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Abstract.

Land-use change (LUC) impacts biospheric carbon, encompassing biomass carbon and soil organic carbon (SOC). Despite

the use of dynamic global vegetation models (DGVMs) in estimating the anthropogenic perturbation of biospheric carbon

stocks, critical evaluations of model performance concerning LUC impacts are scarce. Here, we present a systematic evalu-

ation of the performance of the DGVM ORCHIDEE to reproduce observed LUC impacts on biospheric carbon stocks over5

Europe. First, we compare model predictions with observation-based gridded estimates of net and gross primary productivity

(NPP and GPP), biomass growth patterns, and SOC stocks. Second, we evaluate the predicted response of soil carbon stocks

to LUC based on data from forest inventories, paired plots, chronosequences and repeated sampling designs. Third, we use in-

terpretable machine learning to identify factors contributing to discrepancies between simulations and observations, including

drivers and processes not resolved in ORCHIDEE (e.g. erosion, soil fertility). Results indicate agreement between the model10

and observed spatial patterns and temporal trends, such as the increase in biomass with age, when simulating biosphere carbon

stocks. The direction of the SOC responses to LUC generally aligns between simulated and observed data. However, the model

underestimates carbon gains for cropland-to-grassland and carbon losses for grassland-to-cropland and forest-to-cropland con-

versions. These discrepancies are attributed to bias arising from soil erosion rate, which is not fully captured in ORCHIDEE.

Our study provides an oriented benchmark for assessing the DGVMs against observations and explores its potential in studying15

the impact of LUCs on SOC stocks.

1 Introduction

The terrestrial biosphere, with its organic carbon stocks in biomass and soils, currently acts as a sink for anthropogenic CO2

emissions (Lal, 2008; Canadell and Schulze, 2014; IPCC, 2023; Friedlingstein et al., 2023). It has long been known that

land use and land-use changes (LUCs) significantly alter the quantity of carbon stored in both biomass and soil (Guo and20

Gifford, 2002; Laganière et al., 2010; Deng et al., 2014; Le Quéré et al., 2015; Sanderman et al., 2017). For example, afforesta-

tion and reforestation activities can increase biomass carbon stocks and, consequently, expand soil and litter carbon reserves.

LUC-induced changes in soil organic carbon (SOC) stocks result from changes in the quality and quantity of litter inputs or

decomposition processes driven by shifts in soil moisture and temperature regimes. As such, investigating the implications of
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LUC on biospheric carbon pools and fluxes becomes indispensable in shaping effective climate change mitigation strategies25

and fostering sustainable land management practices (Watson et al., 2007; Arora and Boer, 2010; IPCC, 2022). A compre-

hensive understanding of these dynamics is essential for harnessing the potential of carbon sequestration in climate change

mitigation efforts and achieving global sustainability goals (Lal, 2004; Canadell and Schulze, 2014).

Dynamic global vegetation models (DGVMs) serve as indispensable tools for estimating regional and global changes in

biospheric carbon stocks in response to climate change and LUC (Nyawira et al., 2016). Accurate evaluation of DGVMs against30

observational data is however crucial to assess their reliability in representing biomass and soil carbon dynamics. In addition, to

the best of our knowledge, very few studies have comprehensively compared observed data and model simulations concerning

tree biomass versus age across large spatial scales. Here, we present a benchmark procedure to comprehensively evaluate

a DGVM’s performance to reproduce LUC impacts on biomass carbon and SOC stocks using diverse observational data

sources. The approach is applied to assess the performance of the Organising Carbon and Hydrology in Dynamic Ecosystems35

(ORCHIDEE) model (Krinner et al., 2005).

In the recent past, a wide range of meta-analyses has been published, focusing on SOC changes following LUC (Guo and

Gifford, 2002; Laganière et al., 2010; Poeplau et al., 2011; Poeplau and Don, 2015; Li et al., 2018; Fohrafellner et al., 2023).

One of the key advantages of these meta-analyses is their utilisation of various quality checks to combine and aggregate

local-scale measurements. Through this approach, the meta-analyses offer valuable insights into the representative ranges and40

averages of magnitudes and speed of changes in SOC stocks following LUC (Poeplau et al., 2011; Li et al., 2018). As a

result, meta-analyses can be used to validate DGVMs’ ability to reproduce SOC stock dynamics following LUC. Nevertheless,

very few DGVMs have been evaluated against such meta-analyses (Nyawira et al., 2016), while for most DGVMs, such an

evaluation is yet to be performed.

Our goal is to create a universal benchmark that can be used by DGVMs in general, making it easier to evaluate how45

well these models simulate changes in biomass carbon and SOC stocks after LUC. We build this LUC-carbon benchmarking

framework at a continental scale in Europe. To achieve this, we will use a combination of diverse observational data sources and

employ the ORCHIDEE model. This approach provides insights and a more profound comprehension of the model processes

as we compare them with the observations. The first step involves verifying whether the model reproduces carbon fluxes and

stocks accurately. Next, we assess the simulated impact of LUC on SOC stock changes by comparing it with observational data50

from meta-analyses. Five LUC transitions will be considered: cropland-to-grassland (C− to−G), grassland-to-cropland (G−
to−C), cropland-to-forest (C−to−F ), grassland-to-forest (G−to−F ), and forest-to-cropland (F−to−C). Then, we explore

potential factors that may cause model bias when simulating changes in SOC stock for each LUC scenario. In the following,

we will (1) introduce materials, including a brief description of the ORCHIDEE model and observational databases used; (2)

describe the model set-ups and comparison process used in this study; (3) assess the model’s performance in reproducing carbon55

stocks, stock changes, and the major related carbon fluxes; (4) compare simulations against meta-analyses of observations

of soil carbon dynamics following LUC, and investigate potential factors that contribute to model bias; and (5) discuss the

comparisons, sources of discrepancies, and challenges in model-data comparison.
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2 Materials and methods

2.1 Organising Carbon and Hydrology in Dynamic Ecosystems model60

ORCHIDEE version 2.2 is a state-of-the-art DGVM designed to simulate carbon, water and energy fluxes from local sites to

the global level (Krinner et al., 2005). It calculates the energy and hydrology budget of the terrestrial biosphere at half-hourly

intervals, distinguishing 15 plant functional types (PFTs, shown in Tab. 1) (Ducoudré et al., 1993; de Rosnay and Polcher,

1998). In addition, it simulates vegetation phenology as well as carbon dynamics, including photosynthesis, maintenance and

growth respiration, carbon allocation in vegetation biomass, production and decomposition of litter, and soil carbon dynamics65

at daily time-steps (Krinner et al., 2005). The basic scheme of biospheric carbon cycling representation in ORCHIDEE is

described in Appendix A.

ORCHIDEE is forced with meteorological data, wood harvest maps, soil texture, and land cover maps to prescribe the areal

proportion of each PFT in each model grid cell for a given point in time. When land cover changes happen, PFT-level carbon

stocks are redistributed from the shrinking PFT to the expanding one.70

All simulations described in this study share the same forcing data. In detail, we employed the CRU JRA v2.3 dataset for

meteorological forcings with a spatial resolution of 0.5 degrees. This dataset is accessible for the period spanning 1901 to

2021 and is available at https://catalogue.ceda.ac.uk/uuid/38715b12b22043118a208acd61771917. The CRU JRA v2.3 data

comprises 6-hourly records of various variables, including temperature at 2 m above ground, air pressure, specific humidity,

wind speed, precipitation (rain and snow), and downward longwave and shortwave radiation. The land-cover map is from the75

ESA LUH2v2 data (Lurton et al., 2020), i.e. a combination of the European Space Agency (ESA) Climate Change Initiative

land-cover map (www.esa-landcover-cci.org/) and the historical land use harmonisation database (LUH2v2, Hurtt et al.

(2020)). This data provides areal fractions for each of the 15 PFTs within individual cells of the modelling grid. The land

cover map is updated annually, and LUC is represented as an abrupt transition of land cover at the beginning of each year.

More subtle LUC changes, like changes in management intensity, are not considered due to a lack of historical data. Over80

standard historical gridded simulations, LUC change is treated as a continuous process, slightly increasing or decreasing the

areal proportion of one or more PFTs at the detriment of others. The litter and SOC pools inherited from a disappearing PFT to

a target PFT are merged with the existing litter and SOCs pools of the target PFT, which already occupy a fraction of the grid

cell. This dilution of a small amount of newly delivered litter and SOC brought from LUC into a large amount of SOC already

existing in the target PFT area conserves mass but makes it impractical to compare SOC and litter change with observations85

because observations come from sites where 100 % of a PFT is converted to another.

Therefore, we built idealised LUC scenarios in which we assume an abrupt transition referring to a 100 % conversion from

one PFT to another in a grid, meaning there is no dilution of old soil carbon signals into the new PFT area. This transition is

based on homogeneously prescribed land cover consisting of one single PFT, not on changing land cover maps. This abrupt

change run is necessary to make simulations comparable to observations at the site level, which consider local change from90

one PFT to another, rather than a change in PFT mix from the landscape perspective usually taken by a DGVM such as

ORCHIDEE. The wood harvest map is sourced from the LUH2v2 database. It provides the wood harvest data as annual areal
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Table 1. ORCHIDEE plant functional types (PFTs) and PFT-specific parameters. Values in parentheses indicate the modifications in the

simulation set-ups (detailed in Sect. 2.3). (Vcmax represents the maximal rate of carboxylation (≈ the potential photosynthetic capacity)

(µmol m−2 s−1), Fgrowthresp is the fraction of gross primary production (GPP) which is lost as growth respiration.)

No PFT Name Vcmax Fgrowthresp

1 BS Bare soil - -

2 TrBE Tropical broadleaf evergreen forest 45 0.35

3 TrBR Tropical broadleaf raingreen forest 45 0.35

4 TeNE Temperate needleleaf evergreen forest 35 (44.45) 0.28 (0.1)

5 TeBE Temperate broadleaf evergreen forest 40 0.28

6 TeBS Temperate broadleaf summergreen forest 50 0.28

7 BoNE Boreal needleleaf evergreen forest 45 0.35

8 BoBS Boreal broadleaf summergreen forest 35 0.35

9 BoNS Boreal needleleaf summergreen forest 35 0.35

10 TeGC3 Temperate natural C3 grass 50 0.28

11 GC4 Natural C4 grass 50 0.28

12 C3C C3 crop 60 0.28

13 C4C C4 crop 60 0.28

14 TrGC3 Tropical natural C3 grass 50 0.25

15 BoGC3 Boreal natural C3 grass 40 0.35

flux rates of carbon in the extracted biomass (gC m−2 yr−1). This means that this data can be applied to different PFT maps

without causing extreme flux rates due to inconsistent representation of forest area. The soil texture classification relies on

the study of Zobler (1986). This scheme distinguishes seven texture classes, which for ORCHIDEE are further aggregated to95

three texture classes (i.e. coarse, medium, fine), each associated with specific soil physical properties. This classification is

essential in simulating the soil water budget, and through that, it also significantly affects vegetation dynamics. In addition, it

impacts soil carbon dynamics by directly influencing the turnover rates of SOC through clay content and its presumed effect of

enhancing the physical protection of the active SOC pool. In ORCHIDEE, the module of soil has an assumed globally uniform

depth of 2 m. Note however that soil carbon is not depth discretized and average values of soil temperature, moisture and clay100

content are used.

2.2 Observation-based data

To evaluate the model performance concerning the dynamics of carbon stocks, we compare simulation results against obser-

vations of net and gross primary production (NPP and GPP, respectively), which are the primary controlling factors on land

carbon stocks; paired observations of above-ground biomass and plant age (Somogyi et al., 2008; Schepaschenko et al., 2017);105

observation-based maps of SOC; and SOC stock changes due to LUC. For the investigation of potential factors (detailed in

4



Sect. 2.2.4) causing model bias in estimating changes in SOC stocks due to LUC, we used meteorological data from the CRU

JRA dataset and soil-related data from LUCAS soil surveys.

2.2.1 Primary production

Annual NPP data were derived from a comprehensive database forest ecosystem from Luyssaert et al. (2007), including a110

rigorous selection of single or multiple direct measurements and modelled fluxes. The model-generated fluxes in this database

closely match the observed data because they were generated using a mechanistic process model with daily or more detailed

climatological data, calibrated with site-specific parameters, and validated against site-specific measurements. The data are

available at https://www.lsce.ipsl.fr/en/Phocea/Pisp/visu.php?id=124&uid=sebastiaan.luyssaert. NPP is reported at different

levels ranging from a single plant component (e.g. foliage or stem NPPs) to the complete plant. Here, we selected the most115

superficial aggregation level of the total NPP (i.e. the sum of above-ground (foliage + wood) and below-ground (coarse + fine

roots) NPP components).

The observed annual GPP data were obtained from four datasets. The first dataset was, similar to the above NPP dataset, ex-

tracted from the global forest database from Luyssaert et al. (2007). Second, GPP data were also gathered from the FLUXNET

2015 dataset, including data from multiple regional flux networks (Pastorello et al., 2020). This dataset collects eddy covari-120

ance measurements of carbon, water, and energy fluxes between the biosphere and atmosphere. It can be downloaded from

https://fluxnet.org/data/fluxnet2015-dataset/. Over our study area, these GPP data are available mainly from 1996 to 2015.

Thirdly, additional GPP data from European sites in 2020 were collected from the Integrated Carbon Observation System

(ICOS), a European-wide greenhouse gas research infrastructure. Finally, GPP data were also gathered from Campioli et al.

(2015). Like the comprehensive database of Luyssaert et al. (2007), Campioli et al. (2015) compiled the data from individual125

studies using harvest, biometric, eddy covariance, or process-based model estimates of primary production. In addition, this

dataset includes data not only from forest sites but also from grassland and cropland sites.

More detailed information on the selected NPP and GPP sites from different sources can be found in the Supplement

(Tabs. S1 to S4).

2.2.2 Biomass130

The biomass dataset considered here includes in situ estimates for the different plant compartments (i.e. foliage, stem, and

branch) and spans across all of the European biomes (Fig. S1 in the Supplement). The dataset consists of a collection and

harmonisation of available open forest inventory databases (e.g. Somogyi et al. (2008); Schepaschenko et al. (2017); Anderson-

Teixeira et al. (2018)) used already to quantify ecological and environmental controls on the spatial variability of stand age

(Besnard et al., 2021). Despite the global nature of the dataset, given the current European scope of this analysis, here we135

focused on locations in Europe where the total above-ground biomass (AGB) could be estimated based on in situ measurements.

The final dataset comprises 603 sites, including six PFTs (TeNE, TeBS, BoNE, BoBS, and a few sites of TeBE and BoNS). The

average stand age is 58 years (with a standard deviation of 43), and the mean AGB is 6.4 kgC m−2 (with a standard deviation

of 4.5).
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2.2.3 Soil organic carbon140

Data on SOC stocks were obtained from the Land Use and Cover Area frame Statistical (LUCAS) survey collected during the

2018 (Orgiazzi et al., 2018). This dataset offers comprehensive information on various chemical and physical soil properties

throughout the European region. The LUCAS sampling was conducted at different depths, primarily focusing on the fine

soil component of the top 20 cm of the soil column while excluding above-ground vegetation residues, grass, and litter. Site

selection for our study was based on the availability of observed organic carbon content, bulk density, and the fraction of coarse145

fragments within the top 20 cm layer. In addition, the land-use information was consistently available for all samples.

We considered the latest surveys from LUCAS 2018 topsoil data (Fernandez-Ugalde et al., 2022), which can be downloaded

from the European Soil Data Centre website https://esdac.jrc.ec.europa.eu/content/lucas-2018-topsoil-data. However, it is

important to note that, at the time of writing this manuscript, the fraction of coarse fragments was not included in the LUCAS

2018 topsoil data and had to be obtained from a previous survey, LUCAS 2015 (Jones et al., 2020). We downloaded and150

extracted the coarse fragments data from https://esdac.jrc.ec.europa.eu/content/lucas2015-topsoil-data and then combined

them with the LUCAS 2018 topsoil data. Furthermore, our analysis focused only on samples associated with forest, grassland,

and cropland land uses, excluding other land-use types not represented by the PFTs of ORCHIDEE, such as shrubland or

wetlands. In total, we identified and included 5150 sampling sites in our study.

The total SOC (in kg m−2) stocks were then calculated based on the following equation (Batjes, 1996):155

SOC =
OC ×BD×D× (1−CF )

100
(1)

in which OC is organic carbon content (gC kg−1), BD is bulk density (gC cm−3), D is soil depth (cm), and CF is volumetric

fraction of coarse fragments (> 2 mm).

We compiled data from 102 study sites sourced from 34 peer-reviewed publications (detailed in Tab. S5 in the Supplement)

investigating the impact of LUC on soil carbon stocks in the European region. Our selection process included several criteria160

to identify relevant SOC data from these studies. Firstly, we focused on five specific LUC transitions: cropland-to-grassland

(C−to−G), grassland-to-cropland (G−to−C), cropland-to-forest (C−to−F ), grassland-to-forest (G−to−F ), and forest-

to-cropland (F − to−C). Secondly, we included only studies with either paired plots, chronosequences, or repeated sampling

designs. Paired plots involve assessing two adjacent sites—one that has not experienced LUC and has the original land cover

and the other with a new land cover after LUC. Similarly, chronosequences utilise adjacent plots with different ages of new165

vegetation since conversion to another land-use type. Repeated or mono-site sampling involves the periodic collection of soil

samples at the same location/site. A "space-for-time" approach, assuming that the SOC stocks of prior land use are in a steady

state, is used in paired plots and chronosequences. Thirdly, we required information about whether the forest floor (i.e. the

above-ground litter organic layer) was included in the sampling process for forest sites. Finally, additional relevant properties

such as sampling depth, land-use history, age of current land-use, and the unit of soil carbon stocks must be provided. The170

collected data were finally categorised into seven conversion types, as detailed in Tab. 2.

6

https://esdac.jrc.ec.europa.eu/content/lucas-2018-topsoil-data
https://esdac.jrc.ec.europa.eu/content/lucas2015-topsoil-data


Table 2. Number of study sites and samples, mean sampling depths with standard deviation and mean current land-use age for the local-scale

observations in the meta-analyses.

LUC ID Nsites Nsamples Depth (cm) Age (years)

Cropland-to-grassland C-to-G 33 49 33.71 ± 22.25 28.55

Grassland-to-cropland G-to-C 17 49 42.12 ± 14.58 49.86

Grassland-to-forest (mineral soil or without forest floor) G-to-FwoFF 34 49 34.9 ± 14.59 40.24

Grassland-to-forest (with forest floor) G-to-FwFF 25 38 30.53 ± 2.26 38.71

Cropland-to-forest (mineral soil) C-to-FwoFF 15 65 34.25 ± 17.17 37.43

Cropland-to-forest (with forest floor) C-to-FwFF 8 63 27.86 ± 3.33 30.25

Forest-to-cropland (mineral soil) F-to-CwoFF 7 33 33.33 ± 14.77 17.45

2.2.4 Additional data for model bias attribution

We considered two important meteorological variables, the air temperature at 2 m above ground and precipitation, which are

derived from the CRU JRA (Climatic Research Unit and Japanese Reanalysis) v2.3 dataset. This dataset is also used for the

meteorological forcings in ORCHIDEE and will be detailed in the next section (Sect. 2.3).175

Soil-related data are obtained from Ballabio et al. (2019), who provided maps of soil chemical properties at 500 m spatial

resolution across Europe using soil point data from LUCAS 2009/2012 soil surveys (Toth et al., 2013). These datasets align with

the observed SOC stocks (see in Sect. 2.2.3) and are considered among the most reliable data sources for Europe (d’Andrimont

et al., 2020). Our focus was on three key properties: soil carbon-to-nitrogen (CN ) ratio, nitrogen (N ), and phosphorus (P ). The

data was retrieved from https://esdac.jrc.ec.europa.eu/content/chemical-properties-european-scale-based-lucas-topsoil-data.180

Additionally, our study considered annual soil erosion rate in 2009 (Fendrich et al., 2022), available at https://esdac.jrc.ec.e

uropa.eu/themes/historical-reconstruction-erosion, we considered to be representative for the last decades. The maps of all

soil-related data are aggregated to 0.5◦ grids to match with ORCHIDEE resolution.

2.3 ORCHIDEE simulations

We conducted simulations with the ORCHIDEE model across Europe [33◦ N to 70◦ N and -10◦ E to 40◦ E] for a straightfor-185

ward comparison to observational data (Tab. 3). These simulations can be categorised into two groups: (a) realistic simulations

for the historic period aimed at evaluating the ORCHIDEE model’s ability to reproduce observed primary production (NPP,

GPP), biomass carbon and SOC stocks, and (b) idealised LUC simulations aimed at evaluating the biomass carbon stocks

changes and the effects of LUC on SOC stocks in terms total magnitude and timing.

2.3.1 Historical simulations190

Firstly, the realistic simulation, referred to as RLS, is inspired by the default configuration and parameters inspired in the

TRENDY protocol (Sitch et al., 2015), including two steps. In the first step of our simulations (FG1), we spun up the model
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to reach a steady state as representative for the year 1950. This involved conducting a simulation over 340 years, with a

30-year loop of meteorological forcing data (1921-1950), as well as fixed values for atmospheric CO2 levels, PFT maps,

and wood harvest, all corresponding to the year 1950. The PFT map employed here consists of 15 PFTs (Boucher et al.,195

2020), as specified in Tab. 1. In the second step, we ran a transient simulation (FG2) from 1950 to 2020 using historical

meteorology, CO2 concentrations, and wood harvest data. The FG2 was restarted from the last year of output of FG1. These

RLS simulation outputs are evaluated against the observation-driven NPP, GPP, and SOC data, as detailed in Sect. 2.4.

Secondly, we performed BM simulation (where BM refers to biomass assessment), which uses the same configuration as

RLS but pre-describing the land cover with constant fractions of dominant PFTs in the EU (see Tab. 1) and no wood harvest,200

which ensures PFT carbon stocks for the observation period are not affected by LUC for the comparison with observation of

natural forest. In addition, a forest clear-cut simulation is performed before running the transient simulation, and during FG2

the biomass regrows from approximately zero. Thus, the simulated forest age was defined as the time since the beginning of

the FG2 simulation.

Furthermore, in all simulations, we calibrated, by trial and error, two parameters, namely Vcmax and Fgrowthresp, specifically205

for the temperate needleleaf evergreen forest (TeNE) to reduce biases in NPP, GPP, and AGB (see more in Sects. 3.1 and 3.2).

Our initial objective was to approximate the correct values of NPP and GPP, ultimately leading to an improved representation

of AGB. In detail, Vcmax is adjusted based on the observed-to-simulated GPP ratio, and Fgrowthresp is gradually reduced to

increase NPP and GPP values to be closer to the observations. The final adjusted values for these parameters are indicated in

parentheses in Tab. 1.210

2.3.2 Idealised LUC simulations

We conducted idealised LUC simulations, assuming the entire study area was covered by a single PFT. To ensure accurate

comparisons between simulated results and meta-analyses from site-level carbon pool changes caused by LUC, regions where

this PFT does not occur according to the PFT maps were excluded from the analysis. Then, we transformed this initial PFT

into other PFTs, such as temperate broadleaf summergreen forest to temperate natural C3 grassland and C3 cropland (TeBS215

to TeGC3 or C3C, aberrations as presented in Tab. 1). These transformations exemplify the conversion of forest areas into

grasslands or croplands (referred to as F − to−GC conversion). Note that ORCHIDEE simulates SOC stocks separately for

each PFT, allowing us to represent the same time LUC from one PFT to two different PFTs. This is an improvement compared

to other DGVMs that typically assign one value of SOC for all PFTs (e.g. LPJ model (Sitch et al., 2003)).

The LUC simulations are somewhat similar to the RLS simulation, including two main processes, i.e. the spin-up simulation220

FG1 and the transient historical simulation FG2. In detail, we first ran the 340-year spin-up FG1F looping over ten years of

meteorological forcing (1901-1910) and fixed atmospheric CO2 concentrations and wood harvest as in 1900 in the F−to−GC

simulation. Here, we fixed land cover to 100 % TeBS. At this stage, the biomass and SOC stocks are in equilibrium. In the

second step, we ran a historical simulation FG2F from 1901 to 1950 for this same PFT (with historical meteorology, CO2

concentrations, and wood harvest data), restarting from the last year of the spin-up simulation FG1F . To perform the LUCs (in225

this case, from F − to−G and F − to−C), we changed the prescribed PFTs to C3 grass- and cropland (i.e. TeGC3 and C3C)
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and continued running the historical simulation FG2GCa from 1951 to 2020, restarting from FG2F . In addition, to study the

LUC impact for a longer period, we extended the model run until 2100, looping over the last 20 years of meteorological forcing

data (2001-2020). For this extended simulation, we kept the atmospheric CO2 fixed to the value in 2020. Although the projected

climate is available (e.g. data from the Coupled Model Intercomparison Project Phase 6 (Eyring et al., 2016)), historical data230

were used here to be compatible with the meta-analyses. Other LUC simulations, i.e. G− to−CF and C− to−FG, were set

up similarly.

We acknowledge that defining 1950 as the same year of LUC in our simulations increases the uncertainties when comparing

simulations to observations which relate to different years of LUC. Note that only a fraction of the studies from which we

source the observed LUC impacts on SOC stocks specify the year of LUC. To explore this source of uncertainty, we thus235

conducted tailored simulations matching the individual years of LUC reported in these studies, and compared the results to

simulations using 1950 as the year of LUC. Detailed information about these additional simulations is provided and discussed

in Sect. S1 of the Supplement.

2.4 Model-data comparisons

Our ORCHIDEE simulations generate outputs encompassing all grid cells at a resolution of 0.5◦ (≈ 50 km) over Europe.240

Conversely, observational data are typically collected at specific locations. To facilitate the comparison between observed and

simulated values, each observational site was matched with the closest corresponding ORCHIDEE cell. This approach ensures

a comprehensive evaluation of the model’s performance in relation to the observed data.

2.4.1 Historical simulations

To compare simulated NPP and GPP against observations, we used NPP and GPP outputs from FG2 RLS simulation for the245

respective observed years and corresponding PFTs. In cases where the PFT was absent or unclear in the observations (e.g.

mixed forest), we assigned the dominant PFT in that particular site based on the ESA LUH2v2 land cover map. We then

grouped the observed and simulated values by PFT and employed boxplots for comparison. The boxplot representation offers

valuable insights into the statistical distribution of values, including the median, the 25th and 75th percentiles, the range of

extreme data points, and any outliers.250

Similarly, we used boxplot representation to evaluate AGB simulations categorised by PFT and age groups. The age groups

are divided as follows: group 1: 0-19 years, group 2: 20-39 years, group 3: 40–59 years, group 4: 60-79 years, group 5: 80-99

years, and group 6: >99 years. ORCHIDEE simulates biomass for different plant compartments (e.g. leaves, wood, roots, etc.).

To maintain consistency with the observations, simulated AGB was derived from BM simulation by summing the biomass of

leaves, above-ground sapwood and heartwood, and fruits.255

We used three diagnostic measures to assess ORCHIDEE’s performance in simulating soil carbon stocks (i.e. FG2 RLS

simulation’s outputs). These measures include Pearson’s correlation (COR, unitless), root mean square error (RMSE, in

kg m−2), and relative RMSE (rRMSE, in %) between the observed and simulated SOC. The above-ground litter was ex-
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Table 3. Main simulations

Main purposes Name ID Period Description

H
is

to
ri

ca
ls

im
ul

at
io

ns To assess carbon related

and carbon stock

variables (i.e. NPP, GPP,

and SOC)

RLS
FG1

Steady state

1950

340-year spin-up with meteorology forcing

looping over 1901-1950; fixed land cover

map with 15 PFTs, CO2 concentrations,

and wood harvest as in 1950

Without restart

FG2 1950-2020
Historical simulation with transient climate,

CO2, and land cover map
Restart from FG1

To evaluate biomass

versus age data
BM FG1b, clear-cut, FG2b

Same as RLS, but with a pre-described land cover map with a fixed equal

fraction of dominant PFTs in Europe (i.e. needleleaf (evergreen) and

broadleaf (summergreen) forests, C3 crop, and C3 grasses), no harvest

Id
ea

lis
ed

L
U

C
si

m
ul

at
io

ns

To investigate impacts

of LUC on changes

in SOC stocks

F-to-GC

TeBS to TeGC3 or C3C

FG1F
Steady state

1900

340-year spin-up with forcing looping over

1901-1910, pre-described land cover map of

100 % TeBS, and fixed CO2 concentrations

and wood harvest as in 1900

Without restart

FG2F 1901-1950

Historical simulation with transient climate,

CO2, and wood harvest, pre-described land

cover map with 100 % TeBS

Restart from FG1F

FG2GCa 1951-2020

Historical simulation using annual parameters,

pre-described land cover map with an equal

fraction of grassland (TeGC3) and cropland

(C3C)

Restart from FG2F

FG2GCb 2021-2100

Same as FG2GCa, but climate forcing looping

over 2001-2020, CO2 concentrations and

wood harvest as in 2020

Restart from FG2GCa

TeNE to TeGC3 and C3C

Same as TeBS to TeGC3 or C3C, but changing TeBS to TeNE

G-to-CF Same as F-to-GC, but changing from TeGC3 to C3C, TeBS, and TeNE

C-to-FG Same as F-to-GC, but changing from C3C to TeBS, TeNE, and TeGC3
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Table 4. Model outputs corresponding to the simulations in Tab. 3

Name ORCHIDEE outputs

Historical simulations
RLS

NPP, GPP,

SOC = SCtotal - Lstr_ab - Lmet_ab

(or SOC = Cactive + Cslow + Cpassive + Lstr_be + Lmet_be)

BM AGB = Mleaf + Msap_ab + Mheart_ab + Mfruit

Idealised LUC simulations

F-to-GC
SOCwFF = SCtotal

SOCwoFF = SOCG-to-CF

C-to-FG

SCtotal: total soil and litter carbon

Cactive (Cslow or Cpassive): active (slow or passive) soil carbon in ground

Lstr_ab (Lstr_be): above (below) -ground structural litter

Lmet_ab (Lmet_be): above (below) -ground metabolic litter

Mleaf : leaf mass

Msap_ab: above-ground sap mass

Mheart_ab: above-ground heartwood mass

Mfruit: fruit mass

SOCwFF : SOC with forest floor

SOCwoFF : SOC without forest floor

cluded from the simulated SOC for comparison to the LUCAS data. The calculation of ORCHIDEE’s outputs is detailed in

Tab. 4.260

2.4.2 Idealised LUC simulations

Soil profile data in meta-analyses are reported at various depths (as detailed in Tab. 2). To ensure uniform comparisons, we first

standardised all soil carbon data, both observed and simulated, to represent SOC stocks in the top 30 cm, utilising the depth

function (Jobbágy and Jackson, 2000; Deng et al., 2016):

X30 =
1−β30

1−βd0
×Xd0, (2)265

where X30 represents the soil carbon stocks in the top 30 cm, d0 is the original soil depth available in observations or simu-

lations (in cm), Xd0 is the original soil carbon stocks and β characterises relative rates of decrease with depth (β = 0.9786,

unitless). For instance, a simulated sample XORC at 2 m depth (d0 = 200) is converted into the topsoil sample using the

equation X30 =
1−0.978630

1−0.9786200 ×XORC = 0.48×XORC .
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We then used the absolute SOC stock change (∆SOC, in kg m−2) as a variable for the comparison of soil carbon changes:270

∆SOC = SOCLU2 −SOCLU1, (3)

where LU1 corresponds to the land use before conversion and LU2 is the land use after conversion. Similar to the observations,

the simulated SOC for the prior land use is assumed to be in a steady state. For example, in the conversion from F−to−GC, the

simulated SOCLU1 is set to be equal to the SOC value in 1950 from the FG2F simulation (Tab. 3). In contrast, the observed

SOC measurements after land cover conversion are taken at various ages. A fitted carbon response function (CRF), detailed275

below, is derived for each conversion, describing the ∆SOC as a function of time. For the simulations, a distinct response

function was derived from the simulation corresponding to each meta-analyses site. Subsequently, the average simulated soil

carbon response was computed across all these response functions. This aggregate response, referred to as "simulated CRF,"

was then compared with the fitted or observed CRF obtained from the meta-analyses.

The observed CRF was constructed using diverse regression models, including linear regression, second and third-order280

polynomial regressions, and single-term and two-term exponential models. Due to the limited size of the observed samples

(as detailed in Tab. 2), a leave-one-out cross-validation (LOOCV) method (Stone, 1974; Dinh and Aires, 2022) was employed

for the model selection process. This iterative approach facilitates the validation of each model’s performance by training it

on all data points but one and evaluating its prediction accuracy on the excluded data point. By repeating this process for all

data points and assessing the overall performance, we can identify the best-performing model that generalises well to the entire285

dataset as well as to the new samples. Finally, the models providing the most adequate description of the temporal dynamic of

relative SOC stock changes were the linear function (Eq. 4) and the single-term exponential function (Eq. 5).

∆SOC = at+ b, (4)

∆SOC = a× eb∗t, (5)

where t is the time after LUC (years) and a, b are regression coefficients. A detailed fitted CRF for each LUC in meta-analyses290

is presented in Tab. S6 in the Supplement. Furthermore, to better understand the accuracy and uncertainty of the fitted CRFs,

we established approximate 95 % confidence intervals using simultaneous prediction bounds for the fitted functions. These

confidence intervals visually represent the range of potential outcomes, providing valuable insights into the variability of the

observed carbon stock change rate.

2.4.3 Factors explaining model bias295

We used random forest (RF) (Breiman, 2001; Liaw and Wiener, 2002) to explore the factors contributing to bias in estimating

SOC stock changes following LUC. The bias is calculated for each site-observation taken from the meta-analyses (Tab. 2).

For this, we compared the observed SOC stock changes per site with corresponding simulated values from the corresponding

ORCHIDEE grid cells. Then we analysed which predictor variables best explain the site-to-site variations in model bias for

each LUC scenario. Our chosen explanatory variables encompassed both meteorological variables (i.e. temperature at 2 m300

above ground (T2m) and rainfall (Rain)) and key soil-related metrics (i.e. soil carbon-to-nitrogen ratio (CN ), nitrogen (N ),
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phosphorus (P ), and soil erosion rate (ER)). Given the constraints of the available observations (Tab. 2), we also employed

LOOCV here to assess the performance of the RF regression model for each LUC scenario. The model consists of 100 decision

trees. Each tree is constructed independently and operates on a random subset of the data. During the LOOCV process, the

model iterates through each sample in the dataset, systematically excluding one for validation in each iteration. Subsequently,305

the model is trained on the remaining samples, and feature importances are cumulatively assessed throughout each iteration.

The performance of this LOOCV process is shown in Tab. S7 in the Supplement. The LUC scenarios with poor RF regression

results will be excluded. For the remaining cases, we then derived importance scores (Liaw and Wiener, 2002) associated with

individual explanatory variables. These scores are then normalised or scaled from 0 to 1, with a value of 1 denoting the utmost

relevance and 0 signifying the lowest relevance concerning the model bias.310

3 The performance of the ORCHIDEE model

3.1 Net and gross primary productivity (NPP and GPP)

Figure 1 compares the simulated NPP and GPP values with site observations (Sect. 2.2.1). Both simulations and observations

exhibit comparable ranges across various PFTs, notably showcasing good performance in temperate forests and temperate C3

grasslands, where the relative differences in the medians are around 10 %. However, the ORCHIDEE simulation results often315

present a narrower range than the observed site data. This difference can be attributed to the fact that the ORCHIDEE PFTs are

a rigid classification of vegetation, with each PFT representing the average characteristics of various tree species. In contrast,

differences between individual species within the same PFT class can be substantial (Poulter et al., 2011). On the contrary,

observations refer to individual species.

The calibration of Vcmax and Fgrowthresp parameters for TeNE (see in Tab. 1) resulted in considerable improvement, in320

particular for NPP. The default parameterization (Vcmax = 35 and Fgrowthresp = 0.28) resulted in the simulated NPP median

deviating by approximately 32 % from the observed value. The adjusted parameters (Vcmax = 44.45 and Fgrowthresp = 0.1)

reduced deviation to 5 %.

3.2 Above-ground biomass (AGB)

The boxplots in Fig. 2 present AGB versus age comparisons between observations (in black) and simulations (in red) for four325

PFTs (TeNE, TeBS, BoNE, and BoBS) and each age group. Other types of forest PFT were excluded due to the limitation

of the number of observed samples. Simulations capture the same trend as the observations: AGB increases quickly in young

stands (i.e. < 60 years old) and moderately saturates at later ages (> 60 years old). Like the NPP and GPP comparisons, the

observed AGBs appear in more extensive ranges and have more extremes than the simulated values for all considered PFTs.

Again, the adjustment of Vcmax and Fgrowthresp parameters for TeNE (see in Tab. 1) improved the simulated AGB-age330

curves significantly, while in the original setup, the simulated values are much lower compared to the observed ones. This

improvement is visually represented in the boxplot of the TeNE forest, in Fig. 2a: the grey boxes, representing AGB values
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Figure 1. Maps of net and gross primary productivity (NPP and GPP) sites, along with boxplots comparing observations (Obs in black)

and ORCHIDEE (ORC in red) simulations. The grey boxes show outputs from ORCHIDEE’s default configuration (i.e. without calibrating

Vcmax and Fgrowthresp parameters) for comparison purposes. In each boxplot, the number in parentheses indicates the number of sites in

each plant functional type (PFT) group.

obtained from the default settings, indicate a median deviation of about 60 % from the observed values (black boxes) across

five age groups. Conversely, with our calibration, this deviation is reduced to less than 10 %, as indicated by the red boxes,

which now closely align with the observed data represented by the black boxes.335

Furthermore, Fig. 2 highlights a contrast in ORCHIDEE performance; notably, boreal forests exhibit lower biomass per age

class than temperate ones, illustrated by BoNE versus TeNE and BoBS versus TeBS forests. Interestingly, observed biomass

ranges for BoNE and BoBS forests closely resemble those of TeNE and TeBS forests. Further comparisons are detailed in

Fig. 3, despite variations in site numbers between observations and simulations for each age group. This comparative approach

provides insights and offers a broader understanding of how the model’s parameterisation performs in Europe. We found that340

the parameterisation of BoNE and BoBS may need improvement, as they appear less well-fitted than TeNE and TeBS. This

might raise questions about the relevance and necessity of using BoNE and BoBS as distinct PFTs when TeNE and TeBS

demonstrate better alignment with the observed data in the study region.
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Figure 2. Maps of above-ground biomass (AGB) sites for four plant functional types (PFTs), including temperate needleleaf and broadleaf,

as well as boreal needleleaf and broadleaf forests (TeNE, TeBS, BoNE, BoBS); along with boxplots comparing observations (Obs in black)

and ORCHIDEE (ORC in red) simulations. In the boxplot of TeNE forest (a), the grey boxes present outputs from ORCHIDEE’s default

configuration (i.e. without calibrating Vcmax and Fgrowthresp parameters), for comparison purposes. In each boxplot, the number in paren-

theses indicates the number of sites in each age group (group 1: 0-19 years; group 2: 20-39 years; group 3: 40–59 years; group 4: 60-79

years; group 5: 80-99 years; group 6: >99 years). The colour scale in the maps indicates the ORCHIDEE vegetation fraction.

3.3 Soil organic carbon (SOC)

The SOC map showing 5150 LUCAS samples is presented in Fig. 4a. We also generated a corresponding SOC map using345

the ORCHIDEE simulation weighted by the areal proportions of each PFT. The difference between our simulated SOC stocks

from LUCAS data is presented in Fig. 4b. The correlation between the observed and simulated SOCs is 0.4 (and RMSE = 2.03

kg m−2, rRMSE = 50.31 %), indicating moderate agreement. However, it is essential to note that this general ORCHIDEE sim-

ulation does not represent peatlands, nor important factors such as land management, effects of soil erosion and translocation of

SOC from eroded sides to colluvial sediments, topographic wetness, land use history before 1900, soil class and geochemistry350

of soil forming substrates, etc. Therefore, achieving a correlation coefficient of 0.4 is already significant. Notably, ORCHIDEE

underestimates SOC in certain regions, particularly in northern Europe. This discrepancy can be explained by the absence of

peatlands in this particular version of ORCHIDEE.
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Figure 3. Same as boxplots in Fig. 2, but for the comparison of the observed values for the BoNE forest with simulated values for the TeNE

forest (a), as well as observed values for the BoBS forest with simulated values for the TeBS forest (b).

Figure 4. Maps showing the stocks after soil organic carbon (SOC in kg m−2) based on the LUCAS topsoil database (a) and the deviation

of simulated SOC stocks from these observation-based estimates (b).
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In the following, we classified 5150 SOC samples into three vegetation groups (forest, grass, and crop) based on the land-

use information provided in the LUCAS dataset. The assessment of observed and simulated SOC stocks is illustrated through355

comparison scores (COR, RMSE, and rRMSE) in Tab. S8 within the Supplement, along with scatter plots and histograms in

Fig. 5, showcasing variations across different grid scales: 0.5◦ × 0.5◦, 1◦ × 1◦, 2◦ × 2◦, and 3◦ × 3◦ cells. This stepwise

aggregation aims to enhance our understanding of how far spatial correlations between observed and modelled SOC stocks

are scale-dependent. At 0.5◦ × 0.5◦ scale, the correlation between observed and simulated SOC for forest sites (Fig. 5a1)

is relatively low (COR = 0.17, rRMSE = 59.15 %). However, the correlation values are significantly better for grassland360

and cropland sites (Figs. 5b1 and c1), reaching 0.53 and 0.42, respectively (with corresponding rRMSE values of 39.38 %

and 35.98 %). Interestingly, the correlation scores improve for all vegetation types as we increase the grid scale size and,

thus, the level of spatial aggregation. For example, when examining the 3◦ × 3◦ scale, as illustrated in Figs. 5a2, b2, and

c2, the correlation coefficients increase to 0.45, 0.68, and 0.59 for forest, grassland, and cropland sites, respectively. These

improvements in correlation are accompanied by decreasing rRMSE values (by 10 % to 15 %), indicating a reduction in the365

differences between observed and simulated SOC values. This effect can be attributed to various factors, such as small-scale

variations (Garten et al., 2007) related to soil class, topography, and management history, which are not accounted for in

ORCHIDEE but lose their importance at a higher level of spatial aggregation. On the other hand, the coarse large-scale spatial

patterns are primarily influenced by climate differences, which are better represented in a DGVM such as ORCHIDEE.

4 SOC change following land-use change (LUC)370

Figure 6 compares observed and simulated SOC changes for different LUC transitions (see in Tab. 2). During the C − to−G

conversion, there is an increase in SOC stocks. However, the simulated results give a smaller increase than those observed

in meta-analyses. Specifically, after a 100-year conversion period, the simulated SOC stocks increase on average by a mere

0.73 ± 0.09 kg m−2, while the observed data show a much higher increase of 3.85 ± 1.33 kg m−2. The G−to−C conversion

leads to a decrease in SOC stocks. The model agrees with the observed change in direction but has a slower rate. Notably, the375

observed data display a wide range of confidence interval levels, and the simulated CRF closely align with the upper boundary

of the confidence interval. This highlights the difficulty of accurately capturing real-world SOC dynamics due to significant

variability in the observed data.

Regarding G− to−F conversion, simulations using both TeBS and TeNE show different trends compared to the observed

CRFs, as shown in the G−to−FwoFF and G−to−FwoFF subplots in Fig. 6. However, they consistently fall within the 95 %380

confidence interval, regardless of whether the forest floor is included in the analysis. In addition, the observed data for G-to-F

conversions display considerable variability over time, which partly accounts for the difficulty in accurately modelling the true

impact of this conversion type.

The conversions of C− to−F and F − to−C show opposite trends, as presented in the C− to−FwoFF , C− to−FwFF ,

and F − to−CwoFF subplots in Fig. 6: C− to−F conversion leads to an increase in SOC and vice versa. Again, the averaged385

simulated CRF results align with the observed direction but indicate changes considerably slower than those reported in meta-
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Figure 5. Scatter plots show the relationship between LUCAS topsoil data and derived ORCHIDEE soil organic carbon (SOCLUCAS topsoil

versus SOCderived ORC , in kg m−2), along with their corresponding histograms. Plots are presented for two grid scales: 0.5◦ × 0.5◦ (a1, b1,

c1) and 3◦ × 3◦ (a2, b2, c2). Darker colours indicate denser point concentrations. Complementary summary statistics are provided, including

the mean and standard deviation (Std) values for each dataset, along with the correlation (COR) and relative root mean square error (rRMSE)

between the two datasets. The corresponding maps are also presented in the Supplement (Figs. S2 to S4).
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Figure 6. The absolute soil organic carbon changes (in kg m−2) from site observations in meta-analyses (black circles) and fitted carbon

response functions (CRFs, black lines) ± 95 % confidence interval (black dotted lines) compared to simulated CRFs (magenta and green

lines) for different land-use changes (LUCs, as presented in Tab. 2): cropland-to-grassland (C−to−G), grassland-to-cropland (G−to−C),

grassland-to-forest (without and with forest floor G−to−FwoFF , G−to−FwFF ), cropland-to-forest (C−to−FwoFF and C−to−FwFF ),

and forest-to-cropland (F−to−CwoFF ). The first number in the parenthesis indicates the number of study sites, and the second is the number

of samples in the meta-analyses. Two distinct forest types, namely temperate broadleaf summergreen and temperate needleleaf evergreen,

are considered for the forest sites in ORCHIDEE simulations (ORCTeBS , ORCTeNE).

analyses. In these two conversions, simulations with the TeBS forest appear closer to the observations than those with the TeNE

forest.

Figure 6 suggested that the key model biases are the systematic underestimation of SOC gain during C−to−G transition and

losses during G−to−C and F−to−CwoFF conversions. Multiple factors could contribute to these observed underestimations.390

As depicted in Fig. 7, soil erosion rate plays a pivotal role in the discrepancies observed across all considered LUC conversions

among the six chosen factors. Conversely, temperature appears relatively less influential overall, except notably in the C−to−G

conversion. Rainfall considerably influences the differences between observed and simulated absolute SOC changes after

the conversions from C − to−G, C − to−FwoFF , and F − to−CwoFF . Soil phosphorus, on the other hand, demonstrates

significance in the conversions of G−to−FwoFF , F−to−CwoFF (particularly for TeNE forest), and C−to−G. Furthermore,395
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Figure 7. Scaled feature importance scores resulting from random forest (RF) analysis showing the relationship between model bias and

potential influencing factors (i.e. temperature 2 m above ground (T2m), rain, soil carbon-to-nitrogen ratio (CN ), soil nitrogen (N ), soil

phosphorus (P ), and soil erosion rate (ER)) for different land-use changes (LUCs): cropland-to-grassland (C − to−G), grassland-to-

cropland (G−to−C), grassland-to-forest (without forest floor G−to−FwoFF ), cropland-to-forest (C−to−FwoFF ), and forest-to-cropland

(F − to−CwoFF ). Results for other conversions are not shown since RF shows poor performance (Tab. S7 in the Supplement). Each score

is normalised within the range of 0 to 1, where 1 signifies the highest relevance, and 0 indicates the lowest importance. Two distinct forest

types, namely temperate broadleaf summergreen and temperate needleleaf evergreen, are considered for the forest sites (TeBS, TeNE).

the six chosen factors demonstrate a relatively consistent behaviour across the two forest types, the magenta and green bars

TeBS and TeNE (see in Fig. 7).

5 Discussion

5.1 Model performance for biosphere carbon stocks

The ORCHIDEE model shows a reasonable alignment with observed NPP, GPP (Fig.1), and AGB trends (Fig.2). Compared400

to observed data for all PFTs, the model shows narrower ranges. This dampened spatial variability may be due to the model’s

coarse resolution and constant parameter values for a given PFT, differing from species-specific observations affected by finer-

scale environmental variations (Chang et al., 2013). The latter emphasises the need to incorporate a sufficiently large population
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of observed sites. Additionally, model-data disagreement can be linked to not well-enough constrained values for PFT-specific

parameters. For instance, our findings indicated that calibrating Vcmax and Fgrowthresp based on NPP and GPP observations405

for the TeNE forest type improved the model’s performance in simulating AGB for this specific PFT (as shown in Fig. 2).

Furthermore, our comparative analysis implied that employing temperate PFTs rather than boreal PFTs can enhance model

performance in simulating the biomass of the boreal forests. This result suggests that certain PFTs, particularly those linked to

boreal forest types, may be redundant in ORCHIDEE biomass simulations for the European context.

For SOC stock simulation, a Pearson’s correlation of 0.4 between observed and simulated SOC values (Fig. 4) is significant,410

given the absence of certain controlling factors and processes in the model version used. This score is similar to those in other

DGVM models (Wu et al., 2019; Seiler et al., 2022). For example, Wu et al. (2019) demonstrated a correlation coefficient of

approximately 0.45 between LPJ-GUESS (a global dynamic ecosystem model) and SoilGrids (an observation-driven global

soil dataset) on a global scale, and lower correlation scores among different land cover classes. In this study, SOC scores varied

among vegetation groups (Fig. 5), with lower correlations for forest sites. The inclusion of up to six PFTs in forest groups, with415

poorly determined classifications in observations, contributes to the model-data discrepancy. In contrast, grass and crop groups

exhibit improved correlations with fewer PFTs and better distinction in LUCAS data (Ballot et al., 2022). Additionally, the

smaller population of forest sites (Fig. 5) may account for the lower score than the other groups. Additionally, when examining

different levels of resolution, we find that larger grid scales demonstrate a stronger correlation, which may be driven by climate

patterns (Wang et al., 2023). At smaller scales, other environmental controls like soil types, soil chemistry, topography, and420

management become more important (Garten et al., 2007), which are not or only rudimentary represented in ORCHIDEE.

Implementing ORCHIDEE at a higher resolution using higher resolution climate forcing (Anav et al., 2010; Lafont et al.,

2012) can be challenging. This complexity arises from the fundamental reliance of the ORCHIDEE model on low-resolution

environmental factors such as soil characteristics and erosion. Overcoming these inherent limitations in ORCHIDEE, as well as

other DGVMs, can significantly improve model performance, particularly at more regional scales and higher spatial resolutions.425

5.2 Impacts of LUC on soil carbon stocks

In pursuit of a more comprehensive evaluation, we explored the applicability of meta-analyses of site-level SOC changes for

"pure" land cover transitions to assess DGVMs’ ability to simulate SOC stock responses to LUC. As discussed earlier, DGVMs,

including ORCHIDEE, face challenges in simulating SOC stocks at a small scale, making it difficult to capture the SOC stock

response at individual sites. Nevertheless, the model should be capable of matching average responses across broader regions.430

In our comparison, we averaged the model responses over all grid cells encompassing the sites where LUC has occurred.

This enabled us to compare the model’s response to the meta-analysis data and its fitted CRF. Generally, the simulated results

agree in direction with observed data, notably the decrease in soil carbon stocks for G− to−C and F − to−C conversions,

and the opposite for C − to−G and C − to−F conversions (Fig. 6). As for G− to−F conversions, the simulations exhibit

different trends than the observed CRFs but fall within the 95 % confidence interval (Fig. 6). In addition, the meta-analysis435

data exhibit considerable uncertainties, evident in the wide confidence intervals around the fits in Fig. 6. These uncertainties

can be attributed to challenges related to data compatibility, methodological heterogeneity, and the diversity of ecosystems and
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LUC scenarios considered, as discussed in prior studies (Verburg et al., 2011; Deng et al., 2016; Fohrafellner et al., 2023).

Therefore, while meta-analyses offer valuable insights, their interpretation requires careful consideration and integration with

site-specific observations.440

Despite this alignment in direction, there are noticeable discrepancies in the magnitudes of SOC stock changes between the

simulated and observed CRFs, i.e. the underestimated SOC gain during C− to−G conversion and underestimated SOC losses

during G− to−C and F − to−CwoFF conversions. These differences could potentially be attributed to various factors that

the model may not fully capture. For instance, our findings indicate that soil erosion rate significantly influences the model

bias among six selected potential factors. In addition, the influence of varying land-management practices can substantially445

shape the model bias (Nyawira et al., 2016). These complexities underscore the challenges involved in accurately simulating

local SOC dynamics. Further investigations or adjustments will be essential to reduce the biases and thereby enhance the

accuracy of the model estimations. Additionally, our idealised assumption regarding the transition year in 1950 may introduce

uncertainties to the model outputs. However, as shown in Sect. S1 of the Supplement, considering the actual transition year

does not significantly enhance agreement with observations. This might be due to the limited number of available samples. It450

is also possible that the impact of climate change on LUC effects over the past century is not substantial. If the latter is true,

using an idealised transition year should not create significant issues.

5.3 Challenges in model-data comparisons

Evaluating DGVM outputs against observational data is challenging, primarily due to constraints on the quantity and quality

of existing long-term observational datasets. While observational data exist, their scarcity is evident, exemplified in Fig. 1,455

particularly in the instances of NPP and GPP sites for several PFTs like BoBS, TeBE, TeGC3, and BoGC3. Furthermore, as

previously highlighted, substantial uncertainties persist in observed changes in SOC stocks when contrasted with anticipated

changes. These limitations introduce intricacy into the process of calibrating and validating our models.

Another significant challenge arises from the long-lasting impact (e.g. > 100 years) of historical LUC, particularly in the case

of substantial events like erosion (Bakker et al., 2005; Borrelli et al., 2017). The absence of site history information hinders our460

ability to incorporate these effects into our simulations (Verburg et al., 2011). Disregarding the influence of major historical

LUC events may lead to accurate simulations but for the wrong reasons. This approach further complicates our ability to

predict changes in SOC stocks. In addition, failing to simulate LUC impacts accurately can have significant consequences for

forecasting future land carbon balances and influencing decisions related to climate change mitigation and land management.

To gain a more comprehensive perspective, we consider assessing the relative importance of SOC stock changes versus biomass465

carbon stock changes over, for instance, a 30-year horizon. This analysis can be relevant for initiatives like the European

Green Deal (European Council, 2019), as it could offer essential guidance for shaping policies related to carbon sequestration,

sustainable land use practices, and preserving ecosystem health.
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6 Conclusions

Our research investigated the ability of the DGVM ORCHIDEE model to reproduce what is known from experimental studies470

about LUC impacts on biospheric carbon. We performed various comparisons between simulations and experimental data,

including on-site measurements and data from meta-analyses.

Discrepancies between the model and data can be attributed to several factors, such as the grouping of vegetation in DGVMs,

which often use a limited number of PFTs, unlike the species-specific observations. The coarse model resolution also con-

tributes to discrepancies. For example, our spatially explicit simulation of SOC stocks has a spatial resolution of 0.5 degrees,475

whereas, in reality, SOC stocks and their controlling factors vary at a much smaller scale. Our analysis also identifies potential

factors contributing to model bias when studying the impact of LUCs on SOC. Various factors, such as soil erosion rate, phos-

phorus, or rainfall, can influence each type of LUC. Further studies are needed to explore these impacts more comprehensively.

In summary, this study enhances our understanding of using DGVMs for studying carbon dynamics and provides insights

for future model development and applications. While ORCHIDEE was our chosen model, this methodology can be readily480

applied to other DGVMs using the same protocol.

Supplement

The supplement related to this article is provided.

Code and data availability. The comprehensive database forest ecosystem from Luyssaert et al. (2007) can be found at the bottom of this

page https://www.lsce.ipsl.fr/en/Phocea/Pisp/visu.php?id=124&uid=sebastiaan.luyssaert. The FLUXNET and ICOS data can be485

downloaded from https://fluxnet.org/data/fluxnet2015-dataset/ (Pastorello et al., 2020) and https://www.icos-cp.eu/data-products,

respectively. The situ biomass and age data is from Besnard et al. (2021). The LUCAS 2018 TOPSOIL database is taken from https:

//esdac.jrc.ec.europa.eu/content/lucas-2018-topsoil-data. And ORCHIDEE version 2.2 is available here https://forge.ipsl.jussieu.fr/orchidee

/browser/branches/ORCHIDEE_2_2.

Appendix A: ORCHIDEE carbon module490

Figure A1 presents the basic scheme of biospheric carbon cycling representation in ORCHIDEE. Simulated carbon dynamics

include the exchange of carbon between the atmosphere and various carbon pools in vegetation biomass and soils. Carbon

dynamics are simulated for each PFT individually, distinguishing eight vegetation biomass pools (leaves, roots, above and

below-ground sapwood, above and below-ground heartwood, fruits, and a plant carbohydrate reserve), four litter pools (struc-

tural and metabolic litter above and below the surface), and three SOC pools (active, slow, and passive soil carbon). The495

turnover time of SOC and litter pools is determined by various factors, including temperature and humidity of the soil. The

litter is produced through senescence and death, and the latter can also be related to LUC when the original vegetation is
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Figure A1. Basic structure of ORCHIDEE carbon module. The processes are denoted by rounded rectangles, while the reservoirs are

represented by regular rectangles (accompanied by corresponding basic state variables in bold). The sub-processes are linked through carbon

fluxes (depicted as black arrows). The figure is adapted from Krinner et al. (2005).

destroyed to make space for the new PFT. Further, carbon fluxes occur from litter to SOC pools and between the three SOC

pools, with a part of the transferred carbon lost to the atmosphere through heterotrophic respiration. The model does not con-

sider nutrient cycling, depth distribution of SOC, or soil carbon losses through leaching and erosion. Detailed formulations of500

the main processes represented in the version of ORCHIDEE used in this study can be found in Appendix A of Krinner et al.

(2005).
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