
1 
 

Evaluation of CORDEX ERA5-forced ‘NARCliM2.0’ regional climate 

models over Australia using the Weather Research and Forecasting (WRF) 

model version 4.1.2  

Giovanni Di Virgilio1,2, Fei Ji1,3, Eugene Tam1, Jason P. Evans2,3, Jatin Kala4, Julia Andrys4, Christopher 

Thomas2, Dipayan Choudhury1, Carlos Rocha1, Yue Li1, and Matthew L. Riley1 

 

1Climate & Atmospheric Science, NSW Department of Planning and Environment, Sydney, Australia 

2Climate Change Research Centre, University of New South Wales, Sydney, Australia 

3Australian Research Council Centre of Excellence for Climate Extremes, University of New South 

Wales, Sydney, Australia 

4Environmental and Conservation Sciences, and Centre for Climate Impacted Terrestrial Ecosystems, 

Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia 

 

Correspondence to: Giovanni Di Virgilio (giovanni.divirgilio@environment.nsw.gov.au; 

giovanni@unsw.edu.au)  

 

Abstract. Understanding regional climate model (RCM) capabilities to simulate current climate 1 

informs model development and climate change assessments. This is the first evaluation of the 2 

NARCliM2.0 ensemble of seven Weather Forecasting and Research RCMs driven by ECMWF 3 

Reanalysis v5 (ERA5) over Australia at 20 km resolution contributing to CORDEX-CMIP6 4 

Australasia, and south-eastern Australia at convection-permitting resolution (4 km). The performances 5 

of these seven ERA5-RCMs (R1-R7) in simulating mean and extreme maximum, minimum 6 

temperature and precipitation is evaluated against observations at annual, seasonal, and daily 7 

timescales, and compared to corresponding performances of previous-generation CORDEX-CMIP5 8 

Australasia ERA-Interim-driven RCMs. ERA5-RCMs substantially reduce cold biases for mean and 9 

extreme maximum temperature versus ERA-Interim-RCMs, with the best-performing ERA5-RCMs 10 

showing small mean absolute biases (ERA5-R5: 0.54K; ERA5-R1: 0.81K, respectively), but produce 11 

no improvements for minimum temperature. At 20 km resolution, improvements in mean and extreme 12 

precipitation for ERA5-RCMs versus ERA-Interim RCMs are principally evident over south-eastern 13 

Australia, whereas strong biases remain over northern Australia. At convection-permitting scale over 14 

south-eastern Australia, mean absolute biases for mean precipitation for the ERA5-RCM ensemble are 15 

around 79% smaller versus the ERA-Interim RCMs that simulate for this region. Although ERA5 16 

reanalysis data confer improvements over ERA-Interim, only improvements in precipitation 17 
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simulation by ERA5-RCMs are attributable to the ERA5 driving data, with RCM improvements for 25 

maximum temperature more attributable to model design choices, suggesting improved driving data 26 

do not guarantee all RCM performance improvements, with potential implications for CMIP6-forced 27 

dynamical downscaling. This evaluation shows that NARCliM2.0 ERA5-RCMs provide valuable 28 

reference simulations for upcoming CMIP6-forced downscaling over CORDEX-Australasia and are 29 

informative datasets for climate impact studies. Using a subset of these RCMs for simulating CMIP6-30 

forced climate projections over CORDEX-Australasia and/or at convection-permitting scales could 31 

yield tangible benefits in simulating regional climate. 32 
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1. Introduction 35 

Global climate models (GCMs) are optimum tools for simulating future climate at global and 36 

continental scales, informing policy and planning at these scales on climate change under different 37 

greenhouse gas concentration scenarios (IPCC, 2021). Successive generations of GCMs have seen 38 

several improvements, including incremental increases in spatial resolution and some improvements 39 

in the simulation of the current climate (Eyring et al., 2016; Stouffer et al., 2017; Grose et al., 2020). 40 

However, the coarse spatial resolution of GCMs (100 to 250 km) limits their ability to resolve the 41 

fine-scale drivers of regional climate, such as complex topography, land-use, and mesoscale 42 

atmospheric processes like convection. This in turn limits their efficacy for climate mitigation and 43 

adaptation planning at regional scales (Hsiang et al., 2017).  44 

Dynamical downscaling of GCM outputs using regional climate models (RCMs) is one 45 

approach for generating high-resolution climate projections at regional scales (Giorgi, 2006; Laprise, 46 

2008). RCMs use GCM outputs as initial and lateral boundary conditions to generate fine-scale 47 

climate simulations that better resolve the fine-scale drivers of regional climate (Giorgi and Bates, 48 

1989; Torma et al., 2015; Di Luca et al., 2012). This can create fine-scale climate information that is 49 

spatially and temporally more realistic than the driving GCM information, providing climate 50 

simulations more suitable for regional climate impact studies (Giorgi, 2019). However, such 51 

improvements are not guaranteed, and typically vary with time and location (Di Virgilio et al., 2019; 52 

Di Virgilio et al., 2020b; Panitz et al., 2014; Bucchignani et al., 2016). There is also the potential that 53 

RCMs simulate climate projections that are not more physically plausible than those of driving GCMs 54 

(Ekström et al., 2015). Design considerations such as selection of driving models and RCM 55 

parameterisation also underlie the nature of potential improvements in regional climate simulations. 56 

The Coordinated Regional Climate Downscaling Experiment (CORDEX) is an initiative of the 57 

World Climate Research Programme (WCRP) that provides experimental guidelines facilitating both 58 

the production of regional climate projections, and inter-model comparisons across modelling groups 59 

(Giorgi et al., 2009). Under CORDEX, regional climate projections based on CMIP5 (Coupled Model 60 

Intercomparison Project Phase 5) GCM projections were produced for fourteen regions globally. 61 

CORDEX is building on these previous downscaling intercomparison projects to provide a common 62 

framework for downscaling activities based on CMIP6 GCMs (Gutowski et al., 2016).  63 

A key component of CORDEX is using RCMs to dynamically downscale reanalyses such as 64 

ERA-Interim (Dee et al., 2011) under CORDEX-CMIP5, and recently ERA5 (Hersbach et al., 2020) 65 

under CORDEX-CMIP6, and evaluating the RCMs’ capabilities to simulate present-day climate. If a 66 

given RCM performs poorly in simulating the present-day climate, this lowers confidence in future 67 

climate changes projected by this model. Assessing the relative strengths and weaknesses of ERA5-68 

forced RCMs can inform the decision to exclude poorer performing RCM configurations when selecting 69 
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a subset of RCMs for downscaling of CMIP6 GCMs. It also helps benchmark the subsequent 70 

performance profiles of CMIP6-forced RCM projections and hindcasts. 71 

Previous work to dynamically downscale ERA5 over CORDEX Australasia includes the 72 

BARPA-R (Bureau of Meteorology Atmospheric Regional Projections for Australia) regional climate 73 

model which simulates over CORDEX Australasia at ~17 km resolution (Howard et al., 2024). 74 

Evaluation of BARPA-R’s skill in simulating the Australian climate observed good performance 75 

overall, including a 1°C cold bias in daily maximum temperatures and wet biases of up to 25 mm/month 76 

over inland Australia. Other previous studies of dynamical downscaling of ERA5 by RCMs have 77 

focused on short-term (e.g. ~one year) regional climate simulations (e.g. Varga and Breuer, 2020; Zhou 78 

et al., 2021) rather than multidecadal simulations. Several have focused on specific regions that are not 79 

CORDEX domains, some of which have a smaller spatial extent in comparison. For instance, Reder et 80 

al. (2022) conducted dynamical downscaling of ERA5 using COSMO-CLM (CCLM; Rockel et al. 81 

2008) on nine separate domains over twenty European cities at convection-permitting scale (~2.2 km). 82 

They demonstrated an overall pattern of added value in the simulation of heavy precipitation at city 83 

scale relative to the driving reanalysis. Focusing on precipitation simulation over the Lake Victoria 84 

Basin in Africa, Van De Walle et al. (2020) conducted ERA5-forced CCLM simulations at convection-85 

permitting scale. They found that CCLM outperformed the ERA5 data set, as well as RCM simulations 86 

using parametrised convection, though a domain-averaged wet bias was still evident. These authors 87 

attributed the overall improvements in the simulation of sub-daily precipitation to the convection-88 

permitting resolution and improved cloud microphysics. Additionally, two Weather Research and 89 

Forecasting model (WRF; Skamarock et al. 2008) experiments over the Tibetan Plateau conducted at 90 

'gray-zone' (~9 km) and convection-permitting (~3 km) resolutions for 2009-2018 both showed 91 

successful simulation of the spatial pattern and daily variation of surface temperature and precipitation 92 

(Ma et al., 2022). Notably, the ability of the convection-permitting WRF RCM in improving 93 

precipitation simulation was limited relative to the gray-zone experiment. 94 

The sole prior evaluation of reanalysis-driven CORDEX-CMIP5 Australasia regional climate 95 

models was conducted by Di Virgilio et al. (2019). This evaluation of CORDEX ERA-Interim forced 96 

RCMs focused on four configurations of WRF, and single configurations of CCLM and the 97 

Conformal-Cubic Atmospheric Model (CCAM; Mcgregor and Dix, 2008) to simulate the historical 98 

Australian climate (1981–2010) at 50 km resolution. These RCMs showed statistically significant, 99 

strong cold biases in maximum temperature, which in some cases exceeded -5 K, contrasting with 100 

more accurate simulations of minimum temperature, with biases of ±1.5 K for most WRF 101 

configurations and CCAM. The RCMs generally overestimated precipitation, especially over 102 

Australia’s highly populated eastern seaboard. Notably, Di Virgilio et al. (2019) observed strong 103 

negative correlations between simulated mean monthly biases in precipitation and maximum 104 

temperature, suggesting that the maximum temperature cold bias was linked to precipitation 105 

overestimation.  106 
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This study aims to build on that of Di Virgilio et al. (2019) to present the first evaluation of 110 

CORDEX-CMIP6 ERA5-forced WRF RCMs over Australia. It has three main aims: 1) to evaluate the 111 

capabilities of seven ERA5-forced WRF RCM configurations to simulate the historical Australian 112 

climate, assessing the relative strengths and weaknesses of individual RCMs; 2) compare the 113 

performance of current generation CORDEX-CMIP6 ERA5 RCMs with the previous generation of 114 

CORDEX-CMIP5 ERA-Interim-forced RCMs following the evaluation approach of Di Virgilio et al. 115 

(2019); and 3) investigate whether any performance differences observed for the ERA5-forced 116 

relative to the ERA-Interim forced RCMs can be attributed to the change in the driving reanalysis data 117 

sets or to other factors, such as the use of different RCM physics configurations and model design 118 

specifications. Following Di Virgilio et al. (2019) we evaluate the ability of RCMs to simulate near-119 

surface maximum and minimum air temperature and precipitation at annual, seasonal, and daily time 120 

scales. Here, our focus is on evaluating the performances of the different RCM generations, with an 121 

investigation of the mechanisms underlying the varying model performances to be the subject of 122 

future work. 123 

 

2. Materials and methods 124 

2.1 Models 125 

The CORDEX-CMIP5 ERA-Interim forced RCMs (WRF360J, WRF360K, WRF360L, MU-126 

WRFSWWA, CCAM and CCLM) used a domain with quasi-regular grid spacing of approximately 50 127 

km (0.44° x 0.44° on a rotated coordinate system) over the CORDEX-Australasia region. The ERA-128 

Interim WRF RCMs used different versions of WRF: WRF360J-K-L used WRF version 3.6.0, 129 

whereas MU-WRFSWWA used version 3.3. ERA-Interim RCM parameterisations for planetary 130 

boundary layer physics, surface physics, cumulus physics, land surface model, and radiation, and 131 

vertical level settings are shown in Table 1. Three configurations of CORDEX-CMIP5 ERA-Interim 132 

WRF RCMs (WRF360J-K-L) were run using two nested domains with one-way nesting. The inner 133 

domain located over south-eastern Australia obtained its initial and lateral boundary conditions from 134 

an outer domain simulation located over the CORDEX-Australasia region (Figure 1). The inner 135 

domain used a resolution of approximately 10 km. Further details on the ERA-Interim-forced RCMs 136 

are provided in Di Virgilio et al. (2019), including overviews of the WRF, CCAM and CCLM RCMs.  137 

Seven ERA5-forced RCMs comprise the CORDEX-CMIP6 evaluation experiment for 138 

NARCliM2.0 (NSW and Australian Regional Climate Modelling), which is the latest generation of 139 

NARCliM simulations (Evans et al., 2014; Nishant et al., 2021) and is one of several RCM ensembles 140 

generating dynamically downscaled climate projections for CORDEX-Australasia (Grose et al. 2023). 141 

These RCMs were driven by ERA5 boundary conditions for a 42-year period from January 1979 to 142 

December 2020. All ERA5 RCMs used WRF version 4.1.2. These CORDEX-CMIP6 ERA5 RCMs 143 



6 
 

were also run using two nested domains with one-way nesting. The outer domain over CORDEX-144 

Australasia used a quasi-regular grid spacing of approximately 20 km (0.2° x 0.2° on a rotated 145 

coordinate system), and the inner domain over south-eastern Australia used a resolution of 146 

approximately 4 km. Both domains used 45 vertical levels. The seven WRF RCM configurations (R1-147 

R7) used different parameterisations for planetary boundary layer physics, surface physics, cumulus 148 

physics, land surface model (LSM), and radiation, noting that several parameters differed relative to 149 

those of the ERA-Interim WRF RCMs (Table 1). Four of the ERA5-RCMs used the Noah-MP LSM 150 

with its ‘dynamic vegetation cover’ option activated (referred to as ‘dynamic vegetation’ in the WRF 151 

users’ guide) (Niu et al., 2011). When deactivated (the default), monthly leaf area index (LAI) is 152 

prescribed for various vegetation types and the greenness vegetation fraction (GVF) comes from 153 

monthly GVF climatological values. Conversely, when dynamic vegetation cover is activated, LAI 154 

and GVF are calculated using a dynamic leaf model. We clarify here that dominant plant-functional 155 

types do not change when using this option, but only the LAI and GVF, i.e. only the amount of green 156 

cover changes. Additionally, while the indicated cumulus parametrisation was used in the 20 km-157 

resolution outer domain, all ERA5-forced simulations were made convection-permitting in the 4 km 158 

inner domain; i.e. no cumulus parametrisation was used. Urban physics was switched on for these 159 

simulations. These two design changes are unique to these ERA5-WRF RCMs. 160 

The seven ERA5 WRF configurations were selected from an ensemble of seventy-eight 161 

structurally different WRF RCMs. Each of these seventy-eight RCMs used different parameterisations 162 

for planetary boundary layer, microphysics, cumulus, radiation, and LSM, where parameterisation 163 

options were selected via literature review and recommendations from WRF model developers. These 164 

seventy-eight test RCMs were run for an entire annual cycle (2016 with a two-month spin-up period 165 

commencing 1 November 2015). The seven ERA5 WRF configurations were selected from this larger 166 

ensemble based on their skill in simulating the south-eastern Australian climate, whilst retaining as 167 

much independent information as possible (Evans et al. 2014; Di Virgilio et al. in review). 168 

Evaluations of model performances are presented for the Australia landmass only and follow the 169 

evaluation method of Di Virgilio et al. (2019) for the same period, i.e. for a 29-year period from 170 

January 1981 to January 2010. Additionally, select assessments of model performance are presented 171 

for the inner domain over south-eastern Australia. 172 
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 183 

Figure 1. Topographic variation across Australia and major cities Inset: The CORDEX-Australasia 184 
domain and four Natural Resource Management (NRM) regions/climate zones (blue = Eastern 185 
Australia; red = Southern Australia; yellow = Rangelands; and green = Northern Australia). Seven 186 
configurations of CORDEX-CMIP6 ERA5 weather research and forecasting (WRF) RCMs (R1-R7) 187 
and three configurations of CORDEX-CMIP5 ERA-Interim WRF RCMs (WRF360J-K-L) were run 188 
using two nested domains via one-way nesting with an outer domain over CORDEX Australasia and 189 
an inner domain over south-eastern Australia (black rectangle in both main panel and inset). 190 

Table 1. List of CORDEX-CMIP6 ERA5 and CORDEX-CMIP5 ERA-Interim forced RCMs assessed 191 

by this evaluation study. 192 

Reanalysis 
RCM / 

Version 

Planetary boundary 

layer physics / surface 

layer physics 

Microphysics 
Cumulus 

physics 

Shortwave 

and longwave 

radiation 

physics 

Land 

surface 
Land options 

Vertical 

Levels 

ERA5 

R1 
YSU (Hong et al., 

2006) 

WSM6 (Hong and 

Lim, 2006) 

BMJ 

(Janjić, 

2000) 

New Goddard 

(Chou et al., 

2001) 

Noah 

Unified 

(Tewari et 

al., 2016) 

N/A 

45 

R2 
MYNN2 (Nakanishi 

and Niino, 2009) 
WSM6 

Kain-

Fritsch 

(Kain, 
2004) 

RRTMG 
(Iacono et al., 

2008)  

Noah-MP 
(Niu et al., 

2011) 

dynamic vegetation  

R3 MYNN2 

Thompson 

(Thompson et al., 

2008) 

BMJ RRTMG Noah-MP dynamic vegetation  

R4 MYNN2 Thompson BMJ RRTMG Noah-MP 

TOPMODEL 

runoff (SIMGM 

groundwater) 

R5 ACM2 (Pleim, 2007) Thompson BMJ RRTMG Noah-MP dynamic vegetation  

R6 ACM2 Thompson 

Tiedtke 

(Tiedtke, 

1989) 

RRTMG Noah-MP dynamic vegetation  

R7 ACM2 Thompson Tiedtke RRTMG Noah-MP 

TOPMODEL 

runoff (SIMGM 
groundwater) 
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ERA-I 

WRF360J 
Mellor-Yamada-

Janjic/ETA Similarity 
WRF Double-

Moment 5 
Kain-
Fritsch 

Dudhia/RRTM 
Noah 

Unified 

N/A 

30 

WRF360K 
Mellor-Yamada-

Janjic/ETA Similarity 

WRF Double-

Moment 5 

Betts-

Miller-

Janjic 

Dudhia/RRTM 
Noah 

Unified 

WRF360L 
Yonsei 

University/MM5 

Similarity 

WRF Double-

Moment 5 

Kain-

Fritsch 
CAM3/CAM3 

Noah 

Unified 

SWWA 

WRF330 

Yonsei 

University/MM5 

Similarity 

WRF Single-

Moment 5 

Kain-

Fritsch 
Dudhia/RRTM 

Noah 

Unified 

CCAM 

Monin-Obukhov 

Similarity Theory 

stability-dependent 
boundary-layer scheme 

(McGregor 1993)  

Liquid and ice-

water scheme 
(Rotstayn 1997) 

Mass-flux 
closure 

(McGregor 

2003) 

GFDL 

(Freidenreich 

and 
Ramaswamy 

1999) 

CABLE 

(Kowalczyk 
et al. 2006) 

27 

CCLM4-8-

17-CLM3-

5 

Prognostic turbulent 

kinetic energy 

(Raschendorfer 2001) 

Seifert and 

Beheng (2001), 
reduced to one 

moment scheme 

Bechtold et 
al. (2008) 

Ritter and 
Geleyn (1992) 

CLM; 

(Dickinson 

et al. 2006) 

35 

 193 

2.2 Observations 194 

Australian Gridded Climate Data (AGCD version 1.0; Bureau of Meteorology, 2020; Evans et al., 2020) 195 

were used to evaluate RCM performance. This daily gridded maximum and minimum temperature and 196 

precipitation data set has a grid-averaged resolution of 0.05° and is obtained from an interpolation of 197 

station observations across the Australian continent. Observations include temperature minima and 198 

maxima only; hence, the ability of RCMs to reproduce mean temperature was not assessed. Following 199 

Di Virgilio et al. (2019), the AGCD data were re-gridded to correspond with the RCM data on their 200 

native grids using a conservative area-weighted re-gridding scheme. Most stations used for AGCD are 201 

in coastal areas, contrasting with a sparser representation inland, and especially in Australia's north-202 

west. There are more precipitation stations than temperature stations. Only land points over Australia 203 

were evaluated because AGCD observations are terrestrial data. 204 

2.3 Evaluation methods 205 

2.3.1 Evaluations of CORDEX-CMIP6 ERA5 RCMs versus CORDEX-CMIP5 ERA-206 

Interim RCMs 207 

Annual and seasonal means were calculated for maximum and minimum temperature and precipitation 208 

using monthly averages for each temperature variable, and the monthly sum for precipitation. 209 

Percentiles (i.e. extremes: 99th percentiles for maximum temperature and precipitation; 1st percentile for 210 

minimum temperature) were calculated using daily values. RCM performances in reproducing 211 

observations over these timescales were assessed by calculating the model bias, i.e. model outputs 212 

minus observations, and the RMSE of modelled versus observed fields. The statistical significance of 213 

mean annual and seasonal biases compared to the AGCD observations was calculated for each grid cell 214 

using t-tests (α = 0.05) for maximum and minimum temperature assuming equal variance. The Mann–215 

Whitney U test was used for precipitation given its non-normality. Results on the statistical significance 216 
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of each ensemble mean were separated into three categories following Tebaldi et al. (2011): 1) 217 

statistically insignificant areas are shown in colour, denoting that less than 50% of RCMs are 218 

significantly biased, which is the most desired outcome; 2) in areas of significant agreement (stippled), 219 

at least 50% of RCMs are significantly biased and at least 66% of significant models agree on the sign 220 

of the bias. In such areas, many ensemble members have the same bias sign which is an undesirable 221 

outcome; and 3) areas of significant disagreement are shown in white, where at least 50% of RCMs are 222 

significantly biased and fewer than 66% of significant models agree on the bias sign. 223 

The ability of the RCMs to simulate observed variables at daily time scales was also assessed 224 

by comparing the probability density functions (PDFs) for daily mean observations versus those of the 225 

RCMs. PDFs were separately calculated for Australia and for each of four natural resource management 226 

(NRM) climate regions shown in Figure 1 for maximum and minimum temperature, and precipitation. 227 

Here, daily precipitation values below 0.1 mm were omitted from the RCM output, because rates below 228 

this amount fall below the detection limit of the stations used to produce the observed data set. 229 

Additionally, the daily rainfall observational network used to produce the AGCD has large gaps in 230 

several areas of central Australia; hence, RCM output was masked over these areas. RCM and observed 231 

PDFs were compared using the Perkins Skill Score (PSS; Perkins et al. (2007), which measures the 232 

degree of overlap between two PDFs, with PSS = 1 indicating that the distributions overlap perfectly.  233 

2.3.2 Comparing ERA5 versus ERA-Interim RCM performances after switching driving 234 

reanalyses 235 

Any performance differences of the ERA5-forced and ERA-Interim-forced RCMs could be partially 236 

due to the change in the driving reanalysis, as well as factors such as different RCM physics 237 

configurations, model version and other design specifications. To assess whether the change in ERA5 238 

versus ERA-Interim driving reanalyses may underlie differences in performance profiles of the WRF 239 

RCMs from the two generations of CORDEX experiment we conduct two investigations: 1) the ERA5 240 

and ERA-Interim reanalysis data are compared against AGCD observations to assess their degree of 241 

bias for annual and seasonal timescales; and 2) fourteen-month simulations are performed where 242 

otherwise identically parameterised and configured CORDEX-CMIP6 NARCliM2.0 R1-R7 RCMs are 243 

forced by ERA-Interim as opposed to ERA5, and similarly the WRFJ-K-L RCMs from the CORDEX-244 

CMIP5 era are forced with ERA5 instead of ERA-Interim. For instance, the ERA5-RCMs CORDEX-245 

CMIP6 (NARCliM2.0) RCMs are run for the same 4 km convection permitting domain using the same 246 

physics options and model setups with the only changes being to swap ERA5 for ERA-Interim and 247 

running for 14 months. These simulations start on 1 November 2015, with evaluation performed for the 248 

twelve months of 2016, i.e. using the first 2-months as spin-up period. Australia experienced a range of 249 

weather extremes during 2016 driven by a range of climatic influences making 2016 a suitable target 250 

year (Bureau of Meteorology, 2017). Owing to finite compute resources, it was not possible to simulate 251 

for a longer period for these experiments. 252 
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3. Results 256 

RCM evaluation results are presented first for the 29-year CORDEX-CMIP6 ERA5-forced and 257 

CORDEX-CMIP5 ERA-Interim-forced simulations. Evaluation results from switching the driving 258 

reanalyses of the CORDEX-CMIP6 and CORDEX-CMIP5 RCMs are then considered. 259 

3.1 Evaluation of CORDEX-CMIP6 ERA5-RCM and CORDEX-CMIP5 260 

ERA-Interim performances 261 

3.1.1 Maximum Temperature 262 

Both ERA5 and ERA-Interim forced RCMs overestimate the frequency of lower-than-average 263 

maximum temperatures and underestimate the observed peaks (Fig. 2). However, most ERA5 RCMs 264 

simulate occurrences of warmer than average temperatures more accurately than the ERA-Interim 265 

RCMs, especially ERA5-R3 (Fig. 2c). The ERA5-RCMs with highest PSS scores (i.e. >0.95; R1 and 266 

R4) show closer correspondences to the observed peaks than the other ERA5-RCMs, but they 267 

underestimate the distribution right tail. In some respects, RCM performances in PDFs stratified by 268 

NRM region can show different patterns of results versus the nationally aggregated data (Online 269 

Resource 1: Figures S1-S4). For instance, most ERA5-RCMs show larger over-estimations of warmer 270 

than average daily maximum temperatures over the Northern Australia region (Figure S4) than for 271 

Australia-wide data (Figure 2).  272 

  273 

Figure 2. Probability density functions (PDFs) of mean daily maximum near-surface air temperatures 274 
(K) across Australia for 1981-2010. Panels a-m show the PDF of a specific RCM configuration 275 
relative to that of Australian Gridded Climate Data (AGCD) observations; a-g are NARCliM2.0 276 
ERA5-forced RCM configurations; h-m are ERA-Interim-forced RCM configurations. Panel 277 
boundaries in green (red) indicate the RCMs with highest (lowest) PSS. PDF bin width is 1 K. 278 
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Most ERA5-RCMs show small cold biases of ~0.5 to 1 K for annual mean maximum 279 

temperature over most of Australia, except for warm biases of ~0.5 to 1.5 K over the coastal north, 280 

depending on location/RCM configuration (Fig. 3 b-i). ERA5-R5-R7 show lowest area-averaged 281 

absolute annual biases, with R5 showing very small biases of < 0.5 K over much of eastern Australia 282 

(Fig. 3g). ERA5-R2 shows markedly poorer performance than every other ERA5 RCM, with cold 283 

biases exceeding 2 K in some areas (Fig. 3d). The positive biases of maximum temperature over the 284 

tropics for several of the ERA5-RCMs generally correspond well to negative precipitation biases over 285 

this region (see Fig. 7b; e-i). Except for ERA5-R2, the ERA5-forced RCMs show considerable 286 

reductions in the magnitude of cold bias relative to the ERA-Interim forced RCMs (Fig.3 j-p). The 287 

best-performing ERA5-RCM (R5) has an area-averaged absolute mean bias of 0.54 K, as compared to 288 

0.92 K for the best performing ERA-Interim RCM (CCLM), a 52% percentage difference. ERA5-R5 289 

has a 66% percentage difference in absolute bias compared to the best performing ERA-Interim WRF 290 

RCM (i.e. WRFSWWA: 1.07 K). 291 

 292 

Figure 3. Annual mean near-surface atmospheric maximum temperature bias with respect to 293 
Australian Gridded Climate Data (AGCD) observations for 1981-2010. Stippled areas indicate 294 
locations where an RCM shows statistically significant bias (P < 0.05). b Significance stippling for 295 
the ensemble mean bias follows Tebaldi et al. (2011) and is applied separately to each of the two 296 
RCM ensembles. Statistically insignificant areas are shown in colour, denoting that less than half of 297 
the models are significantly biased. In significant agreeing areas (stippled), at least half of RCMs are 298 
significantly biased, and at least 66% of significant RCMs in each ensemble agree on the direction of 299 
the bias. Significant disagreeing areas are shown in white, which are where at least half of the models 300 
are significantly biased and less than 66% of significant models in each ensemble agree on the bias 301 
direction - see main text for additional detail on the stippling regime. Panel boundaries in green (red) 302 
indicate the RCMs with lowest (highest) area-averaged mean absolute biases 303 
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During summer, the magnitude and spatial extent of maximum temperature warm biases 304 

increase for all RCMs relative to the annual mean biases (Fig. S5). During winter, several ERA5 305 

RCMs (R1, R3, R4, R5) retain much smaller cold biases than most ERA-Interim-forced models (Fig. 306 

S6). RMSE magnitudes peak for most ERA5 and ERA-Interim models in February (at the end of 307 

austral summer), except for several ERA-Interim RCMs which slow larger RMSEs in winter, 308 

especially ERAI-WRFL; Fig. S7). 309 

For extreme (99th percentile) maximum temperatures, whilst ERA5-RCMs show lower overall 310 

biases relative to the ERA-Interim RCMs, the former show strong warm biases along coastlines that 311 

are typically stronger than biases further inland (Fig. S8). These biases are particularly pronounced 312 

along northern and eastern coastlines. ERA5-R1 and R5 show the lowest overall mean absolute biases 313 

for extreme maximum temperature, especially over south-eastern Australia. The various mean 314 

absolute bias and PSS statistics for maximum temperature for the 20 km domain are summarised in 315 

Online Resource Table S1. 316 

3.1.2 Minimum Temperature 317 

PDFs of daily minimum temperature for the ERA-Interim-forced WRFJ and WRFK RCMs match 318 

observations most closely relative to the ERA5- and other ERA-Interim forced RCMs (Fig. 4). 319 

Observed PDFs at the continental scale show a slight bimodality that is captured by ERA5-R1, ERA5-320 

R4, ERAI-WFJ, ERAI-SWWA and ERAI-CCLM. However, this bimodality is generally not present 321 

in PDFs stratified for specific NRM regions (Figures S9-S12). Several RCMs struggle to simulate 322 

minimum temperature occurrences in the middle of the distribution (i.e. ~285-290K), except for 323 

ERA5-R5 and ERA-Interim-WRFJ, WRFK, and CCLM which closely match minimum temperatures 324 

in this range. 325 

 326 

Figure 4. Probability density functions (PDFs) of mean daily minimum near-surface air temperatures 327 
(K) across Australia for 1981-2010. Panels a-m show the PDF of a specific RCM configuration 328 
relative to that of Australian Gridded Climate Data (AGCD) observations; a-g are NARCliM2.0 329 
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ERA5-forced RCM configurations; h-m are ERA-Interim-forced RCM configurations. Panel 337 
boundary colouring as per Fig. 2. PDF bin width is 1 K. 338 

ERA5-RCMs generally overestimate mean minimum temperature annually (Fig. 5) and 339 

seasonally (Fig S13-summer and S14-winter), except for ERA5-R2 which is cold biased. In contrast, 340 

ERA-Interim-RCMs show a mixed signal for WRF-J and WRF-K, cold bias for WRF-L and warm 341 

biases for the remaining RCMs. Warm biases are strongest during JJA for most ERA5-RCMs, and 342 

especially for ERA-Interim CCAM and CCLM (Fig. S14). Whereas ERA5-R2 performs generally 343 

poorly for maximum temperature relative to the other ERA5-RCMs (e.g. annual mean absolute bias = 344 

1.61K), its bias is substantially reduced for minimum temperature (annual mean absolute bias = 345 

0.77K). ERA5 R2 and R3 show better performance for minimum temperature relative to the other 346 

ERA5-RCMs. Their area-averaged annual mean absolute biases (0.77K in both cases) are more 347 

comparable to the ERA-Interim-forced WRFJ-K RCMs which simulate annual mean minimum 348 

temperature most accurately (annual mean absolute biases = 0.66K and 0.7 K, respectively). 349 

 350 

Figure 5. Annual mean near-surface atmospheric minimum temperature bias with respect to gridded 351 
observations for 1981-2010. Stippling and panel boundary colouring as per Fig. 3 352 

RMSE annual cycles for mean minimum temperature broadly reflect the above pattern of 353 

results (Fig. S15). For most months throughout the annual cycle, RMSEs are typically lowest for 354 

ERA-Interim WRFJ-K. However, ERA5-R1, R2 also show small RMSEs from May to August, with 355 

RMSEs also being low for ERA5-R3 during spring (September to November). 356 
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The majority of ERA5 and ERA-Interim RCMs are generally warm-biased for extreme 369 

minimum temperature over most of Australia, with only small areas of cold bias over the north-west 370 

(Fig. S16). The exceptions are ERA5-R2 and ERA-Interim-WRFJ-K which show biases of mixed sign 371 

across larger areas of Australia, and ERA-Interim WRFL which is strongly cold biased (Fig. S16). 372 

ERA5-R2 and R3 show reasonably good performance for extreme minimum temperature as compared 373 

to the other ERA5 models, however, ERA-Interim WRFJ-K simulate extreme minimum temperature 374 

most accurately. Mean absolute bias and PSS statistics for minimum temperature for the 20 km 375 

domain are summarised in Table S1. 376 

3.1.3 Precipitation 377 

PDFs of mean daily precipitation show that ERA5-R2, ERA-Interim-forced CCAM and WRFSWWA 378 

simulate the occurrence of rainfall events up to 5 mm day-1 more accurately than the other RCMs (Fig. 379 

6). Heavier rainfall events (approximately >7 mm day-1) are underestimated by several RCMs. 380 

Overall, the ERA5-RCMs simulate daily precipitation occurrences consistently better than the ERA-381 

Interim-RCMs, i.e. four of the seven ERA5-RCMs have PSS >0.8 compared to two of six ERA-382 

Interim RCMs. Of the ERA5-forced RCMs, R2 produces the best simulation of daily rainfall 383 

occurrences. There are some interesting differences in RCM performance between the NRM regions 384 

(Fig. S17-S20). For instance, most RCMs generally show more skill in capturing daily precipitation 385 

distributions over Southern Australia than other NRM regions, with the ERA5-RCMs performing 386 

particularly well over this region (Fig. S18). Conversely, performances of most RCMs are generally 387 

poorer over Northern Australia than other regions, though ERA5-R5 and ERA-Interim-CCAM show 388 

better performances than their peers over this region with PSS of 0.743 and 0.746, respectively, versus 389 

mean PSS of 0.697 (standard deviation = 0.058; Fig. S20). 390 

 391 

Figure 6. Probability density functions (PDFs) of mean daily precipitation (mm day-1) across 392 
Australia for 1981-2010. Panels a-m show the PDF of a specific RCM configuration relative to that of 393 
Australian Gridded Climate Data (AGCD) observations; a-g are NARCliM2.0 ERA5-forced RCM 394 
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configurations; h-m are ERA-Interim-forced RCM configurations. Panel boundary colouring as per 397 
Fig. 2. PDF bin width is 0.5 mm. 398 

All ERA5 RCMs except for R1 and R2 are dry-biased for annual mean precipitation over the 399 

monsoonal north (Fig. 7), with R6-7 producing the strongest dry biases exceeding -40 mm over this 400 

region (Fig. 7h-i). Of the ERA5 RCMs, R1 and R2 are exceptional in that they show widespread wet 401 

biases. ERA5-R1 and R2 both use WSM6 microphysics, whereas R3-R7 use Thompson microphysics 402 

(see Discussion 4.1). ERA5-R2 shows the strongest wet-bias over eastern Australia of ~20 mm, 403 

whereas ERA5-R3-4 show smaller wet biases (~5-10 mm) over this region. All ERA5-forced models 404 

show dry biases (between -20 and -35 mm) along the south-western coastline of western Australia. 405 

Overall, with the exceptions of R6 and R7, the ERA5-forced RCMs show reduced mean precipitation 406 

bias relative to the ERA-Interim forced RCMs, especially over southeastern Australia. All RCMs 407 

show the strongest biases (of either sign) during DJF (Fig. S21). For instance, the area and magnitude 408 

of dry-bias over northern Australia increase for ERA5-R3-R7 (Fig. S21). All RCMs show the smallest 409 

biases during JJA (Fig. S22). 410 

  411 

Figure 7. Annual mean precipitation bias with respect to gridded observations for the RCMs for 412 
1981-2010. Stippling and panel boundary colouring as per Fig. 3. 413 

Overall, RMSE annual cycles are similar for the different RCMs (Fig. S23). ERA-Interim 414 

CCAM has the lowest RMSEs throughout the year. Otherwise, all ERA5-forced RCMs have lower 415 

RMSEs than the ERA-Interim forced models (except for CCAM) from April to October, which is an 416 

important growing season in southern Australia. 417 

Deleted: S9418 

Deleted: both 419 

Deleted: 9420 

Deleted: 10421 

Deleted: 11422 



16 
 

The ERA5-RCMs generally over-estimate extreme precipitation over Australia and especially 423 

the south-east, though R3, R4 and R5 show widespread dry biases over north-western regions (Fig. 424 

S24). The R1 and R2 RCMs show larger extreme precipitation wet biases relative to the other ERA5 425 

RCMs (i.e. mean absolute biases of 20.02 mm and 14.83 mm, versus 9.21 mm to 11.4 mm, Fig. S24). 426 

Several ERA-Interim-forced RCMs (i.e. WRFJ, WRFK, WRFL) produce similar patterns of bias to 427 

the ERA5 RCMs, for instance, with wet biases over south-eastern Australia and dry biases over 428 

northern and central regions. Overall, the magnitude of biases over the outer domains is similar 429 

between the different RCM generations, with several RCMs showing low mean absolute biases 430 

ranging from 8.75 mm to 10.25 mm. However, focusing specifically on the high-resolution inner 431 

domains of ERA5-RCMs and ERA-Interim-WRFJ-K-L RCMs, noting this domain is uniquely 432 

convection-permitting (~4 km) for ERA5-RCMs, most ERA5-RCMs show smaller biases than WRFJ-433 

K-L (Fig. S25). For this inner domain, ERA5-R3, R5, R6, R7 show small biases (i.e. <9 mm), 434 

particularly over south-eastern coastal areas. Mean absolute bias and PSS statistics for precipitation 435 

for the 20 km domain are summarised in Table S1. 436 

3.2 Assessing the effects of switching driving ERA5 versus ERA-Interim 437 

reanalyses on RCM performances 438 

This section investigates whether performance differences of the ERA5-forced and ERA-Interim-439 

forced RCMs may be attributable to the different generations of driving reanalyses as opposed to 440 

factors such as different RCM physics parameterisations and design specifications. First, biases in the 441 

two reanalyses data sets with respect to observations are assessed. The assessment then focuses on the 442 

capacities of the CORDEX-CMIP6 era R1-R7 RCMs and the CORDEX-CMIP5 era WRFJ-K-L 443 

RCMs to simulate the south-eastern Australian climate when each RCM generation uses first ERA5 444 

and then ERA-Interim driving data. This assessment also provides a further view of the how the WRF 445 

RCM performances vary over this high-resolution domain relative to the CORDEX Australasia 446 

domain. These comparative simulations are only available for the higher resolution inner domain over 447 

south-eastern Australia. 448 

3.2.1 ERA5 and ERA-Interim reanalysis biases relative to observations 449 

Both ERA5 and ERA-Interim are generally cold biased in their simulation of mean maximum 450 

temperature at annual, summer and winter timescales during 1981-2010 (Fig. S26). However, biases 451 

are larger in magnitude for ERA-Interim relative to ERA5, especially during summer i.e. ERA5 mean 452 

absolute bias = 1.22 K; ERA-Interim = 2.07 K. Biases in ERA5 and ERA-Interim during 2016 are 453 

largely consistent with these results (Fig. S27). 454 

ERA5 and ERA-Interim overestimate mean minimum temperature over most of Australia at 455 

all timescales for both 1981-2010 (Fig. S28) and 2016 (Fig. S29). Biases are again smaller for ERA5 456 
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than for ERA-Interim. For ERA-Interim, warm biases are especially large in magnitude along the 473 

eastern and southern coastlines and over the island of Tasmania. 474 

ERA5 shows substantial improvements in simulating mean precipitation at all timescales 475 

relative to ERA-Interim (Fig. S30, i.e. ERA5 annal mean absolute bias = 4.18 mm; ERA-Interim = 476 

8.14 mm). This applies to both periods assessed, i.e. including for 2016 (Fig. S31). Additional 477 

differences in the biases between the reanalysis data sets include ERA-Interim’s stronger dry biases 478 

over the monsoonal north during summer (wet season) and marked dry biases along the eastern 479 

coastline and elevated terrain in south-eastern Australia (Fig. S30). 480 

3.2.2 Comparing RCM performances after switching the driving reanalyses 481 

Prior to switching the driving reanalyses of the two generations of RCMs, the ERA5-NARCliM2.0 482 

RCMs show large reductions in cold bias (Fig. 8b-i) relative to the ERA-Interim-forced RCMs (Fig. 483 

8j-m), with ensemble mean bias magnitudes of 1.09K and 2.46K, respectively. 484 

  485 

Figure 8. Annual mean near-surface atmospheric maximum temperature bias simulated over south-486 
eastern Australia (WRF simulation inner domain) with respect to gridded observations for the period 487 
1981-2010 for NARCliM2.0 RCMs (b-i) and NARCliM1.5 RCMs (j-m). Stippling and panel 488 
boundary colouring as per Fig. 3. 489 

Switching the driving reanalysis of the CORDEX-CMIP6 NARCliM2.0 RCMs shows small 490 

improvements in the simulation of maximum temperature for several ERA-Interim-forced 491 

NARCliM2.0 RCMs (i.e. for R1, R2, R3 and R7; Fig. 9c,d,e,i). In contrast, ERA-Interim-492 

NARCliM2.0 R4-5-6 show slight degradations in performance (Fig. 9f,g,h). However, the 493 

NARCliM2.0 ERA-Interim ensemble mean average absolute bias is 0.91K versus 1.09K for the 494 

NARCliM2.0 ERA5 ensemble. Therefore, overall, there is a small performance improvement in 495 
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forcing the CORDEX-CMIP6 era RCMs using the older reanalysis. Similarly, the CORDEX-CMIP5 515 

era WRFJ and WRFK show poorer simulations of maximum temperature when forced using ERA5 516 

(Fig. 9k-l) relative to their ERA-Interim-forced counterparts, with only ERA5-WRFL showing a 517 

marked improvement (Fig. 9m). 518 

 519 

Figure 9. Annual mean near-surface atmospheric maximum temperature bias simulated over south-520 
eastern Australia (WRF simulation inner domain) with respect to gridded observations for 521 
NARCliM2.0 RCMs forced by ERA-Interim for 2016 plus two months spin-up starting in November 522 
2015 (a-i), and corresponding NARCliM1.5 simulations for the same period forced by ERA5 (j-m). 523 

In terms of RCM performances in simulating minimum temperature prior to switching the 524 

driving reanalyses, ERA-Interim-forced WRFJ-K-L RCMs of the CORDEX-CMIP5 era have lower 525 

overall biases for minimum temperature over the inner domain relative to the NARCliM2.0 ERA5-526 

R1-R7 RCMs (i.e. ensemble mean absolute biases are 0.62K and 0.8K, respectively; Fig. 10b,j). 527 

However, the biases of each RCM generation vary geographically, such that the bias magnitudes for 528 

some ERA5-RCMs (e.g. R2-R3) are lower along coastal areas relative to ERA-Interim WRFJ-K-L 529 

over the same areas (Fig. 10d-e; k-m). Conversely, biases are lower over inland regions for ERA-530 

Interim WRFJ-K-L relative to ERA5-RCMs. 531 
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 534 

Figure 10. Annual mean near-surface atmospheric minimum temperature bias simulated over south-535 
eastern Australia (WRF simulation inner domain) with respect to gridded observations for the period 536 
1981-2010 for NARCliM2.0 RCMs (b-i) and NARCliM1.5 RCMs (j-m). Stippling and panel 537 
boundary colouring as per Fig. 3. 538 

Considering RCM simulations of mean minimum temperature with the driving reanalyses 539 

switched, performances are typically substantially poorer for the ERA5-forced WRFJ-K-L RCMs 540 

(Fig. 11) relative to their ERA-Interim-forced counterparts: the ensemble mean absolute biases are 541 

0.88K versus 0.62K, respectively. In contrast, although all NARCliM2.0 RCMs except R2 show 542 

performance degradations when forced with ERA-Interim instead of ERA5 (e.g. ensemble mean 543 

biases are 0.98K and 0.8K, respectively), these deteriorations are small (Fig. 11b-i). 544 
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 547 

Figure 11. Annual mean near-surface atmospheric minimum temperature bias with respect to gridded 548 
observations for NARCliM2.0 RCMs forced by ERA-Interim for 2016 plus two months spin-up 549 
starting in November 2015 (a-i), and corresponding NARCliM1.5 simulations for the same period 550 
forced by ERA5 (j-m). 551 

Improvements in the simulation of mean precipitation for ERA5-forced R1-R7 RCMs versus 552 

ERA-Interim WRFJ-K-L RCMs are especially evident over the high resolution south-eastern inner 553 

domain. At this scale, biases for several ERA5-forced R1-R7 RCMs are < ~5 mm compared to > ~15 554 

mm for the ERA-Interim-WRFJ-K-L RCMs (Fig. 12). Moreover, several improvements in the ERA5-555 

RCM simulation of annual mean precipitation are apparent at convection permitting scale relative to 556 

over the 20 km outer domain. For instance, dry biases for ERA5-R3 and R5 along the eastern 557 

coastline are reduced at the convection-permitting scale. 558 
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 560 

Figure 12. Annual mean precipitation bias simulated over south-eastern Australia (WRF simulation 561 
inner domain) with respect to gridded observations for the period 1981-2010 for NARCliM2.0 RCMs 562 
(b-i) and NARCliM1.5 RCMs (j-m). Stippling and panel boundary colouring as per Fig. 3. 563 

Switching driving reanalyses and simulating annual mean precipitation produces results that 564 

show consistent, large changes in RCM performances when using the newer ERA5 data, versus ERA-565 

Interim. Forcing the NARCliM2.0 R1-R7 RCMs with ERA-Interim shows widespread, marked 566 

increases in bias for annual mean precipitation for 2016 (Fig 13b-i) relative to the preceding 567 

simulations using ERA5, such that the ensemble area-averaged mean absolute bias deteriorates to 8.02 568 

mm versus 3.97 mm, i.e. roughly doubling the bias magnitude. Conversely, forcing WRFJ-K-L with 569 

ERA5 improves the simulation of annual mean precipitation with all RCMs showing reductions in 570 

bias (Fig. 13j-m), such that the ensemble mean absolute bias decreases from 18.96 mm to 11.3  mm. 571 

These performance improvements are smaller in magnitude as compared to the degradation in 572 

performance when switching the driving data for the NARCliM2.0 R1-R7 RCMs.  573 
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 584 

Figure 13. Annual mean precipitation bias with respect to gridded observations for NARCliM2.0 585 
RCMs forced by ERA-Interim for 2016 plus two months spin-up starting in November 2015 (a-i), and 586 
corresponding NARCliM1.5 simulations for the same period forced by ERA5 (j-m). 587 

4. Discussion 588 

We have evaluated the capabilities of CORDEX-CMIP6 ERA5-driven RCMs in simulating the 589 

Australian climate and compared their performances to the previous generation of ERA-Interim 590 

forced RCMs produced for CORDEX-CMIP5. The newer generation of RCMs generally show 591 

improved simulations of maximum temperature and precipitation, but no improvements for minimum 592 

temperature. Several changes have been made to the design of the newer generation of RCMs, 593 

including different RCM physics parameterisations, model specifications, and the driving reanalysis is 594 

newer (ERA5). We found no evidence to suggest that the newer reanalysis contributes to the 595 

improvements in the simulation of maximum temperature by the ERA5 RCMs, whereas the opposite 596 

applies to the simulation of precipitation. This study focuses primarily on model evaluation with 597 

investigations of potential mechanisms underlying the varying performance profiles of the different 598 

RCM generations to be the subject of future research. This will be facilitated by the imminent 599 

publication of the NARCliM2.0 ERA5-RCM data. 600 

4.1 RCM performance evaluation 601 

As per the ERA-Interim driven RCMs, the NARCliM2.0 CORDEX-CMIP6 ERA5 RCMs are 602 

generally cold-biased for mean maximum temperature, however, their bias magnitudes are 603 

substantially lower relative to the CORDEX-CMIP5 ERA-Interim ensemble. The reductions in bias 604 
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magnitude for most CORDEX-CMIP6 ERA5-RCMs are especially marked for the convection-605 

permitting 4 km inner domain over south-eastern Australia. Similarly, these ERA5 RCMs show an 606 

overall improved simulation of extreme maximum temperature over most of Australia relative to the 607 

CORDEX-CMIP5 ERA-Interim forced RCMs. Improved simulation of mean and extreme maximum 608 

temperature has important practical applications for climate impact assessment in Australia (e.g. Van 609 

Oldenborgh et al., 2021; Di Virgilio et al., 2020a; Trancoso et al., 2020), as well as globally (e.g. 610 

Vargas Zeppetello et al., 2022; Schleussner et al., 2016; Auffhammer et al., 2017). 611 

Overall, CORDEX-CMIP6 ERA5-RCMs confer improvements in the simulation of mean 612 

precipitation over south-eastern Australia relative to the CORDEX-CMIP5 ERA-Interim RCMs, with 613 

two ERA5 RCMs in particular (R3, R4) showing considerable improvements over this region. 614 

Improvements in the simulation of mean precipitation by CORDEX-CMIP6 ERA5 RCMs are even 615 

more marked at convection-permitting scale over south-eastern Australia, i.e. the ERA5 ensemble 616 

mean is 3.97 mm versus 18.96 mm for the ERA-Interim ensemble. Given the significant impacts of 617 

drought and floods in Australia (González Tánago et al., 2016; Gu et al., 2020), this improvement in 618 

mean precipitation simulation is an encouraging result. The performance in simulating extreme 619 

precipitation over the Australian continent is comparable between the CORDEX-CMIP6 ERA5 620 

RCMs and most CORDEX-CMIP5 ERA-Interim RCMs, except WRFSWWA, CCAM and CCLM 621 

which show strong biases. However, at convection-permitting scale, some ERA5-RCMs show 622 

improvements of around 10% in the simulation of extreme precipitation relative to the ERA-Interim 623 

RCMs, except ERA5-R1 and R2 which are strongly wet-biased. For both mean and extreme 624 

precipitation, ERA5 R1 and R2 are notable in that they are more wet-biased than the other ERA5 625 

RCMs, especially over northern Australia where all other ERA5-RCMs contain a systematic dry-bias. 626 

The only physics parameterisation common to both ERA5-R1 and R2 is their use of WSM6 627 

microphysics, and no other RCMs assessed here use this physics scheme, with ERA5-R3-R7 using 628 

Thompson microphysics. A previous assessment of the performance of different WRF 629 

parameterisations for a one-way nested inner domain over central Europe observed that WSM6 630 

increases annual wet bias relative to other microphysical schemes tested, including the Thomson 631 

scheme (Varga and Breuer, 2020). Notably, marked dry-biases over the monsoonal north for several 632 

ERA5-forced RCMs correspond with warm maximum temperature biases over this region shown by 633 

several ERA5 RCMs.  634 

Whilst the ERA5 RCMs confer improvements to the simulation of maximum temperature and 635 

precipitation relative to ERA-Interim models, the simulation of minimum temperature for all 636 

timescales and statistics shows no improvement over the Australian continent. Focusing specifically 637 

on the WRF RCM configurations in the ERA-Interim ensemble, WRFJ and WRFK simulate both 638 

mean and extreme minimum temperature more accurately than the ERA5-forced models, though in 639 

some cases the differences are minimal. The exception to the above result is that some ERA5-RCMs 640 

Deleted: However, over the convection-permitting domain, 641 
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simulate mean minimum temperature more accurately along south-eastern coastlines at the 4 km 645 

convection-permitting scale. 646 

4.2 ERA5 versus ERA-Interim evaluations: potential implications for 647 

CMIP6-forced dynamical downscaling 648 

It could be expected that differences in the reanalysis data sets used to force the two generations of 649 

WRF RCM ensemble contribute to the varying RCM performance profiles observed. ERA5 is a more 650 

recent reanalysis which comprises a range of improvements over ERA-Interim, for instance, increased 651 

resolutions spanning horizontal (~31 km versus ~79 km), vertical (137 levels to 0.01 hPa versus 60 to 652 

0.1 hPa), and temporal dimensions (hourly versus 6-hourly), among other features such as improved 653 

parameterisations (Hersbach et al., 2020). ERA5 has been shown to confer improvements over ERA-654 

Interim in the simulation of processes such as convective updrafts, tropical cyclones, and other meso- 655 

to synoptic-scale atmospheric features (Hoffmann et al., 2019) and in some cases the simulation of 656 

rainfall (e.g. Nogueira, 2020). Our investigation into whether differences in the driving reanalyses 657 

contribute to the varying RCM performances observed between the two WRF RCM ensembles 658 

involved two assessments: i) comparisons of the ERA5 and ERA-Interim reanalyses against AGCD 659 

observations to assess their degree of bias; ii) fourteen-month simulations where otherwise identically 660 

parameterised NARCliM2.0 R1-R7 RCMs were forced by ERA-Interim as opposed to ERA5, and 661 

similarly the WRFJ-K-L RCMs were forced with ERA5 instead of ERA-Interim.  662 

Comparison of ERA5 and ERA-Interim reanalysis data versus observations for mean 663 

maximum and minimum temperature and precipitation shows the expected results, i.e. that ERA5 data 664 

are closer to observations relative to ERA-Interim for all variables, especially for mean precipitation. 665 

Percentage differences in area-averaged mean absolute bias for annual means range from 25% for 666 

minimum temperature to 65% for precipitation, also noting that performances during summer were 667 

more divergent than at annual timescales. Therefore, in terms of the underlying reanalysis data used to 668 

force the different WRF RCMs evaluated, ERA5 shows improvements relative to ERA-Interim. 669 

Additionally, these improvements are of larger magnitude for mean precipitation than they are for 670 

mean maximum and minimum temperature.  671 

For the 1-year simulations where the driving reanalyses are switched, using ERA5 over ERA-672 

Interim gives a large performance improvement in the simulation of annual mean precipitation for the 673 

CORDEX-CMIP5 WRFJ-K-L RCMs. In contrast, using ERA5 over ERA-Interim as the driving data 674 

generally produces RCM performance degradations for both annual mean maximum and minimum 675 

temperature. That is, a superior simulation of mean maximum and minimum temperature is generally 676 

obtained for both generations of WRF RCM by using ERA-Interim instead of ERA5. These results 677 

suggest that, at least for the different generations of WRF RCM assessed here in these 1-year 678 

experiments, using a more accurate driving reanalysis for dynamical downscaling over this region 679 
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does not guarantee an enhanced simulation for all climatic variables. This result is surprising and 680 

warrants further investigation. However, this finding suggests that the parameterisations and design 681 

features of the WRF RCMs assessed play important roles in determining how well these RCMs 682 

simulate mean maximum and minimum temperature. Consequently, the improved simulations of 683 

maximum temperature by CORDEX-CMIP6 ERA5-RCMs relative to CORDEX-CMIP5 ERA-684 

Interim-RCMs are more attributable to model design choices, such as physics parameterisations 685 

and/or improved resolution, rather than to the driving reanalyses per se. Additionally, that the 686 

CORDEX-CMIP6 ERA5-forced R1-R7 RCMs do not improve the simulation of minimum 687 

temperature relative to CORDEX-CMIP5 ERA-Interim-forced RCMs is not attributable to the change 688 

from ERA-Interim to ERA5 as the driving reanalysis, rather, to aspect(s) of model 689 

parameterisation/design. Conversely, substantial improvements in simulating mean precipitation by 690 

CORDEX-CMIP6 ERA5-RCMs relative to CORDEX-CMIP5 ERA-Interim-forced RCMs appear (at 691 

least in part) due to the improvements to the ERA5 driving reanalysis. There are limitations to these 692 

comparative analyses switching the driving data, such as simulating for fourteen months and not a 693 

climatological period. Nevertheless, the present evaluations suggest that whether CORDEX-CMIP6 694 

dynamical downscaling of CMIP6 GCMs produces improved regional climate simulations relative to 695 

CORDEX-CMIP5 downscaling may depend in large part, at least for some variables/statistics, on 696 

RCM parameterisations and other design choices. However, the generality of these findings to other 697 

RCM types, configurations, study domains, and downscaling experiments warrants further research as 698 

these results may be specific to the WRF RCMs and domains assessed here. 699 

4.3 ERA5-R1-R7 and CMIP6-forced dynamical downscaling 700 

Although a single 'all-round' best-performing ERA5-RCM configuration cannot be selected, the RCM 701 

performances for the climate variables and statistics assessed here yield some insights if selecting a 702 

subset of ERA5-RCM configurations for subsequent CMIP6-forced downscaling. Overall, ERA5-R1 703 

provides a good simulation of both mean and extreme maximum temperature and is broadly 704 

comparable to the other ERA5-RCMs with respect to minimum temperature. However, its simulation 705 

of mean and extreme precipitation is relatively poor as compared to most ERA5-RCMs. ERA5-R2 has 706 

an unusual performance profile relative to the other ERA5-RCMs. Although ERA5-R2 shows 707 

generally good performance for minimum temperature, extreme maximum temperature and 708 

precipitation, it shows poor performance for mean maximum temperature in that is considerably more 709 

cold-biased than the other ERA5-RCMs. ERA5-R2 is the only ERA5-forced RCM configuration in 710 

this ensemble to use Kain-Fritsch cumulus physics, and it shows mean maximum temperature biases 711 

of roughly similar magnitude and spatial pattern as the ERA-Interim WRFJ and WRFK RCMs which 712 

also use the same scheme. However, ERA5-R2 also generates a strong mean maximum temperature 713 

cold bias over south-eastern Australia at the 4 km convection-permitting scale which does not use 714 
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cumulus parameterisation. ERA5-R3 shows good performance for mean minimum temperature and 715 

mean precipitation and reasonable performance for mean maximum temperature. The performance of 716 

ERA5-R4 is broadly similar to ERA5-R3, but it has substantially inferior performance versus ERA5-717 

R3 for maximum and minimum temperature extremes. ERA5-R5 shows consistently good 718 

performance for maximum temperature. The performance of ERA5-R5 in simulating precipitation 719 

over Australia at 20 km resolution is not impressive versus the other ERA5-RCMs and it shows strong 720 

dry biases over northern Australia. However, ERA5-R5 is the best-performing model in this ensemble 721 

for mean precipitation at the 4 km convection permitting scale over south-eastern Australia. Both 722 

ERA5-R6 and ERA5-R7 frequently show the strongest biases, typically over large regions such as 723 

eastern Australia for both temperature variables, and over northern Australia for precipitation. As 724 

such, they are the poorest performers overall in this ERA5 ensemble, with performance for extreme 725 

minimum temperature often being particularly poor.  726 

From the specific perspective of the ERA5-RCM performances, and based on the present 727 

evaluations, overall ERA5-R3 and ERA5-R5 may be considered favourable RCM configurations for 728 

CMIP6-forced dynamical downscaling. However, as noted, some other ERA5 RCM configurations 729 

show good performance for specific variables and statistics, and thus could warrant inclusion in a 730 

larger ensemble and/or one adopting a sparse matrix approach (Christensen and Kjellström, 2020). 731 

5. Conclusions 732 

This study forms the first part of a series of simulations for the CORDEX Australasia domain, 733 

wherein we document model performances of ERA5 reanalysis-forced RCMs, and this is the first set 734 

of simulations as required by the CORDEX-CMIP6 framework. We compared our results against 735 

ERA-Interim driven simulations which was part of the CORDEX-CMIP5 framework. While model 736 

versions and physics options were different between these two generations of reanalysis-forced RCM 737 

simulations, overall, our results show the NARCliM2.0 ERA5-forced RCMs confer improved 738 

simulations for maximum temperature and precipitation, but not for minimum temperature. 739 

The simulation of precipitation by the NARCliM2.0 RCMs show several improvements at the 740 

4 km convection permitting scale relative to the 20 km outer domain. For example, dry biases are 741 

reduced for the convection-permitting domain where convection is represented explicitly, relative to 742 

the 20 km outer domain which uses a convective parametrisation. Convection schemes can be a 743 

source of deficiencies in RCM simulations of precipitation (e.g. Jones and Randall, 2011). It may be 744 

expected that the improved representation of convection for the 4 km domain may positively 745 

influence the simulation of high-impact phenomena such as short-duration precipitation extremes. 746 

Nevertheless, our results for the CORDEX-Australasia domain suggest that the choice of 747 

microphysics scheme is important, especially for precipitation extremes. 748 Deleted:  at such scales749 
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Whilst ERA5 reanalysis data show better representations of the observed Australian climate 750 

than ERA-Interim, only improvements in the simulation of mean precipitation by the CORDEX-751 

CMIP6 ERA5-RCMs appear at least partly attributable to the increased accuracy of ERA5 driving 752 

reanalyses. Conversely, the change in driving reanalysis from ERA-Interim to ERA5 is not a major 753 

factor underlying improvements in the simulation of maximum temperature by the CORDEX-CMIP6 754 

RCMs assessed, suggesting that their performance improvements are more attributable to changes in 755 

RCM parameterisation and design. The different land surface schemes (e.g. Noah-Unified versus 756 

Noah-MP) likely play a role in RCM skill in simulating maximum temperature, as well as changing 757 

the land surface feedback (via soil moisture) to the simulation of precipitation – these possibilities 758 

require more extensive analysis to investigate. Equally, differences in the underling driving reanalyses 759 

do not explain the absence of overall improvements in the simulation of minimum temperature by the 760 

newer CORDEX-CMIP6 RCMs. It is important to be cautious of generalising the present results to 761 

other regions globally, as region-specific RCM optimisation is necessary.  762 

Our present focus was to evaluate the performances of the different RCM generations 763 

assessed here. Future work will explore other topics, such as the potential influences of the different 764 

RCM physics configurations and their associated biases on the nature of the future change signals in 765 

subsequent CMIP6 GCM-forced simulations, e.g. when holding the driving GCM data constant. 766 

Additionally, future model-intercomparison studies that compare biases between the different RCMs 767 

contributing to CORDEX-Australasia will be valuable. 768 

Results presented here are relevant for other CORDEX-CMIP6/CORDEX2 modelling 769 

projects. Maximum temperature and precipitation are important inputs to climate impact assessments 770 

in Australia, and globally. The improvements in simulating maximum temperature and precipitation 771 

conferred by CORDEX-CMIP6 ERA5-forced RCMs evaluated here indicate that using a subset of the 772 

RCMs in this ensemble for future CMIP6-forced downscaling over CORDEX Australasia could yield 773 

benefits in simulating regional climate. 774 

6. Code Availability 775 

The Weather Research and Forecasting (WRF) version 4.1.2 and all model configuration files used 776 

in this study are available on Zenodo at: https://doi.org/10.5281/zenodo.11189898  777 

7. Data Availability 778 

Data for the seven CORDEX-CMIP6 ERA5-forced R1-R7 RCMs are being made available via 779 

National Computing Infrastructure (NCI). WRF namelist settings for the CORDEX-CMIP6 ERA5-780 

forced RCMs R1-R7 are shown in Supplementary Material Fig. S32. Data for the three ERA-Interim 781 

forced WRFJ-K-L RCMs are available via the New South Wales Climate Data Portal and CORDEX-782 
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