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Abstract. Understanding regional climate model (RCM) capabilities to simulate current climate 1 

informs model development and climate change assessments. This is the first evaluation of the 2 

NARCliM2.0 ensemble of seven Weather Forecasting and Research RCMs driven by ECMWF 3 

Reanalysis v5 (ERA5) over Australia at 20 km resolution contributing to CORDEX-CMIP6 4 

Australasia, and south-eastern Australia at convection-permitting resolution (4 km). The performances 5 

of these seven ERA5-RCMs (R1-R7) in simulating mean and extreme maximum, minimum 6 

temperature and precipitation is evaluated against observations at annual, seasonal, and daily 7 

timescales, and compared to corresponding performances of previous-generation CORDEX-CMIP5 8 

Australasia ERA-Interim-driven RCMs. ERA5-RCMs substantially reduce cold biases for mean and 9 

extreme maximum temperature versus ERA-Interim-RCMs, with the best-performing ERA5-RCMs 10 

showing small mean absolute biases (ERA5-R5: 0.54K; ERA5-R1: 0.81K, respectively), but produce 11 

no improvements for minimum temperature. At 20 km resolution, improvements in mean and extreme 12 

precipitation for ERA5-RCMs versus ERA-Interim RCMs are principally evident over south-eastern 13 

Australia, whereas strong biases remain over northern Australia. At convection-permitting scale over 14 

south-eastern Australia, mean absolute biases for mean precipitation for the ERA5-RCM ensemble are 15 

around 79% smaller versus the ERA-Interim RCMs that simulate for this region. Although ERA5 16 

reanalysis data confer improvements over ERA-Interim, only improvements in precipitation 17 
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simulation by ERA5-RCMs are attributable to the ERA5 driving data, with RCM improvements for 18 

maximum temperature more attributable to model design choices, suggesting improved driving data 19 

do not guarantee all RCM performance improvements, with potential implications for CMIP6-forced 20 

dynamical downscaling. This evaluation shows that NARCliM2.0 ERA5-RCMs provide valuable 21 

reference simulations for upcoming CMIP6-forced downscaling over CORDEX-Australasia and are 22 

informative datasets for climate impact studies. Using a subset of these RCMs for simulating CMIP6-23 

forced climate projections over CORDEX-Australasia and/or at convection-permitting scales could 24 

yield tangible benefits in simulating regional climate. 25 
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1. Introduction 28 

Global climate models (GCMs) are optimum tools for simulating future climate at global and 29 

continental scales, informing policy and planning at these scales on climate change under different 30 

greenhouse gas concentration scenarios (IPCC, 2021). Successive generations of GCMs have seen 31 

several improvements, including incremental increases in spatial resolution and some improvements 32 

in the simulation of the current climate (Eyring et al., 2016; Stouffer et al., 2017; Grose et al., 2020). 33 

However, the coarse spatial resolution of GCMs (100 to 250 km) limits their ability to resolve the 34 

fine-scale drivers of regional climate, such as complex topography, land-use, and mesoscale 35 

atmospheric processes like convection. This in turn limits their efficacy for climate mitigation and 36 

adaptation planning at regional scales (Hsiang et al., 2017).  37 

Dynamical downscaling of GCM outputs using regional climate models (RCMs) is one 38 

approach for generating high-resolution climate projections at regional scales (Giorgi, 2006; Laprise, 39 

2008). RCMs use GCM outputs as initial and lateral boundary conditions to generate fine-scale 40 

climate simulations that better resolve the fine-scale drivers of regional climate (Giorgi and Bates, 41 

1989; Torma et al., 2015; Di Luca et al., 2012). This can create fine-scale climate information that is 42 

spatially and temporally more realistic than the driving GCM information, providing climate 43 

simulations more suitable for regional climate impact studies (Giorgi, 2019). However, such 44 

improvements are not guaranteed, and typically vary with time and location (Di Virgilio et al., 2019; 45 

Di Virgilio et al., 2020b; Panitz et al., 2014; Bucchignani et al., 2016). There is also the potential that 46 

RCMs simulate climate projections that are not more physically plausible than those of driving GCMs 47 

(Ekström et al., 2015). Design considerations such as selection of driving models and RCM 48 

parameterisation also underlie the nature of potential improvements in regional climate simulations. 49 

The Coordinated Regional Climate Downscaling Experiment (CORDEX) is an initiative of the 50 

World Climate Research Programme (WCRP) that provides experimental guidelines facilitating both 51 

the production of regional climate projections, and inter-model comparisons across modelling groups 52 

(Giorgi et al., 2009). Under CORDEX, regional climate projections based on CMIP5 (Coupled Model 53 

Intercomparison Project Phase 5) GCM projections were produced for fourteen regions globally. 54 

CORDEX is building on these previous downscaling intercomparison projects to provide a common 55 

framework for downscaling activities based on CMIP6 GCMs (Gutowski et al., 2016).  56 

A key component of CORDEX is using RCMs to dynamically downscale reanalyses such as 57 

ERA-Interim (Dee et al., 2011) under CORDEX-CMIP5, and recently ERA5 (Hersbach et al., 2020) 58 

under CORDEX-CMIP6, and evaluating the RCMs’ capabilities to simulate present-day climate. If a 59 

given RCM performs poorly in simulating the present-day climate, this lowers confidence in future 60 

climate changes projected by this model. Assessing the relative strengths and weaknesses of ERA5-61 

forced RCMs can inform the decision to exclude poorer performing RCM configurations when selecting 62 
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a subset of RCMs for downscaling of CMIP6 GCMs. It also helps benchmark the subsequent 63 

performance profiles of CMIP6-forced RCM projections and hindcasts. 64 

Previous work to dynamically downscale ERA5 over CORDEX Australasia includes the 65 

BARPA-R (Bureau of Meteorology Atmospheric Regional Projections for Australia) regional climate 66 

model which simulates over CORDEX Australasia at ~17 km resolution (Howard et al., 2024). 67 

Evaluation of BARPA-R’s skill in simulating the Australian climate observed good performance 68 

overall, including a 1°C cold bias in daily maximum temperatures and wet biases of up to 25 mm/month 69 

over inland Australia. Other previous studies of dynamical downscaling of ERA5 by RCMs have 70 

focused on short-term (e.g. ~one year) regional climate simulations (e.g. Varga and Breuer, 2020; Zhou 71 

et al., 2021) rather than multidecadal simulations. Several have focused on specific regions that are not 72 

CORDEX domains, some of which have a smaller spatial extent in comparison. For instance, Reder et 73 

al. (2022) conducted dynamical downscaling of ERA5 using COSMO-CLM (CCLM; Rockel et al. 74 

2008) on nine separate domains over twenty European cities at convection-permitting scale (~2.2 km). 75 

They demonstrated an overall pattern of added value in the simulation of heavy precipitation at city 76 

scale relative to the driving reanalysis. Focusing on precipitation simulation over the Lake Victoria 77 

Basin in Africa, Van De Walle et al. (2020) conducted ERA5-forced CCLM simulations at convection-78 

permitting scale. They found that CCLM outperformed the ERA5 data set, as well as RCM simulations 79 

using parametrised convection, though a domain-averaged wet bias was still evident. These authors 80 

attributed the overall improvements in the simulation of sub-daily precipitation to the convection-81 

permitting resolution and improved cloud microphysics. Additionally, two Weather Research and 82 

Forecasting model (WRF; Skamarock et al. 2008) experiments over the Tibetan Plateau conducted at 83 

'gray-zone' (~9 km) and convection-permitting (~3 km) resolutions for 2009-2018 both showed 84 

successful simulation of the spatial pattern and daily variation of surface temperature and precipitation 85 

(Ma et al., 2022). Notably, the ability of the convection-permitting WRF RCM in improving 86 

precipitation simulation was limited relative to the gray-zone experiment. 87 

The sole prior evaluation of reanalysis-driven CORDEX-CMIP5 Australasia regional climate 88 

models was conducted by Di Virgilio et al. (2019). This evaluation of CORDEX ERA-Interim forced 89 

RCMs focused on four configurations of WRF, and single configurations of CCLM and the 90 

Conformal-Cubic Atmospheric Model (CCAM; Mcgregor and Dix, 2008) to simulate the historical 91 

Australian climate (1981–2010) at 50 km resolution. These RCMs showed statistically significant, 92 

strong cold biases in maximum temperature, which in some cases exceeded -5 K, contrasting with 93 

more accurate simulations of minimum temperature, with biases of ±1.5 K for most WRF 94 

configurations and CCAM. The RCMs generally overestimated precipitation, especially over 95 

Australia’s highly populated eastern seaboard. Notably, Di Virgilio et al. (2019) observed strong 96 

negative correlations between simulated mean monthly biases in precipitation and maximum 97 

temperature, suggesting that the maximum temperature cold bias was linked to precipitation 98 

overestimation.  99 
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This study aims to build on that of Di Virgilio et al. (2019) to present the first evaluation of 100 

CORDEX-CMIP6 ERA5-forced WRF RCMs over Australia. It has three main aims: 1) to evaluate the 101 

capabilities of seven ERA5-forced WRF RCM configurations to simulate the historical Australian 102 

climate, assessing the relative strengths and weaknesses of individual RCMs; 2) compare the 103 

performance of current generation CORDEX-CMIP6 ERA5 RCMs with the previous generation of 104 

CORDEX-CMIP5 ERA-Interim-forced RCMs following the evaluation approach of Di Virgilio et al. 105 

(2019); and 3) investigate whether any performance differences observed for the ERA5-forced 106 

relative to the ERA-Interim forced RCMs can be attributed to the change in the driving reanalysis data 107 

sets or to other factors, such as the use of different RCM physics configurations and model design 108 

specifications. Following Di Virgilio et al. (2019) we evaluate the ability of RCMs to simulate near-109 

surface maximum and minimum air temperature and precipitation at annual, seasonal, and daily time 110 

scales. Here, our focus is on evaluating the performances of the different RCM generations, with an 111 

investigation of the mechanisms underlying the varying model performances to be the subject of 112 

future work. 113 

 

2. Materials and methods 114 

2.1 Models 115 

The CORDEX-CMIP5 ERA-Interim forced RCMs (WRF360J, WRF360K, WRF360L, MU-116 

WRFSWWA, CCAM and CCLM) used a domain with quasi-regular grid spacing of approximately 50 117 

km (0.44° x 0.44° on a rotated coordinate system) over the CORDEX-Australasia region. The ERA-118 

Interim WRF RCMs used different versions of WRF: WRF360J-K-L used WRF version 3.6.0, 119 

whereas MU-WRFSWWA used version 3.3. ERA-Interim RCM parameterisations for planetary 120 

boundary layer physics, surface physics, cumulus physics, land surface model, and radiation, and 121 

vertical level settings are shown in Table 1. Three configurations of CORDEX-CMIP5 ERA-Interim 122 

WRF RCMs (WRF360J-K-L) were run using two nested domains with one-way nesting. The inner 123 

domain located over south-eastern Australia obtained its initial and lateral boundary conditions from 124 

an outer domain simulation located over the CORDEX-Australasia region (Figure 1). The inner 125 

domain used a resolution of approximately 10 km. Further details on the ERA-Interim-forced RCMs 126 

are provided in Di Virgilio et al. (2019), including overviews of the WRF, CCAM and CCLM RCMs.  127 

Seven ERA5-forced RCMs comprise the CORDEX-CMIP6 evaluation experiment for 128 

NARCliM2.0 (NSW and Australian Regional Climate Modelling), which is the latest generation of 129 

NARCliM simulations (Evans et al., 2014; Nishant et al., 2021) and is one of several RCM ensembles 130 

generating dynamically downscaled climate projections for CORDEX-Australasia (Grose et al. 2023). 131 

These RCMs were driven by ERA5 boundary conditions for a 42-year period from January 1979 to 132 

December 2020. All ERA5 RCMs used WRF version 4.1.2. These CORDEX-CMIP6 ERA5 RCMs 133 
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were also run using two nested domains with one-way nesting. The outer domain over CORDEX-134 

Australasia used a quasi-regular grid spacing of approximately 20 km (0.2° x 0.2° on a rotated 135 

coordinate system), and the inner domain over south-eastern Australia used a resolution of 136 

approximately 4 km. Both domains used 45 vertical levels. The seven WRF RCM configurations (R1-137 

R7) used different parameterisations for planetary boundary layer physics, surface physics, cumulus 138 

physics, land surface model (LSM), and radiation, noting that several parameters differed relative to 139 

those of the ERA-Interim WRF RCMs (Table 1). Four of the ERA5-RCMs used the Noah-MP LSM 140 

with its ‘dynamic vegetation cover’ option activated (referred to as ‘dynamic vegetation’ in the WRF 141 

users’ guide) (Niu et al., 2011). When deactivated (the default), monthly leaf area index (LAI) is 142 

prescribed for various vegetation types and the greenness vegetation fraction (GVF) comes from 143 

monthly GVF climatological values. Conversely, when dynamic vegetation cover is activated, LAI 144 

and GVF are calculated using a dynamic leaf model. We clarify here that dominant plant-functional 145 

types do not change when using this option, but only the LAI and GVF, i.e. only the amount of green 146 

cover changes. Additionally, while the indicated cumulus parametrisation was used in the 20 km-147 

resolution outer domain, all ERA5-forced simulations were made convection-permitting in the 4 km 148 

inner domain; i.e. no cumulus parametrisation was used. Urban physics was switched on for these 149 

simulations. These two design changes are unique to these ERA5-WRF RCMs. 150 

The seven ERA5 WRF configurations were selected from an ensemble of seventy-eight 151 

structurally different WRF RCMs. Each of these seventy-eight RCMs used different parameterisations 152 

for planetary boundary layer, microphysics, cumulus, radiation, and LSM, where parameterisation 153 

options were selected via literature review and recommendations from WRF model developers. These 154 

seventy-eight test RCMs were run for an entire annual cycle (2016 with a two-month spin-up period 155 

commencing 1 November 2015). The seven ERA5 WRF configurations were selected from this larger 156 

ensemble based on their skill in simulating the south-eastern Australian climate, whilst retaining as 157 

much independent information as possible (Evans et al. 2014; Di Virgilio et al. 2024). Evaluations of 158 

model performances are presented for the Australia landmass only and follow the evaluation method 159 

of Di Virgilio et al. (2019) for the same period, i.e. for a 29-year period from January 1981 to January 160 

2010. Additionally, select assessments of model performance are presented for the inner domain over 161 

south-eastern Australia. 162 
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Figure 1. Topographic variation across Australia and major cities Inset: The CORDEX-Australasia 164 
domain and four Natural Resource Management (NRM) regions/climate zones (blue = Eastern 165 
Australia; red = Southern Australia; yellow = Rangelands; and green = Northern Australia). Seven 166 
configurations of CORDEX-CMIP6 ERA5 weather research and forecasting (WRF) RCMs (R1-R7) 167 
and three configurations of CORDEX-CMIP5 ERA-Interim WRF RCMs (WRF360J-K-L) were run 168 
using two nested domains via one-way nesting with an outer domain over CORDEX Australasia and 169 
an inner domain over south-eastern Australia (black rectangle in both main panel and inset). 170 

Table 1. List of CORDEX-CMIP6 ERA5 and CORDEX-CMIP5 ERA-Interim forced RCMs assessed 171 

by this evaluation study. 172 

Reanalysis 
RCM / 

Version 

Planetary boundary 

layer physics / surface 

layer physics 

Microphysics 
Cumulus 

physics 

Shortwave 

and longwave 

radiation 

physics 

Land 

surface 
Land options 

Vertical 

Levels 

ERA5 

R1 
YSU (Hong et al., 

2006) 

WSM6 (Hong and 

Lim, 2006) 

BMJ 

(Janjić, 
2000) 

New Goddard 

(Chou et al., 
2001) 

Noah 
Unified 

(Tewari et 

al., 2016) 

N/A 

45 

R2 
MYNN2 (Nakanishi 

and Niino, 2009) 
WSM6 

Kain-

Fritsch 

(Kain, 
2004) 

RRTMG 
(Iacono et al., 

2008)  

Noah-MP 
(Niu et al., 

2011) 

dynamic vegetation  

R3 MYNN2 

Thompson 

(Thompson et al., 

2008) 

BMJ RRTMG Noah-MP dynamic vegetation  

R4 MYNN2 Thompson BMJ RRTMG Noah-MP 

TOPMODEL 

runoff (SIMGM 

groundwater) 

R5 ACM2 (Pleim, 2007) Thompson BMJ RRTMG Noah-MP dynamic vegetation  

R6 ACM2 Thompson 

Tiedtke 

(Tiedtke, 
1989) 

RRTMG Noah-MP dynamic vegetation  

R7 ACM2 Thompson Tiedtke RRTMG Noah-MP 

TOPMODEL 

runoff (SIMGM 
groundwater) 
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ERA-I 

WRF360J 
Mellor-Yamada-

Janjic/ETA Similarity 

WRF Double-

Moment 5 

Kain-

Fritsch 
Dudhia/RRTM 

Noah 

Unified 

N/A 

30 

WRF360K 
Mellor-Yamada-

Janjic/ETA Similarity 
WRF Double-

Moment 5 

Betts-

Miller-

Janjic 

Dudhia/RRTM 
Noah 

Unified 

WRF360L 
Yonsei 

University/MM5 

Similarity 

WRF Double-

Moment 5 

Kain-

Fritsch 
CAM3/CAM3 

Noah 

Unified 

SWWA 

WRF330 

Yonsei 

University/MM5 
Similarity 

WRF Single-

Moment 5 

Kain-

Fritsch 
Dudhia/RRTM 

Noah 

Unified 

CCAM 

Monin-Obukhov 

Similarity Theory 

stability-dependent 
boundary-layer scheme 

(McGregor 1993)  

Liquid and ice-

water scheme 
(Rotstayn 1997) 

Mass-flux 
closure 

(McGregor 

2003) 

GFDL 

(Freidenreich 

and 
Ramaswamy 

1999) 

CABLE 

(Kowalczyk 
et al. 2006) 

27 

CCLM4-8-

17-CLM3-

5 

Prognostic turbulent 

kinetic energy 

(Raschendorfer 2001) 

Seifert and 

Beheng (2001), 
reduced to one 

moment scheme 

Bechtold et 
al. (2008) 

Ritter and 
Geleyn (1992) 

CLM; 

(Dickinson 

et al. 2006) 

35 

 173 

2.2 Observations 174 

Australian Gridded Climate Data (AGCD version 1.0; Bureau of Meteorology, 2020; Evans et al., 2020) 175 

were used to evaluate RCM performance. This daily gridded maximum and minimum temperature and 176 

precipitation data set has a grid-averaged resolution of 0.05° and is obtained from an interpolation of 177 

station observations across the Australian continent. Observations include temperature minima and 178 

maxima only; hence, the ability of RCMs to reproduce mean temperature was not assessed. Following 179 

Di Virgilio et al. (2019), the AGCD data were re-gridded to correspond with the RCM data on their 180 

native grids using a conservative area-weighted re-gridding scheme. Most stations used for AGCD are 181 

in coastal areas, contrasting with a sparser representation inland, and especially in Australia's north-182 

west. There are more precipitation stations than temperature stations. Only land points over Australia 183 

were evaluated because AGCD observations are terrestrial data. 184 

2.3 Evaluation methods 185 

2.3.1 Evaluations of CORDEX-CMIP6 ERA5 RCMs versus CORDEX-CMIP5 ERA-186 
Interim RCMs 187 

Annual and seasonal means were calculated for maximum and minimum temperature and precipitation 188 

using monthly averages for each temperature variable, and the monthly sum for precipitation. 189 

Percentiles (i.e. extremes: 99th percentiles for maximum temperature and precipitation; 1st percentile for 190 

minimum temperature) were calculated using daily values. RCM performances in reproducing 191 

observations over these timescales were assessed by calculating the model bias, i.e. model outputs 192 

minus observations, and the RMSE of modelled versus observed fields. The statistical significance of 193 

mean annual and seasonal biases compared to the AGCD observations was calculated for each grid cell 194 

using t-tests (α = 0.05) for maximum and minimum temperature assuming equal variance. The Mann–195 

Whitney U test was used for precipitation given its non-normality. Results on the statistical significance 196 
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of each ensemble mean were separated into three categories following Tebaldi et al. (2011): 1) 197 

statistically insignificant areas are shown in colour, denoting that less than 50% of RCMs are 198 

significantly biased, which is the most desired outcome; 2) in areas of significant agreement (stippled), 199 

at least 50% of RCMs are significantly biased and at least 66% of significant models agree on the sign 200 

of the bias. In such areas, many ensemble members have the same bias sign which is an undesirable 201 

outcome; and 3) areas of significant disagreement are shown in white, where at least 50% of RCMs are 202 

significantly biased and fewer than 66% of significant models agree on the bias sign. 203 

The ability of the RCMs to simulate observed variables at daily time scales was also assessed 204 

by comparing the probability density functions (PDFs) for daily mean observations versus those of the 205 

RCMs. PDFs were separately calculated for Australia and for each of four natural resource management 206 

(NRM) climate regions shown in Figure 1 for maximum and minimum temperature, and precipitation. 207 

Here, daily precipitation values below 0.1 mm were omitted from the RCM output, because rates below 208 

this amount fall below the detection limit of the stations used to produce the observed data set. 209 

Additionally, the daily rainfall observational network used to produce the AGCD has large gaps in 210 

several areas of central Australia; hence, RCM output was masked over these areas. RCM and observed 211 

PDFs were compared using the Perkins Skill Score (PSS; Perkins et al. (2007), which measures the 212 

degree of overlap between two PDFs, with PSS = 1 indicating that the distributions overlap perfectly.  213 

2.3.2 Comparing ERA5 versus ERA-Interim RCM performances after switching driving 214 
reanalyses 215 

Any performance differences of the ERA5-forced and ERA-Interim-forced RCMs could be partially 216 

due to the change in the driving reanalysis, as well as factors such as different RCM physics 217 

configurations, model version and other design specifications. To assess whether the change in ERA5 218 

versus ERA-Interim driving reanalyses may underlie differences in performance profiles of the WRF 219 

RCMs from the two generations of CORDEX experiment we conduct two investigations: 1) the ERA5 220 

and ERA-Interim reanalysis data are compared against AGCD observations to assess their degree of 221 

bias for annual and seasonal timescales; and 2) fourteen-month simulations are performed where 222 

otherwise identically parameterised and configured CORDEX-CMIP6 NARCliM2.0 R1-R7 RCMs are 223 

forced by ERA-Interim as opposed to ERA5, and similarly the WRFJ-K-L RCMs from the CORDEX-224 

CMIP5 era are forced with ERA5 instead of ERA-Interim. For instance, the ERA5-RCMs CORDEX-225 

CMIP6 (NARCliM2.0) RCMs are run for the same 4 km convection permitting domain using the same 226 

physics options and model setups with the only changes being to swap ERA5 for ERA-Interim and 227 

running for 14 months. These simulations start on 1 November 2015, with evaluation performed for the 228 

twelve months of 2016, i.e. using the first 2-months as spin-up period. Australia experienced a range of 229 

weather extremes during 2016 driven by a range of climatic influences making 2016 a suitable target 230 

year (Bureau of Meteorology, 2017). Owing to finite compute resources, it was not possible to simulate 231 

for a longer period for these experiments. 232 
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3. Results 233 

RCM evaluation results are presented first for the 29-year CORDEX-CMIP6 ERA5-forced and 234 

CORDEX-CMIP5 ERA-Interim-forced simulations. Evaluation results from switching the driving 235 

reanalyses of the CORDEX-CMIP6 and CORDEX-CMIP5 RCMs are then considered. 236 

3.1 Evaluation of CORDEX-CMIP6 ERA5-RCM and CORDEX-CMIP5 237 

ERA-Interim performances 238 

3.1.1 Maximum Temperature 239 

Both ERA5 and ERA-Interim forced RCMs overestimate the frequency of lower-than-average 240 

maximum temperatures and underestimate the observed peaks (Fig. 2). However, most ERA5 RCMs 241 

simulate occurrences of warmer than average temperatures more accurately than the ERA-Interim 242 

RCMs, especially ERA5-R3 (Fig. 2c). The ERA5-RCMs with highest PSS scores (i.e. >0.95; R1 and 243 

R4) show closer correspondences to the observed peaks than the other ERA5-RCMs, but they 244 

underestimate the distribution right tail. In some respects, RCM performances in PDFs stratified by 245 

NRM region can show different patterns of results versus the nationally aggregated data (Online 246 

Resource 1: Figures S1-S4). For instance, most ERA5-RCMs show larger over-estimations of warmer 247 

than average daily maximum temperatures over the Northern Australia region (Figure S4) than for 248 

Australia-wide data (Figure 2).  249 

  250 

Figure 2. Probability density functions (PDFs) of mean daily maximum near-surface air temperatures 251 
(K) across Australia for 1981-2010. Panels a-m show the PDF of a specific RCM configuration 252 
relative to that of Australian Gridded Climate Data (AGCD) observations; a-g are NARCliM2.0 253 
ERA5-forced RCM configurations; h-m are ERA-Interim-forced RCM configurations. Panel 254 
boundaries in green (red) indicate the RCMs with highest (lowest) PSS. PDF bin width is 1 K. 255 
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Most ERA5-RCMs show small cold biases of ~0.5 to 1 K for annual mean maximum 256 

temperature over most of Australia, except for warm biases of ~0.5 to 1.5 K over the coastal north, 257 

depending on location/RCM configuration (Fig. 3 b-i). ERA5-R5-R7 show lowest area-averaged 258 

absolute annual biases, with R5 showing very small biases of < 0.5 K over much of eastern Australia 259 

(Fig. 3g). ERA5-R2 shows markedly poorer performance than every other ERA5 RCM, with cold 260 

biases exceeding 2 K in some areas (Fig. 3d). The positive biases of maximum temperature over the 261 

tropics for several of the ERA5-RCMs generally correspond well to negative precipitation biases over 262 

this region (see Fig. 7b; e-i). Except for ERA5-R2, the ERA5-forced RCMs show considerable 263 

reductions in the magnitude of cold bias relative to the ERA-Interim forced RCMs (Fig.3 j-p). The 264 

best-performing ERA5-RCM (R5) has an area-averaged absolute mean bias of 0.54 K, as compared to 265 

0.92 K for the best performing ERA-Interim RCM (CCLM), a 52% percentage difference. ERA5-R5 266 

has a 66% percentage difference in absolute bias compared to the best performing ERA-Interim WRF 267 

RCM (i.e. WRFSWWA: 1.07 K). 268 

 269 

Figure 3. Annual mean near-surface atmospheric maximum temperature bias with respect to 270 
Australian Gridded Climate Data (AGCD) observations for 1981-2010. Stippled areas indicate 271 
locations where an RCM shows statistically significant bias (P < 0.05). b Significance stippling for 272 
the ensemble mean bias follows Tebaldi et al. (2011) and is applied separately to each of the two 273 
RCM ensembles. Statistically insignificant areas are shown in colour, denoting that less than half of 274 
the models are significantly biased. In significant agreeing areas (stippled), at least half of RCMs are 275 
significantly biased, and at least 66% of significant RCMs in each ensemble agree on the direction of 276 
the bias. Significant disagreeing areas are shown in white, which are where at least half of the models 277 
are significantly biased and less than 66% of significant models in each ensemble agree on the bias 278 
direction - see main text for additional detail on the stippling regime. Panel boundaries in green (red) 279 
indicate the RCMs with lowest (highest) area-averaged mean absolute biases 280 
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During summer, the magnitude and spatial extent of maximum temperature warm biases 281 

increase for all RCMs relative to the annual mean biases (Fig. S5). During winter, several ERA5 282 

RCMs (R1, R3, R4, R5) retain much smaller cold biases than most ERA-Interim-forced models (Fig. 283 

S6). RMSE magnitudes peak for most ERA5 and ERA-Interim models in February (at the end of 284 

austral summer), except for several ERA-Interim RCMs which slow larger RMSEs in winter, 285 

especially ERAI-WRFL; Fig. S7). 286 

For extreme (99th percentile) maximum temperatures, whilst ERA5-RCMs show lower overall 287 

biases relative to the ERA-Interim RCMs, the former show strong warm biases along coastlines that 288 

are typically stronger than biases further inland (Fig. S8). These biases are particularly pronounced 289 

along northern and eastern coastlines. ERA5-R1 and R5 show the lowest overall mean absolute biases 290 

for extreme maximum temperature, especially over south-eastern Australia. The various mean 291 

absolute bias and PSS statistics for maximum temperature for the 20 km domain are summarised in 292 

Online Resource Table S1. 293 

3.1.2 Minimum Temperature 294 

PDFs of daily minimum temperature for the ERA-Interim-forced WRFJ and WRFK RCMs match 295 

observations most closely relative to the ERA5- and other ERA-Interim forced RCMs (Fig. 4). 296 

Observed PDFs at the continental scale show a slight bimodality that is captured by ERA5-R1, ERA5-297 

R4, ERAI-WFJ, ERAI-SWWA and ERAI-CCLM. However, this bimodality is generally not present 298 

in PDFs stratified for specific NRM regions (Figures S9-S12). Several RCMs struggle to simulate 299 

minimum temperature occurrences in the middle of the distribution (i.e. ~285-290K), except for 300 

ERA5-R5 and ERA-Interim-WRFJ, WRFK, and CCLM which closely match minimum temperatures 301 

in this range. 302 

 303 

Figure 4. Probability density functions (PDFs) of mean daily minimum near-surface air temperatures 304 
(K) across Australia for 1981-2010. Panels a-m show the PDF of a specific RCM configuration 305 
relative to that of Australian Gridded Climate Data (AGCD) observations; a-g are NARCliM2.0 306 
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ERA5-forced RCM configurations; h-m are ERA-Interim-forced RCM configurations. Panel 307 
boundary colouring as per Fig. 2. PDF bin width is 1 K. 308 

ERA5-RCMs generally overestimate mean minimum temperature annually (Fig. 5) and 309 

seasonally (Fig S13-summer and S14-winter), except for ERA5-R2 which is cold biased. In contrast, 310 

ERA-Interim-RCMs show a mixed signal for WRF-J and WRF-K, cold bias for WRF-L and warm 311 

biases for the remaining RCMs. Warm biases are strongest during JJA for most ERA5-RCMs, and 312 

especially for ERA-Interim CCAM and CCLM (Fig. S14). Whereas ERA5-R2 performs generally 313 

poorly for maximum temperature relative to the other ERA5-RCMs (e.g. annual mean absolute bias = 314 

1.61K), its bias is substantially reduced for minimum temperature (annual mean absolute bias = 315 

0.77K). ERA5 R2 and R3 show better performance for minimum temperature relative to the other 316 

ERA5-RCMs. Their area-averaged annual mean absolute biases (0.77K in both cases) are more 317 

comparable to the ERA-Interim-forced WRFJ-K RCMs which simulate annual mean minimum 318 

temperature most accurately (annual mean absolute biases = 0.66K and 0.7 K, respectively). 319 

 320 

Figure 5. Annual mean near-surface atmospheric minimum temperature bias with respect to gridded 321 
observations for 1981-2010. Stippling and panel boundary colouring as per Fig. 3 322 

RMSE annual cycles for mean minimum temperature broadly reflect the above pattern of 323 

results (Fig. S15). For most months throughout the annual cycle, RMSEs are typically lowest for 324 

ERA-Interim WRFJ-K. However, ERA5-R1, R2 also show small RMSEs from May to August, with 325 

RMSEs also being low for ERA5-R3 during spring (September to November). 326 
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The majority of ERA5 and ERA-Interim RCMs are generally warm-biased for extreme 327 

minimum temperature over most of Australia, with only small areas of cold bias over the north-west 328 

(Fig. S16). The exceptions are ERA5-R2 and ERA-Interim-WRFJ-K which show biases of mixed sign 329 

across larger areas of Australia, and ERA-Interim WRFL which is strongly cold biased (Fig. S16). 330 

ERA5-R2 and R3 show reasonably good performance for extreme minimum temperature as compared 331 

to the other ERA5 models, however, ERA-Interim WRFJ-K simulate extreme minimum temperature 332 

most accurately. Mean absolute bias and PSS statistics for minimum temperature for the 20 km 333 

domain are summarised in Table S1. 334 

3.1.3 Precipitation 335 

PDFs of mean daily precipitation show that ERA5-R2, ERA-Interim-forced CCAM and WRFSWWA 336 

simulate the occurrence of rainfall events up to 5 mm day-1 more accurately than the other RCMs (Fig. 337 

6). Heavier rainfall events (approximately >7 mm day-1) are underestimated by several RCMs. 338 

Overall, the ERA5-RCMs simulate daily precipitation occurrences consistently better than the ERA-339 

Interim-RCMs, i.e. four of the seven ERA5-RCMs have PSS >0.8 compared to two of six ERA-340 

Interim RCMs. Of the ERA5-forced RCMs, R2 produces the best simulation of daily rainfall 341 

occurrences. There are some interesting differences in RCM performance between the NRM regions 342 

(Fig. S17-S20). For instance, most RCMs generally show more skill in capturing daily precipitation 343 

distributions over Southern Australia than other NRM regions, with the ERA5-RCMs performing 344 

particularly well over this region (Fig. S18). Conversely, performances of most RCMs are generally 345 

poorer over Northern Australia than other regions, though ERA5-R5 and ERA-Interim-CCAM show 346 

better performances than their peers over this region with PSS of 0.743 and 0.746, respectively, versus 347 

mean PSS of 0.697 (standard deviation = 0.058; Fig. S20). 348 

 349 

Figure 6. Probability density functions (PDFs) of mean daily precipitation (mm day-1) across 350 
Australia for 1981-2010. Panels a-m show the PDF of a specific RCM configuration relative to that of 351 
Australian Gridded Climate Data (AGCD) observations; a-g are NARCliM2.0 ERA5-forced RCM 352 
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configurations; h-m are ERA-Interim-forced RCM configurations. Panel boundary colouring as per 353 
Fig. 2. PDF bin width is 0.5 mm. 354 

All ERA5 RCMs except for R1 and R2 are dry-biased for annual mean precipitation over the 355 

monsoonal north (Fig. 7), with R6-7 producing the strongest dry biases exceeding -40 mm over this 356 

region (Fig. 7h-i). Of the ERA5 RCMs, R1 and R2 are exceptional in that they show widespread wet 357 

biases. ERA5-R1 and R2 both use WSM6 microphysics, whereas R3-R7 use Thompson microphysics 358 

(see Discussion 4.1). ERA5-R2 shows the strongest wet-bias over eastern Australia of ~20 mm, 359 

whereas ERA5-R3-4 show smaller wet biases (~5-10 mm) over this region. All ERA5-forced models 360 

show dry biases (between -20 and -35 mm) along the south-western coastline of western Australia. 361 

Overall, with the exceptions of R6 and R7, the ERA5-forced RCMs show reduced mean precipitation 362 

bias relative to the ERA-Interim forced RCMs, especially over southeastern Australia. All RCMs 363 

show the strongest biases (of either sign) during DJF (Fig. S21). For instance, the area and magnitude 364 

of dry-bias over northern Australia increase for ERA5-R3-R7 (Fig. S21). All RCMs show the smallest 365 

biases during JJA (Fig. S22). 366 

  367 

Figure 7. Annual mean precipitation bias with respect to gridded observations for the RCMs for 368 
1981-2010. Stippling and panel boundary colouring as per Fig. 3. 369 

Overall, RMSE annual cycles are similar for the different RCMs (Fig. S23). ERA-Interim 370 

CCAM has the lowest RMSEs throughout the year. Otherwise, all ERA5-forced RCMs have lower 371 

RMSEs than the ERA-Interim forced models (except for CCAM) from April to October, which is an 372 

important growing season in southern Australia. 373 
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The ERA5-RCMs generally over-estimate extreme precipitation over Australia and especially 374 

the south-east, though R3, R4 and R5 show widespread dry biases over north-western regions (Fig. 375 

S24). The R1 and R2 RCMs show larger extreme precipitation wet biases relative to the other ERA5 376 

RCMs (i.e. mean absolute biases of 20.02 mm and 14.83 mm, versus 9.21 mm to 11.4 mm, Fig. S24). 377 

Several ERA-Interim-forced RCMs (i.e. WRFJ, WRFK, WRFL) produce similar patterns of bias to 378 

the ERA5 RCMs, for instance, with wet biases over south-eastern Australia and dry biases over 379 

northern and central regions. Overall, the magnitude of biases over the outer domains is similar 380 

between the different RCM generations, with several RCMs showing low mean absolute biases 381 

ranging from 8.75 mm to 10.25 mm. However, focusing specifically on the high-resolution inner 382 

domains of ERA5-RCMs and ERA-Interim-WRFJ-K-L RCMs, noting this domain is uniquely 383 

convection-permitting (~4 km) for ERA5-RCMs, most ERA5-RCMs show smaller biases than WRFJ-384 

K-L (Fig. S25). For this inner domain, ERA5-R3, R5, R6, R7 show small biases (i.e. <9 mm), 385 

particularly over south-eastern coastal areas. Mean absolute bias and PSS statistics for precipitation 386 

for the 20 km domain are summarised in Table S1. 387 

3.2 Assessing the effects of switching driving ERA5 versus ERA-Interim 388 

reanalyses on RCM performances 389 

This section investigates whether performance differences of the ERA5-forced and ERA-Interim-390 

forced RCMs may be attributable to the different generations of driving reanalyses as opposed to 391 

factors such as different RCM physics parameterisations and design specifications. First, biases in the 392 

two reanalyses data sets with respect to observations are assessed. The assessment then focuses on the 393 

capacities of the CORDEX-CMIP6 era R1-R7 RCMs and the CORDEX-CMIP5 era WRFJ-K-L 394 

RCMs to simulate the south-eastern Australian climate when each RCM generation uses first ERA5 395 

and then ERA-Interim driving data. This assessment also provides a further view of the how the WRF 396 

RCM performances vary over this high-resolution domain relative to the CORDEX Australasia 397 

domain. These comparative simulations are only available for the higher resolution inner domain over 398 

south-eastern Australia. 399 

3.2.1 ERA5 and ERA-Interim reanalysis biases relative to observations 400 

Both ERA5 and ERA-Interim are generally cold biased in their simulation of mean maximum 401 

temperature at annual, summer and winter timescales during 1981-2010 (Fig. S26). However, biases 402 

are larger in magnitude for ERA-Interim relative to ERA5, especially during summer i.e. ERA5 mean 403 

absolute bias = 1.22 K; ERA-Interim = 2.07 K. Biases in ERA5 and ERA-Interim during 2016 are 404 

largely consistent with these results (Fig. S27). 405 

ERA5 and ERA-Interim overestimate mean minimum temperature over most of Australia at 406 

all timescales for both 1981-2010 (Fig. S28) and 2016 (Fig. S29). Biases are again smaller for ERA5 407 
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than for ERA-Interim. For ERA-Interim, warm biases are especially large in magnitude along the 408 

eastern and southern coastlines and over the island of Tasmania. 409 

ERA5 shows substantial improvements in simulating mean precipitation at all timescales 410 

relative to ERA-Interim (Fig. S30, i.e. ERA5 annal mean absolute bias = 4.18 mm; ERA-Interim = 411 

8.14 mm). This applies to both periods assessed, i.e. including for 2016 (Fig. S31). Additional 412 

differences in the biases between the reanalysis data sets include ERA-Interim’s stronger dry biases 413 

over the monsoonal north during summer (wet season) and marked dry biases along the eastern 414 

coastline and elevated terrain in south-eastern Australia (Fig. S30). 415 

3.2.2 Comparing RCM performances after switching the driving reanalyses 416 

Prior to switching the driving reanalyses of the two generations of RCMs, the ERA5-NARCliM2.0 417 

RCMs show large reductions in cold bias (Fig. 8b-i) relative to the ERA-Interim-forced RCMs (Fig. 418 

8j-m), with ensemble mean bias magnitudes of 1.09K and 2.46K, respectively. 419 

  420 

Figure 8. Annual mean near-surface atmospheric maximum temperature bias simulated over south-421 
eastern Australia (WRF simulation inner domain) with respect to gridded observations for the period 422 
1981-2010 for NARCliM2.0 RCMs (b-i) and NARCliM1.5 RCMs (j-m). Stippling and panel 423 
boundary colouring as per Fig. 3. 424 

Switching the driving reanalysis of the CORDEX-CMIP6 NARCliM2.0 RCMs shows small 425 

improvements in the simulation of maximum temperature for several ERA-Interim-forced 426 

NARCliM2.0 RCMs (i.e. for R1, R2, R3 and R7; Fig. 9c,d,e,i). In contrast, ERA-Interim-427 

NARCliM2.0 R4-5-6 show slight degradations in performance (Fig. 9f,g,h). However, the 428 

NARCliM2.0 ERA-Interim ensemble mean average absolute bias is 0.91K versus 1.09K for the 429 

NARCliM2.0 ERA5 ensemble. Therefore, overall, there is a small performance improvement in 430 
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forcing the CORDEX-CMIP6 era RCMs using the older reanalysis. Similarly, the CORDEX-CMIP5 431 

era WRFJ and WRFK show poorer simulations of maximum temperature when forced using ERA5 432 

(Fig. 9k-l) relative to their ERA-Interim-forced counterparts, with only ERA5-WRFL showing a 433 

marked improvement (Fig. 9m). 434 

 435 

Figure 9. Annual mean near-surface atmospheric maximum temperature bias simulated over south-436 
eastern Australia (WRF simulation inner domain) with respect to gridded observations for 437 
NARCliM2.0 RCMs forced by ERA-Interim for 2016 plus two months spin-up starting in November 438 
2015 (a-i), and corresponding NARCliM1.5 simulations for the same period forced by ERA5 (j-m). 439 

In terms of RCM performances in simulating minimum temperature prior to switching the 440 

driving reanalyses, ERA-Interim-forced WRFJ-K-L RCMs of the CORDEX-CMIP5 era have lower 441 

overall biases for minimum temperature over the inner domain relative to the NARCliM2.0 ERA5-442 

R1-R7 RCMs (i.e. ensemble mean absolute biases are 0.62K and 0.8K, respectively; Fig. 10b,j). 443 

However, the biases of each RCM generation vary geographically, such that the bias magnitudes for 444 

some ERA5-RCMs (e.g. R2-R3) are lower along coastal areas relative to ERA-Interim WRFJ-K-L 445 

over the same areas (Fig. 10d-e; k-m). Conversely, biases are lower over inland regions for ERA-446 

Interim WRFJ-K-L relative to ERA5-RCMs. 447 
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 448 

Figure 10. Annual mean near-surface atmospheric minimum temperature bias simulated over south-449 
eastern Australia (WRF simulation inner domain) with respect to gridded observations for the period 450 
1981-2010 for NARCliM2.0 RCMs (b-i) and NARCliM1.5 RCMs (j-m). Stippling and panel 451 
boundary colouring as per Fig. 3. 452 

Considering RCM simulations of mean minimum temperature with the driving reanalyses 453 

switched, performances are typically substantially poorer for the ERA5-forced WRFJ-K-L RCMs 454 

(Fig. 11) relative to their ERA-Interim-forced counterparts: the ensemble mean absolute biases are 455 

0.88K versus 0.62K, respectively. In contrast, although all NARCliM2.0 RCMs except R2 show 456 

performance degradations when forced with ERA-Interim instead of ERA5 (e.g. ensemble mean 457 

biases are 0.98K and 0.8K, respectively), these deteriorations are small (Fig. 11b-i). 458 
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 459 

Figure 11. Annual mean near-surface atmospheric minimum temperature bias with respect to gridded 460 
observations for NARCliM2.0 RCMs forced by ERA-Interim for 2016 plus two months spin-up 461 
starting in November 2015 (a-i), and corresponding NARCliM1.5 simulations for the same period 462 
forced by ERA5 (j-m). 463 

Improvements in the simulation of mean precipitation for ERA5-forced R1-R7 RCMs versus 464 

ERA-Interim WRFJ-K-L RCMs are especially evident over the high resolution south-eastern inner 465 

domain. At this scale, biases for several ERA5-forced R1-R7 RCMs are < ~5 mm compared to > ~15 466 

mm for the ERA-Interim-WRFJ-K-L RCMs (Fig. 12). Moreover, several improvements in the ERA5-467 

RCM simulation of annual mean precipitation are apparent at convection permitting scale relative to 468 

over the 20 km outer domain. For instance, dry biases for ERA5-R3 and R5 along the eastern 469 

coastline are reduced at the convection-permitting scale. 470 
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 471 

Figure 12. Annual mean precipitation bias simulated over south-eastern Australia (WRF simulation 472 
inner domain) with respect to gridded observations for the period 1981-2010 for NARCliM2.0 RCMs 473 
(b-i) and NARCliM1.5 RCMs (j-m). Stippling and panel boundary colouring as per Fig. 3. 474 

Switching driving reanalyses and simulating annual mean precipitation produces results that 475 

show consistent, large changes in RCM performances when using the newer ERA5 data, versus ERA-476 

Interim. Forcing the NARCliM2.0 R1-R7 RCMs with ERA-Interim shows widespread, marked 477 

increases in bias for annual mean precipitation for 2016 (Fig 13b-i) relative to the preceding 478 

simulations using ERA5, such that the ensemble area-averaged mean absolute bias deteriorates to 8.02 479 

mm versus 3.97 mm, i.e. roughly doubling the bias magnitude. Conversely, forcing WRFJ-K-L with 480 

ERA5 improves the simulation of annual mean precipitation with all RCMs showing reductions in 481 

bias (Fig. 13j-m), such that the ensemble mean absolute bias decreases from 18.96 mm to 11.3  mm. 482 

These performance improvements are smaller in magnitude as compared to the degradation in 483 

performance when switching the driving data for the NARCliM2.0 R1-R7 RCMs.  484 
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 485 

Figure 13. Annual mean precipitation bias with respect to gridded observations for NARCliM2.0 486 
RCMs forced by ERA-Interim for 2016 plus two months spin-up starting in November 2015 (a-i), and 487 
corresponding NARCliM1.5 simulations for the same period forced by ERA5 (j-m). 488 

4. Discussion 489 

We have evaluated the capabilities of CORDEX-CMIP6 ERA5-driven RCMs in simulating the 490 

Australian climate and compared their performances to the previous generation of ERA-Interim 491 

forced RCMs produced for CORDEX-CMIP5. The newer generation of RCMs generally show 492 

improved simulations of maximum temperature and precipitation, but no improvements for minimum 493 

temperature. Several changes have been made to the design of the newer generation of RCMs, 494 

including different RCM physics parameterisations, model specifications, and the driving reanalysis is 495 

newer (ERA5). We found no evidence to suggest that the newer reanalysis contributes to the 496 

improvements in the simulation of maximum temperature by the ERA5 RCMs, whereas the opposite 497 

applies to the simulation of precipitation. This study focuses primarily on model evaluation with 498 

investigations of potential mechanisms underlying the varying performance profiles of the different 499 

RCM generations to be the subject of future research. This will be facilitated by the imminent 500 

publication of the NARCliM2.0 ERA5-RCM data. 501 

4.1 RCM performance evaluation 502 

As per the ERA-Interim driven RCMs, the NARCliM2.0 CORDEX-CMIP6 ERA5 RCMs are 503 

generally cold-biased for mean maximum temperature, however, their bias magnitudes are 504 

substantially lower relative to the CORDEX-CMIP5 ERA-Interim ensemble. The reductions in bias 505 
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magnitude for most CORDEX-CMIP6 ERA5-RCMs are especially marked for the convection-506 

permitting 4 km inner domain over south-eastern Australia. Similarly, these ERA5 RCMs show an 507 

overall improved simulation of extreme maximum temperature over most of Australia relative to the 508 

CORDEX-CMIP5 ERA-Interim forced RCMs. Improved simulation of mean and extreme maximum 509 

temperature has important practical applications for climate impact assessment in Australia (e.g. Van 510 

Oldenborgh et al., 2021; Di Virgilio et al., 2020a; Trancoso et al., 2020), as well as globally (e.g. 511 

Vargas Zeppetello et al., 2022; Schleussner et al., 2016; Auffhammer et al., 2017). 512 

Overall, CORDEX-CMIP6 ERA5-RCMs confer improvements in the simulation of mean 513 

precipitation over south-eastern Australia relative to the CORDEX-CMIP5 ERA-Interim RCMs, with 514 

two ERA5 RCMs in particular (R3, R4) showing considerable improvements over this region. 515 

Improvements in the simulation of mean precipitation by CORDEX-CMIP6 ERA5 RCMs are even 516 

more marked at convection-permitting scale over south-eastern Australia, i.e. the ERA5 ensemble 517 

mean is 3.97 mm versus 18.96 mm for the ERA-Interim ensemble. Given the significant impacts of 518 

drought and floods in Australia (González Tánago et al., 2016; Gu et al., 2020), this improvement in 519 

mean precipitation simulation is an encouraging result. The performance in simulating extreme 520 

precipitation over the Australian continent is comparable between the CORDEX-CMIP6 ERA5 521 

RCMs and most CORDEX-CMIP5 ERA-Interim RCMs, except WRFSWWA, CCAM and CCLM 522 

which show strong biases. However, at convection-permitting scale, some ERA5-RCMs show 523 

improvements of around 10% in the simulation of extreme precipitation relative to the ERA-Interim 524 

RCMs, except ERA5-R1 and R2 which are strongly wet-biased. For both mean and extreme 525 

precipitation, ERA5 R1 and R2 are notable in that they are more wet-biased than the other ERA5 526 

RCMs, especially over northern Australia where all other ERA5-RCMs contain a systematic dry-bias. 527 

The only physics parameterisation common to both ERA5-R1 and R2 is their use of WSM6 528 

microphysics, and no other RCMs assessed here use this physics scheme, with ERA5-R3-R7 using 529 

Thompson microphysics. A previous assessment of the performance of different WRF 530 

parameterisations for a one-way nested inner domain over central Europe observed that WSM6 531 

increases annual wet bias relative to other microphysical schemes tested, including the Thomson 532 

scheme (Varga and Breuer, 2020). Notably, marked dry-biases over the monsoonal north for several 533 

ERA5-forced RCMs correspond with warm maximum temperature biases over this region shown by 534 

several ERA5 RCMs.  535 

Whilst the ERA5 RCMs confer improvements to the simulation of maximum temperature and 536 

precipitation relative to ERA-Interim models, the simulation of minimum temperature for all 537 

timescales and statistics shows no improvement over the Australian continent. Focusing specifically 538 

on the WRF RCM configurations in the ERA-Interim ensemble, WRFJ and WRFK simulate both 539 

mean and extreme minimum temperature more accurately than the ERA5-forced models, though in 540 

some cases the differences are minimal. The exception to the above result is that some ERA5-RCMs 541 
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simulate mean minimum temperature more accurately along south-eastern coastlines at the 4 km 542 

convection-permitting scale. 543 

4.2 ERA5 versus ERA-Interim evaluations: potential implications for 544 

CMIP6-forced dynamical downscaling 545 

It could be expected that differences in the reanalysis data sets used to force the two generations of 546 

WRF RCM ensemble contribute to the varying RCM performance profiles observed. ERA5 is a more 547 

recent reanalysis which comprises a range of improvements over ERA-Interim, for instance, increased 548 

resolutions spanning horizontal (~31 km versus ~79 km), vertical (137 levels to 0.01 hPa versus 60 to 549 

0.1 hPa), and temporal dimensions (hourly versus 6-hourly), among other features such as improved 550 

parameterisations (Hersbach et al., 2020). ERA5 has been shown to confer improvements over ERA-551 

Interim in the simulation of processes such as convective updrafts, tropical cyclones, and other meso- 552 

to synoptic-scale atmospheric features (Hoffmann et al., 2019) and in some cases the simulation of 553 

rainfall (e.g. Nogueira, 2020). Our investigation into whether differences in the driving reanalyses 554 

contribute to the varying RCM performances observed between the two WRF RCM ensembles 555 

involved two assessments: i) comparisons of the ERA5 and ERA-Interim reanalyses against AGCD 556 

observations to assess their degree of bias; ii) fourteen-month simulations where otherwise identically 557 

parameterised NARCliM2.0 R1-R7 RCMs were forced by ERA-Interim as opposed to ERA5, and 558 

similarly the WRFJ-K-L RCMs were forced with ERA5 instead of ERA-Interim.  559 

Comparison of ERA5 and ERA-Interim reanalysis data versus observations for mean 560 

maximum and minimum temperature and precipitation shows the expected results, i.e. that ERA5 data 561 

are closer to observations relative to ERA-Interim for all variables, especially for mean precipitation. 562 

Percentage differences in area-averaged mean absolute bias for annual means range from 25% for 563 

minimum temperature to 65% for precipitation, also noting that performances during summer were 564 

more divergent than at annual timescales. Therefore, in terms of the underlying reanalysis data used to 565 

force the different WRF RCMs evaluated, ERA5 shows improvements relative to ERA-Interim. 566 

Additionally, these improvements are of larger magnitude for mean precipitation than they are for 567 

mean maximum and minimum temperature.  568 

For the 1-year simulations where the driving reanalyses are switched, using ERA5 over ERA-569 

Interim gives a large performance improvement in the simulation of annual mean precipitation for the 570 

CORDEX-CMIP5 WRFJ-K-L RCMs. In contrast, using ERA5 over ERA-Interim as the driving data 571 

generally produces RCM performance degradations for both annual mean maximum and minimum 572 

temperature. That is, a superior simulation of mean maximum and minimum temperature is generally 573 

obtained for both generations of WRF RCM by using ERA-Interim instead of ERA5. These results 574 

suggest that, at least for the different generations of WRF RCM assessed here in these 1-year 575 

experiments, using a more accurate driving reanalysis for dynamical downscaling over this region 576 
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does not guarantee an enhanced simulation for all climatic variables. This result is surprising and 577 

warrants further investigation. However, this finding suggests that the parameterisations and design 578 

features of the WRF RCMs assessed play important roles in determining how well these RCMs 579 

simulate mean maximum and minimum temperature. Consequently, the improved simulations of 580 

maximum temperature by CORDEX-CMIP6 ERA5-RCMs relative to CORDEX-CMIP5 ERA-581 

Interim-RCMs are more attributable to model design choices, such as physics parameterisations 582 

and/or improved resolution, rather than to the driving reanalyses per se. Additionally, that the 583 

CORDEX-CMIP6 ERA5-forced R1-R7 RCMs do not improve the simulation of minimum 584 

temperature relative to CORDEX-CMIP5 ERA-Interim-forced RCMs is not attributable to the change 585 

from ERA-Interim to ERA5 as the driving reanalysis, rather, to aspect(s) of model 586 

parameterisation/design. Conversely, substantial improvements in simulating mean precipitation by 587 

CORDEX-CMIP6 ERA5-RCMs relative to CORDEX-CMIP5 ERA-Interim-forced RCMs appear (at 588 

least in part) due to the improvements to the ERA5 driving reanalysis. There are limitations to these 589 

comparative analyses switching the driving data, such as simulating for fourteen months and not a 590 

climatological period. Nevertheless, the present evaluations suggest that whether CORDEX-CMIP6 591 

dynamical downscaling of CMIP6 GCMs produces improved regional climate simulations relative to 592 

CORDEX-CMIP5 downscaling may depend in large part, at least for some variables/statistics, on 593 

RCM parameterisations and other design choices. However, the generality of these findings to other 594 

RCM types, configurations, study domains, and downscaling experiments warrants further research as 595 

these results may be specific to the WRF RCMs and domains assessed here. 596 

4.3 ERA5-R1-R7 and CMIP6-forced dynamical downscaling 597 

Although a single 'all-round' best-performing ERA5-RCM configuration cannot be selected, the RCM 598 

performances for the climate variables and statistics assessed here yield some insights if selecting a 599 

subset of ERA5-RCM configurations for subsequent CMIP6-forced downscaling. Overall, ERA5-R1 600 

provides a good simulation of both mean and extreme maximum temperature and is broadly 601 

comparable to the other ERA5-RCMs with respect to minimum temperature. However, its simulation 602 

of mean and extreme precipitation is relatively poor as compared to most ERA5-RCMs. ERA5-R2 has 603 

an unusual performance profile relative to the other ERA5-RCMs. Although ERA5-R2 shows 604 

generally good performance for minimum temperature, extreme maximum temperature and 605 

precipitation, it shows poor performance for mean maximum temperature in that is considerably more 606 

cold-biased than the other ERA5-RCMs. ERA5-R2 is the only ERA5-forced RCM configuration in 607 

this ensemble to use Kain-Fritsch cumulus physics, and it shows mean maximum temperature biases 608 

of roughly similar magnitude and spatial pattern as the ERA-Interim WRFJ and WRFK RCMs which 609 

also use the same scheme. However, ERA5-R2 also generates a strong mean maximum temperature 610 

cold bias over south-eastern Australia at the 4 km convection-permitting scale which does not use 611 
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cumulus parameterisation. ERA5-R3 shows good performance for mean minimum temperature and 612 

mean precipitation and reasonable performance for mean maximum temperature. The performance of 613 

ERA5-R4 is broadly similar to ERA5-R3, but it has substantially inferior performance versus ERA5-614 

R3 for maximum and minimum temperature extremes. ERA5-R5 shows consistently good 615 

performance for maximum temperature. The performance of ERA5-R5 in simulating precipitation 616 

over Australia at 20 km resolution is not impressive versus the other ERA5-RCMs and it shows strong 617 

dry biases over northern Australia. However, ERA5-R5 is the best-performing model in this ensemble 618 

for mean precipitation at the 4 km convection permitting scale over south-eastern Australia. Both 619 

ERA5-R6 and ERA5-R7 frequently show the strongest biases, typically over large regions such as 620 

eastern Australia for both temperature variables, and over northern Australia for precipitation. As 621 

such, they are the poorest performers overall in this ERA5 ensemble, with performance for extreme 622 

minimum temperature often being particularly poor.  623 

From the specific perspective of the ERA5-RCM performances, and based on the present 624 

evaluations, overall ERA5-R3 and ERA5-R5 may be considered favourable RCM configurations for 625 

CMIP6-forced dynamical downscaling. However, as noted, some other ERA5 RCM configurations 626 

show good performance for specific variables and statistics, and thus could warrant inclusion in a 627 

larger ensemble and/or one adopting a sparse matrix approach (Christensen and Kjellström, 2020). 628 

5. Conclusions 629 

This study forms the first part of a series of simulations for the CORDEX Australasia domain, 630 

wherein we document model performances of ERA5 reanalysis-forced RCMs, and this is the first set 631 

of simulations as required by the CORDEX-CMIP6 framework. We compared our results against 632 

ERA-Interim driven simulations which was part of the CORDEX-CMIP5 framework. While model 633 

versions and physics options were different between these two generations of reanalysis-forced RCM 634 

simulations, overall, our results show the NARCliM2.0 ERA5-forced RCMs confer improved 635 

simulations for maximum temperature and precipitation, but not for minimum temperature. 636 

The simulation of precipitation by the NARCliM2.0 RCMs show several improvements at the 637 

4 km convection permitting scale relative to the 20 km outer domain. For example, dry biases are 638 

reduced for the convection-permitting domain where convection is represented explicitly, relative to 639 

the 20 km outer domain which uses a convective parametrisation. Convection schemes can be a 640 

source of deficiencies in RCM simulations of precipitation (e.g. Jones and Randall, 2011). It may be 641 

expected that the improved representation of convection for the 4 km domain may positively 642 

influence the simulation of high-impact phenomena such as short-duration precipitation extremes. 643 

Nevertheless, our results for the CORDEX-Australasia domain suggest that the choice of 644 

microphysics scheme is important, especially for precipitation extremes. 645 
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Whilst ERA5 reanalysis data show better representations of the observed Australian climate 646 

than ERA-Interim, only improvements in the simulation of mean precipitation by the CORDEX-647 

CMIP6 ERA5-RCMs appear at least partly attributable to the increased accuracy of ERA5 driving 648 

reanalyses. Conversely, the change in driving reanalysis from ERA-Interim to ERA5 is not a major 649 

factor underlying improvements in the simulation of maximum temperature by the CORDEX-CMIP6 650 

RCMs assessed, suggesting that their performance improvements are more attributable to changes in 651 

RCM parameterisation and design. The different land surface schemes (e.g. Noah-Unified versus 652 

Noah-MP) likely play a role in RCM skill in simulating maximum temperature, as well as changing 653 

the land surface feedback (via soil moisture) to the simulation of precipitation – these possibilities 654 

require more extensive analysis to investigate. Equally, differences in the underling driving reanalyses 655 

do not explain the absence of overall improvements in the simulation of minimum temperature by the 656 

newer CORDEX-CMIP6 RCMs. It is important to be cautious of generalising the present results to 657 

other regions globally, as region-specific RCM optimisation is necessary.  658 

Our present focus was to evaluate the performances of the different RCM generations 659 

assessed here. Future work will explore other topics, such as the potential influences of the different 660 

RCM physics configurations and their associated biases on the nature of the future change signals in 661 

subsequent CMIP6 GCM-forced simulations, e.g. when holding the driving GCM data constant. 662 

Additionally, future model-intercomparison studies that compare biases between the different RCMs 663 

contributing to CORDEX-Australasia will be valuable. 664 

Results presented here are relevant for other CORDEX-CMIP6/CORDEX2 modelling 665 

projects. Maximum temperature and precipitation are important inputs to climate impact assessments 666 

in Australia, and globally. The improvements in simulating maximum temperature and precipitation 667 

conferred by CORDEX-CMIP6 ERA5-forced RCMs evaluated here indicate that using a subset of the 668 

RCMs in this ensemble for future CMIP6-forced downscaling over CORDEX Australasia could yield 669 

benefits in simulating regional climate. 670 

6. Code Availability 671 

The Weather Research and Forecasting (WRF) version 4.1.2 and all model configuration files used 672 

in this study are available on Zenodo at: https://doi.org/10.5281/zenodo.11189898  673 

7. Data Availability 674 

Data for the seven CORDEX-CMIP6 ERA5-forced R1-R7 RCMs are being made available via 675 
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