300 years and 225 

followed the elliptical function (Merganičová and Merganič, 2014). 

2.4. Parameter estimation 

The estimation of model parameters (i.e. model calibration) consisted of several phases (Figure 2Figure 2) described below. 
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 230 

Figure 2 A general workflow used for optimising values of ecophysiological parameters of BBGCMuSo for the European beech using 

the multi-objective calibration approach.   

 

2.4.1. A priori parameter setting 

Prior to the calibration of model parameters, the default or a priori parameter values were set (WS1 phase in Figure 2Figure 235 

2). The initially defined set (called “First” in Table 2Table 2) was defined based on values of 40 ecophysiological parameters 

included in previous model versions taken from Pietsch et al. (2005) and the values of new 48 parameters, which were 

introduced in the latest model version, were set based on the literature review and the TRY database (Kattge et al., 2020). This 

set was used for first simulations of all 87 sites to examine the successfulness of simulated development. Under aBy successful 

simulation we understand a simulation from spin-up until the end of normal run, during which the ecosystem existence stability 240 

was maintained, i.e. during the spin-up run, carbon stock in vegetation and soil was accumulated until they reached a balanced 

state, and the development during the normal run simulation maintained the ecosystem vegetation existence in the model. 

Based on the results of unsuccessful simulations at specific sites, we identified potential parameters the values of which may 

have causeds of the problems, such as insufficient water or nitrogen supply during simulations resulting in the cessation of 

vegetation existence, and changed respective parameters using the trial-and-error approach until we obtained 100 % 245 

successfulness rate of simulations and an a priori parameter set (called “A priori” in Table 2Table 2).  
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 250 

Table 2 List of parameters that were tested and modified during the calibration of Biome-BGCMuSo for Fagus sylvatica L. Min = 

Minimum and Max = maximum values represent parameter ranges used for sensitivity analysis and optimisation, Local Sensitivity 

presents the values of the sensitivity index per output variable (carbon stock in aboveground wood, soil, and litter labelled as AbgwC, 

SoilC, and LitterC) calculated following Hoffman and Gardner (1983), the column named “First” is the very first setting for beech 

that we used based on the species-specific values derived for Biome-BGC by Pietsch et al. (2005) in italics and the literature review, 255 
while “A priori” is the setting that led to successful simulations of all 87 sites in the database before parameter optimisation (result 

of WS1 phase in Figure 2Figure 2), “MSMV optimised” is the multi-site multivariate calibrated parameter set (result of WS4d phase 

in Figure 2Figure 2) based on 11 calibration sites and 3 output variables. Calibrated parameters are indicated with grey background. 

Parameter Tested range Local  sensitivity Parameter set 
Name Abbreviation Unit Min Max AbgwC SoilC LitterC First A priori MSMV 

Transfer growth period as fraction of growing season GP dim 0.05 0.3 0.005 0.073 0.003 0.2 0.2 0.2 
Litterfall as fraction of growing season LP dim 0.2 0.6 0.002 0.027 0.001 0.2 0.2 0.2 
Base temperature T_base °C 0 7 0 0 0 5 5 5 
Annual live wood turnover fraction WTF dim 0.5 1 0.00002 0.00026 0.00001 0.7 0.7 0.7 
Annual fire mortality fraction FM dim 0 1 0.078 0.716 0.008 0 0 0 
Whole-plant mortality fraction in vegetation period WPM dim 0 0.1 0.996 0.493 0.006 0.005 0.005 0.005 
C:N of leaves CN_lv  kgC kgN-1 16.5 40 0.017 0.183 0.004 26.9 26.9 26.9 
C:N of leaf litter, after retranslocation CN_li  kgC kgN-1 10 114 0.0002 0.015 0.178 44 44 44 
C:N of fine roots CN_ro  kgC kgN-1 10 75.8 0.005 0.054 0.007 47.6 47.6 47.6 
C:N of live wood CN_lw  kgC kgN-1 17 100 0.004 0.041 0.001 50 50 50 
C:N of dead wood CN_dw  kgC kgN-1 300 819 0.00002 0.0002 0.005 550 550 550 
Leaf litter labile proportion LLaP dim 0.1 0.6 0.00002 0.111 0.004 0.124 0.124 0.124 
Leaf litter cellulose proportion LCeP dim 0.1 0.7 0.00002 0.157 0.004 0.561 0.561 0.561 
Fine root labile proportion RLaP dim 0.1 0.6 0.00002 0.067 0.003 0.34 0.34 0.34 
Fine root cellulose proportion RCeP dim 0.1 0.6 0.00003 0.080 0.002 0.44 0.44 0.44 
Dead wood cellulose proportion WCeP dim 0.5 0.9 0.00004 0.361 0.376 0.77 0.77 0.77 
Canopy water interception coefficient CWIC mm LAI-1 d-1 0.01 0.063 0.003 0.017 0.011 0.034 0.034 0.034 
Canopy light extinction coefficient CLEC dim 0.3 0.7 0.012 0.136 0.004 0.6 0.6 0.6616 
All-sided to projected leaf area ratio SLA:PA dim 1.5 2.5 0.0007 0.001 0.00002 2 2 2 
Ratio of shaded SLA:sunlit SLA shSLA:suSLA dim 0.2 5 0.073 0.568 0.004 2 2 2 
Fraction of leaf N in Rubisco FLNR dim 0.1 0.3 0.008 0.087 0.003 0.162 0.162 0.1383 
Maximum stomatal conductance (projected area basis) MSC m s-1 0.001 0.009 0.088 0.925 0.020 0.006 0.005 0.0051 
Cuticular conductance (projected area basis) CC m s-1 0.00001 0.0001 0.001 0.011 0.000 0.00006 0.00006 0.00006 
Boundary layer conductance (projected area basis) BLC m s-1 0.01 0.09 0.005 0.076 0.002 0.01 0.01 0.01 
Maximum depth of rooting zone MRD m 0.2 4.1 0.001 0.021 0.003 2 2 2 
Root distribution parameter rootDistr dim 0.5 4 0.001 0.088 0.123 3.67 1.5 1.5 
Growth resp per unit of C grown GRC dim 0.1 0.5 0.020 0.216 0.016 0.3 0.3 0.3 
Maintenance respiration in kgC/day per kg of tissue N  MRperN kgC kgN-1 d-1 0.1 0.4 0.091 0.902 0.023 0.218 0.218 0.218 
Theoretical maximum proportion of non-structural and structural carbohydrates NSC:SCmax dim 0.05 0.3 0.0001 0.0004 0.00001 0.1 0.1 0.1 
Proportion of non-structural carbohydrates available for maintanance respiration NSC2MR dim 0.1 0.5 0.00002 0.00011 0.000008 0.3 0.3 0.3 
Symbiotic+asymbiotic fixation of N Nfix kgN m-2 yr-1 0.0001 0.01 0.046 0.494 0.991 0.0005 0.01 0.0091 
Time delay for temperature in photosynthesis acclimation tau day 0 50 0.0003 0.0035 0.0001 10 10 10 
Volumetric water content ratio to calculate soil moisture limit 1  VWCratio_lim1 dim 0.1 0.9 0.004 0.067 0.002 0.99 0.1 0.1 
Volumetric water content ratio to calculate soil moisture limit 2 VWCratio_limit2 dim 0.5 1 0.0001 0.0049 0.0021 0.99 0.99 0.99 
Minimum of soil moisture limit2 multiplicator (full anoxic stress value) min_soilstress2 dim 0 1 0 0 0 0.4 0.4 0.4 
Vapor pressure deficit: start of conductance reduction VPDS Pa 500 1500 0.005 0.079 0.003 600 600 600 
Vapor pressure deficit: complete conductance reduction VPDC Pa 1500 3500 0.080 0.783 0.009 3000 3000 2910 
Maximum senescence mortality coefficient of aboveground plant material SMCA dim 0 0.01 0 0 0 0.001 0 0 
Maximum senescence mortality coefficient of belowground plant material SMCB dim 0 0.01 0.0001 0.001 0.00002 0.001 0 0 
Maximum senescence mortality coefficient of non-structured plant material SMCL dim 0 0.01 0.003 0.079 0.004 0.0001 0 0 
Lower limit extreme high temperature effect on senescence mortality SNSC_ext1 °C 30 40 0 0 0 30 30 30 
Upper limit extreme high temperature effect on senescence mortality SNSC_ext2 °C 30 50 0 0 0 40 40 40 
Turnover rate of wilted standing biomass to litter TRWB dim 0.01 0.1 0 0 0 0.01 0.01 0.01 
Turnover rate of non-woody cut-down biomass to litter TRCN dim 0.01 0.1 0 0 0 0.05 0.01 0.01 
Turnover rate of woody cut-down biomass to litter TRCW dim 0.0001 0.1 0 0 0 0.01 0.0009 0.0009 
Drought tolerance parameter  DSWScirt nday 0 100 0 0 0 30 100 100 
Effect of soilstress factor on photosynthesis  Sseff dim 0 0.4 0.006 0.066 0.002 0 0 0 
Leaf carbon allocation proportion  dim - - - - - 0.173 0.173 0.173 
Fine root carbon allocation proportion  dim - - - - - 0.094 0.094 0.094 
Live woody stem carbon allocation proportion  dim - - - - - 0.101 0.101 0.101 
Dead woody stem carbon allocation proportion  dim - - - - - 0.556 0.556 0.556 
Live coarse root carbon allocation proportion  dim - - - - - 0.012 0.012 0.012 
Dead coarse root carbon allocation proportion  dim - - - - - 0.064 0.064 0.064 
Canopy average specific leaf area (projected area basis)  m2 kgC-1 - - - - - 48 34.5 34.5 
Canopy growth proportion  dim - - - - - 0.5 0.5 0.5 
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2.4.2. Sensitivity analysis  260 

The sensitivity analysis (SA, WS2 phase in Figure 2Figure 2) was performed to identify the impact of parameters on the carbon 

stock in aboveground wood, soil, and litter (AbgwC, SoilC, LitterC) using BBGCMuSo simulations of calibration sites (Table 

1Table 1). The three carbon stock variables were selected instead of typically used fluxes to cover a wider range of 

environmental conditions, since fluxes are usually measured only at a limited number of research sites. It has been documented 

that BBGCMuso can be well fitted to effectively simulate C fluxes (Hidy et al. 2016, Maselli et al. 2009), while its ability to 265 

simulate C stocks is much lower (Ostrogović Sever et al. 2021, Maselli et al. 2009). Moreover, the long-term time series of 

AbgwC covering up to 69-year-long periods also allow the evaluation of the long-term simulated temporal development. 

First, we performed a local, i.e. single parameter, SA (WS2a in Figure 2Figure 2) using regular sampling of parameter values 

from their pre-defined ranges based on the literature review. The sensitivity of variable i to parameter P was quantified with 

the sensitivity index (SI) using the equation of Hoffman and Gardner (1983): 270 

𝑆𝐼𝑃𝑖 =
𝑉𝑚𝑎𝑥𝑃𝑖−𝑉𝑚𝑖𝑛𝑃𝑖

𝑉𝑚𝑎𝑥𝑖
        (1) 

where VmaxPi and VminPi are the maximum and minimum values of the simulated output variable i when testing parameter P, 

and Vmaxi is the absolute maximum value of the output variable obtained from the tests of all parameters. 

Afterwards, a global, i.e. multi-parameter, SA (WS2b in Figure 2Figure 2), which  assesses the sensitivity of all selected 

parameters across the entire parameter space simultaneously, was performed following the least squares linearisation (LSL) 275 

approach by (Verbeeck et al., (2006). A commonly used, variance-based, global SA method is the Sobol sensitivity analysis, 

which performs Monte-Carlo simulations on the parameter-space. This method estimates the Sobol sensitivity index, 

distributing the overall variability of the model outputs to the contributions from each model input (Saltelli et al., 2004). As 

the parameter space expands, an increasing number of Monte-Carlo simulations are required to accurately estimate sensitivity. 

To simplify this process and enhance accuracy with fewer number of simulations, surrogate models are employed, whereby 280 

sensitivity values can be more easily estimated. The LSL is one of the simplest surrogate models based on the multivariable 

linear model (Verbeeck et al. 2006). This approach utilizes the widely applied ordinary least squares method to approximate 

the process-based model with a multidimensional linear model. The coefficients derived from the fitted model are then used 

to calculate the relative Sobol sensitivity indices. The LSL based sensitivity analysis is implemented in the RBBGCMuso 

package (Hollós et al., 2023) available at https://github.com/hollorol/RBBGCMuso.  285 

The procedure first The simultaneously samplesing of values of allthe selected model parameters from their predefined ranges 

was done with Monte Carlo simulations, while assuming a multivariate uniform distribution. Then, the simulated output was 

examined with regard to parameter deviations from the mean using the least square linearisation method that is based on a 

multiple regression, which splits the overall output uncertainty into individual sources. This allowed us to estimate the 

contribution of each tested parameter to the analysed model output uncertainty and identify the parameters that affected 290 
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AbgwC, SoilC, and LitterC most. The results of SA were used to select the parameters to be calibrated (WS3 phase in Figure 

2Figure 2). The SA was performed using the musoMonte and musoSensi functions implemented in the RBBGCMuSo package 

(Hollós et al., 2023) available at https://github.com/hollorol/RBBGCMuso. 

 

2.4.3. Parameter calibration 295 

Within the parameter optimisation we first performed a site- and variable-specific calibration (WS4a phase in Figure 2Figure 

2) using GLUE method (Beven and Binley, 2014) implemented in the calibMuso function of the RBBGCMuSo package 

(Hollós et al., 2023). With this procedure, a selected parameter set was optimised using the least squares likelihood function 

based on the comparison of the simulated values of the selected output variable with its observations in the pre-defined 

parameter space: 300 

𝐿 = 𝑒
−√

(𝑉𝑜𝑏𝑠−𝑉𝑠𝑖𝑚)2

𝑛        (2) 

where L is the estimated likelihood, Vobs and Vsim are the observed and the simulated values of the output variable, and n is 

the number of observations.  

For every site, we performed 100,000 Monte Carlo simulations, each with a unique combination of parameter values randomly 

generated from the predefined parameter ranges (Table 2Table 2). The results of all simulations were used in the subsequent 305 

optimisation steps.  

FirstThen, we evaluated the plausibility (i.e. the realism) of simulated AbgwC, LitterC, and SoilC (WS4b phase in Figure 

2Figure 2) at the end of spin-up and in individual years of normal run simulations. The plausibility check is a form of output 

data streams conditioning similar to the CIRM method proposed by Hollós et al. (2022). We applied the following constraints 

derived from literature to evaluate the plausibility of simulated values: carbon stock in aboveground wood below 70 kgC m-2 310 

(Barna et al., 2011; Georgi et al., 2018; Standovár and Kenderes, 2003; Trotsiuk et al., 2012), soil carbon in the whole soil 

profile between 5 and 25 kgC m-2, and litter carbon amount between 0.1 to and 4 kgC m-2 (De Vos and Cools, 2011; Pavlenda 

and Pajtík, 2010; Wellbrock et al., 2016; Wellbrock and Bolte, 2019). A simulation was identified as plausible if all three 

examined output variables fulfilled the above-listed constraints at the end of the spin-up and in all simulated years of the 

normal run.  315 

The site-specific multivariate optimised parameter values (SSMV parameter sets resulting from WS4c phase in Figure 2Figure 

2) were derived from subsets of plausible simulations selected for each calibration site as those minimising estimation errors 

of AbgwC, SoilC, and LitterC, and maximizing the joint-likelihood function. We appliedused the normal likelihood function 

to each of the three output variables and afterwards calculated the sum of loglikelihood values for each timestamp (year) 

assuming that the estimation errors weare independent from each other.  320 
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Next, we performed an optimisation of parameters across the studied geographical domain (WS4d phase in Figure 2Figure 2) 

by processing the plausible subsets of outputssimulations from all calibration sites together. First, w From e identified feasible 

ranges for each parameter and site, identified from the plausible simulations (selected in the WS4c phase in Figure 2Figure 2, 

Figure 3Figure 3Chyba! Nenašiel sa žiaden zdroj odkazov.a) by overlapping the results of the three output variables (a). 

Then, we derived the multi-site feasible parameter ranges as an intersection of site-specific feasible parameter ranges in the 325 

whole tested 6D parameter space defined by calibrated parameters. Afterwards, we divided the multi-site feasible ranges of 

each parameter into five equally wide sub-intervals that defineing 5 discrete steps on each dimension (Figure 3Figure 3Chyba! 

Nenašiel sa žiaden zdroj odkazov.b) of the multi-dimensional parameter space. This categorisation was neededrequired 

because the applied parameter values in site-specific Monte Carlo simulations differed between the sites. In the hyperspace, 

we identified ten cells with the highest number of allocated sites and simulations and the smallest arithmetic mean errors of 330 

AbgwC, SoilC, and LitterC, and calculated mean values of parameters per cell. The final multi-objective optimal parameter 

set was the one that led to successful simulations of all calibration sites and smallest errors.  

(a) 

 

(b) 
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Figure 3 Identification of feasible parameter ranges per site using a multivariate approach (a) and of multi-site and multivariate 

optimised (MSMV) parameter values and their parameter ranges (b) on an example of 2D parameter space and the site-specific 

optimised parameter ranges of two sites. Colours refer to specific variables (a) and sites (b). Min = minimum, Max = maximum, Opt 335 
= optimised, area with grey dotted pattern indicates the tested parameter interval (a) or 2D parameter space (b), blue area = 

optimised parameter interval for variable 1 (a) or 2D space for site 1 (b), green area = optimised parameter interval for variable 2 

(a) or 2D parameter space for site 2 (b). 

2.5. Robustness, validation and plausibility tests 

2.5.1. Robustness of calibrated parameter values 340 

The robustness of the site-specific (SSMV) and multi-site (MSMV) optimised values of parameters was tested by simulating 

all calibration sites with all derived parameter sets and calculating root mean square errors (RMSE) of simulated output 

variables. This test allowed us to examine the problem of overfitting and the applicability of site-specific parameter sets outside 

the specific site conditions. The results were presented with heatmaps produced using ggplot2 R package (Wickham, 2016). 

Next, we applied the machine learning method of decision trees (DT) to identify the problems due to the trade-off between 345 

variables and/or sites based on the evaluation of the entropy. With the DT method we determined parameter ranges, within 

which plausible simulations can be expected. This was done by deriving classification decision trees for each site and output 

variable using all 100,000 Monte Carlo simulations per calibration site that were split into 2 groups of plausible and implausible 

ones based on the constraints for the three tested variables (done under WS4a and WS4b phase in Figure 2, see Sect. 2.4.3.). 
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In total we derived 33 decision trees (11 sites x 3 variables) using the rpart R package (Therneau et al., 2023). From the DT 350 

results, we obtained plausible ranges for each parameter, site and variable, which may differ from those obtained under WS4a 

and WS4b phase as they were derived using a different mathematical approach. Then, we searched for intersections of these 

ranges to obtain the final parameter-wise plausible  ranges for a specific site and all variables together and for multi-site ranges 

for all calibration sites and variables together (Figure 4Figure 4). The SSMV and MSMV optimised parameter values were 

considered robust if they occurred within the respective DT parameter ranges.    355 
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Figure 4 Determination of plausible ranges of parameters using the machine learning method of decision trees across sites and output 

variables. Par = parameter, background transparent coloured horizontal lines represent the tested parameter range, while non-

transparent coloured lines show the optimised parameter ranges based on decision trees performed for carbon stock in aboveground 

wood (AbgcW), soil (SoilC), and litter (LitterC). The dashed red rectangle represents the plausible range of one parameter based on 360 
the intersection of its plausible ranges derived for the three output variables. 
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The next test was aimed at analysing if SSMV parameter values followed any trends along specific gradients. Specifically, we 

examined the interdependencies between the pairs of parameters, and the trends of their site-specific values along stand and 

site gradients, namely age, elevation, latitude, climate and soil characteristics. Any significant trend may indicate that the 365 

respective parameter should not be handled as a constant but should vary with specific conditions. The analyses were based 

on Spearman correlations, and linear regressions performed in R environment (R Core Team, 2018). Subsequently, Wwe 

examined the physiological meaningfulness of revealed trends and relationships using the empirical evidence collected from 

the scientific literature. 

Following the identification of the significant relationships and their biological plausibility, we derived ten multiple linear 370 

regression models explaining the variation in site-specific values of the canopy light extinction coefficient (CLEC) of 

calibration sites using different combinations of environmental predictors and analysed the explanatory power and performance 

of the models with the following statistical characteristics: R-squared, adjusted R-squared, AKAIKE information criterion, 

Bayesian information criterion, Mallows’ statistic, and the residual standard deviation. This was performed in R environment 

using the car (Fox et al., 2023) and lmSubsets (Hofmann et al., 2021) R packages. Then we applied the derived functions to 375 

all 87 sites, for which we calculated site-specific values of CLEC. and simulated each site with the respective CLEC value. 

Afterwards, we examined the robustness and plausibility of the simulated output with varying CLEC across the whole 

geographical domain.  

 

 380 

2.5.2. Model performance with parameter values optimised for multiple sites 

The MSMV parameter set of BBGCMuSo derived in WS4d calibration phase (Figure 2Figure 2) was validated using an 

independent dataset from 8 European beech dominated sites located within the studied geographical domain (Table 1Table 1, 

Figure 1Figure 1), each represented by at least two repeated observations of aboveground wood carbon. The simulations 

consisted of spin-up, transient run and normal run as described above. The validation was based on the comparison of modelled 385 

and observed carbon stock in aboveground wood at specific time points, for which we calculated the bias defined as an 

arithmetic mean of differences between modelled and observed values of the respective variable, mean absolute error (MAE), 

mean percentage error (MPE), and root mean square error (RMSE). SoilC and LitterC were compared to plausible ranges 

derived from literature (De Vos and Cools, 2011; Pavlenda and Pajtík, 2010; Wellbrock et al., 2016; Wellbrock and Bolte, 

2019) since no observed data on soil and litter carbon were available for validation sites. 390 
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2.5.3. Robustness and plausibility of simulated output at a large scale 

To evaluate the broad applicability of the derived multi-objective parameter set across the whole studied geographical region, 

we simulated forest development across 87 sites, encompassing the main climatic and soil gradients in the study area (Figure 

1Figure 1). We specifically assessed the plausibility of absolute values of AbgwC, LitterC, and SoilC by comparing them with 

values documented in the literature (e.g. Barna et al., 2011; Pavlenda and Pajtík, 2010).  We also examined the responses of 395 

simulated carbon stocks to environmental conditions (e.g. latitude, longitude, elevation, annual precipitation, mean 

temperature, proportion of sand, silt, and clay fractions, soil depth) and compared their observed shapes to the patterns 

published infrom empirical studies. We analysed the responses of simulated outputs using Spearman correlations, linear and 

quadratic regressions, and generalised additive models (GAM). When explaining the patterns of the main three variables along 

environmental gradients we examined also other stocks, such as carbon stock in roots, leaves, as well as some carbon fluxes, 400 

particularly heterotrophic respiration, to reveal the mechanisms driving the model responses. All tests were performed in R 

environment (R Core Team, 2018). 

3. Results 

3.1 Parameter sensitivity analysis 

The local (single parameter) sensitivity analysis (WS2a in Figure 2Figure 2) focusing on evaluating the effects of individual 405 

parameters revealed that the aboveground wood carbon stock was most affected by the whole plant mortality rate (WPM). Soil 

and litter carbon stocks were most sensitive to the maximum stomatal conductance (MSC) and nitrogen fixation (Nfix), 

respectively (Table 2Table 2). The analysis of trends in variable changes due to modifications of parameter values clarified 

how the increase of the parameter value affected the values of the respective output variable, e.g. the increase of MSC caused 

an increase of all tested output variables (AbgwC, SoilC, LitterC) in the whole parameter range (Fig. S4Fig. A4). The impact 410 

of other parameters was more complex, as we revealed both positive and negative trends, while in the case of the increase of 

e.g. Nfix the positive ones prevailed in AbgwC and SoilC, and negative ones in LitterC. A more detailed analysis identified 

the changes of output variables along the parameter range, e.g. the increase of Nfix caused an initial increase of LitterC, which 

was followed by its gradual reduction as Nfix was increasing (Fig. S2Fig. A2a). 

The global (multi-parameter) sensitivity analysis (WS2b in Figure 2Figure 2) showed that Nfix had the highest impact on all 415 

three analysed carbon pools (Figure 5Figure 5). The subsequent parameters were MSC, growth respiration per unit of carbon 

allocation (GRC), maintenance respiration in kgC day-1 per kg of tissue nitrogen (MRperN), fraction of leaf nitrogen in Rubisco 

(FLNR). However, the ranking of parameters differed between the individual output variables (Figure 5Figure 5). 
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Figure 5 Results of global (multi-parameter) sensitivity analysis (WS2b in Figure 2Figure 2) of simulated carbon stock in 420 
aboveground wood, soil and litter (AbgwC, SoilC, LitterC) to ecophysiological parameters of BBGCMuSo. Parameter abbreviations 

are given in Table 2Table 2. Dark grey rectangles with black arrows above indicate parameters selected for the calibration 

procedure: canopy light extinction coefficient (CLEC), fraction of leaf nitrogen in rubisco (FLNR), maximum stomatal conductance 

(MSC), nitrogen fixation (Nfix), effect of soil stress factor on photosynthesis (Sseff), and vapour pressure deficit for complete 

conductance reduction (VPDC). 425 

Based on the results of the sensitivity analysis we selected six parameters to be calibrated: canopy light extinction coefficient 

(CLEC), FLNR, MSC, Nfix, vapour pressure deficit for complete conductance reduction (VPDC), and effect of soil stress 

factor on photosynthesis (Sseff), as they had a substantial effect on carbon stock in aboveground wood, soil, and litter (Figure 

5Figure 5). Other parameters with a high influence on the simulated C pools (such as C:N ratio in leaves, Fig. S2Fig. A2b) 

were not to selected for calibration due to a strong support of their actual values from the literature (e.g. Fig. S3Fig. A3).  430 

3.2 Parameter estimation 

The site-specific multivariate (SSMV) optimised values of all 6 calibrated parameters for 11 calibration sites differed from the 

a priori ones, varied within the whole tested ranges (Table 2Table 2) and strongly differed between the sites (Figure 6Figure 

6). Two parameters (FLNR, VPDC) showed a gradual change of SSMV values across the whole tested range, while the SSMV 

values of others, especially CLEC and Sseff, were clustered. In comparison to a priori values, SSMV values of individual 435 

parameters changed by 41 % on average, while Nfix was modified most substantially (67 % on average).  
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Figure 6 A priori (blue triangles), site-specific (SSMV, red dots) and multi-site (MSMV, green squares) optimised values of calibrated 

ecophysiological parameters selected based on the multi-objective sensitivity analysis (WS4 in Figure 2Figure 2). The thick 

horizontal lines represent medians, boxes represent the interquartile ranges (IQR), and the whiskers represent ±1.5IQR.   

The median reduction of model errors at calibration sites simulated with SSMV parameter sets in comparison to the a priori 440 

set was 35 %,  55 %, and 11 % for AbgwC, SoilC, and LitterC, respectively, and 26 %, 35 % and 9 % in comparison to the 

simulation output obtained with the MSMV parameter set (Figure 7Figure 7).    
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Figure 7 Heatmaps of root mean square errors (RMSEs) for carbon stock in aboveground wood, soil, and litter (AbgwC, SoilC, 

LitterC) and their sum (SumC) for individual calibration sites (presented on x axis) and 13 different variants of parameter sets 

(presented on y axis): one a priori set, 11 site-specific (SSMV) optimised ones identified by site abbreviations, and one multi-objective 445 
(multi-site and multivariate, MSMV) optimised set. The red colour indicates the largest RMSEs, while the yellow one indicates the 

smallest RMSEs, the grey colour indicates unsuccessful simulations, which ended with zero or close to zero values of carbon state 

variables.  

Parameter values obtained from the multi-site optimisation (WS4d in Figure 2Figure 2) changed by 2 to 15 % of their a priori 

estimates except for the Sseff, which remained unchanged (Figure 6Figure 6, Table 2Table 2). The MSMV values substantially 450 

differed from the SSMV values of the majority of sites although the differences were parameter-specific. The lowest variation 

was observed for Sseff, while the largest differences between MSMV and SSMV values were found for Nfix (Figure 6Figure 

6). Simulation results using the MSMV parameter set showed reduced mean errors of all three tested output variables, i.e. 

AbgwC, SoilC and LitterC, in comparison to the results obtained with the a priori set by 10, 26, and 5 %, respectively (Table 

3Table 3, Figure 7Figure 7).  455 
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Table 3 Evaluation of model performance based on simulations of beech ecosystems at 11 calibration sites using the a priori 

parameter set and the optimised parameter sets optimised with respect to measured sets of carbon stock in the aboveground wood, 470 
soil, and litter (AbgwC, SoilC, and LitterC in kgC m-2). “Site-specific” refers to parameter sets derived for single sites using a 

multivariate approach (SSMV, WS4c phase in Figure 2Figure 2). “Multi-site” refers to multi-site and multivariate (MSMV) 

parameter values derived collectively for all calibration sites (WS4d in Figure 2Figure 2). RMSE = root mean square error, Bias = 

arithmetic mean of differences between modelled and observed values of the respective variable, MAE = mean absolute error, MPE 

= mean percentage error, MinDif and MaxDif are minimum and maximum differences between the modelled and observed values 475 
of the respective variable.    

Parameter set Variable  N  RMSE  Bias  MAE  MPE  MinDif  MaxDif  

A priori  96 9.7727 7.3911 7.8366 29.502 -8.1569 27.007 

Site-specific AbgwC 96 2.0698 -0.2887 1.4873 0.012 -5.4830 5.7422 

Multi-site  96 6.8718 4.1734 5.4798 19.246 -9.5527 27.756 

A priori  72 3.5242 2.2276 2.2630 58.329 -0.2268 11.729 

Site-specific SoilC 72 6.8068 -2.7876 6.3782 -0.408 -9.7400 4.7630 

Multi-site  72 3.0803 0.1167 2.6423 38.068 -2.4427 10.243 

A priori  10 0.2424 0.2117 0.2117 121.774 0.0611 0.4651 

Site-specific LitterC 10 0.2035 0.0030 0.1653 42.005 -0.2894 0.4382 

Multi-site  10 0.1849 0.1417 0.1419 91.327 -0.0007 0.4185 

 

The simulations performed with site-specific and multi-site optimised parameter sets produced more accurate estimates of 

carbon stock in aboveground wood, soil and litter than the a priori set. The non-parametric Wilcoxon signed rank test 

(Wilcoxon, 1945) with the continuity correction data confirmed insignificant differences between observed and modelled 480 

carbon stock in aboveground wood and litter simulated with SSMV parameter sets (V = 1807, p = 0.14 for AbgwC, and V = 

26, p = 0.92 for LitterC), while the differences for soil carbon were significant (V = 528, p = 1.04e-05, see Sect. 4.2 for 

explanation). The use of MSMV parameter set resulted in insignificant differences of SoilC (V = 1396, p = 0.64), while the 

estimates of AbgwC and LitterC were significantly different from observations (V = 4094, p = 1.10e-10, and V = 54, p = 

0.004, respectively). Nevertheless, the magnitudes of their mean errors calculated for the whole set of calibration sites as well 485 

as for most of individual sites were substantially reduced (Table 3Table 3, Figure 7Figure 7). 

3.3 Robustness, validation, and plausibility tests 

3.3.1 Robustness of calibrated parameter values 

When simulating the development of calibration sites with the site-specific parameter sets (SSMV) optimised for other sites, 

we revealed a high variation in modelled outputs per site (Figure 7Figure 7 and Fig. S5Fig. A5). In 47 % of cases we 490 

encountered unsuccessful simulations, during which the modelled forests did not survive. Only three SSMV parameter sets 
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led to successful simulations of all calibration sites, but their errors exceeded those obtained with the a priori, respective SSMV 

or MSMV optimised sets (MPE of AbgwC, SoilC, and LitterC were 39 %, 296 %, and 570 %, respectively). 

The robustness test of SSMV and MSMV optimised parameter values using the method of decision trees (DT) revealed that 

in 78 % of cases site-specific and muti-site parameter values occurred within the parameters ranges derived from decision trees 495 

for individual output variables and sites (Table 4Table 4, Fig. S8Fig. A8). The discrepancies between the optimised parameter 

values and DT ranges occurred for the variables and sites with lower proportions of plausible simulations (Fig. S16Fig. A15) 

or in the cases when DT parameter ranges derived for individual output variables did not overlap (e.g. the ranges derived for 

FLNR and site CR2015, Fig. S8Fig. A8). 

 500 

Table 4 Robustness of site-specific (SSMV) and multi-site (MSMV) parameter values based on the analysis if the optimised 

parameter value occurred inside the parameter ranges derived for individual calibration sites and carbon stock variables 

(aboveground wood, soil and litter carbon labelled as AbgwC, SoilC, LitterC) using the method of decision trees (DT, Sect. 2.5.1). 

The values for SSMV represent the mean from 11 calibration sites. The value 1 indicates that the MSMV value or all SSMV 

optimised parameter values occurred within the DT ranges. The abbreviations of parameters are CLEC = canopy light extinction 505 
coefficient, FLNR = fraction of leaf nitrogen in rubisco, MSC = maximum stomatal conductance, Nfix = nitrogen fixation, VPDC = 

vapour pressure deficit for complete conductance reduction, Sseff = effect of soil stress factor on photosynthesis. 

 Proportion of optimised parameter values inside parameter ranges derived using decision tree method 

Output variable AbgwC SoilC LitterC 

Parameter set SSMV MSMV SSMV MSMV SSMV MSMV 

P
ar

am
et

er
 

CLEC 1.00 1 0.91 1 0.91 1 

FLNR 0.73 1 0.64 0 0.64 0 

MSC 1.00 1 0.55 1 0.36 0 

Nfix 0.91 0 1.00 0 0.36 1 

VPDC 1.00 1 1.00 1 1.00 1 

Sseff 1.00 1 1.00 1 1.00 1 

 Mean of All 0.94 0.83 0.85 0.67 0.71 0.67 

 

The analysis of interdependencies between the site-specific optimised parameter values revealed the only significant Spearman 

correlation between CLEC and MSC, which were negatively correlated at 95 % significance level (r=-0.6, p=0.04, Figure 510 

8Figure 8a). The highest, although non-significant, correlation was found between Nfix and FLNR (r=0.7, p=0.37) suggesting 

that if Nfix increases FLNR should also increase. 

Spearman correlations between parameters and site characteristics revealed that the site-specific optimised values of two 

calibrated parameters (CLEC, VPDC) were significantly related to elevation (r=0.5 and -0.7, p=0.04, respectively). Significant 

relationships were also found between CLEC and several climatic variables (Figure 8Figure 8). The highest positive correlation 515 

(r=0.9, p=0.01) of CLEC was with the long-term mean annual precipitation total (AMPRCP), and the highest negative 

correlation (r=-0.8, p=0.01) with the long-term mean annual vapour pressure deficit (AMVPD). The increasing AMVPD was 
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positively significantly related to the values of MSC (r=0.7, p=0.05). For other parameters we did not reveal any significant 

relationships with climate conditions, nor could we confirm any significant correlations of parameter values to soil conditions 

(Fig. S9Fig. A9), although positive or negative trends with several environmental characteristics were visible for some 520 

parameters, mainly for MSC and VPDC (Figure 8Figure 8b, Fig. S9Fig. A9). 

 

(a) 

 

 

 

(b) 

 

Figure 8 Spearman correlations between site-specific optimised values of calibrated parameters (a) and between site-specific 

optimised parameter values and site characteristics (b). The colour and the size of the circles indicate the value of the correlation 

coefficient, and the stars indicate the significance of the correlation (1 star for 95 % significance level, 2 stars for 99 % significance 525 
level). The abbreviations of parameters are: CLEC = canopy light extinction coefficient, FLNR = fraction of leaf nitrogen in Rubisco, 

MSC = maximum stomatal conductance, Nfix = nitrogen fixation, VPDC = vapour pressure deficit for complete conductance 

reduction, and Sseff = effect of soil stress factor on photosynthesis. Climate characteristics represent long-term annual averages: 

TRange = Temperature range, AMTmin = Minimum temperature, AMTday = Daylight temperature, AMTmean = Mean 

temperature, AMPRPCP= Precipitation total, AMVPD = Vapour pressure deficit, AMSRAD = Daily solar radiation, AMDayLen = 530 
Daylength. 

 

3.3.2 Model performance with parameter values optimised for multiple sites 

The mean absolute error (MAE) between the simulated and observed aboveground wood carbon of 8 validation sites was 0.26 

kgC m-2 with a 95 % confidence interval from -0.025 to 0.56 kgC m-2, while the individual absolute differences varied between 535 

-2.06 and 5.11 kgC m-2 (Figure 9Figure 9). The root mean square error was 1.22 kgC m-2. The non-parametric Wilcoxon signed 

rank test with continuity correction indicated non-significant differences between simulations and observations of aboveground 

wood carbon (V = 1385, p-value = 0.1962). The mean percentage error of AbgwC was 1.25 % of the observed carbon stock 

in the aboveground wood. Hence, both absolute and relative differences were of negligible magnitudes. 
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Since no observed data on soil and litter carbon were available for validation sites, the simulated SoilC and LitterC were tested 540 

against their ranges reported in the literature. The results showed that both variables occurred within the plausible ranges (Fig. 

S12Fig. A 11). 

 

Figure 9 Comparison of the temporal development of observed (points) carbon stock in aboveground wood (AbgwC) and simulated 

AbgwC (lines) using the multi-site multivariate optimised (MSMV) parameter set at 8 validation research sites.  

 545 

3.3.3 Robustness and plausibility of simulated output at a large scale 

The simulations of all 87 research sites using the multi-site optimised (MSMV) parameter values were successful and the 

simulated values of the three output variables (i.e. AbgwC, SoilC, and LitterC) at the end of the spin-up run were well-aligned 

with the plausible ranges indicated in the literature (Fig. S13Fig. A 12).  

The simulated values of output variables varied across the studied geographical space (Figure 10Figure 10) and were 550 

significantly correlated with multiple site characteristics (Figure 11Figure 11, Fig. S17Fig. A16, Fig. S18Fig. A17). The 

modelled aboveground wood carbon exhibited distinct unimodal responses along the gradients of elevation, long-term mean 

air temperature, and vapour pressure deficit (VPD). The results manifested a production optimum of beech in Central Europe 

at elevations of 500 - 600 m a.s.l., mean annual air temperature of 9°C, and VPD of 530 Pa. The SoilC and LitterC demonstrated 

an increasing trend along the elevation gradient and decreasing trends along the climatic gradients. The responses of carbon 555 

stocks to soil properties generally followed a linear pattern, while SoilC and LitterC significantly decreased with the increasing 

clay content and increased with the increasing sand content in soil. Aboveground wood carbon was found to be significantly 
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correlated with the proportion of clay in the first and second soil layers, and with the proportion of silt in the fifth layer (Fig. 

S18Fig. A17).  The highest levels of simulated aboveground wood carbon were observed on loamy or sandy-loamy soils (Fig. 

S20Fig. A19). 560 

 

Aboveground wood carbon Soil carbon Litter carbon 

   

 

Figure 10 Maps depicting the simulated values of three output variables (aboveground wood, soil and litter carbon labelled as 

AbgwC, SoilC, LitterC, all in kgC m-2) in beech ecosystems at the standardised stand age of 35 years at 87 sites distributed over the 

whole studied geographical domain. The blue colour in the background indicates the elevation gradient taken from (Hengl et al., 565 
(2020).  
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Figure 11 Responses of modelled carbon stocks in the aboveground wood at the standardised stand age of 35 years (left), soil (middle) 

and litter (right) carbon stocks to selected environmental variables. The simulations with BBGCMuSo were conducted for 87 sites 

distributed across central Europe (see Figure 1Figure 1). Linear or quadratic regressions were fitted to the data. R2 represents the 

squared regression coefficient, and P is the p-value for the F-test of the fitted model. 570 

4. Discussion 

4. 1. Selection of parameters for calibration 

The sensitivity analysis identified the parameters with the highest impact on the selected model output (Table 2Table 2, Figure 

5Figure 5). The global SA showed small differences in the parameter impact between the three examined output variables, 
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because they are all a part of the carbon cycle, which makes them naturally interconnected within forest ecosystems. The 575 

similarity in parameters affecting these output variables underscores the importance of considering a forest as a whole, since 

due to the interactions between different components of the ecosystem changes in one part have cascading effects throughout 

the system. Therefore, a comprehensive approach that accounts for these interdependencies is crucial for accurate modelling 

and understanding of forest carbon dynamics. 

 Several highly influential parameters identified by SA were excluded from the calibration for different reasons. Growth 580 

respiration per unit of carbon allocation (GRC), and maintenance respiration per kg of tissue nitrogen (MRperN), were not 

calibrated because we could not support the modification of their valuesy were already used in previous model versions 

(Thornton et al., 2005) , and we could not support the modification of their values by observations, because.  the empirical 

evidence (Lavigne and Ryan, 1997) suggests to use local values of respiratory parameters since they substantially differ 

between sites. Other parameters were not included in calibration because the data from literature supported their current values 585 

and/or because of the adverse impact on the variables of interest. For example, C:N ratio in leaves was found to have a 

substantial effect on all examined carbon pools (Figure 5Figure 5), but to obtain a desired reduction of carbon stock in 

aboveground wood we would need to increase this parameter from its a priori value (Fig. S2Fig. A2). However, the analysis 

of the values obtained from site-specific measurements performed aton some of our sites and the data from the TRY database 

(Kattge et al., 2020) revealed that increasing the value of C:N ratio in leaves would cause aits significant deviation from itsthe 590 

mean or median of experimental observations (Fig. S3Fig. A3). Similarly, the parameter representing the natural whole plant 

mortality was not calibrated since instead of the temporarily constant mortality we applied dynamic mortality rates during the 

normal run simulations that depend on the applied forest management and were derived from published field observations 

(Barna et al., 2011; Hülsmann et al., 2018; Pajtík et al., 2018; Vanoni et al., 2019). The possibility of using dynamic mortality 

rates in BBGCMuSo is a major improvement in comparison to the original Biome-BGC model, as mortality has been found 595 

to be a driving process of vegetation dynamics in forest growth models (Bugmann et al., 2019; Hlásny et al., 2014). 

The identification of influential parameters is crucial not only for model calibration, but also for future local studies as it 

provides valuable information about the key parameters, the values of which should be collected in the field, since applying 

site-specific values obtained from experimental data may substantially reduce the uncertainty of model simulations. Aslready 

(Thornton et al. (, 2002) already presented, that some parameters, such as C:N ratio in leaves, should be treated as site-specific. 600 

In the case the site-specific values of parameters are available, they need to be set prior to the calibration due to the covariance 

of parameters and need to be excluded from the sensitivity analysis. In our case we aimed at a generic parameter set applicable 

across the whole studied region, However, such data were not available for most of our sites, and thus, we used a generalised 

value of this parameter. 
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4.2. Parameter estimation 605 

The mean error metrics (root mean square errors, mean absolute and percentage errors) showed the increased accuracy of 

modelled output obtained using single-site (SSMV) and multi-site (MSMV) optimised parameter sets in comparison with those 

obtained with the a priori parameter set (Table 3Table 3). Greater errors of soil carbon for SSMV parameter sets resulted from 

site-specific very tight positive relationships between the simulated AbgwC and SoilC revealed when analysing Monte Carlo 

simulations. Due to this, even the high number of performed simulations (100,000 simulations per site) generally covered only 610 

a small portion of the 2D space defined by AbgwC and SoilC (Fig. S6Fig. A6). Hence, in some cases improving the results for 

one of these two carbon pools caused the increase of the error of the other pool within the tested space of six calibrated 

parameters (Fig. S7Fig. A7). Although some empirical studies reported the positive correlation between aboveground wood 

and soil carbon stock, particularly inof the top soil, the relationship is not less strong (R2=0.24, (Woollen et al., 2012), and 

frequently insignificant (Osei et al., 2022), as SoilC primarily depends on climate, topography, soil mineralogy and soil texture, 615 

especially the content of clay (Powers and Schlesinger, 2002) or sand (Devi, 2021). Our results indicated that different or 

additional parameters may need to be included in the calibration that may increase the variability of model output and thus 

loosen the current high correlations between AbgwC and SoilC. or the model to increase the accuracy of model estimates of 

both variables and/or the spatial coverage defined by observations. 

The application of site-specific calibrated parameter sets outside the respective sites pointed out at the contradiction between 620 

their generality and the local accuracy of model estimations. SSMV optimised parameters were not generally applicable, as 47 

% of simulations of calibration sites with SSMV parameter sets optimised for different sites collapsed (Figure 7Figure 7). 

Calibrating models for individual sites may often result in model overfitting due to the small amount of available data (Tsai et 

al., 2021), which may lead to completely different parameter sets in the case of a recalibration, and hence a high variance in 

calibrated values, reducing thus the reusability of calibrated parameter values.  625 

The parameter values optimised for single and multiple sites frequently substantially differed (Figure 6Figure 6), which 

indicates the existence of the calibration equifinality, i.e. that many different parameter sets may produce similar output 

predictions (Beven, 2019). This issue was not apparent at the multi-site level, but occurred at the level of individual sites, at 

which it can be partially solved using the conditional interval reduction method (CIRM, Hollós et al., 2022). The CIRM 

approach is based on the iterative narrowing of plausible intervals of parameters using the constraints on the model output. It 630 

is an efficient way of dealing with the equifinality unless the contradictions between different output variables occur.  

As expected based on similar calibration works of forest growth models that used comprehensive data sources (Forrester et 

al., 2021; Minunno et al., 2019), the multisite and multivariate calibration increased the generality and robustness of the model 

application by finding a parameter set that worked across all calibration sites (Figure 7Figure 7), and the validation set (Figure 

9Figure 9). Nevertheless, differences in data quality and availability across space can substantially influence the calibration 635 

results. Although tThis problem can be mitigated withusing Bayesian calibration calibration techniques that utilize and by 

choosing thea more  appropriate likelihood function (i.e. formal likelihood; Hollós et al., 2022). in frequentist calibrations,  In 
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this way, the issue of the significant spatial autocorrelation data quality at individual sites is not always independent from each 

other, since there is often a significant spatial autocorrelation. The extent of this interdependence is rarely quantifiable, 

therefore thecan be resolved using the inclusion of an appropriate error-covariance matrix used for the likelihood functions is 640 

usually incorrect, which can mislead the calibration process.in the construction of the likelihood function (Tarantola, 2005).  

In addition, the multi-site calibration can also reduce spatial heterogeneity of model outputs due to the “averaging out effect” 

causing that the average model performance will be good, but at specific sites it can be completely wrong. This could be 

overcome by applying a hybrid approach that combines the site-specific and multisite calibration. With such an approach, site-

specific values obtained from local measurements, well-established relationships derived from large databases or calibrated 645 

for specific sites will be used for the parameters that are known to vary in space, while generic values will be used for the other 

parameters. Thus, the overall correctness can be ensured by multisite calibration, while spatial heterogeneity by site-specific 

calibration.  

Another aspect affecting the calibration is data availability. Although we tried to select calibration sites to cover the whole 

geographical and environmental space, the central part of the region was overrepresented, while northern parts were not 650 

covered due to the insufficient data required for calibration. Nevertheless, the ranges of environmental conditions (Table 

1Table 1, Figure 1Figure 1) covered by our data included also extreme sites and seem to represent the natural distribution of 

European beech (Pagan, 1996) well. To ensure more robust calibration results, more balanced geographical coverage, more 

long-term data of multiple variables of interests at individual sites, and a combination of the information about stocks and 

fluxes at same sites would be required. 655 

4.3. Trends in parameters 

4.3.1 Covariance between parameters 

The covariance analysis between parameters found correlations of different magnitudes indicating that in most cases the 

parameters were not independent. The revealed significant negative linear relationship between the site-specific values of the 

canopy light extinction coefficient (CLEC) and the maximum stomatal conductance (MSC, Figure 8Figure 8) suggested that 660 

low values of CLEC should be coupled with high values of MSC and vice versa. However, we have not found any empirical 

evidence in the literature to confirm or refute the revealed relationship between CLEC and MSC, and therefore it is not clear 

if the revealed pattern is biologically realistic, or if it is only a side effect of the calibration procedure. Due to this, we did not 

incorporate this relationship into the calibration procedure. Another strong (R=0.7) though a non-significant relationship was 

revealed between nitrogen fixation (Nfix) and fraction of leaf nitrogen in Rubisco (FLNR, Figure 8Figure 8). Examining this 665 

relationship in more detail revealed a non-linear pattern between the two parameters resembling a parabolic curve reaching a 

maximum of FLNR in the middle of Nfix range (Fig. S10). Similarly as for the previous relationship, we have not found any 

empirical research dealing with the presented issue although the study by (Tang et al., (2019) analysing different species in 

subtropical ecosystems suggests that nitrogen fixing trees allocate lower fractions of N to Rubisco than non-nitrogen fixing 
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trees. The FLNR values of different Eucalyptus species published by (Warren and Adams, (2004) do not show any significant 670 

trend with the increasing nitrogen amount. The global study by (Luo, 2021) showed that FLNR is considerably affected by 

climate and soil factors, including light, atmospheric dryness, soil pH, and sand content. Based on these results, nitrogen 

fixation does not seem to be directly related to FLNR. Nevertheless, the environmental conditions that affect nitrogen 

availability can indirectly influence how nitrogen is allocated within the leaf, including Rubisco, suggesting a complex 

relationship between them. Still, the pattern of the relationship between FLNR and Nfix across one tree species in temperate 675 

ecosystems remains unclear.  

Our results indicate the necessity of analysing the covariance between parameters during a model calibration as it not only 

enlightens the model behaviour and interdependencies between specific parameters but can also increase the efficiency of the 

calibration procedure by excluding one of the correlated parameters from the calibrated parameter set and estimating its value 

only subsequently. In addition, such information may also help to identify the gaps in the available empirical evidence and the 680 

direction of future empirical research.  

 

 

4.3.2 Parameter correlations with site characteristics 

 685 

The analysis of the variation of the optimised site-specific values of parameters across environmental gradients revealed some 

significant trends (see Figure 8Figure 8, Fig. S9Fig. A9). This may indicate that a specific parameter should not be kept as a 

constant but rather as a characteristic that changes depending on driving conditions. An example of such a parameter is the 

canopy light extinction coefficient (CLEC) that specifies the proportion of solar radiation intercepted in the canopy. A number 

of process-based models that use this parameter set its value around 0.5, while some models differentiate values between 690 

different species (Zhang et al., 2014). Based on our multi-objective optimisation for beech ecosystems we set the MSMV value 

of CLEC to 0.66, which is by 10 % higher than the value used by Pietsch et al. (2005) in the original Biome-BGC model for 

beech (0.6), but it is within the range for broadleaved forests reported by Zhang et al. (2014).  

Although most models keep this parameter constant across sites and throughout their simulations (Liu et al., 2021; Zhang et 

al., 2014), in reality its value changes during a day as well as during a year as it depends on the solar zenith angle, leaf area, 695 

leaf inclined angle, and leaf clumping (Parker, 2020; Wang et al., 2004; Zhang et al., 2014). It also changes with stand age, 

while it reaches its maximum in young stands (Brown and Parker, 1994). A constant value of CLEC causes intra-annual errors 

in estimations of plant transpiration and soil evaporation during a year (Tahiri et al., 2006). Due to this, a variable CLEC seems 

to be a more appropriate option. Our analysis revealed significant trends in the SSMV optimised values of CLEC with multiple 

environmental characteristics, while the trends with elevation and precipitation were positive, and with temperature and VPD 700 

negative (Figure 8Figure 8). Such patterns were not observed in other studies analysing measured data of CLEC, but the 
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number of tested observations was low (Zhang et al., 2014) as it was also in our case. Nevertheless, the empirical data showed 

that CLEC increases with the decreasing plant density (Timlin et al., 2014) and LAI (Zhang et al., 2014). Since our model 

operates at a stand level, stand biomass can be considered as a proxy of stand density. Our results showed the decreasing trend 

of CLEC with the increasing aboveground wood carbon stock (Fig. S11Fig. A10), which is in agreement with (Timlin et al., 705 

(2014). Moreover, the simulated AbgwC of calibration sites decreased along the elevational gradient (Fig. S11Fig. A10) 

explaining the positive correlation of CLEC to elevation, which can be considered as a side effect of stand density that is lower 

at high elevations.  

Tahiri et al. (2006) successfully applied a simple empirical approach using a linear regression with leaf area. Parker (2020) 

calculated CLEC as a ratio between the effective LAI and the total LAI. CLEC is usually calculated following the simplified 710 

Beer Lambert law as a function of above- and below-canopy solar radiation and leaf area (Zhang et al., 2014). A more 

sophisticated approach includes the solar zenith angle and the clumping index. Some models also use the inclination angle of 

leaves, while most commonly the spherical distribution of leaves is assumed (Liu et al., 2021), although Pisek et al. (2013) 

found that tree species in temperate and boreal regions are usually characterised by planophile or plagiophile leaf angle 

distribution. 715 

Although we derived several multiple linear regressions explaining the variation in site-specific CLEC values using different 

combinations of environmental predictors (Fig. S15Fig. A14), the simulations with varying CLEC based on environmental 

conditions did not produce satisfactory results (33 % and 27 % of all and calibration sites collapsed if simulated with CLEC 

derived from its regression to annual precipitation, respectively). The possible reason is the existence of interdependencies 

between parameters discussed in Sect. 4.3.1.  720 

We revealed a significant negative linear relationship between site-specific CLEC and the maximum stomatal conductance 

(MSC, Figure 6), suggesting that low values of CLEC should be coupled with high values of MSC and vice versa. Hence, 

changing the value of one parameter should be coupled with the modification of the value of another parameter. However, we 

have not found any empirical evidence in the literature to confirm or refute the revealed relationship between CLEC and MSC, 

and therefore it is not clear if the revealed pattern is realistic, or if it is only a side effect of the calibration procedure.  725 

Moreover, we found that MSC was also significantly related to environmental conditions, namely VPD (Figure 8Figure 8). 

MSC specifies the highest possible rate at which stomata can open and allow the exchange of gases between the plant and the 

environment under present-day CO2 concentration and optimal environmental conditions, i.e. maximum radiation, and 

unlimited water availability, when VPD is zero, and there is no soil water stress. Such conditions rarely occur in the field, and 

hence, the observed maximum conductance, which represents the highest conductance on fully expanded leaves that was 730 

measured during the summer growing season (Murray et al., 2019), does not usually reach the theoretical maximum (McElwain 

et al., 2016). The theoretical MSC can be derived from leaf anatomy, namely stomatal density, maximum stomatal pore area 

and stomatal pore depth (McElwain et al., 2016; Murray et al., 2020). The SSMV optimised values of MSC were found to be 

positively related to the long-term mean VPD (Figure 8Figure 8), which decreases with elevation, whereas the stomatal 
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conductance as well as stomatal characteristics specifying MSC usually increase with elevation (Bresson et al., 2011; Petrik 735 

et al., 2022). In line with this, the studies from temperate European ecosystems reported an inverse relationship between the 

stomatal conductance and VPD (Körner, 1995; Urban et al., 2017). Similarly, the site-specific values of another 

ecophysiological parameter representing the stomata closure (VPDC, i.e. the vapour pressure deficit causing the complete 

conductance reduction) were found to be significantly negatively related to elevation (Figure 8Figure 8), while the empirical 

studies did not reveal any differences in the onset of stomatal closure along an elevational gradient (Körner and Cochrane, 740 

1985). Hence, we assume that the revealed correlations in our data are by-products of the site-specific calibrations.  

Due to the above above-stated inconsistencies, and the lack of data and supporting information, we decided not to apply the 

dynamically changing CLEC, MSC and/or VPDC along environmental gradients. However, this approach may be considered 

as a potential way forward in a future model development when more scientific knowledge becomes available. Nonetheless, 

our results pointed out that for simulations at a local level, some parameters may need site-specific values. Such a hybrid 745 

approach of using a combination of general and site-specific parameters, which was already applied by e.g. (Thornton et al., 

(2002), may be beneficial to reduce the uncertainty of local predictions. Since the values of many of the parameters are usually 

not measured at research plots, global trait databases, such as TRY (Kattge et al., 2020) or the ones by Liu et al. (2023); Maire 

et al. (2015); Lin et al. (2015), might be useful to estimate the local values for a specific site and species considering site-

specific environmental conditions. Naturally, the best solution for any local study is to obtain measurements of required 750 

parameters from specific sites, which is however not always feasible due to time and financial restrictions.  

 

4.4. Robustness and plausibility tests of simulated outputs at a large scale  

4.4.1 Carbon stock in soil 

Soil carbon represents a large storage of terrestrial carbon (Amundson, 2001) accounting for approximately a half of total 755 

forest ecosystem carbon (Domke et al., 2017; Jobbágy and Jackson, 2000). A similar proportion was also revealed in the output 

of our simulations (median= 47.7 %, mean=51.5 %, 1st Qu.= 32.6%, 3rd Qu.=69.9 %). The absolute values of simulated 

carbon stock in soil per unit area occurred within the range of soil organic carbon (SOC) reported by empirical studies (De 

Vos and Cools, 2011; 2010; Wellbrock et al., 2016; Wellbrock and Bolte, 2019), although the variability of simulated values 

was lower (Fig. S13Fig. A 12). The mean value of the simulated SoilC (Min.=7.9,  1st Qu.=12.1,  Median = 13.3, Mean = 760 

13.1, 3rd Qu. = 14.4, Max. =17.0 kgC m-2) was similar to the mean values observed in European beech forest stands (e.g. 

Meier and Leuschner, 2010; Mund, 2004).  

The site-specific simulated SoilC significantly decreased with the increasing air temperature (Figure 11Figure 11), which is 

consistent with the observed patterns in soil carbon stocks from soil profile data along temperature gradients (Hartley et al., 

2021; Jobbágy and Jackson, 2000; Post et al., 1982; Sun et al., 2019; Wang et al., 2013). The impact of temperature was also 765 

apparent in the relationships between the simulated SoilC and elevation or latitude, both of which were significantly positive 
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(Fig. S17Fig. A16). The increasing trend of SoilC with latitude matched the trend of soil carbon stock found in temperate 

regions of the northern hemisphere (Minasny et al., 2014). These trends result from the faster decomposition (Wang et al., 

2013) and hence the microbial soil respiration as the temperature increases (Cao et al., 2019; Rodeghiero and Cescatti, 2005; 

Sun et al., 2019), the pattern that was found significant (r=0.33, t = 3.15, p-value = 0.002, 95 % CI = 0.12, 0.51) also in our 770 

simulated output (Fig. A18Fig. S19a).  

Unlike the increasing trend of SOC with the increasing precipitation reported in the literature (Jobbágy and Jackson, 2000; 

Post et al., 1982), the simulated SoilC was not significantly related to the precipitation amount (Fig. S19Fig. A18b). In general, 

the impact of precipitation on SOC changes depending on whether the examined ecosystems are water-limited (Wiesmeier et 

al., 2019). The small-scale study of SOC in beech forests in Germany revealed its significant correlation to precipitation (Meier 775 

and Leuschner, 2010), while at high-latitude ecosystems precipitation has only a minor impact on SOC stock (Devos et al., 

2022). Our study includes a much wider variety of environmental conditions including different temperature ranges, soil 

depths, and soil textures than the study of Meier and Leuschner (2010), which may mask the relationship between SoilC and 

precipitation. Unfortunately, we could not derive the regional relationships between measured SOC and environmental 

characteristics from our dataset due to the lack of data on soil carbon stock at all plots. Hence, we performed only plausibility 780 

tests with modelled values and compared the revealed trends with those reported in published papers from elsewhere. 

When we checked the relationship of simulated SoilC to soil characteristics, we found the opposite trend of SoilC with the 

increasing clay content (Figure 11Figure 11) to the one reported in the literature based on soil measurements (Hartley et al., 

2021; Jobbágy and Jackson, 2000). The fine mineral fraction composed of medium to fine silt particles and clay is known to 

have a stabilisation effect on SOC (Hartley et al., 2021), due to which it is often used as an indicator for SOC storage 785 

(Wiesmeier et al., 2019). However, our model results showed that SoilC decreased with the increasing content of fine particles 

(clay or silt) and increased as sand fraction dominated (Figure 11Figure 11). Under real conditions, higher clay content supports 

the formation of soil aggregates that can save organic matter from decomposers and sequester SOC (Angst et al., 2018; Schmidt 

et al., 2011). In BBGCMuSo this mechanism is not accounted for, as SOC formation is driven solely by temperature and SWC, 

and the litter input (Hidy et al., 2022). Moreover, the data used for our model simulations did not include the full range of clay 790 

content, since the maximum in our database was 56 %, and most site-specific values did not exceed 30 % (median=20 %, 

mean=19.6 %, 3rd quartile = 22 %). When we experimentally increased the clay content in soils of some sites to the maximum 

value (i.e. clay content =100 %), we could see the reversed pattern in the relationship (Fig. A18Fig. S19c). 

Soil acidity enhances the storage of SOC by reducing soil microbial activities driving the decomposition of soil organic matter 

(Funakawa et al., 2014). The new BBGCMuSo model includes soil pH as a factor affecting the process of nitrification in soil 795 

layers (Hidy et al., 2022). The observed decreasing trend in the simulated output of SoilC with the increasing pH (Fig. A18Fig. 

S19d) is consistent with the experimental results (Funakawa et al., 2014) confirming the correct implementation of pH impact 

on soil processes in the model.   
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Soil carbon is the result of carbon inputs from vegetation followed by decomposition processes. In the model, decomposition 

is driven by soil temperature and soil water content, which is dependent on the precipitation amount, and water infiltration 800 

driven by soil texture (Hidy et al., 2022). In nature, around 60 % of the variability in soil respiration is explained by soil 

temperature and precipitation (Čater and Ogrinc, 2011). Our simulated output also showed a significantly increasing trend of 

heterotrophic soil respiration with the increasing temperature (Fig. S19Fig. A18g), but the trends with the soil water content 

or   precipitation were insignificant (Fig. A18Fig. S19h,i). Nevertheless, the increase of the simulated soil water content with 

the increasing fraction of clay and the decreasing fraction of sand in soil (Fig. S20Fig. A19) was consistent with the general 805 

knowledge about the impact of soil texture on soil moisture (Kaufmann and Cleveland, 2008). However, the simulated soil 

microbial respiration was found to have an increasing though insignificant trend with the increasing clay proportion (Fig. 

A18Fig. S19e), and a significant decreasing trend with the sand proportion (Fig. A18Fig. S19f). Although these results explain 

the negative correlation between SoilC and clay content, they contradict our expectations based on the evidence from empirical 

studies that suggest that decomposition should be faster in coarse-sized soils (Hartley et al., 2021). In addition, soil respiration 810 

is strongly driven by root biomass (Čater and Ogrinc, 2011), which was also detected in our simulations (Fig. A18Fig. S19j, 

significant Pearson's product-moment correlation between the carbon stock in fine roots and heterotrophic respiration with 

r=0.53, t = 5.74, p-value = 1.45e-07, 95 % CI = (0.36, 0.67)). These findings suggest that while the impact of temperature and 

vegetation on decomposition is captured in the model well, the influence of soil water seems to be insufficient. Without a 

thorough data-based analysis it is however not possible to state if the reason lies in the missing process description in the model 815 

or in the values of decomposition-related parameters. Nevertheless, the last methodological paper presenting Biome-

BGCMuSo (Hidy et al., 2022) also identified decomposition as a process requiring further development. 

Similarly to the reported positive relationship of soil carbon to organic carbon input (Cao et al., 2019; Jobbágy and Jackson, 

2000), our outputs showed that SoilC increased with the increasing vegetation carbon stock (Fig. S19Fig. A18k), although the 

correlation was not significant (Pearson's product-moment correlation r=0.15, t = 1.43, p-value = 0.16, 95 % CI= (-0.06, 0.36)). 820 

In the model direct carbon inputs into soil storage come from the litter (Hidy et al., 2022). The significant positive correlation 

(r=0.89, t=16.79, p-value < 2.2e-16, 95 % CI= (0.82, 0.92)) between the simulated litter and soil carbon stocks (Fig. S19Fig. 

A18l), confirmed that the model captured the carbon flow from vegetation to the soil according to expectations based on 

published field data (Hilli et al., 2010).  In the model, litter is formed by leaf fall, fine root mortality, and defragmentation of 

coarse woody debris (CWD, Hidy et al., 2022). Surprisingly, the relationships of simulated SoilC to the annual amount of 825 

carbon in leaves or fine roots were insignificant (Fig. S19Fig. A18m,n), while the correlation of SoilC with CWD was 

significantly positive (Fig. S19Fig. A18o). These results were caused by a much higher amount of accumulated CWD in the 

simulated ecosystem in comparison to the input from leaves or fine roots. Hence CWD represents the main source of carbon 

for soil. In the current model version, the actual amount of CWD results from the accumulation over the whole simulation that 

cannot be reduced by a user, although the usual practice in managed forests has been to remove dead trees during logging 830 

operations for sanitary reasons (Kirby et al., 1998; Paletto et al., 2012). Hence, the actual amount of CWD found in managed 
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forests normally represents only a small fraction of the CWD stock of what can be found in nature reserves (Christensen et al., 

2005). To make the ecosystem development under the human influence more realistic, the future model version will include 

the possibility to simulate the extraction of CWD or its part from the system at any time during the normal run simulation. 

4.4.2 Carbon stock in litter 835 

The absolute values of simulated carbon stock in litter (Min.= 0.33, 1st Qu.= 0.53, Median=  0.59, Mean =   0.61, 3rd Qu. =   

0.68, Max. = 1.07 kgC m-2) were consistent with the litter carbon stock reported from beech forests in Europe (Meier and 

Leuschner, 2010; Mund, 2004; Vesterdal et al., 2008). The litter amount represented approximately 2.5 % of the total 

ecosystem carbon (Min.= 0.6, 1st Qu.= 1.4, Median = 2.2, Mean= 2.5, 3rd Qu.= 3.7, Max.= 9.8 %), which is lower than the 

relative mean litter C stock reported globally (5 % based on Pan et al. (2011)) or for the U.S.A. (7 %, Domke et al., 2016). 840 

Such a relatively small amount of organic litter is typical for temperate hardwood forests on fertile soils (BMELF, 1997).  

We revealed similar trends of LitterC along environmental gradients as for SoilC, e.g. the simulated carbon stock in litter 

significantly decreased with the increasing temperature since the heterotrophic respiration also increases along the temperature 

gradient (Sun et al., 2019). Similar trends were also found with elevation, and latitude, as well as with soil characteristics (Fig. 

S17Fig. A16 and Fig. S18Fig. A17). The decreasing trends of simulated LitterC with the increasing pH, clay and silt proportion 845 

in soil and with the decreasing content of coarse sand were consistent with the trends derived from field measurements 

(Vesterdal and Raulund-Rasmussen, 1998). Based on the empirical evidence by Meier and Leuschner (2010), fine root biomass 

is the major factor affecting carbon stock in litter. However, our analysis did not reveal a significant relationship between 

carbon stock in fine roots and litter (Fig. S19Fig. A18p) probably due to the differences in the perception of the term “litter” 

in the model and in empirical studies. Vesterdal and Raulund-Rasmussen (1998) also found significant correlations of LitterC 850 

to the soil content of other chemical elements (P, Ca, K, Mg), which are not included in our model and in most available 

models of vegetation dynamics (Merganičová et al., 2019). Nevertheless, due to the ongoing climate change including the 

dynamics of other nutrients in models may become more important especially if they represent limiting factors for ecosystems 

(Zaehle, 2013). 

 855 

4.4.3 Carbon stock in aboveground wood biomass 

The accumulated carbon stock in wood biomass strongly depends on the forest age or the forest developmental phase. Due to 

this we first compared the absolute values of AbgwC at the end of spinup simulations to the stock observed in over-aged and 

old-growth beech forests (Barna et al., 2011). The absolute values occurred within the reported range, although the variability 

of simulated values was substantially lower than in the observed ones (Fig. S13Fig. A 12). On average, around 40 % of total 860 

ecosystem carbon was fixed in simulated AbgwC (1st Qu.=21.6, Median=43.5, Mean=39.9, 3rd Qu.=57.9, Max.=78.7 %), 

similarly as reported from temperate European forest ecosystems (Wellbrock et al., 2017). 
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Simulated values of AbgwC exhibited a parabolic relationship to elevation and temperature, with maximum values at 

elevations of around 500 - 600 m a.s.l., and a mean annual air temperature of approximately 9°C (Figure 11Figure 11). These 

results coincide with optimum growth conditions for beech reported in the literature, based on which beech growth optimum 865 

occurs between 450 and 900 m a.s.l. (Schieber et al., 2013), and at sites with a mean annual temperature of 7 to 10°C 

(Czajkowski et al., 2006; Pagan, 1996; Paule, 1995). The literature also suggests the optimum annual precipitation total for 

beech from 700 to 1,000 mm (Czajkowski et al., 2006; Paule, 1995), but the relationship of the simulated AbgwC with 

precipitation explained only 5 % of AbgwC variability. Nevertheless, the unimodal relationship of AbgwC with VPD revealed 

the maximum AbgwC at around 530 Pa of VPD (Figure 11Figure 11), which falls within the optimum VPD range for plant 870 

growth (500 to 1,200 Pa) (Noh and Lee, 2022). Although empirical studies reported an inverse relationship of beech production 

to VPD (Lendzion and Leuschner, 2008; Roibu et al., 2022; Tumajer et al., 2022),  they focus on short-term changes, whereas 

in our analysis we used a long-term mean VPD characterising overall site conditions. Already Leuschner (2002) showed in his 

experiment that the prevailing VPD during the plant development determines the growth potential of plants under the 

conditions of Central Europe. The laboratory experiment by Lihavainen et al. (2016) revealed that the effect of VPD changes 875 

in time. While the initial reduction of VPD to low values caused an acceleration in the growth rate of silver birch, the effect 

diminished in time due to nitrogen limitation (Lihavainen et al., 2016). Since VPD seems to have a more profound effect on 

an intra-annual growth of broadleaved tree species than temperature (Tumajer et al., 2022), more research is required to clarify 

the impacts at different temporal levels.  

The simulated AbgwC trend along the soil gradient was consistent with the empirical knowledge about optimum soil conditions 880 

for beech. Beech prefers well-drained soils and does not tolerate wet clay soils. It frequently occurs on loamy or sandy-loamy 

soils (Packham et al., 2012), on which the simulated AbgwC was the highest (Fig. S20Fig. A19). Loams are the most 

productive soils because of their moderate soil texture due to which they are able to hold a large amount of water available for 

plants (Kolb, 2022). Soil texture also affects fine root production, e.g. Weemstra et al. (2017) observed significantly higher 

fine root biomass on sand than on clay. We did not reveal such a trend in our simulation outputs (Fig. S19Fig. A18q, Pearson's 885 

product-moment correlation r=0.11, t = 1.0, df = 82, p-value = 0.32, 95 % CI= (-0.11, 0.32)) because C allocation in the model 

is fixed and does not depend on soil texture. Although beech forests grow on soils with a large range of pH from 3.5 to 8.5 

(Packham et al., 2012), the optimum values at which the maximum biomass production is achieved fluctuate between 5.5. and 

6 (Pagan, 1994). The pH of the plots in our database varied between 3.69 and 7.5 (1st Qu.= 5.1, Median = 5.2, Mean = 5.6, 

3rd Qu. =  6.4), but we did not reveal a significant trend in AbgwC with pH in the simulated output (Fig. S19Fig. A18r). 890 

 

4.5. Future model development 

Model structural uncertainty and parameter uncertainty are not distinguishable. Inevitable structural uncertainties exist in 

Biome-BGCMuSo and essentially in all other process-based models, which means that the processes are simplified, and some 

internal processes can compensate each other. We typically call this phenomenon as getting good results for wrong reasons. 895 
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The variability in output data along the gradients of individual characteristics indicates the complex nature of the model and 

the combined impact of multiple environmental and ecosystem conditions on the final state of the system. In general, we can 

say that the model output behaves according to well-known natural rules along environmental gradients. The revealed 

discrepancies are of lesser importance and point out at the issues in the model that should be dealt with in the future model 

development. Water seems to play a minor role in modifying the simulated carbon-related output, but this requires more 900 

thorough tests using data capturing the water cycle that were not used in the current study. Similarly, Tthe impact of soil texture 

might needs to be examined in more detail to drive the conclusion. Moreover, there are environmental characteristics which 

are not accounted for in the current model but may explain the differences between the observed and modelled trends in soil 

carbon stock, e.g. parent rock material (Wiesmeier et al., 2019), or the proportion of coarse rock fragments in soil, which that 

may substantially influence soil properties, such as water holding capacity and movement, plant growth and decomposition 905 

processes (Poesen and Lavee, 1994). In the current study we have not addressed these issues due to the lack of field 

observations.  

Similarly, the relationships between individual output variables representing the carbon cycle are in general consistent with 

the empirically based knowledge. Including the possibility of CWD removal from an ecosystem due to management 

interventions will enable more realistic simulations of managed forests and should also result in better capturing the 910 

relationships between SoilC and carbon in foliage or fine roots.  

Carbon cycling in simulated forest ecosystems is primarily driven by allocation, respiration, mortality, and decomposition. 

 Although in the model, a forest is represented by two leaves, one sunlit and one shaded one, this has implications only on the 

calculations of photosynthesis, while the other processes are not separated between the two parts. Due to this, the parameter 

called the ratio of shaded specific leaf area (SLA) to sunlit SLA did not currently have a substantial effect on the examined 915 

carbon stocks, especially in aboveground wood (Table 1). Future model development could account for the differences in 

respiration and allocation proportions and mortality of overstorey and understorey. This would enhance the model applicability 

to simulate the development of two-storeyed forests and should also increase the variability of model output due to the 

differences in the growth efficiency between the forest storeys.  

Another limitation is the fixed C allocation over the whole simulated period driven by species-specific C allocation parameters. 920 

This approach is the simplest one (Merganičová et al., 2019) and was found sufficient when simulating short-term dynamics 

of ecosystems. However, for multi-site simulations covering long-term dynamics, a fixed C allocation may lead to bias in 

model output at certain sites or during certain developmental phases of forests, which may require site-specific or phase-

specific parameter values.  

Other structural improvements needed in Biome-BGCMuSo include improved N cycle and consideration of additional SOC 925 

decomposition mass flows including root exudates, priming and litter decomposition to avoid the bias in the estimated 

parameters. It is a major challenge to the community, and it is not foreseen that the parameter estimation will ever be free from 

errors.  
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 930 

5. Conclusion 

The work presents a novel multi-objective calibration approach that uses the generalised likelihood uncertainty estimation 

method, plausibility checks of output variables, and intersection principles. The proposed multi-objective calibration approach 

solves the problems of model overfitting, calibration efficiency, spatial heterogeneity, and quantity and quality of available 

data. The sensitivity results highlighted the need for the multivariate approach, as the impact rates of parameters and the trends 935 

of changes differed between the selected output variables. The integration of the plausibility checks of model outputs ensures 

the realism of simulated ecosystems. The most important advantage of the presented method is the fact that it considers the 

environmental dependency of model ecophysiological parameters in a spatial context. Moreover, the approach is also usable 

to select site (environment) invariant parameters, that are globally applicable. Another advantage compared to traditional 

Bayesian or frequentist methods is the plausibility check of the optimised parameters and their ranges, for which global 940 

databases on plant traits play a crucial role. The solution improves the reliability of the optimisation and may be generally 

applicable to any process-based models of ecosystem dynamics. Such models heavily rely on how they characterize the 

underlying ecosystem. The process is crucial for every modelling application, and it is considered as one of the main 

challenges, because of its vast computational, and data need.  

The method includes the multi-dimensional sensitivity analysis used as a basis for the selection of parameters for calibration. 945 

The sensitivity results highlighted the need for the multivariate approach, as the impact rates of parameters and the trends of 

changes differed between the selected output variables. In addition, the analysis also documented the importance of plausibility 

range checks for parameters, for which global databases on plant traits, such as TRY, play a crucial role.  

The disadvantage of the optimisation method is the possible bias of optimised model parameters that can occur because the 

parameters are forced to specific values during the optimisation process to match the observations and the simulations. This 950 

can be partially avoided by including multiple data into calibration, which represent diverse parts of an ecosystem, such as 

vegetation, litter, and soil, as it was presented in this study, simulated nutrients (in our case it would be carbon, nitrogen, and 

water), and processes. To identify the bias in parameter values, on-site measurements of parameters would be needed. Hence, 

from this point of view, it is worth considering obtaining the information on some plant characteristics, e.g. C:N ratios in 

different ecosystem compartments, FLNR, etc., routinely from research plots.  955 

There is still space for improvements of the optimisation method. In this study the likelihood function did not include the 

uncertainty of the observations, which means a lack of weighting of errors due to their magnitudes. Thus, likelihood can be 

reformulated to include observation uncertainty. Moreover, the method does not currently account for the covariance between 

output variables. This could be done by creating a covariance matrix representing the relationships between the output variables 

from the model simulations and incorporating it into a multivariate likelihood function. Such an approach should provide a 960 



41 
 

more accurate and realistic estimation of the uncertainties associated with the model parameters. On the other hand, including 

covariance will further increase the computational complexity of the method, already characterized by its significant demands. 

The calibration of the model performed at individual sites (SSMV) and multiple sites (MSMV) revealed pros and cons of both 

approaches. Site specific parameter values improved the accuracy of the simulated outputs of interestaboveground wood, soil, 

and litter carbons stocks for the specific sites by 35 %, 55 %, and 11 % in comparison to the a priori parameter set. However, 965 

when using them for different locations, we observed the collapse of the simulations in 47 % of the cases. When applying the 

MSMV parameter values obtained from the multi-site calibration, all simulations were successful, but the errors were on 

average by 26 %, 35 % and 9 % greater for the aboveground wood, soil, and litter carbons stocks than those obtained with the 

SSMV parameter sets. T and thus, are more suitable for local simulation studies, site-specific values of the parameters may be 

more suitable than the generalised parameter set, which is more appropriate for studies covering a larger spatial scale. On the 970 

other hand, the multi-site calibration reduces the spatial heterogeneity due to the “averaging out effect” causing that the average 

model performance will be good, but at specific sites it can be completely wrong. This could be overcome by applying a hybrid 

approach that combines the site-specific and multisite calibration.  

The independent validation, robustness and plausibility tests confirmed the robustness of the multi-site and multivariate 

calibrated set of ecophysiological parameters for the European beech at a regional level. In general, the examined model output 975 

followed well-known natural rules along environmental gradients. The revealed discrepancies were of lesser importance and 

pointed out at the issues in the model structure that can be improved in the future model development. The study also 

highlighted the gaps in the empirical data and knowledge explaining the relationships between parameters, or between 

parameters and environmental conditions, which should be addressed by future research. For future applications, additional 

parameters that were not considered in this study, such as parameters specifying drought-induced mortality, may need to be 980 

calibrated with additional empirical data since the occurrence of extreme events and disturbances has been increasing due to 

the climate change. 

 

Code and data availability. The current version of Biome-BGCMuSo, together with sample input files and a detailed user 

guide, is available from the website of the model at http://nimbus.elte.hu/bbgc/download.html under the GPL-2 license. Biome-985 
BGCMuSo v6 is also available at GitHub: https://github.com/bpbond/Biome-BGC/tree/Biome-BGCMuSo_v6. The exact 

version of the model (v6.2 alpha) used to produce the results in this paper is archived on Zenodo 

(https://doi.org/10.5281/zenodo.5761202; Hidy and Barcza, 2021). The RBBGCMuSo package (Hollós et al., 2023) is 

available at https://github.com/hollorol/RBBGCMuso. Experimental data used in the study are available from ICP Forests 

(http://icp-forests.net/) and from authors that provided the data upon request. The initial data and the code for optimisation are 990 
in the supplement. 
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