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Abstract. Process-based ecosystem models are increasingly important for predicting forest dynamics under future
environmental conditions, which may encompass non-analogous climate coupled with unprecedented disturbance regimes.
However, challenges persist due to the extensive number of model parameters, scarce calibration data, and the trade-offs
between the local precision and the modelwide-ranging-applicability of the model over a wide range. In this paper, we describe

a protocol that allows a modeller to collect transferable ecosystem properties based on ecosystem characteristic criteria and to
compile the parameters that need to be described in the field.

We applied the procedure to develop a new parameterization for the European beech (Fagus sylvatica L.) for the Biome-
BGCMuSo model, the most advanced member of the Biome-BGC family. For model calibration and testing, we utilized
multiyear forest carbon data from 87 plots distributed across five European countries. The initial values of 48 new
ecophysiological parameters were defined based on the literature review. The final values of 6 calibrated parameters were
optimised for single sites as well as for multiple sites using the Generalised Likelihood Uncertainty Estimation and model
output conditioning that ensured plausible simulations based on user-defined ranges of carbon stock output variables (carbon
stock in aboveground wood biomass, soil, and litter) and finding the intersections of site-specific plausible parameter
hyperspaces. To support the model use, we tested the model performance in simulating tree aboveground wood, soil, and litter
carbon across a large geographical gradient of Central Europe and evaluated the trade-offs between parameters tailored to
single plots and parameters estimated using multiple sites.

Our findings indicated that parameter sets derived from single sites provided an improved local accuracy of simulations of
aboveground wood, soil, and litter carbons stocks by 35 %, 55 %, and 11 % in comparison to the a priori parameter set.
However, their broader applicability was very limited. A multi-site optimised parameter set, on the other hand, performed
satisfactorily across the entire geographical domain studied here, including sites not involved in the parameter estimation, but
the errors were on average by 26 %, 35 % and 9 % greater for the aboveground wood, soil, and litter carbons stocks than those
obtained with the site-specific parameter sets. Importantly, model simulations demonstrated plausible responses across large-
scale environmental gradients, featuring a clear production optimum of beech that aligns with empirical studies. These findings
suggest that the model is capable of accurately simulating the dynamics of the European beech across its range and can be

used for more comprehensive experimentations.
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1 Introduction

Complex process-based models (PBMs) simulating the dynamics of vegetation typically contain many parameters specifying

physiology, biochemistry, phenology, and allocation patterns of different vegetation types or species (Cameron et al., 2013;
van Oijen, 2017). Parameter values are estimated based on different field or laboratory measurements, trial-and-error parameter

adjustments or probabilistic methods (Forrester et al., 2021). A comprehensive review of calibration methods can be found in:

Hollos et al., (2022). Thereby, each measurable parameter has its intrinsic-own variability that emerges from environmental
conditions, sampling and measurement errors. Such a value range can be interpreted as a probability distribution or parameter
uncertainty (van Oijen, 2017). Calibration is often applied to narrow the initial parameter ranges and capture regional or local
peculiarities.

The challenges of model characterisation and calibration include Aa selection of most influential variables to be calibrated
using a sensitivity analysis (SA) and coping-with-athe ealibration-equifinality, i.e. a situation when various combinations of
parameter values produce the same results (Beven, 2006).can-challenge-calibration-efforts. To this end, different calibration
approaches, such as trial-and-error parameter adjustments or probabilistic methods (Forrester et al., 2021; Hollos et al., 2022)
including Bayesian methods (Fer et al., 2018; van Oijen, 2017) or the Generalized Likelihood Uncertainty Estimation (GLUE)

3
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(Beven and Binley, 2014) have been proposed. The calibration can focus on one or several variables simultaneously.
Multivariate approaches are generally preferred as they aim to identify parameter values that minimize the differences between
simulated and observed values of multiple variables (Kamali et al., 2022; Wohling et al., 2013). The spatial aspect may be
dealt with in a similar manner. The model calibrated for single sites provides model outputs with a high local accuracy, but
loses the ability to generalize outside the calibration data (Blyth et al., 2011; Kramer et al., 2002; Levins, 1966). Therefore,
introducing advanced calibration designs that are supposed to maintaining a balance between the local accuracy and
generahibywide applicability, and-providing good performance across multiple variables, is needed;-have-been-developed

In this study, we focused on creating a calibration workflow that offers improvements beyond the traditional methods detailed
in {Keenan et al.; (2011), and; Wallach et al.; (2021). For this prurspose we usedaddressed the process-based model Biome-
BGCMuSo (BBGCMusSo, Hidy et al., 2016, 2022, 2012), which is the most rapidly developing member of the Biome-BGC
model family (Thornton, 1998). It simulates the storages and fluxes of carbon, nitrogen and waterthese-elements within and

between the pools. The model has been extensively used in the research of forest ecosystems concerning their productivity
(Kimball et al., 1997; Sever et al., 2017), carbon (Churkina et al., 2003; Ostrogovi¢ Sever et al., 2021; Yan et al., 2016), water
(Pietsch et al., 2003), and nitrogen dynamics (Pietsch et al. 2003; Merganicova, Pietsch, and Hasenauer 2005), including effects
of climate change (Churkina and Running, 2000; Hlasny et al., 2011; Jager et al., 2000; White et al., 1999). The recent
developments of BBGCMuSo included a multilayer soil profile; complex water cycling between soil, vegetation, and
atmosphere; intra-annual phenology; and complex management operations (Hidy et al., 2012, 2016, 2022). However, robust
testing of ecological plausibility and model performance in forest ecosystems as well as the regionally calibrated species-
specific parameter sets are still lacking. These tasks are challenging given the substantial increase in model structural
complexity and the number of parameters, which limits the use of former parameter sets (Pietsch et al., 2005).

The aim of this study is to develop a multi-objective calibration procedure of model parameters that considers balancing the
trade-off between the local precision of model outputs and a broad applicability of parameters, and to perform a comprehensive
model benchmarking of the ecological plausibility of model results across large environmental gradients. We hypothesise that
parameter estimates optimized for single sites are not sufficiently robust to be applied across large geographical space, while

the multi-site optimisation reduces the ability of model output to capture the phenotypical plasticity of vegetation that causes

alterations in plant properties, e.g. allocation ratios between different plant organs in response to environmental conditions

(Gratani, 2014). The proposed method was applied to calibrate ecophysiological parameters of BBGCMuSo v6.2 for the
European beech (Fagus sylvatica L.) to facilitate a large-scale utilization of the model in addressing research questions related
to alterations in species productivity and carbon cycle under different climatic and management scenarios. The findings should

serve as a reference for calibrating other tree species and/or models.
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2. Data and Methods
2.1. Model

Biome-BGCMuso (Hidy et al., 2012, 2016, 2022) is a descendant of Biome-BGC model (Thornton, 1998). It is a
biogeochemical model that simulates cycling of carbon, water, nitrogen, and energy in terrestrial ecosystems_at a daily time
step (Thornton, 1998). Biome-BGC was one of the earliest biogeochemical models that included explicit carbon, water and
nutrient cycles. The represented processes include photosynthesis, evapotranspiration, allocation, respiration, litterfall, and
decomposition (Thornton et al., 2002). These processes are defined for a unit ground area that is considered homogeneous. A

so-called ,,two-leaf” representation, i.e. assuming one sunlit and one shaded leaf to represent stand foliage, is used to simulate

radiation interception, evapotranspiration, and gross primary production for the sunlit and shaded canopy fractions (Thornton
and Rosenbloom 2005). The modelled ecosystem consists of several components representing different plant parts (leaf, stem,
roots), litter, soil, and coarse woody debris. The ecosystem status and dynamics are represented by carbon (C), nitrogen (N)
and water (W) pools and fluxes between the pools. The main pools represent leaf (C, W, N), aboveground wood (C, N), coarse
root (C, N), fine root (C, N), coarse woody debris (C, N), litter (C, N), soil (C, W, N), yield (C, N), standing-dead-biomass (C,
N) cut-down biomass (C, N). BBGCMuSo contains a number of new features including a multilayer soil representation that
allows simulating a-more realistic dynamics of water, carbon and nitrogen across the soil profile; a possibility of using a
dynamic annual mortality rates; adjustable intra-annual allocation driven by phenology; improved representation of
transpiration, soil evaporation, and inorganic nitrogen; and flexible simulation of management operations, including forest
thinning and harvesting (Hidy et al., 2012, 2016, 2022). It can also simulate acclimation to temperature and short-term
temperature dependence of maintenance respiration, drought legacy effects through reduction of non-structural carbohydrate
storage pools, and a CO2 concentration-dependent stomatal conductance (Hidy et al., 2016). The model version 6.2 uses 53
soil-related and 105 ecophysiological parameters (Hidy et al., 2021), of which some are site-specific (e.g. soil depth, soil
texture), while others, such as C:N ratio in different tree compartments, are species-specific. The number of parameters in
BBGCMuSo has been tripled in comparison to the original model Biome-BGC althoughmesthy 17 parameters thanks-te-the
factthat the-medelwas-alse-made-suitable-were specified to allowfer simulations of the-crop functioning_and are not relevant
for forest ecosystems. To perform a simulation, a species or a plant functional type needs to be defined, as well as the

information on site, soil and daily climate data are required. In the case forest ecosystems are to be simulated, stand age, and

the information on past forest management is also used to set up simulations. The model, including its source code, is available

at https://nimbus.elte.hu/bbgc/.

2.2. Data

The dendrometric and environmental data represented 87 forest sites distributed across Central Europe within the distributional
range of European beech (Figure 1Figure-1). The dataset includes sites from the International Co-operative Programme on

Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests, Michel et al., 2018) long-term forest research
5
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plots from thinning trials supervised by different national institutions, and highly-instrumented intensively monitored plots
equipped with weather stations, dendrometers, instruments measuring sap flow, soil water content, etc. (Table S2Fable-A2).
The plots are located in Croatia, Hungary, Slovakia, the Czech Republic, and Poland along an elevation gradient from 20 to
1,325 m a.s.l. Their mean annual precipitation totals vary from 419 to 1,883 mm, mean annual temperatures range from 3.5 to
13.3°C, and soil depths vary between 0.4 and 2 m (Table 1Table-1). Most plots were of a circular shape with a size from 0.09
to 1.05 ha. Forest stands were established between 1787 and 1984, i.e. their age in the year 2022 varied from 38 to 235 years.
Both managed and unmanaged forest stands that originated either from natural or artificial regeneration or a combination of
both, are represented. Time series lengths and the number of observations differed between the sites depending on the year of
plot establishment, and the frequency of re-measurements of tree dimensions. The maximum time series length was 60 years,

and the maximum number of observations in a single time series was 30.
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Figure 1 Distribution of used forest sites across Europe with the forest cover displayed in the background (CORINE Land Cover,
2023), a), and in the climatic space of European beech in Europe derived from Caudullo et al. (2017) and indicated by grey dots, b).
Black dots indicate 87 research sites used for testing model plausibility (realism), red triangles indicate eleven data-rich sites used
for the calibration of the BBGCMuSo model for simulating European beech forests, and blue crosses and diamonds represent eight
validation sites.

Out of the whole data set, 11 beech-dominated sites with the most comprehensive data,—and balanced coverage of the

geographical and environmental spacecoverage; ensuringthateach-countrywasrepresented-by-atleast-onesite;-were used for
model calibration (hereafter referred as calibration sites, see Figure 1Figure-1, Table 1Fable-1). The northern part of the

selected region is underrepresented due to the insufficient data for model calibration at northern sites. Eight beech-dominated

sites with repeated stand measurements covering the full ranges of environmental conditions represented in our database (Table

6



1Table 1) representing-athincluded-countries-were selected to perform an independent model validation (hereafter as validation

sites). All 87 sites were used for testing the plausibility (realism) of simulated model output using the calibrated parameter set

across an extended geographical gradient. The comparison of beech natural distribution ranges (Pagan, 1996) with the covered

170 ranges of latitude, elevation, climatic and soil characteristics suggested that the selected sites should be representative of the

Central European beech population.

175

180 Table 1 Summary of site and forest stand characteristics for the whole data set (All), calibration and validation sets. Climate data

represent a period from 1950 to 2018.

Data set All Calibration Validation
Number of sites 87 11 8
Fagus sylvatica,
Picea abies,

Dominant tree species

Pinus sylvestris,
Quercus spp.

Fagus sylvatica Fagus sylvatica

Site variables

mean (min - max)

Years with observations
Latitude (°)

Longitude (°)

Elevation (m a.s.l.)
Annual precipitation (mm)
Mean temperature (°C)
Soil depth (m)

Plot size (ha)

Stand age (yr)
Aboveground wood carbon (kgC m?)
Soil carbon (kgC m?)
Litter carbon (kgC m-?)

(1990 - 2018)

(N 45.4814 - N 54.559)
(E 14.2736 - E 23.72)
544.2 (20 - 1325)
789 (419 - 1884)
7.75 (3.52 - 13.28)
0.99 (0.4 - 2)
0.31 (0.09 - 1.05)
84 (35 - 232)
8.62 (0.01 - 36.87)
13.31 (1.13 - 16.24)
0.256 (0.086 - 0.344)

(1949 - 2018)

(N 44.8164 - N 50.7349)
(E 14.3000 - E 22.4917)
686.8 (240 - 1325)
1018 (663 — 1884)
7.34 (4.86 - 10.3)

(1990 - 2018)

(N 45.4814 - N 54.5592)
(E 14.2736 - E 19.4701)
502.5 (120 - 1180)
784 (458 - 1592)
8.37 (6.41 - 11.11)

0.92 (0.45 - 2) 0.99 (0.5 - 1.8)
0.45 (0.25 - 1.05) 0.28 (0.09 - 0.84)
118 (64 - 232) 79 (41 - 122)

16.92 (0.03 - 35.87) 16.89 (4.30 - 33.74)
13.21 (1.13 - 16.24) NA
0.256 (0.086 - 0.344) NA

The plot data contain information on site, forest stand structure and development, soil, climate, nitrogen deposition, and

physiological processes (Table S2Fable-A2). Site description data comprise plot coordinates (latitude, longitude), elevation,

185 aspect, and slope. Forest stand data comprise information on tree species composition, stand age, stand structure, data on

7
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individual tree dimensions or mean stand characteristics (e.g. mean diameter at breast height (DBH), mean tree height (H)),
mortality, the applied management and damages. Soil data contain soil depth, texture, pH, nutrient stocks, and indicators of
water regime. If soil information was not available, it was obtained from the Harmonized World Soil Database (HWSD v 1.21)
(FAO, 2012) that provides soil attributes, such as soil depth, soil texture, pH, etc., at a grid cell size of approximately 1km.

Climate data include daily values of minimum and maximum temperature, solar radiation, precipitation, and vapour pressure

deficit (VPD). They were compiled from different data sources including ;—observationsed at individual sites, nearby

meteorological stations, or if no local data were available takenfrom-the E-OBS gridded dataset providing daily minimum,
maximum temperature, and precipitation with 0.1 deg. Resolution_was used (Cornes et al., 2018). The climate data cover a
period from 1950 to 2018. To cope with the varying climate data availability aton the sites, we combined the on-site
measurements with the E-OBS data. The MTCIlim model (Hungerford et al., 1989) was used to extrapolate the climate time
series from the nearest E-OBS grid cell to account for the elevation difference between the cell and the site, and to calculate
daylight values of mean temperature, vapeurpressure-deficit-{\VPD), solar radiation, and daylength at individual sites.

Annual CO2 data were taken from Mauna Loa observations (Keeling et al., 1976). Since nitrogen deposition data were directly

available only for ICP Forests plots, they were taken from Tian et al. (2018) for the remaining sites.

Data about site, soil texture, pH, stand age, management, nitrogen deposition, CO2 concentration and daily climate data were
used as model input to run site-specific simulations. Model calibration and validation was based on carbon stocks in
aboveground wood, litter and soil (AbgwC, SoilC, LitterC). AbgwC was derived from dendrometric characteristics of
individual trees by calculating the total aboveground wood volume using species-specific two-parameter regressions by Petras
and Pajtik (1991) that was subsequently converted to carbon stock using the species-specific basic wood density from Mergani¢
etal. (2017, 570 kg m for beech) and 50 % carbon content in biomass (IPCC, 2003).

2.3 Simulation design

Simulations of forest ecosystem dynamics at each site were performed with BBGCMusSo v6.2 in three steps: (1) spin-up run,
(2) transient run, and (3) normal run (Hidy et al., 2021). Spin-up was performed with a constant CO2 concentration and nitrogen
deposition equal to the pre-industrial values of 277.15 ppm and 0.002 kgN m-2 year?, respectively. During the transient run,
annual values of CO2 concentration and nitrogen deposition increased from their pre-industrial to the current values. The
transient run started in 1850 and lasted until the year preceding the establishment of the current stand. Hence, the length of the
transient run varied between sites, and it was used only for the simulations of the stands established after 1850, while the
maximum length of the transient run was 134 years. Both spin-up and transient runs were performed with no management, no
fire-induced mortality, and constant natural (background) mortality.

The normal run was driven by the temporally varying CO2 and N-deposition, and included management reconstructed based
on forest inventory records or yield tables, if no site-specific information on management interventions was available. The

normal run simulations started at stand age 0 (i.e., the year of stand establishment) and continued to the present day; i.e. the

8
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simulation length equalled the actual stand age. In simulation year 1, a clearcut was applied followed by the removal of 90 %
of the aboveground woody biomass accumulated during the spin-up and transient runs, with all non-woody biomass, i.e.
foliage, remaining in the stand. Natural mortality was changing annually (Fig. S1Fig—A%). In the first 30 years after the stand
establishment, natural mortality rates followed a decreasing exponential function with the highest annual mortality rate one
year after the stand establishment and subsequent gradual reduction over time, resembling the survival rates of regeneration
from experimental studies focusing on beech (Barna et al., 2011; Hiilsmann et al., 2018). After 30 years, we used a constant
annual mortality rate of 0.9 % (Pajtik et al. 2018; Vanoni et al. 2019) to simulate managed forests, while unmanaged sites were
simulated using the dynamic natural mortality rates that fluctuated between 0.76 and 4.1 % during a cycle of 300 years and

followed the elliptical function (Mergani¢ova and Mergani¢, 2014).

2.4. Parameter estimation

The estimation of model parameters (i.e. model calibration) consisted of several phases (Figure 2Figure-2) described below.
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the multi-objective calibration approach.

2.4.1. A priori parameter setting

Figure 2 A general workflow used for optimising values of ecophysiological parameters of BBGCMuSo for the European beech using

35 Prior to the calibration of model parameters, the default or a priori parameter values were set (\WS1 phase in Figure 2Figure

2). The initially defined set (called “First” in Table 2Fable-2) was defined based on values of 40 ecophysiological parameters

included in previous model versions taken from Pietsch et al. (2005) and the values of new 48 parameters, which were

introduced in the latest model version, were set based on the literature review and the TRY database (Kattge et al., 2020). This

set was used for first simulations of all 87 sites to examine the successfulness of simulated development. UnderaBy successful
P40 simulation we understand a simulation from spin-up until the end of normal run, during which the ecosystem existence-stability
was maintained, i.e. during the spin-up run, carbon stock in vegetation and soil was accumulated until they reached a balanced
state, and the development during the normal run simulation maintained the ecesystem-vegetation existence in the model.

Based on the results of unsuccessful simulations at specific sites, we identified potential parameters the values of which may

have causeds of-the problems, such as insufficient water or nitrogen supply during simulations resulting in the cessation of

successfulness rate of simulations and an a priori parameter set (called “A priori” in Table 2Fable-2).

10

P45 vegetation existence, and changed respective parameters using the trial-and-error approach until we obtained 100 %
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Table 2 List of parameters that were tested and modified during the calibration of Biome-BGCMuSo for Fagus sylvatica L. Min =
Minimum and Max = maximum values represent parameter ranges used for sensitivity analysis and optimisation, Local Sensitivity
presents the values of the sensitivity index per output variable (carbon stock in aboveground wood, soil, and litter labelled as AbgwC,
SoilC, and LitterC) calculated following Hoffman and Gardner (1983), the column named “First” is the very first setting for beech
that we used based on the species-specific values derived for Biome-BGC by Pietsch et al. (2005) in italics and the literature review,
while “A priori” is the setting that led to successful simulations of all 87 sites in the database before parameter optimisation (result
of WS1 phase in Figure 2Figure-2), “MSMV optimised” is the multi-site multivariate calibrated parameter set (result of WWS4d phase
in Figure 2Figure2) based on 11 calibration sites and 3 output variables. Calibrated parameters are indicated with grey background.

Parameter Tested range Local sensitivity Parameter set
Name Abbreviation Unit Min Max AbgwC SoilC LitterC First A priori MSMV
Transfer growth period as fraction of growing season GP dim 0.05 0.3 0.005 0.073 0.003 0.2 0.2 0.2
Litterfall as fraction of growing season LP dim 0.2 0.6 0.002 0.027 0.001 0.2 0.2 0.2
Base temperature T_base °C 0 7 0 0 0 5 5 5
Annual live wood turnover fraction WTF dim 0.5 1 0.00002 0.00026 0.00001 0.7 0.7 0.7
Annual fire mortality fraction FM dim 0 1 0.078 0.716 0.008 0 0 0
Whole-plant mortality fraction in vegetation period WPM dim 0 0.1 0.996 0.493 0.006 0.005 0.005 0.005
C:N of leaves CN_lv kgC kgN* 16.5 40 0.017 0.183 0.004 26.9 26.9 26.9
C:N of leaf litter, after retranslocation CN_Li kgC kgN* 10 114 0.0002 0.015 0.178 44 44 44
C:N of fine roots CN_ro kgC kgN* 10 75.8 0.005 0.054 0.007 47.6 47.6 47.6
C:N of live wood CN_lw kgC kgN* 17 100 0.004 0.041 0.001 50 50 50
C:N of dead wood CN_dw kgC kgN* 300 819 0.00002 0.0002 0.005 550 550 550
Leaf litter labile proportion LLaP dim 0.1 0.6 0.00002 0.111 0.004 0.124 0.124 0.124
Leaf litter cellulose proportion LCeP dim 0.1 0.7 0.00002 0.157 0.004 0.561 0.561 0.561
Fine root labile proportion RLaP dim 0.1 0.6 0.00002 0.067 0.003 0.34 0.34 0.34
Fine root cellulose proportion RCeP dim 0.1 0.6 0.00003 0.080 0.002 0.44 0.44 0.44
Dead wood cellulose proportion WCeP dim 0.5 0.9 0.00004 0.361 0.376 0.77 0.77 0.77
Canopy water interception coefficient cwic mmLAItd?t 0.01 0.063 0.003 0.017 0.011 0.034 0.034 0.034
Canopy light extinction coefficient CLEC dim 0.3 0.7 0.012 0.136 0.004 0.6 0.6 0.6616
All-sided to projected leaf area ratio SLA:PA dim 1.5 25 0.0007 0.001 0.00002 2 2 2
Ratio of shaded SLA:sunlit SLA shSLA:suSLA dim 0.2 5 0.073 0.568 0.004 2 2 2
Fraction of leaf N in Rubisco FLNR dim 0.1 0.3 0.008 0.087 0.003 0.162 0.162 0.1383
Maximum stomatal conductance (projected area basis) MSC ms? 0.001 0.009 0.088 0.925 0.020 0.006 0.005 0.0051
Cuticular conductance (projected area basis) cC ms? 0.00001 0.0001 0.001 0.011 0.000 0.00006 0.00006 0.00006
Boundary layer conductance (projected area basis) BLC ms? 0.01 0.09 0.005 0.076 0.002 0.01 0.01 0.01
Maximum depth of rooting zone MRD m 0.2 4.1 0.001 0.021 0.003 2 2 2
Root distribution parameter rootDistr dim 0.5 4 0.001 0.088 0.123 3.67 15 15
Growth resp per unit of C grown GRC dim 0.1 0.5 0.020 0.216 0.016 0.3 0.3 0.3
Maintenance respiration in kgC/day per kg of tissue N MRperN kgC kgN1d* 0.1 0.4 0.091 0.902 0.023 0.218 0.218 0.218
Theoretical maximum proportion of non-structural and structural carbohydrates NSC:SCmax dim 0.05 0.3  0.0001  0.0004 0.00001 0.1 0.1 0.1
Proportion of non-structural carbohydrates available for maintanance respiration ~ NSC2MR dim 0.1 0.5 0.00002 0.00011 0.000008 0.3 0.3 0.3
Symbiotic+asymbiotic fixation of N Nfix kgN m2yrt 0.0001 0.01 0.046 0.494 0.991 0.0005 0.01 0.0091
Time delay for temperature in photosynthesis acclimation tau day 0 50 0.0003 0.0035 0.0001 10 10 10
Volumetric water content ratio to calculate soil moisture limit 1 VW(Cratio_lim1 dim 0.1 0.9 0.004 0.067 0.002 0.99 0.1 0.1
Volumetric water content ratio to calculate soil moisture limit 2 VWCratio_limit2  dim 0.5 1 0.0001 0.0049 0.0021 0.99 0.99 0.99
Minimum of soil moisture limit2 multiplicator (full anoxic stress value) min_soilstress2  dim 0 1 0 0 0 0.4 0.4 0.4
Vapor pressure deficit: start of conductance reduction VPDS Pa 500 1500 0.005 0.079 0.003 600 600 600
Vapor pressure deficit: complete conductance reduction VPDC Pa 1500 3500 0.080 0.783 0.009 3000 3000 2910
Maximum senescence mortality coefficient of aboveground plant material SMCA dim 0 0.01 0 0 0 0.001 0 0
Maximum senescence mortality coefficient of belowground plant material SMCB dim 0 0.01 0.0001 0.001 0.00002 0.001 0 0
Maximum senescence mortality coefficient of non-structured plant material SMCL dim 0 0.01 0.003 0.079 0.004  0.0001 0 0
Lower limit extreme high temperature effect on senescence mortality SNSC_ext1 °C 30 40 0 0 0 30 30 30
Upper limit extreme high temperature effect on senescence mortality SNSC_ext2 °C 30 50 0 0 0 40 40 40
Turnover rate of wilted standing biomass to litter TRWB dim 0.01 0.1 0 0 0 0.01 0.01 0.01
Turnover rate of non-woody cut-down biomass to litter TRCN dim 0.01 0.1 0 0 0 0.05 0.01 0.01
Turnover rate of woody cut-down biomass to litter TRCW dim 0.0001 0.1 0 0 0 0.01 0.0009 0.0009
Drought tolerance parameter DSWScirt nday 0 100 0 0 0 30 100 100
Effect of soilstress factor on photosynthesis Sseff dim 0 0.4 0.006 0.066 0.002 0 0 0
Leaf carbon allocation proportion dim - - 0.173 0.173 0.173
Fine root carbon allocation proportion dim - - 0.094 0.094 0.094
Live woody stem carbon allocation proportion dim - - 0.101 0.101 0.101
Dead woody stem carbon allocation proportion dim - - 0.556 0.556 0.556
Live coarse root carbon allocation proportion dim - - 0.012 0.012 0.012
Dead coarse root carbon allocation proportion dim - - 0.064 0.064 0.064
Canopy average specific leaf area (projected area basis) m2kgC* - - 48 34.5 34.5
Canopy growth proportion dim - - 0.5 0.5 0.5
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2.4.2. Sensitivity analysis

The sensitivity analysis (SA, WS2 phase in Figure 2Figure-2) was performed to identify the impact of parameters on the carbon
stock in aboveground wood, soil, and litter (AbgwC, SoilC, LitterC) using BBGCMuSo simulations of calibration sites (Table

1Table-1). The three carbon stock variables were selected instead of typically used fluxes to cover a wider range of

environmental conditions, since fluxes are usually measured only at a limited number of research sites. It has been documented
that BBGCMuso can be well fitted to effectively simulate C fluxes (Hidy et al. 2016, Maselli et al. 2009), while its ability to

simulate C stocks is much lower (Ostrogovié Sever et al. 2021, Maselli et al. 2009). Moreover, the long-term time series of

AbgwC covering up to 69-year-long periods also allow the evaluation of the long-term simulated temporal development.

First, we performed a local, i.e. single parameter, SA (WS2a in Figure 2Figure-2) using regular sampling of parameter values
from their pre-defined ranges based on the literature review. The sensitivity of variable i to parameter P was quantified with

the sensitivity index (SI) using the equation of Hoffman and Gardner (1983):

SIPi _ Vmaxp;—Vminp; (1)

Vmax;
where Vmaxp;i and Vming; are the maximum and minimum values of the simulated output variable i when testing parameter P,
and Vmax; is the absolute maximum value of the output variable obtained from the tests of all parameters.

Afterwards, a global, i.e. multi-parameter, SA (WS2b in Figure 2Figure-2), which- assesses the sensitivity of all selected

parameters across the entire parameter space simultaneously, was performed following the least squares linearisation (LSL)

approach by {Verbeeck et al.; (2006). A commonly used, variance-based, global SA method is the Sobol sensitivity analysis,

which performs Monte-Carlo simulations on the parameter-space. This method estimates the Sobol sensitivity index,

distributing the overall variability of the model outputs to the contributions from each model input (Saltelli et al., 2004). As

the parameter space expands, an increasing number of Monte-Carlo simulations are required to accurately estimate sensitivity.

To simplify this process and enhance accuracy with fewer number of simulations, surrogate models are employed, whereby

sensitivity values can be more easily estimated. The LSL is one of the simplest surrogate models based on the multivariable

linear model (Verbeeck et al. 2006). This approach utilizes the widely applied ordinary least squares method to approximate

the process-based model with a multidimensional linear model. The coefficients derived from the fitted model are then used

to calculate the relative Sobol sensitivity indices. The LSL based sensitivity analysis is implemented in the RBBGCMuso
package (Hollos et al., 2023) available at https://github.com/hollorol/RBBGCMuso.

The procedure first Fhe-simultaneously samplesing-ef values of allthe selected model parameters from their predefined ranges

was-done-with Monte Carlo simulations, while assuming a multivariate uniform distribution. Then, the simulated output was

examined with regard to parameter deviations from the mean using the least square linearisation method_that is based on a

multiple regression, which splits the overall output uncertainty into individual sources. This allowed us to estimate the

contribution of each tested parameter to the analysed model output uncertainty and identify the parameters that affected
12
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AbgwC, SoilC, and LitterC most. The results of SA were used to select the parameters to be calibrated (WWS3 phase in Figure
2Figure-2). The SA was performed using the musoMonte and musoSensi functions implemented in the RBBGCMuSo package
(Hollés et al., 2023) available at https://github.com/hollorol/RBBGCMuso.

2.4.3. Parameter calibration

Within the parameter optimisation we first performed a site- and variable-specific calibration (\WWS4a phase in Figure 2Figure
2) using GLUE method (Beven and Binley, 2014) implemented in the calibMuso function of the RBBGCMuSo package
(Hollos et al., 2023). With this procedure, a selected parameter set was optimised using the least squares likelihood function
based on the comparison of the simulated values of the selected output variable with its observations in the pre-defined

parameter space:

_ |(Vobs—Vsim)2
L=¢e n (2)

where L is the estimated likelihood, Vobs and Vsim are the observed and the simulated values of the output variable, and n is
the number of observations.

For every site, we performed 100,000 Monte Carlo simulations, each with a unique combination of parameter values randomly
generated from the predefined parameter ranges (Table 2Fable-2). The results of all simulations were used in the subsequent
optimisation steps.

FirstThen, we evaluated the plausibility (i.e. the realism) of simulated AbgwC, LitterC, and SoilC (\WS4b phase in Figure
2Figure-2) at the end of spin-up and in individual years of normal run simulations. The plausibility check is a form of output
data streams conditioning similar to the CIRM method proposed by Hollés et al. (2022). We applied the following constraints
derived from literature to evaluate the plausibility of simulated values: carbon stock in aboveground wood below 70 kgC m
(Barna et al., 2011; Georgi et al., 2018; Standovar and Kenderes, 2003; Trotsiuk et al., 2012), soil carbon in the whole soil
profile between 5 and 25 kgC m2, and litter carbon amount between 0.1 to and 4 kgC m2 (De Vos and Cools, 2011; Pavlenda
and Pajtik, 2010; Wellbrock et al., 2016; Wellbrock and Bolte, 2019). A simulation was identified as plausible if all three
examined output variables fulfilled the above-listed constraints at the end of the spin-up and in all simulated years of the
normal run.

The site-specific multivariate optimised parameter values (SSMV parameter sets resulting from WS4c phase in Figure 2Figure
2) were derived from subsets of plausible simulations selected for each calibration site as those minimising estimation errors
of AbgwC, SoilC, and LitterC, and maximizing the joint-likelihood function. We appliedused the normal likelihood function

to each of the three output variables and afterwards calculated the sum of loglikelihood values for each timestamp (year)

assuming that the estimation errors weare independent from each other.

13



825

330

Next, we performed an optimisation of parameters across the studied geographical domain (\WS4d phase in Figure 2Figure-2)
by processing the plausible subsets-ef-outputssimulations from all calibration sites together.-Firstw From e-identified-feasible
ranges for each parameter and site, identified from the plausible simulations (selected in the WS4c phase in Figure 2Figure-2,

Figure 3Figure 3Chyba! Nenasiel sa Ziaden zdroj odkazov.a) by-overlapping-theresulis-of the three-output-variables(a)

Then, we derived the multi-site feasible parameter ranges as an intersection of site-specific feasible parameter ranges_in the

whole tested 6D parameter space defined by calibrated parameters. Afterwards, we divided the multi-site feasible ranges of

each parameter into five equally wide sub-intervals that defineing 5 discrete steps on each dimension (Figure 3Figure-3Chyba!

NenaSsiel sa ziaden zdroj odkazov.b) of the multi-dimensional parameter space. This categorisation was neededregtired

because the applied parameter values in site-specific Monte Carlo simulations differed between the sites. In the hyperspace,
we identified ten cells with the highest number of allocated sites and simulations and the smallest arithmetic mean errors of
AbgwC, SoilC, and LitterC, and calculated mean values of parameters per cell. The final multi-objective optimal parameter

set was the one that led to successful simulations of all calibration sites and smallest errors.

! ; | ' Parameter
Min ; | - Max

Min10pt1 Min10pt2 Max10pt1 Max10pt2
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Figure 3 _Identification of feasible parameter ranges per site using a multivariate approach (a) and of multi-site and multivariate
optimised (MSMV) parameter values and their parameter ranges (b) on an example of 2D parameter space and the site-specific
optimised parameter ranges of two sites. Colours refer to specific variables (a) and sites (b). Min = minimum, Max = maximum, Opt
= optimised, area with grey dotted pattern indicates the tested parameter interval (a) or 2D parameter space (b), blue area =
optimised parameter interval for variable 1 (a) or 2D space for site 1 (b), green area = optimised parameter interval for variable 2
(a) or 2D parameter space for site 2 (b).

2.5. Robustness, validation and plausibility tests
2.5.1. Robustness of calibrated parameter values

The robustness of the site-specific (SSMV) and multi-site (MSMV) optimised values of parameters was tested by simulating
all calibration sites with all derived parameter sets and calculating root mean square errors (RMSE) of simulated output
variables. This test allowed us to examine the problem of overfitting and the applicability of site-specific parameter sets outside
the specific site conditions. The results were presented with heatmaps produced using ggplot2 R package (Wickham, 2016).

Next, we applied the machine learning method of decision trees (DT) to identify the problems due to the trade-off between
variables and/or sites based on the evaluation of the entropy. With the DT method we determined parameter ranges, within
which plausible simulations can be expected. This was done by deriving classification decision trees for each site and output
variable using all 100,000 Monte Carlo simulations per calibration site that were split into 2 groups of plausible and implausible

ones based on the constraints for the three tested variables (done under WS4a and WS4b phase in Figure 2, see-Sect. 2.4.3.).
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In total we derived 33 decision trees (11 sites x 3 variables) using the rpart R package (Therneau et al., 2023). From the DT

results, we obtained plausible ranges for each parameter, site and variable, which may differ from those obtained under WS4a

and WS4b phase as they were derived using a different mathematical approach. Then, we searched for intersections of these

ranges to obtain the final parameter-wise plausible- ranges for a specific site and all variables together and for multi-site ranges
for all calibration sites and variables together (Figure 4Figure-4). The SSMV and MSMV optimised parameter values were

considered robust if they occurred within the respective DT parameter ranges.
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Figure 4 Determination of plausible ranges of parameters using the machine learning method of decision trees across sites and output
variables. Par = parameter, background transparent coloured horizontal lines represent the tested parameter range, while non-
transparent coloured lines show the optimised parameter ranges based on decision trees performed for carbon stock in aboveground
wood (AbgcW), soil (SoilC), and litter (LitterC). The dashed red rectangle represents the plausible range of one parameter based on
the intersection of its plausible ranges derived for the three output variables.




365

370

375

380

385

390

The next test was aimed at analysing if SSMV parameter values followed any trends along specific gradients. Specifically, we

examined the interdependencies between the pairs of parameters, and the trends of their site-specific values along stand and

site gradients, namely age, elevation, latitude, climate and soil characteristics. Any significant trend may indicate that the
respective parameter should not be handled as a constant but should vary with specific conditions. The analyses were based
on Spearman correlations, and linear regressions performed in R environment (R Core Team, 2018). Subsequently, Wwe
examined the physiological meaningfulness of revealed trends and relationships using the empirical evidence collected from
the scientific literature.

Following the identification of the significant relationships and their biological plausibility, we derived ten multiple linear

regression_models explaining the variation in site-specific values of the canopy light extinction coefficient (CLEC) of

calibration sites using different combinations of environmental predictors and analysed the explanatory power and performance

of the models with the following statistical characteristics: R-squared, adjusted R-squared, AKAIKE information criterion,

Bayesian information criterion, Mallows’ statistic, and the residual standard deviation. This was performed in R environment

using the car (Fox et al., 2023) and ImSubsets (Hofmann et al., 2021) R packages. Then we applied the derived functions to

all 87 sites, for which we calculated site-specific values of CLEC. and simulated each site with the respective CLEC value.

Afterwards, we examined the robustness and plausibility of the simulated output with varying CLEC across the whole

geographical domain.

2.5.2. Model performance with parameter values optimised for multiple sites

The MSMV parameter set of BBGCMuSo derived in WS4d calibration phase (Figure 2Figure-—2) was validated using an
independent dataset from 8 European beech dominated sites located within the studied geographical domain (Table 1Fable-1,
Figure 1Figure-1), each represented by at least two repeated observations of aboveground wood carbon. The simulations
consisted of spin-up, transient run and normal run as described above. The validation was based on the comparison of modelled
and observed carbon stock in aboveground wood at specific time points, for which we calculated the bias defined as an
arithmetic mean of differences between modelled and observed values of the respective variable, mean absolute error (MAE),
mean percentage error (MPE), and root mean square error (RMSE). SoilC and LitterC were compared to plausible ranges
derived from literature (De Vos and Cools, 2011; Pavlenda and Pajtik, 2010; Wellbrock et al., 2016; Wellbrock and Bolte,

2019) since no observed data on soil and litter carbon were available for validation sites.
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2.5.3. Robustness and plausibility of simulated output at a large scale

To evaluate the broad applicability of the derived multi-objective parameter set across the whole studied geographical region,

we simulated forest development across 87 sites, encompassing the main climatic and soil gradients in the study area (Figure
1Figure-1). We specifically assessed the plausibility of absolute values of AbgwC, LitterC, and SoilC by comparing them with
values documented in the literature (e.g. Barna et al., 2011; Pavlenda and Pajtik, 2010). We also examined the responses of

simulated carbon stocks to environmental conditions (e.g. latitude, longitude, elevation, annual precipitation, mean

temperature, proportion of sand, silt, and clay fractions, soil depth) and compared their observed shapes to the patterns

published infrom empirical studies. We analysed the responses of simulated outputs using Spearman correlations, linear and
quadratic regressions, and generalised additive models (GAM). When explaining the patterns of the main three variables along
environmental gradients we examined also other stocks, such as carbon stock in roots, leaves, as well as some carbon fluxes,
particularly heterotrophic respiration, to reveal the mechanisms driving the model responses. All tests were performed in R

environment (R Core Team, 2018).

3. Results

3.1 Parameter sensitivity analysis

The local (single parameter) sensitivity analysis (WS2a in Figure 2Figure-2) focusing on evaluating the effects of individual
parameters revealed that the aboveground wood carbon stock was most affected by the whole plant mortality rate (WPM). Soil
and litter carbon stocks were most sensitive to the maximum stomatal conductance (MSC) and nitrogen fixation (Nfix),
respectively (Table 2Fable-2). The analysis of trends in variable changes due to modifications of parameter values clarified
how the increase of the parameter value affected the values of the respective output variable, e.g. the increase of MSC caused
an increase of all tested output variables (AbgwC, SoilC, LitterC) in the whole parameter range (Fig. S4Fig—A4). The impact
of other parameters was more complex, as we revealed both positive and negative trends, while in the case of the increase of
e.g. Nfix the positive ones prevailed in AbgwC and SoilC, and negative ones in LitterC. A more detailed analysis identified
the changes of output variables along the parameter range, e.g. the increase of Nfix caused an initial increase of LitterC, which
was followed by its gradual reduction as Nfix was increasing (Fig. S2Fig—A2a).

The global (multi-parameter) sensitivity analysis (WS2b in Figure 2Figure-2) showed that Nfix had the highest impact on all
three analysed carbon pools (Figure 5Figure-5). The subsequent parameters were MSC, growth respiration per unit of carbon
allocation (GRC), maintenance respiration in kgC day* per kg of tissue nitrogen (MRperN), fraction of leaf nitrogen in Rubisco

(FLNR). However, the ranking of parameters differed between the individual output variables (Figure 5Figure-5).
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Figure 5 Results of global (multi-parameter) sensitivity analysis (WS2b in Figure 2Figure-2) of simulated carbon stock in
aboveground wood, soil and litter (AbgwC, SoilC, LitterC) to ecophysiological parameters of BBGCMuSo. Parameter abbreviations
are given in Table 2Table-2. Dark grey rectangles with black arrows above indicate parameters selected for the calibration
procedure: canopy light extinction coefficient (CLEC), fraction of leaf nitrogen in rubisco (FLNR), maximum stomatal conductance
(MSC), nitrogen fixation (Nfix), effect of soil stress factor on photosynthesis (Sseff), and vapour pressure deficit for complete
conductance reduction (VPDC).

Based on the results of the sensitivity analysis we selected six parameters to be calibrated: canopy light extinction coefficient
(CLEC), FLNR, MSC, Nfix, vapour pressure deficit for complete conductance reduction (VPDC), and effect of soil stress
factor on photosynthesis (Sseff), as they had a substantial effect on carbon stock in aboveground wood, soil, and litter (Figure
SFigure-5). Other parameters with a high influence on the simulated C pools (such as C:N ratio in leaves, Fig. S2Fig—A2b)
were not to selected for calibration due to a strong support of their actual values from the literature (e.g. Fig. S3Fig—A3).

3.2 Parameter estimation

The site-specific multivariate (SSMV) optimised values of all 6 calibrated parameters for 11 calibration sites differed from the
a priori ones, varied within the whole tested ranges (Table 2Fable-2) and strongly differed between the sites (Figure 6Figure
6). Two parameters (FLNR, VPDC) showed a gradual change of SSMV values across the whole tested range, while the SSMV
values of others, especially CLEC and Sseff, were clustered. In comparison to a priori values, SSMV values of individual

parameters changed by 41 % on average, while Nfix was modified most substantially (67 % on average).
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Figure 6 A priori (blue triangles), site-specific (SSMV, red dots) and multi-site (MSMV, green squares) optimised values of calibrated
ecophysiological parameters selected based on the multi-objective sensitivity analysis (WS4 in Figure 2Figure—2). The thick
horizontal lines represent medians, boxes represent the interquartile ranges (IQR), and the whiskers represent £1.5IQR.

The median reduction of model errors at calibration sites simulated with SSMV parameter sets in comparison to the a priori
set was 35 %, 55 %, and 11 % for AbgwC, SoilC, and LitterC, respectively, and 26 %, 35 % and 9 % in comparison to the
simulation output obtained with the MSMV parameter set (Figure 7Figure-7).
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Figure 7 Heatmaps of root mean square errors (RMSESs) for carbon stock in aboveground wood, soil, and litter (AbgwC, SoilC,
LitterC) and their sum (SumC) for individual calibration sites (presented on x axis) and 13 different variants of parameter sets
(presented on y axis): one a priori set, 11 site-specific (SSMV) optimised ones identified by site abbreviations, and one multi-objective
(multi-site and multivariate, MSMV) optimised set. The red colour indicates the largest RMSEs, while the yellow one indicates the
smallest RMSEs, the grey colour indicates unsuccessful simulations, which ended with zero or close to zero values of carbon state
variables.

Parameter values obtained from the multi-site optimisation (WS4d in Figure 2Figure-2) changed by 2 to 15 % of their a priori
estimates except for the Sseff, which remained unchanged (Figure 6Figure8, Table 2Fable-2). The MSMYV values substantially

differed from the SSMV values of the majority of sites although the differences were parameter-specific. The lowest variation

was observed for Sseff, while the largest differences between MSMV and SSMV values were found for Nfix (Figure 6Figure

6). Simulation results using the MSMV parameter set showed reduced mean errors of all three tested output variables, i.e.
AbgwC, SoilC and LitterC, in comparison to the results obtained with the a priori set by 10, 26, and 5 %, respectively (Table

3Fable3, Figure 7Figure7).
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Table 3 Evaluation of model performance based on simulations of beech ecosystems at 11 calibration sites using the a priori
parameter set and the optimised parameter sets optimised with respect to measured sets of carbon stock in the aboveground wood,
soil, and litter (AbgwC, SoilC, and LitterC in kgC m). “Site-specific” refers to parameter sets derived for single sites using a
multivariate approach (SSMV, WS4c phase in Figure 2Figure-2). “Multi-site” refers to multi-site and multivariate (MSMV)
parameter values derived collectively for all calibration sites (\WS4d in Figure 2Figure-2). RMSE = root mean square error, Bias =
arithmetic mean of differences between modelled and observed values of the respective variable, MAE = mean absolute error, MPE
= mean percentage error, MinDif and MaxDif are minimum and maximum differences between the modelled and observed values
of the respective variable.

Parameter set Variable N RMSE Bias MAE MPE MinDif MaxDif
A priori 96 9.7727 7.3911 7.8366 29.502 -8.1569 27.007
Site-specific AbgwC 96 2.0698  -0.2887 1.4873 0.012 -5.4830 5.7422
Multi-site 96 6.8718 4.1734 5.4798 19.246 -9.5527 27.756
A priori 72 3.5242 2.2276 2.2630 58.329 -0.2268 11.729
Site-specific SoilC 72 6.8068 -2.7876 6.3782 -0.408 -9.7400 4.7630
Multi-site 72 3.0803 0.1167 2.6423 38.068 -2.4427 10.243
A priori 10 0.2424  0.2117 0.2117 121.774 0.0611 0.4651
Site-specific LitterC 10 0.2035  0.0030 0.1653 42.005 -0.2894 0.4382
Multi-site 10 0.1849 0.1417 0.1419 91.327 -0.0007 0.4185

The simulations performed with site-specific and multi-site optimised parameter sets produced more accurate estimates of
carbon stock in aboveground wood, soil and litter than the a priori set. The non-parametric Wilcoxon signed rank test
(Wilcoxon, 1945) with the continuity correction data confirmed insignificant differences between observed and modelled
carbon stock in aboveground wood and litter simulated with SSMV parameter sets (V = 1807, p = 0.14 for AbgwC, and V =
26, p = 0.92 for LitterC), while the differences for soil carbon were significant (V = 528, p = 1.04e-05, see Sect. 4.2 for
explanation). The use of MSMV parameter set resulted in insignificant differences of SoilC (V = 1396, p = 0.64), while the
estimates of AbgwC and LitterC were significantly different from observations (V = 4094, p = 1.10e-10, and V = 54, p =
0.004, respectively). Nevertheless, the magnitudes of their mean errors calculated for the whole set of calibration sites as well

as for most of individual sites were substantially reduced (Table 3Table-3, Figure 7Figure-7).
3.3 Robustness, validation, and plausibility tests

3.3.1 Robustness of calibrated parameter values

When simulating the development of calibration sites with the site-specific parameter sets (SSMV) optimised for other sites,
we revealed a high variation in modelled outputs per site (Figure 7Figure—7 and Fig. S5Fig—AS5). In 47 % of cases we
encountered unsuccessful simulations, during which the modelled forests did not survive. Only three SSMV parameter sets
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led to successful simulations of all calibration sites, but their errors exceeded those obtained with the a priori, respective SSMV
or MSMV optimised sets (MPE of AbgwC, SoilC, and LitterC were 39 %, 296 %, and 570 %, respectively).

The robustness test of SSMV and MSMV optimised parameter values using the method of decision trees (DT) revealed that
in 78 % of cases site-specific and muti-site parameter values occurred within the parameters ranges derived from decision trees
for individual output variables and sites (Table 4Table-4, Fig. S8Fig-—A8). The discrepancies between the optimised parameter
values and DT ranges occurred for the variables and sites with lower proportions of plausible simulations (Fig. S16Fig-AL5)
or in the cases when DT parameter ranges derived for individual output variables did not overlap (e.g. the ranges derived for
FLNR and site CR2015, Fig. S8Fig-A8).

Table 4 Robustness of site-specific (SSMV) and multi-site (MSMV) parameter values based on the analysis if the optimised
parameter value occurred inside the parameter ranges derived for individual calibration sites and carbon stock variables
(aboveground wood, soil and litter carbon labelled as AbgwC, SoilC, LitterC) using the method of decision trees (DT, Sect. 2.5.1).
The values for SSMV represent the mean from 11 calibration sites. The value 1 indicates that the MSMV value or all SSMV
optimised parameter values occurred within the DT ranges. The abbreviations of parameters are CLEC = canopy light extinction
coefficient, FLNR = fraction of leaf nitrogen in rubisco, MSC = maximum stomatal conductance, Nfix = nitrogen fixation, VPDC =
vapour pressure deficit for complete conductance reduction, Sseff = effect of soil stress factor on photosynthesis.

Proportion of optimised parameter values inside parameter ranges derived using decision tree method

Output variable AbgwC SailC LitterC
Parameter set SSMV MSMV SSMV MSMV SSMV MSMV
CLEC 1.00 1 0.91 1 0.91 1
= FLNR 0.73 1 0.64 0 0.64 0
= MSC 1.00 1 0.55 1 0.36 0
g Nfix 0.91 0 1.00 0 0.36 1
*  vpDC 1.00 1 1.00 1 1.00 1
Sseff 1.00 1 1.00 1 1.00 1
Mean of All 0.94 0.83 0.85 0.67 0.71 0.67

The analysis of interdependencies between the site-specific optimised parameter values revealed the only significant Spearman
correlation between CLEC and MSC, which were negatively correlated at 95 % significance level (r=-0.6, p=0.04, Figure
8Figure-8a). The highest, although non-significant, correlation was found between Nfix and FLNR (r=0.7, p=0.37) suggesting
that if Nfix increases FLNR should also increase.

Spearman correlations between parameters and site characteristics revealed that the site-specific optimised values of two
calibrated parameters (CLEC, VPDC) were significantly related to elevation (r=0.5 and -0.7, p=0.04, respectively). Significant
relationships were also found between CLEC and several climatic variables (Figure 8Figure-8). The highest positive correlation
(r=0.9, p=0.01) of CLEC was with the long-term mean annual precipitation total (AMPRCP), and the highest negative
correlation (r=-0.8, p=0.01) with the long-term mean annual vapour pressure deficit (AMVPD). The increasing AMVPD was
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positively significantly related to the values of MSC (r=0.7, p=0.05). For other parameters we did not reveal any significant
relationships with climate conditions, nor could we confirm any significant correlations of parameter values to soil conditions

20 (Fig. S9Fig—A9), although positive or negative trends with several environmental characteristics were visible for some
parameters, mainly for MSC and VPDC (Figure 8Figure-8b, Fig. S9Fig-A9).
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Figure 8 Spearman correlations between site-specific optimised values of calibrated parameters (a) and between site-specific
optimised parameter values and site characteristics (b). The colour and the size of the circles indicate the value of the correlation
525 coefficient, and the stars indicate the significance of the correlation (1 star for 95 % significance level, 2 stars for 99 % significance
level). The abbreviations of parameters are: CLEC = canopy light extinction coefficient, FLNR = fraction of leaf nitrogen in Rubisco,
MSC = maximum stomatal conductance, Nfix = nitrogen fixation, VPDC = vapour pressure deficit for complete conductance
reduction, and Sseff = effect of soil stress factor on photosynthesis. Climate characteristics represent long-term annual averages:
TRange = Temperature range, AMTmin = Minimum temperature, AMTday = Daylight temperature, AMTmean = Mean
530 temperature, AMPRPCP= Precipitation total, AMVPD = Vapour pressure deficit, AMSRAD = Daily solar radiation, AMDayLen =

Daylength.

3.3.2 Model performance with parameter values optimised for multiple sites

The mean absolute error (MAE) between the simulated and observed aboveground wood carbon of 8 validation sites was 0.26
535 kgC m2with a 95 % confidence interval from -0.025 to 0.56 kgC m2, while the individual absolute differences varied between
-2.06 and 5.11 kgC m2 (Figure 9Figure-9). The root mean square error was 1.22 kgC m2. The non-parametric Wilcoxon signed
rank test with continuity correction indicated non-significant differences between simulations and observations of aboveground
wood carbon (V = 1385, p-value = 0.1962). The mean percentage error of AbgwC was 1.25 % of the observed carbon stock

in the aboveground wood. Hence, both absolute and relative differences were of negligible magnitudes.
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Since no observed data on soil and litter carbon were available for validation sites, the simulated SoilC and LitterC were tested

against their ranges reported in the literature. The results showed that both variables occurred within the plausible ranges (Fig.

S12Fig-A-41),
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Figure 9 Comparison of the temporal development of observed (points) carbon stock in aboveground wood (AbgwC) and simulated
AbgwC (lines) using the multi-site multivariate optimised (MSMV) parameter set at 8 validation research sites.

3.3.3 Robustness and plausibility of simulated output at a large scale

The simulations of all 87 research sites using the multi-site optimised (MSMV) parameter values were successful and the
simulated values of the three output variables (i.e. AbgwC, SoilC, and LitterC) at the end of the spin-up run were well-aligned
with the plausible ranges indicated in the literature (Fig. S13Fig—A-12).

The simulated values of output variables varied across the studied geographical space (Figure 10Figure—10) and were

significantly correlated with multiple site characteristics (Figure 11Figure21, Fig. S17Fig—ALE, Fig. S18Fig—AL?). The
modelled aboveground wood carbon exhibited distinct unimodal responses along the gradients of elevation, long-term mean

air temperature, and vapour pressure deficit (VPD). The results manifested a production optimum of beech in Central Europe
at elevations of 500 - 600 m a.s.l., mean annual air temperature of 9°C, and VPD of 530 Pa. The SoilC and LitterC demonstrated
an increasing trend along the elevation gradient and decreasing trends along the climatic gradients. The responses of carbon
stocks to soil properties generally followed a linear pattern, while SoilC and LitterC significantly decreased with the increasing

clay content and increased with the increasing sand content in soil. Aboveground wood carbon was found to be significantly
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correlated with the proportion of clay in the first and second soil layers, and with the proportion of silt in the fifth layer (Fig.

S18Fig—AL7). The highest levels of simulated aboveground wood carbon were observed on loamy or sandy-loamy soils (Fig.

S20Fig-—A19).
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Figure 10 Maps depicting the simulated values of three output variables (aboveground wood, soil and litter carbon labelled as

AbgwC, SoilC, LitterC, all in kgC m-?) in beech ecosystems at the standardised stand age of 35 years at 87 sites distributed over the

whole studied geographical domain. The blue colour in the background indicates the elevation gradient taken from ¢(Hengl et al;

(2020).
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Figure 11 Responses of modelled carbon stocks in the aboveground wood at the standardised stand age of 35 years (left), soil (middle)

and litter (right) carbon stocks to selected environmental variables. The simulations with BBGCMuSo were conducted for 87 sites
| distributed across central Europe (see Figure 1Figure-1). Linear or quadratic regressions were fitted to the data. R2 represents the
570 squared regression coefficient, and P is the p-value for the F-test of the fitted model.

4. Discussion
4. 1. Selection of parameters for calibration

The sensitivity analysis identified the parameters with the highest impact on the selected model output (Table 2Fable2, Figure

SFigure-5)._The global SA showed small differences in the parameter impact between the three examined output variables,
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because they are all a part of the carbon cycle, which makes them naturally interconnected within forest ecosystems. The

similarity in parameters affecting these output variables underscores the importance of considering a forest as a whole, since

due to the interactions between different components of the ecosystem changes in one part have cascading effects throughout

the system. Therefore, a comprehensive approach that accounts for these interdependencies is crucial for accurate modelling

and understanding of forest carbon dynamics.

-Several highly influential parameters identified by SA were excluded from the calibration for different reasons. Growth
respiration per unit of carbon allocation (GRC), and maintenance respiration per kg of tissue nitrogen (MRperN), were not
calibrated because we could not support the modification of their valuesy-—were—already used in previous model versions
(Thornton et al., 2005) -2

evidence (Lavigne and Ryan, 1997) suggests to use local values of respiratory parameters since they substantially differ

by observations, because- the empirical

between sites. Other parameters were not included in calibration because the data from literature supported their current values
and/or because of the adverse impact on the variables of interest. For example, C:N ratio in leaves was found to have a
substantial effect on all examined carbon pools (Figure 5Figure-5), but to obtain a desired reduction of carbon stock in
aboveground wood we would need to increase this parameter from its a priori value (Fig. S2Fig—A2). However, the analysis
of the values obtained from site-specific measurements performed aten some of our sites and the data from the TRY database
(Kattge et al., 2020) revealed that increasing the value of C:N ratio in leaves would cause aits significant deviation from itsthe
mean or median of experimental observations (Fig. S3Fig—A3). Similarly, the parameter representing the natural whole plant
mortality was not calibrated since instead of the temporarily constant mortality we applied dynamic mortality rates during the
normal run simulations that depend on the applied forest management and were derived from published field observations
(Barna et al., 2011; Hiilsmann et al., 2018; Pajtik et al., 2018; Vanoni et al., 2019). The possibility of using dynamic mortality
rates in BBGCMuSo is a major improvement in comparison to the original Biome-BGC model, as mortality has been found
to be a driving process of vegetation dynamics in forest growth models (Bugmann et al., 2019; Hlasny et al., 2014).

The identification of influential parameters is crucial not only for model calibration, but also for future local studies as it
provides valuable information about the key parameters, the values of which should be collected in the field, since applying
site-specific values obtained from experimental data may substantially reduce the uncertainty of model simulations. Aslready
{Thornton et al. (;-2002) already presented,-that some parameters, such as C:N ratio in leaves, should be treated as site-specific.

In the case the site-specific values of parameters are available, they need to be set prior to the calibration due to the covariance

of parameters and need to be excluded from the sensitivity analysis. In our case we aimed at a generic parameter set applicable
across the whole studied region,-However,-such-data-were-not-available for-mest-ef-eursites; and thus, we used a generalised

value of this parameter.
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4.2. Parameter estimation

The mean error metrics (root mean square errors, mean absolute and percentage errors) showed the increased accuracy of
modelled output obtained using single-site (SSMV) and multi-site (MSMV) optimised parameter sets in comparison with those
obtained with the a priori parameter set (Table 3Fable-3). Greater errors of soil carbon for SSMV parameter sets resulted from
site-specific very tight positive relationships between the simulated AbgwC and SoilC revealed when analysing Monte Carlo
simulations. Due to this, even the high number of performed simulations (100,000 simulations per site) generally covered only
a small portion of the 2D space defined by AbgwC and SoilC (Fig. S6Fig—A8). Hence, in some cases improving the results for
one of these two carbon pools caused the increase of the error of the other pool within the tested space of six calibrated
parameters (Fig. S7Fig—A7). Although some empirical studies reported the positive correlation between aboveground wood
and soil carbon stockparticularly inef the top soil, the relationship is not less-strong (R?=0.24, (Woollen et al., 2012), and
frequently insignificant (Osei et al., 2022), as SoilC primarily depends on climate, topography, soil mineralogy and soil texture,
especially the content of clay (Powers and Schlesinger, 2002) or sand (Devi, 2021). Our results indicated that different or

additional parameters may need to be included in the calibration that may increase the variability of model output and thus

loosen the current high correlations between AbgwC and SoilC. erthe-medel-to-increase-the-accuracy-of-model-estimates-of

The application of site-specific calibrated parameter sets outside the respective sites pointed out at the contradiction between
their generality and the local accuracy of model estimations. SSMV optimised parameters were not generally applicable, as 47
% of simulations of calibration sites with SSMV parameter sets optimised for different sites collapsed (Figure 7Figure—7).
Calibrating models for individual sites may often result in model overfitting due to the small amount of available data (Tsai et
al., 2021), which may lead to completely different parameter sets in the case of a recalibration, and hence a high variance in
calibrated values, reducing thus the reusability of calibrated parameter values.

The parameter values optimised for single and multiple sites frequently substantially differed (Figure 6Figbre—6), which

indicates the existence of the calibration equifinality, i.e. that many different parameter sets may produce similar output

predictions (Beven, 2019). This issue was not apparent at the multi-site level, but occurred at the level of individual sites, at

which it can be partially solved using the conditional interval reduction method (CIRM, Hollos et al., 2022). The CIRM

approach is based on the iterative narrowing of plausible intervals of parameters using the constraints on the model output. It

is an efficient way of dealing with the equifinality unless the contradictions between different output variables occur.

As expected based on similar calibration works of forest growth models that used comprehensive data sources (Forrester et
al., 2021; Minunno et al., 2019), the multisite and multivariate calibration increased the generality and robustness of the model
application by finding a parameter set that worked across all calibration sites (Figure 7Figure-7), and the validation set (Figure
9Figure-9). Nevertheless, differences in data quality and availability across space can substantially influence the calibration
results. Although-tThis problem can be mitigated withusing Bayesian-calibration-calibration techniques that utilize and-by
chooesing-thea more -appropriate likelihood function_(i.e. formal likelihood; Hollos et al., 2022).-in-freguentist-calibrations- In
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therefore-thecan be resolved using the inclusion of an appropriate error-covariance matrix used-for-the-likelthood-functions-is

ustaly-incorrect-which-can-mislead-the-calibration-precess:in the construction of the likelihood function (Tarantola, 2005).

In addition, the multi-site calibration can also reduce spatial heterogeneity of model outputs dueto-the “averagingout-effect”
causing that the average model performance will be good, but at specific sites it can be completely wrong. This could be

overcome by applying a hybrid approach that combines the site-specific and multisite calibration. With such an approach, site-

specific values obtained from local measurements, well-established relationships derived from large databases or calibrated

for specific sites will be used for the parameters that are known to vary in space, while generic values will be used for the other

parameters. Thus, the overall correctness can be ensured by multisite calibration, while spatial heterogeneity by site-specific
calibration.

Another aspect affecting the calibration is data availability. Although we tried to select calibration sites to cover the whole

geographical and environmental space, the central part of the region was overrepresented, while northern parts were not

covered due to the insufficient data required for calibration. Nevertheless, the ranges of environmental conditions (Table

1Table-1, Figure 1Figure-1) covered by our data included also extreme sites and seem to represent the natural distribution of

European beech (Pagan, 1996) well. To ensure more robust calibration results, more balanced geographical coverage, more

long-term data of multiple variables of interests at individual sites, and a combination of the information about stocks and

fluxes at same sites would be required.

4.3. Trends in parameters

4.3.1 Covariance between parameters

The covariance analysis between parameters found correlations of different magnitudes indicating that in most cases the

parameters were not independent. The revealed significant negative linear relationship between the site-specific values of the
canopy light extinction coefficient (CLEC) and the maximum stomatal conductance (MSC, Figure 8Figure-8) suggested that
low values of CLEC should be coupled with high values of MSC and vice versa. However, we have not found any empirical

evidence in the literature to confirm or refute the revealed relationship between CLEC and MSC, and therefore it is not clear

if the revealed pattern is biologically realistic, or if it is only a side effect of the calibration procedure. Due to this, we did not

incorporate this relationship into the calibration procedure. Another strong (R=0.7) though a non-significant relationship was

revealed between nitrogen fixation (Nfix) and fraction of leaf nitrogen in Rubisco (FLNR, Figure 8Figure-8). Examining this

relationship in more detail revealed a non-linear pattern between the two parameters resembling a parabolic curve reaching a

maximum of FLNR in the middle of Nfix range (Fig. S10). Similarly as for the previous relationship, we have not found any

empirical research dealing with the presented issue although the study by {Tang et al.; (2019) analysing different species in

subtropical ecosystems suggests that nitrogen fixing trees allocate lower fractions of N to Rubisco than non-nitrogen fixing
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trees. The FLNR values of different Eucalyptus species published by {Warren and Adams; (2004) do not show any significant

trend with the increasing nitrogen amount. The global study by (Luo, 2021)_showed that FLNR is considerably affected by

climate and soil factors, including light, atmospheric dryness, soil pH, and sand content. Based on these results, nitrogen

fixation does not seem to be directly related to FLNR. Nevertheless, the environmental conditions that affect nitrogen

availability can indirectly influence how nitrogen is allocated within the leaf, including Rubisco, suggesting a complex

relationship between them. Still, the pattern of the relationship between FLNR and Nfix across one tree species in temperate

ecosystems remains unclear.

Our results indicate the necessity of analysing the covariance between parameters during a model calibration as it not only

enlightens the model behaviour and interdependencies between specific parameters but can also increase the efficiency of the

calibration procedure by excluding one of the correlated parameters from the calibrated parameter set and estimating its value

only subsequently. In addition, such information may also help to identify the gaps in the available empirical evidence and the

direction of future empirical research.

4.3.2 Parameter correlations with site characteristics

The analysis of the variation of the optimised site-specific values of parameters across environmental gradients revealed some
significant trends (see Figure 8Figure-8, Fig. S9Fig—A9). This may indicate that a specific parameter should not be kept as a
constant but rather as a characteristic that changes depending on driving conditions. An example of such a parameter is the
canopy light extinction coefficient (CLEC) that specifies the proportion of solar radiation intercepted in the canopy. A number
of process-based models that use this parameter set its value around 0.5, while some models differentiate values between
different species (Zhang et al., 2014). Based on our multi-objective optimisation for beech ecosystems we set the MSMV value
of CLEC to 0.66, which is by 10 % higher than the value used by Pietsch et al. (2005) in the original Biome-BGC model for
beech (0.6), but it is within the range for broadleaved forests reported by Zhang et al. (2014).

Although most models keep this parameter constant across sites and throughout their simulations (Liu et al., 2021; Zhang et
al., 2014), in reality its value changes during a day as well as during a year as it depends on the solar zenith angle, leaf area,
leaf inclined angle, and leaf clumping (Parker, 2020; Wang et al., 2004; Zhang et al., 2014). It also changes with stand age,
while it reaches its maximum in young stands (Brown and Parker, 1994). A constant value of CLEC causes intra-annual errors
in estimations of plant transpiration and soil evaporation during a year (Tahiri et al., 2006). Due to this, a variable CLEC seems
to be a more appropriate option. Our analysis revealed significant trends in the SSMV optimised values of CLEC with multiple
environmental characteristics, while the trends with elevation and precipitation were positive, and with temperature and VPD

negative (Figure 8Figure-8). Such patterns were not observed in other studies analysing measured data of CLEC, but the
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number of tested observations was low (Zhang et al., 2014) as it was also in our case. Nevertheless, the empirical data showed
that CLEC increases with the-decreasing plant density (Timlin et al., 2014) and LAI (Zhang et al., 2014). Since our model
operates at a stand level, stand biomass can be considered as a proxy of stand density. Our results showed the decreasing trend
of CLEC with the increasing aboveground wood carbon stock (Fig. S11Fig-—A210), which is in agreement with {Timlin et al.;
(2014). Moreover, the simulated AbgwC of calibration sites decreased along the elevational gradient (Fig. S11Fig—A10)
explaining the positive correlation of CLEC to elevation, which can be considered as a side effect of stand density that is lower
at high elevations.

Tahiri et al. (2006) successfully applied a simple empirical approach using a linear regression with leaf area. Parker (2020)
calculated CLEC as a ratio between the effective LAI and the total LAI. CLEC is usually calculated following the simplified
Beer Lambert law as a function of above- and below-canopy solar radiation and leaf area (Zhang et al., 2014). A more
sophisticated approach includes the solar zenith angle and the clumping index. Some models also use the inclination angle of
leaves, while most commonly the spherical distribution of leaves is assumed (Liu et al., 2021), although Pisek et al. (2013)
found that tree species in temperate and boreal regions are usually characterised by planophile or plagiophile leaf angle
distribution.

Although we derived several multiple linear regressions explaining the variation in site-specific CLEC values using different
combinations of environmental predictors (Fig. S15Fig—Ad4), the simulations with varying CLEC based on environmental
conditions did not produce satisfactory results (33 % and 27 % of all and calibration sites collapsed if simulated with CLEC

derived from its regression to annual precipitation, respectively). The possible reason is the existence of interdependencies

between parameters discussed in Sect. 4.3.1.

Moreover, we found that MSC was also significantly related to environmental conditions, namely VPD (Figure 8Figure-8).
MSC specifies the highest possible rate at which stomata can open and allow the exchange of gases between the plant and the
environment under present-day CO2 concentration and optimal environmental conditions, i.e. maximum radiation, and
unlimited water availability, when VPD is zero, and there is no soil water stress. Such conditions rarely occur in the field, and
hence, the observed maximum conductance, which represents the highest conductance on fully expanded leaves that was
measured during the summer growing season (Murray et al., 2019), does not usually reach the theoretical maximum (McElwain
et al., 2016). The theoretical MSC can be derived from leaf anatomy, namely stomatal density, maximum stomatal pore area
and stomatal pore depth (McElwain et al., 2016; Murray et al., 2020). The SSMV optimised values of MSC were found to be
positively related to the long-term mean VPD (Figure 8Figure-8), which decreases with elevation, whereas the stomatal
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conductance as well as stomatal characteristics specifying MSC usually increase with elevation (Bresson et al., 2011; Petrik
et al., 2022). In line with this, the studies from temperate European ecosystems reported an inverse relationship between the
stomatal conductance and VPD (Ko6rner, 1995; Urban et al., 2017). Similarly, the site-specific values of another
ecophysiological parameter representing the stomata closure (VPDC, i.e. the vapour pressure deficit causing the complete
conductance reduction) were found to be significantly negatively related to elevation (Figure 8Figure-8), while the empirical
studies did not reveal any differences in the onset of stomatal closure along an elevational gradient (Korner and Cochrane,
1985). Hence, we assume that the revealed correlations in our data are by-products of the site-specific calibrations.

Due to the above above-stated inconsistencies, and the lack of data and supporting information, we decided not to apply the
dynamically changing CLEC, MSC and/or VPDC along environmental gradients. However, this approach may be considered
as a potential way forward in a future model development when more scientific knowledge becomes available. Nonetheless,
our results pointed out that for simulations at a local level, some parameters may need site-specific values. Such a hybrid
approach of using a combination of general and site-specific parameters, which was already applied by e.g. {Thornton et al.;
(2002), may be beneficial to reduce the uncertainty of local predictions. Since the values of many of the parameters are usually
not measured at research plots, global trait databases, such as TRY (Kattge et al., 2020) or the ones by Liu et al. (2023); Maire
et al. (2015); Lin et al. (2015), might be useful to estimate the local values for a specific site and species_considering site-

specific environmental conditions. Naturally, the best solution for any local study is to obtain measurements of required

parameters from specific sites, which is however not always feasible due to time and financial restrictions.

4.4. Robustness and plausibility tests of simulated outputs at a large scale

4.4.1 Carbon stock in soil

Soil carbon represents a large storage of terrestrial carbon (Amundson, 2001) accounting for approximately a half of total
forest ecosystem carbon (Domke et al., 2017; Jobbagy and Jackson, 2000). A similar proportion was also revealed in the output
of our simulations (median= 47.7 %, mean=51.5 %, 1st Qu.= 32.6%, 3rd Qu.=69.9 %). The absolute values of simulated
carbon stock in soil per unit area occurred within the range of soil organic carbon (SOC) reported by empirical studies (De
Vos and Cools, 2011; 2010; Wellbrock et al., 2016; Wellbrock and Bolte, 2019), although the variability of simulated values
was lower (Fig. S13Fig—A-12). The mean value of the simulated SoilC (Min.=7.9, 1st Qu.=12.1, Median = 13.3, Mean =
13.1, 3rd Qu. = 14.4, Max. =17.0 kgC m) was similar to the mean values observed in European beech forest stands (e.g.
Meier and Leuschner, 2010; Mund, 2004).

The site-specific simulated SoilC significantly decreased with the increasing air temperature (Figure 11Figure-+1), which is
consistent with the observed patterns in soil carbon stocks from soil profile data along temperature gradients (Hartley et al.,
2021; Jobbagy and Jackson, 2000; Post et al., 1982; Sun et al., 2019; Wang et al., 2013). The impact of temperature was also
apparent in the relationships between the simulated SoilC and elevation or latitude, both of which were significantly positive
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(Fig. S17Fig—Ad6). The increasing trend of SoilC with latitude matched the trend of soil carbon stock found in temperate
regions of the northern hemisphere (Minasny et al., 2014). These trends result from the faster decomposition (Wang et al.,
2013) and hence the microbial soil respiration as the temperature increases (Cao et al., 2019; Rodeghiero and Cescatti, 2005;
Sun et al., 2019), the pattern that was found significant (r=0.33, t = 3.15, p-value = 0.002, 95 % CI = 0.12, 0.51) also in our
simulated output (Fig-—AX8Fig. S19a).

Unlike the increasing trend of SOC with the increasing precipitation reported in the literature (Jobbagy and Jackson, 2000;
Post et al., 1982), the simulated SoilC was not significantly related to the precipitation amount (Fig. S19Fig—A28b). In general,
the impact of precipitation on SOC changes depending on whether the examined ecosystems are water-limited (Wiesmeier et
al., 2019). The small-scale study of SOC in beech forests in Germany revealed its significant correlation to precipitation (Meier
and Leuschner, 2010), while at high-latitude ecosystems precipitation has only a minor impact on SOC stock (Devos et al.,
2022). Our study includes a much wider variety of environmental conditions including different temperature ranges, soil
depths, and soil textures than the study of Meier and Leuschner (2010), which may mask the relationship between SoilC and
precipitation. Unfortunately, we could not derive the regional relationships between measured SOC and environmental
characteristics from our dataset due to the lack of data on soil carbon stock at all plots. Hence, we performed only plausibility
tests with modelled values and compared the revealed trends with those reported in published papers from elsewhere.

When we checked the relationship of simulated SoilC to soil characteristics, we found the opposite trend of SoilC with the
increasing clay content (Figure 11Figure-11) to the one reported in the literature based on soil measurements (Hartley et al.,
2021; Jobbagy and Jackson, 2000). The fine mineral fraction composed of medium to fine silt particles and clay is known to
have a stabilisation effect on SOC (Hartley et al., 2021), due to which it is often used as an indicator for SOC storage
(Wiesmeier et al., 2019). However, our model results showed that SoilC decreased with the increasing content of fine particles
(clay or silt) and increased as sand fraction dominated (Figure 11Figure-11). Under real conditions, higher clay content supports
the formation of soil aggregates that can save organic matter from decomposers and sequester SOC (Angst et al., 2018; Schmidt
etal., 2011). In BBGCMuSo this mechanism is not accounted for, as SOC formation is driven solely by temperature and SWC,
and the litter input (Hidy et al., 2022). Moreover, the data used for our model simulations did not include the full range of clay
content, since the maximum in our database was 56 %, and most site-specific values did not exceed 30 % (median=20 %,
mean=19.6 %, 3rd quartile = 22 %). When we experimentally increased the clay content in soils of some sites to the maximum
value (i.e. clay content =100 %), we could see the reversed pattern in the relationship (Fig—A18Fig. S19c¢).

Soil acidity enhances the storage of SOC by reducing soil microbial activities driving the decomposition of soil organic matter
(Funakawa et al., 2014). The new BBGCMuSo model includes soil pH as a factor affecting the process of nitrification in soil
layers (Hidy et al., 2022). The observed decreasing trend in the simulated output of SoilC with the increasing pH (Fig—AL8Fig.
$19d) is consistent with the experimental results (Funakawa et al., 2014) confirming the correct implementation of pH impact

on soil processes in the model.
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Soil carbon is the result of carbon inputs from vegetation followed by decomposition processes. In the model, decomposition
is driven by soil temperature and soil water content, which is dependent on the precipitation amount, and water infiltration
driven by soil texture (Hidy et al., 2022). In nature, around 60 % of the variability in soil respiration is explained by soil
temperature and precipitation (Cater and Ogrinc, 2011). Our simulated output also showed a significantly increasing trend of
heterotrophic soil respiration with the increasing temperature (Fig. S19Fig—A18g), but the trends with the soil water content
or _precipitation were insignificant (Fig—A48Fig. S19h,i). Nevertheless, the increase of the simulated soil water content with
the increasing fraction of clay and the decreasing fraction of sand in soil (Fig. S20Fig—A19) was consistent with the general
knowledge about the impact of soil texture on soil moisture (Kaufmann and Cleveland, 2008). However, the simulated soil
microbial respiration was found to have an increasing though insignificant trend with the increasing clay proportion (Fig-
AXL8Fig. S19e), and a significant decreasing trend with the sand proportion (Fig—AX8Fig. S19f). Although these results explain
the negative correlation between SoilC and clay content, they contradict our expectations based on the evidence from empirical
studies that suggest that decomposition should be faster in coarse-sized soils (Hartley et al., 2021). In addition, soil respiration
is strongly driven by root biomass (Cater and Ogrinc, 2011), which was also detected in our simulations (Fig—A48Fig. S19j,
significant Pearson's product-moment correlation between the carbon stock in fine roots and heterotrophic respiration with
r=0.53, t = 5.74, p-value = 1.45e-07, 95 % CI = (0.36, 0.67)). These findings suggest that while the impact of temperature and

vegetation on decomposition is captured in the model well, the influence of soil water seems to be insufficient. Without a

thorough data-based analysis it is however not possible to state if the reason lies in the missing process description in the model

or in the values of decomposition-related parameters. Nevertheless, the last methodological paper presenting Biome-

BGCMusSo (Hidy et al., 2022) also identified decomposition as a process requiring further development.

Similarly to the reported positive relationship of soil carbon to organic carbon input (Cao et al., 2019; Jobbagy and Jackson,
2000), our outputs showed that SoilC increased with the increasing vegetation carbon stock (Fig. S19Fig—A18k), although the
correlation was not significant (Pearson's product-moment correlation r=0.15, t = 1.43, p-value = 0.16, 95 % Cl=(-0.06, 0.36)).
In the model direct carbon inputs into soil storage come from the litter (Hidy et al., 2022). The significant positive correlation
(r=0.89, t=16.79, p-value < 2.2e-16, 95 % CI= (0.82, 0.92)) between the simulated litter and soil carbon stocks (Fig. S19Fig:
Al8l), confirmed that the model captured the carbon flow from vegetation to the soil according to expectations based on
published field data (Hilli et al., 2010). In the model, litter is formed by leaf fall, fine root mortality, and defragmentation of
coarse woody debris (CWD, Hidy et al., 2022). Surprisingly, the relationships of simulated SoilC to the annual amount of
carbon in leaves or fine roots were insignificant (Fig. S19Fig—A18m,n), while the correlation of SoilC with CWD was
significantly positive (Fig. S19Fig-—A180). These results were caused by a much higher amount of accumulated CWD in the
simulated ecosystem in comparison to the input from leaves or fine roots. Hence CWD represents the main source of carbon
for soil. In the current model version, the actual amount of CWD results from the accumulation over the whole simulation that
cannot be reduced by a user, although the usual practice in managed forests has been to remove dead trees during logging

operations for sanitary reasons (Kirby et al., 1998; Paletto et al., 2012). Hence, the actual amount of CWD found in managed
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forests normally represents only a small fraction of the CWD stock of what can be found in nature reserves (Christensen et al.,
2005). To make the ecosystem development under the-human influence more realistic, the future model version will include

the possibility to simulate the extraction of CWD or its part from the system at any time during the normal run simulation.

4.4.2 Carbon stock in litter

The absolute values of simulated carbon stock in litter (Min.= 0.33, 1st Qu.= 0.53, Median= 0.59, Mean = 0.61, 3rd Qu. =
0.68, Max. = 1.07 kgC m?) were consistent with the litter carbon stock reported from beech forests in Europe (Meier and
Leuschner, 2010; Mund, 2004; Vesterdal et al., 2008). The litter amount represented approximately 2.5 % of the total
ecosystem carbon (Min.= 0.6, 1st Qu.= 1.4, Median = 2.2, Mean= 2.5, 3rd Qu.= 3.7, Max.= 9.8 %), which is lower than the
relative mean litter C stock reported globally (5 % based on Pan et al. (2011)) or for the U.S.A. (7 %, Domke et al., 2016).
Such a relatively small amount of organic litter is typical for temperate hardwood forests on fertile soils (BMELF, 1997).

We revealed similar trends of LitterC along environmental gradients as for SoilC, e.g. the simulated carbon stock in litter
significantly decreased with the increasing temperature since the heterotrophic respiration also increases along the temperature
gradient (Sun et al., 2019). Similar trends were also found with elevation, and latitude, as well as with soil characteristics (Fig.
S17Fig-AL6 and Fig. S18Fig-—AL7). The decreasing trends of simulated LitterC with the increasing pH, clay and silt proportion
in soil and with the decreasing content of coarse sand were consistent with the trends derived from field measurements
(Vesterdal and Raulund-Rasmussen, 1998). Based on the empirical evidence by Meier and Leuschner (2010), fine root biomass
is the major factor affecting carbon stock in litter. However, our analysis did not reveal a significant relationship between
carbon stock in fine roots and litter (Fig. S19Fig—A18p) probably due to the differences in the perception of the term “litter”
in the model and in empirical studies. Vesterdal and Raulund-Rasmussen (1998) also found significant correlations of LitterC
to the soil content of other chemical elements (P, Ca, K, Mg), which are not included in our model and in most available
models of vegetation dynamics (Mergani¢ova et al., 2019). Nevertheless, due to the ongoing climate change including the
dynamics of other nutrients in models may become more important especially if they represent limiting factors for ecosystems
(Zaehle, 2013).

4.4.3 Carbon stock in aboveground wood biomass

The accumulated carbon stock in wood biomass strongly depends on the forest age or the forest developmental phase. Due to
this we first compared the absolute values of AbgwC at the end of spinup simulations to the stock observed in over-aged and
old-growth beech forests (Barna et al., 2011). The absolute values occurred within the reported range, although the variability
of simulated values was substantially lower than in the observed ones (Fig. S13Fig—A-12). On average, around 40 % of total
ecosystem carbon was fixed in simulated AbgwC (1st Qu.=21.6, Median=43.5, Mean=39.9, 3rd Qu.=57.9, Max.=78.7 %),

similarly as reported from temperate European forest ecosystems (Wellbrock et al., 2017).
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Simulated values of AbgwC exhibited a parabolic relationship to elevation and temperature, with maximum values at
elevations of around 500 - 600 m a.s.l., and a mean annual air temperature of approximately 9°C (Figure 11Figure-11). These
results coincide with optimum growth conditions for beech reported in the literature, based on which beech growth optimum
occurs between 450 and 900 m a.s.l. (Schieber et al., 2013), and at sites with a mean annual temperature of 7 to 10°C
(Czajkowski et al., 2006; Pagan, 1996; Paule, 1995). The literature also suggests the optimum annual precipitation total for
beech from 700 to 1,000 mm (Czajkowski et al., 2006; Paule, 1995), but the relationship of the simulated AbgwC with
precipitation explained only 5 % of AbgwC variability. Nevertheless, the unimodal relationship of AbgwC with VVPD revealed
the maximum AbgwC at around 530 Pa of VVPD (Figure 11Figure-11), which falls within the optimum VPD range for plant
growth (500 to 1,200 Pa) (Noh and Lee, 2022). Although empirical studies reported an inverse relationship of beech production
to VPD (Lendzion and Leuschner, 2008; Roibu et al., 2022; Tumajer et al., 2022), they focus on short-term changes, whereas
in our analysis we used a long-term mean VPD characterising overall site conditions. Already Leuschner (2002) showed in his
experiment that the prevailing VPD during the plant development determines the growth potential of plants under the
conditions of Central Europe. The laboratory experiment by Lihavainen et al. (2016) revealed that the effect of VPD changes
in time. While the initial reduction of VPD to low values caused an acceleration in the growth rate of silver birch, the effect
diminished in time due to nitrogen limitation (Lihavainen et al., 2016). Since VPD seems to have a more profound effect on
an intra-annual growth of broadleaved tree species than temperature (Tumajer et al., 2022), more research is required to clarify
the impacts at different temporal levels.

The simulated AbgwC trend along the soil gradient was consistent with the empirical knowledge about optimum soil conditions
for beech. Beech prefers well-drained soils and does not tolerate wet clay soils. It frequently occurs on loamy or sandy-loamy
soils (Packham et al., 2012), on which the simulated AbgwC was the highest (Fig. S20Fig—AL9). Loams are the most
productive soils because of their moderate soil texture due to which they are able to hold a large amount of water available for
plants (Kolb, 2022). Soil texture also affects fine root production, e.g. Weemstra et al. (2017) observed significantly higher
fine root biomass on sand than on clay. We did not reveal such a trend in our simulation outputs (Fig. S19Fig—A18q, Pearson's
product-moment correlation r=0.11, t = 1.0, df = 82, p-value = 0.32, 95 % CI=(-0.11, 0.32)) because C allocation in the model
is fixed and does not depend on soil texture. Although beech forests grow on soils with a large range of pH from 3.5 to 8.5
(Packham et al., 2012), the optimum values at which the maximum biomass production is achieved fluctuate between 5.5. and
6 (Pagan, 1994). The pH of the plots in our database varied between 3.69 and 7.5 (1st Qu.= 5.1, Median = 5.2, Mean = 5.6,
3rd Qu. = 6.4), but we did not reveal a significant trend in AbgwC with pH in the simulated output (Fig. S19Fig--A18r).

4.5. Future model development

Model structural uncertainty and parameter uncertainty are not distinguishable. Inevitable structural uncertainties exist in

Biome-BGCMuSo and essentially in all other process-based models, which means that the processes are simplified, and some

internal processes can compensate each other. We typically call this phenomenon as getting good results for wrong reasons.
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The variability in output data along the gradients of individual characteristics indicates the complex nature of the model and
the combined impact of multiple environmental and ecosystem conditions on the final state of the system. In general, we can
say that the model output behaves according to well-known natural rules along environmental gradients. The revealed
discrepancies are of lesser importance and point out at the issues in the model that should be dealt with in the future model

development. Water seems to play a minor role in modifying the simulated carbon-related output, but this requires more

thorough tests using data capturing the water cycle that were not used in the current study. Similarly, Fthe impact of soil texture

might-needs to be examined in more detail to drive the conclusion. Moreover, there are environmental characteristics which

are not accounted for in the current model but may explain the differences between the observed and modelled trends in soil
carbon stock, e.g. parent rock material (Wiesmeier et al., 2019), or the proportion of coarse rock fragments in soil;-which that
may substantially influence soil properties, such as water holding capacity and movement, plant growth and decomposition
processes (Poesen and Lavee, 1994). In the current study we have not addressed these issues due to the lack of field
observations.

Similarly, the relationships between individual output variables representing the carbon cycle are in general consistent with

the empirically based knowledge. Including the possibility of CWD removal from an ecosystem due to management

interventions will enable more realistic simulations of managed forests and should also result in better capturing the

relationships between SoilC and carbon in foliage or fine roots.

Carbon cycling in simulated forest ecosystems is primarily driven by allocation, respiration, mortality, and decomposition.

Although in the model, a forest is represented by two leaves, one sunlit and one shaded one, this has implications only on the

calculations of photosynthesis, while the other processes are not separated between the two parts. Due to this, the parameter

called the ratio of shaded specific leaf area (SLA) to sunlit SLA did not currently have a substantial effect on the examined

carbon stocks, especially in aboveground wood (Table 1). Future model development could account for the differences in

respiration and allocation proportions and mortality of overstorey and understorey. This would enhance the model applicability

to simulate the development of two-storeyed forests and should also increase the variability of model output due to the

differences in the growth efficiency between the forest storeys.

Another limitation is the fixed C allocation over the whole simulated period driven by species-specific C allocation parameters.

This approach is the simplest one (Merganidova et al., 2019) and was found sufficient when simulating short-term dynamics

of ecosystems. However, for multi-site simulations covering long-term dynamics, a fixed C allocation may lead to bias in

model output at certain sites or during certain developmental phases of forests, which may require site-specific or phase-

specific parameter values.

Other structural improvements needed in Biome-BGCMuSo include improved N cycle and consideration of additional SOC

decomposition mass flows including root exudates, priming and litter decomposition to avoid the bias in the estimated

parameters. It is a major challenge to the community, and it is not foreseen that the parameter estimation will ever be free from

errors.
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5. Conclusion

The work presents a novel multi-objective calibration approach that uses the generalised likelihood uncertainty estimation
method, plausibility checks of output variables, and intersection principles. The proposed multi-objectivecalibration-approach
solves the problems of model overfitting, calibration efficiency, spatial heterogeneity, and quantity and quality of available
data. The sensitivity results highlighted the need for the multivariate approach, as the impact rates of parameters and the trends
of changes differed between the selected output variables. The integration of the plausibility checks of model outputs ensures
the realism of simulated ecosystems. The most important advantage of the presented method is the fact that it considers the

environmental dependency of model ecophysiological parameters in a spatial context. Moreover, the approach is also usable

to select site (environment) invariant parameters, that are globally applicable. Another advantage compared to traditional

Bayesian or frequentist methods is the plausibility check of the optimised parameters and their ranges, for which global

databases on plant traits play a crucial role. The solution improves the reliability of the optimisation and may be generally

applicable to any process-based models of ecosystem dynamics. Such-models-heavilyrehy-on-how-theycharacterize-the

The disadvantage of the optimisation method is the possible bias of optimised model parameters that can occur because the

parameters are forced to specific values during the optimisation process to match the observations and the simulations. This

can be partially avoided by including multiple data into calibration, which represent diverse parts of an ecosystem, such as

vegetation, litter, and soil, as it was presented in this study, simulated nutrients (in our case it would be carbon, nitrogen, and

water), and processes. To identify the bias in parameter values, on-site measurements of parameters would be needed. Hence,

from this point of view, it is worth considering obtaining the information on some plant characteristics, e.g. C:N ratios in

different ecosystem compartments, FLNR, etc., routinely from research plots.

There is still space for improvements of the optimisation method. In this study the likelihood function did not include the

uncertainty of the observations, which means a lack of weighting of errors due to their magnitudes. Thus, likelihood can be

reformulated to include observation uncertainty. Moreover, the method does not currently account for the covariance between

output variables. This could be done by creating a covariance matrix representing the relationships between the output variables

from the model simulations and incorporating it into a multivariate likelihood function. Such an approach should provide a
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more accurate and realistic estimation of the uncertainties associated with the model parameters. On the other hand, including

covariance will further increase the computational complexity of the method, already characterized by its significant demands.

The calibration of the model performed at individual sites (SSMV) and multiple sites (MSMV) revealed pros and cons of both
approaches. Site specific parameter values improved the accuracy of the simulated outputs of interestaboveground-weod;-seil;
and-littercarbons-stocks for the specific sites by 0655 % and-11 % incomparison-to-the-a-priori parametersetHowever
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SSM\-parameter-sets—F and thus, are more suitable for local simulation studies;-site-specific-values-of the-parameters-may-be

maore-suitable than the generalised parameter set, which is more appropriate for studies covering a larger spatial scale. On-the

113 o 99

The independent validation, robustness and plausibility tests confirmed the robustness of the multi-site and multivariate

calibrated set of ecophysiological parameters for the European beech at a regional level-tn-general-the-examined-medel-eutput

. The study alse

highlighted the gaps in the empirical data and knowledge explaining the relationships between parameters, or between

parameters and environmental conditions, which should be addressed by future research. For future applications, additional
parameters that were not considered in this study, such as parameters specifying drought-induced mortality, may need to be
calibrated with additional empirical data since the occurrence of extreme events and disturbances has been increasing due to

the climate change.

Code and data availability. The current version of Biome-BGCMuSo, together with sample input files and a detailed user
guide, is available from the website of the model at http://nimbus.elte.hu/bbgc/download.html under the GPL-2 license. Biome-
BGCMuSo v6 is also available at GitHub: https://github.com/bpbond/Biome-BGC/tree/Biome-BGCMuSo_v6. The exact
version of the model (v6.2 alpha) used to produce the results in this paper is archived on Zenodo
(https://doi.org/10.5281/zenod0.5761202; Hidy and Barcza, 2021). The RBBGCMuSo package (Hollos et al., 2023) is
available at https://github.com/hollorol/RBBGCMuso. Experimental data used in the study are available from ICP Forests
(http://icp-forests.net/) and from authors that provided the data upon request. The initial data and the code for optimisation are
in the supplement.

Supplement. The supplement related to this article is available online.
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