Paper #GMD-2024-41 | Model evaluation paper: **'Evaluation of CORDEX ERA5-forced 'NARCliM2.0' regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2'**

We thank the Editor and two reviewers for their constructive input, and for assessing this manuscript as suitable to publication following the opportunity to implement revisions.

As you will see from our point-by-point responses below, we have carefully gone through the reviewer comments and suggestions (please see Tables 1-2 on pp. 2-32 in this document).

We believe that the reviewer comments have helped strengthen this manuscript, and we are very grateful for their reviews.

Kind regards,

Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew Riley

Table 1. Reviewer 1, Sugata Narsey: Comments

#	Issue Description	Discussion	Revision (in re-submitted manuscript)
	Recommendation: Minor revisions	We are very grateful to the reviewer for	N/A
		assessing our work, for their positive	
	This manuscript documents the evaluation of the	remarks and for recommending	
	NARCliM2.0 regional climate model (RCM) driven using	publication following Minor Revisions.	
	ECMWF Reanalysis v5 (ERA5). The manuscript is well-		
	written, and systematically addresses key aspects of the		
	evaluation of their model. They go further than a basic		
	evaluation, providing useful insights into the regional		
	impacts of multiple parameterisation configurations of the		
	model. They find that changing the physics choices in their		
	model can have quite dramatic effects on regional climate		
	biases for Australia. A nice addition to this study is their		
	analysis of the relative sources of bias estimated by		
	interchanging their RCM with the previous version of the		
	NARCliM RCM, and also interchanging the driving ERA5		
	reanalysis with the ERA Interim reanalysis data previously		
	used. By doing so they find that the RCM set-up appears to		
	be a stronger influence on the mean state bias in their		
	regional climate simulations compared to the choice of		
	driving reanalysis data. This manuscript forms an important		
	scientific basis for the production of a nationally significant		
	projections dataset and is an important contribution to		
	regional modelling for the Southern Hemisphere.		
	I have some comments around evaluation choices, and		
	around specific wording especially with regards to claims of		
	improvement for precipitation since the biases over		
	northern Australia appear significant. However overall, this		
	manuscript is appropriate for publication, and my		
	recommendation is for minor revisions.		
	Reviewer #1: Main Comments		

1	The distribution plots show nationally aggregated data, however I find this problematic since the map plots show that Tmax and precipitation in particular have opposing biases in the porthern and southern regions (Fig 3 and Fig	Agreed - it is a good idea to stratify the daily distribution plots by region. The reviewer suggests doing this for 'at least two regions'; however, we regionalised	See sample new PDF results below (pp. 12- 13). All regionalised PDFs are now included in
	7). Additionally, the bimodal distribution of Tmin in Fig 4 might be a function of mixing two climatically distinct regions. Why not split it into at least two regions? Then you	the data according to the four Australian Natural Resource Management (NRM) region clusters which are broadly aligned with	the revised manuscript Supplementary Material (tasmax: Fig S1-S4; tasmin: Fig S9- S12; pr: Fig S17-S20).
	of Australia.	climatological boundaries (Fiddes et al., 2021) and with the IPCC reference regions (Iturbide et al., 2020).	Additionally, these new PDFs are briefly mentioned in the main text, for example, this new text re. minimum temperature in bold, lines 297-299).
		PDFs for all four NRM clusters for all three variables are included in the revised manuscript Supplementary Material. Sample results are shown below for the PDFs of minimum temperature for the Southern Australia and Northern Australia NRM clusters, e.g. bimodality in modelled distributions is not apparent for Southern Australia	"Observed PDFs at the continental scale show a slight bimodality that is captured by ERA5-R1, ERA5-R4, ERAI-WFJ, ERAI-SWWA and ERAI-CCLM. However, this bimodality is generally not present in PDFs stratified for specific NRM regions (Figures S9-S12)."
2	The evaluation conducted here focuses on rainfall and temperature, which I agree are the most important variables to consider. However, some investigation of the circulation state in the RCMs may be of use to help understand the systematic biases, for example over northern Australia (R3-7), and over SE Australia (R2-4).	We agree with the reviewer that temperature and precipitation are the most important variables to consider (e.g. because they are used in many climate impact studies). However, it is a good idea for future work to investigate RCM simulations of the circulation state via a future study aiming to explain the processes/mechanisms underlying the varying RCM skill profiles observed in this study. Such an analysis could form a component of a model intercomparison study of the various CMIP6-forced	This is a great idea for a future study. No changes to main text.

		RCMs for this region. As we stated at the end of the Introduction, for this current work our aim is: "Here, our focus is on evaluating the performances of the different RCM generations, with an investigation of the mechanisms underlying the varying model performances to be the subject of future work."	
3	The statements around general improvements in precipitation are not well-founded in my view, since the dry biases over northern Australia are large compared to NARCliM1.5 runs. I would prefer if the claims were either made specific to the inner domain, or else more carefully described in this manuscript. Alternatively, the authors can show whether the biases in the NARCliM2.0 runs (especially for northern Australia) are actually smaller as a percentage of annual mean climatological rain.	Agreed, we have revised the text to more carefully explain the RCM performance for mean and extreme precipitation as shown right:	Original text (at lines 11-12 in Abstract): "ERA5-RCM precipitation simulations show lower bias magnitudes versus ERA-Interim- RCMs, though dry biases remain over monsoonal northern Australia and extreme precipitation simulation improvements are principally evident at convection- permitting 4 km resolution." Revised text in Abstract (lines 12-14): "At 20 km resolution, improvements in mean and extreme precipitation for ERA5- RCMs versus ERA-Interim RCMs are principally evident over south-eastern Australia, whereas strong biases remain over northern Australia." Also, the text is revised at lines 513-515 (see qualifiers added in bold):

			"Overall, CORDEX-CMIP6 ERA5-RCMs confer improvements in the simulation of mean precipitation over south-eastern Australia relative to the CORDEX-CMIP5 ERA-Interim RCMs, with two ERA5 RCMs in particular (R3, R4) showing considerable improvements over this region ."
4	It is outside the scope of this study, however it would be interesting to know if the different physics configurations and their associated regional climate biases have much bearing on the future change signal in the model when holding the driving global model data constant. Similarly, it would be interesting to know if the evaluation of the ERA5 runs with different physics configurations translates in an evaluation of the CMIP6 historical scenario runs	This is a great idea for a future study, thank you for suggesting this. For now, as the reviewer mentioned it is outside of the scope of this study, however, we have now mentioned this idea for future work in the revised Conclusion (see new text right).	We have stated some of these ideas for future investigation in a new paragraph added to the Conclusion in the revised manuscript (see new text below; lines 659- 664): "Our present focus was to evaluate the performances of the different RCM generations assessed here. Future work will explore other topics, such as the potential influences of the different RCM physics configurations and their associated biases on the nature of the future change signals in subsequent CMIP6 GCM-forced simulations, e.g. when holding the driving GCM data constant. Additionally, future model-intercomparison studies that compare biases between the different RCMs contributing to CORDEX-Australasia will be valuable."
5	Also outside the scope of this study, but it would be interesting to intercompare the dry-bias tendency over northern Australia in the NARCliM2.0 runs with other regional simulations using different models that introduced similar dry biases for the Australian monsoon. Although such a bias may be undesirable, there is a real opportunity here to shed light on some fundamental characteristics of	Thank you for suggesting these interesting ideas for future study – we see a lot of value in such future investigations, for now though, as the reviewer mentions, it is outside of the scope of this study. As above though, we have briefly mentioned this idea for	Please see above.

	the dynamics Australian monsoon, in particular the feedback mechanisms associated with land surface behaviour, convection, and large-scale circulation.	future work in the Conclusion (see above for #4).	
	Reviewer #1: Specific comments		
6	L63-64: It's now May 2024 and this statement is outdated; I believe the BARPA paper is now published (https://gmd.copernicus.org/articles/17/731/2024/gmd- 17-731-2024-discussion.html) and there may be others by now. Might be worth a quick search.	Noted – this study is now acknowledged in the revised manuscript as shown right.	Text added, lines 65-70: "Previous work to dynamically downscale ERA5 over CORDEX Australasia includes the BARPA-R (Bureau of Meteorology Atmospheric Regional Projections for Australia) regional climate model which simulates over CORDEX Australasia at ~17 km resolution (Howard et al., 2024). Evaluation of BARPA-R's skill in simulating the Australian climate observed good performance overall, including a 1°C cold bias in daily maximum temperatures and wet biases of up to 25 mm/month over inland Australia."
7	L205-208: Did you follow the same experiment design in all other respects except for run length? Fig 13 shows the inner domain. Are these ERA5 swapped with ERA Interim sensitivity experiments conducted at the fine-scale for the inner domain? Maybe it's specified somewhere but I couldn't see it. Worth clarifying here.	Here, the experiment designs for the CORDEX-CMIP6 RCMs and the CORDEX- CMIP5 RCMs are each held identical in all respects <i>except</i> for switching the driving data and running the simulations for 14 months instead of 30 years (the latter owing to compute and time constraints). For instance, the ERA5-RCMs CORDEX-CMIP6 (NARCliM2.0) RCMs are run for the same 4 km convection permitting domain using the same physics options and model setups with the only changes being to swap ERA5 for ERA-Interim as driving data and running for 14 months.	Revised text (changes in bold) lines 222- 228: "2) fourteen-month simulations are performed where otherwise identically parameterised and configured CORDEX- CMIP6 NARCliM2.0 R1-R7 RCMs are forced by ERA-Interim as opposed to ERA5, and similarly the WRFJ-K-L RCMs from the CORDEX-CMIP5 era are forced with ERA5 instead of ERA-Interim. For instance, the ERA5-RCMs CORDEX-CMIP6 (NARCliM2.0) RCMs are run for the same 4 km convection permitting domain using the same physics options and model setups

		The text has been revised to make this clearer (please see right).	with the only changes being to swap ERA5 for ERA-Interim and running for 14 months."
8	L210-211: The short periods are probably fine, but why not just do a quick bootstrap check to see how representative 14-month periods are for rainfall in the longer run period using either AGCD or your simulations?	Owing to the large computational costs involved, we could only simulate for 14 months. Given this hard constraint, it was important that the target year in question had experienced as broad a variety of climatic patterns as possible (i.e. being neither predominantly/ consistently dry-warm v wet-cold). 2016 (plus the preceding two months as spin-up) was hence an ideal choice if one is restricted by model resource constraints, because it is renowned as a year starting with a strong El Niño event and several months of hot-dry weather, but then from approximately the middle of the year shifting to a pattern of frequent heavy rainfall until approximately October (Trewin, 2017). The above was not mentioned before and it should have been stated, hence this has now been stated in the revised text (see right). However, for our future model development work where we may alter the period being simulated, a test procedure like that outlined by the reviewer is something we will trial.	Added to the revised text (lines 229-231): "Australia experienced a range of weather extremes during 2016 driven by a range of climatic influences making 2016 a suitable target year (Bureau of Meteorology, 2017)."

9	L231-233: Based on Fig 3 it seems Fig 2 might obscure some compensating biases between north and south. Is this the case?	As the reviewer suggested, we have prepared regionalised PDFs for all variables. In the case of maximum temperature, the ERA5-RCMs (e.g. R5)	The new regionalised PDFs are included in the revised Supporting Information accompanying the revised manuscript, and they are briefly referred to in the main
		showing warm mean annual max. temperature biases mapped in Fig. 3 over northern Australia also overestimate daily occurrences of	text. See example PDFs for maximum temperature for northern and southern Australia below (pp. 12-13) – see also #1 above.
		warmer than average maximum temperatures over the Northern Australia region (see new PDF for	
		Northern Australia below – pp. 14-15). Conversely, the mapped cold biases over southern Australia in Fig. 3	
		cooler than average temperatures in the PDF for southern Australia (see new	
		manuscript, see column right and #1 above.	
10	Fig 3: The stippling is difficult to see. Can you improve somehow?	Agreed – the stippling and other elements of all map-based figures have been improved for clarity as shown in the example below (see p. 32).	Map based figures are revised throughout the main text as suggested (and as implemented in the example figure provided in this document - see p. 32).
11	L270 and Fig 4: Is the bimodality due to mixing different climate zones?	Based on the reviewer's suggestion above (#1) and the subsequent geographically-stratified PDF analyses we have conducted for the revised manuscript, overall, yes, we believe the	The new regionalised PDFs are now included in the revised Supplementary Material (see #1 above). Example revised manuscript text discussing regional PDFs is below:
		biomodality present for the continental- scale analyses is due to mixing of different climate zones (see also sample PDFs shown below). The revised manuscript includes the geographically	"Observed PDFs at the continental scale show a slight bimodality that is captured by ERA5-R1, ERA5-R4, ERAI-WFJ, ERAI-SWWA and ERAI-CCLM. However, this bimodality

		stratified PDFs and also the main text is revised/supplemented as in the example shown right.	is generally not present in PDFs stratified for specific NRM regions (Figures S9-S12)."
12	Fig 6: Why not show log(P)? Might be easier to see differences and similarities.	We had trialled log(P) early on when conducting these analyses for daily precipitation distributions and concluded this did not confer much improvement to the clarity of the PDFs.	No changes to main text.
13	Fig 7: Would the biases over northern Australia look this dramatic if you showed it as a percent of AGCD climatology? It's hard to know for example which absolute bias is more concerning between runs, since a small absolute bias in the dry regions may matter more than a large absolute bias in the monsoon region.	 As requested, we prepared a similar plot to Fig. 7, but showing relative biases (please see Fig. 7A p. 14 below). Some observations include: The magnitude of some of the absolute biases for annual mean precipitation over northern Australia do not appear as dramatic for the relative bias as compared to the correspoding absolute bias. For instance, when examining relative biases for R3, the relative bias magnitudes along the east and south coasts become more similar in magnitude to the relative bias magnitude over the north. Conversely, for the original plot (Fig. 7 in main text) showing absolute biases, the northern bias magnitude appears larger than the absolute bias magnitudes along the south and east coasts. 	No changes to main text.
		- Overall, the relative performance ranking of the ERA5-RCM	

ſ			simulations using relative bias or absolute bias is similar.	
	14	Fig 13: If this is not 4km explicit convection runs than perhaps show larger domain? Otherwise, see comment for L205-208 above.	Please see response to comment #7 above/in this table.	Addressed by #7 above.
	15	L459: The claim of general improvement in precipitation and even max temperature is not quite true in my opinion. The bias over northern Australia appears large and systematic. I think it is appropriate to claim general improvement over the inner domain though. See main comment 3.	Please see response to comment #3 above/in this table.	Addressed by #3 above.
	16	Section 4.1: you note the dry bias vs wet bias may relate to microphysics scheme. Looking at fig 7 the three runs (R2-4) with MYNN2 boundary layer scheme are all wet biased over SE Australia. Is this a coincidence?	It is an interesting observation, though it might need more exploration via future study e.g. because some ERA5- RCMs that do not use MYNN2 for PBL also show wet biases over SE Australia e.g. R1 (YSU) and R5 (ACM2).	No changes to main text.
	17	L492: suggest "especially over northern Australia where all other runs contain a systematic dry-bias".	The reviewer's suggestion is added to the text.	Added to the main text (lines 525-527): "For both mean and extreme precipitation, ERA5 R1 and R2 are notable in that they are more wet-biased than the other ERA5 RCMs, especially over northern Australia where all other ERA5-RCMs contain a systematic dry-bias."
Ī	18	L568: Again, I don't agree with this claim of general improvement for precipitation.	Please see response to comment #3 above/in this table.	Addressed by #3 above.
	19	L577: It also appears important here at coarser scales when precipitation is parameterised, based on Fig 7.	Text revised accordingly – please see column right.	Text revised as follows (lines 644-645): "Nevertheless, our results for the CORDEX- Australasia domain suggest that the choice of microphysics scheme is important, especially for precipitation extremes."

20	L584-585: Potentially also in the rainfall biases, especially	We agree with the reviewer that the	Text revised as follows (lines 652-655):
	world such as over northern Australia during the summer	change the land surface feedback (via	"The different land surface schemes (e.g.
	monsoon season.	soil moisture) to the precipitation	Noah-Unified versus Noah-MP) likely play a
		biases. This as a possibility that requires	role in RCM skill in simulating maximum
		more extensive analysis to investigate.	temperature, as well as changing the land
		Text is revised as shown right:	surface feedback (via soil moisture) to the
			simulation of precipitation – these
			possibilities require more extensive
			analysis to investigate."

Near-surface minimum air temperature (K)

Figure S1. Probability density functions of mean daily maximum near-surface air temperature (K) with bin width of 1 K over the Southern Australia natural resource management region.

Figure S2. Probability density functions of mean daily minimum near-surface air temperature (K) with bin width of 1 K over the Northern Australia natural resource management region.

Fig. 7A Annual mean precipitation relative bias with respect to gridded observations for the RCMs for 1981-2010.

Table 2. Anonymous Referee #2 (RC #2) Comments

#	Comment Description	Discussion	Revision (in re-submitted manuscript)
	Reviewer #2 "This paper provides an evaluation of the representation of precipitation and diurnal screen-level temperatures from a set of 7 model configurations of the NARCLIM2.0 regional climate model. By benchmarking model performance against a previous version of NARCLIM and repeating the analysis of a previous paper, the authors follow an objective, pre- determined framework, which is to be commended. NARCLIM2.0 is shown to have a reduction in outlier model configurations with large temperature biases in excess of 2K. Their results highlight model dependence, particularly of precipitation, on the choice of parametrisation schemes and identify a pervasive dry bias in northern Australia. I have comments around the description and justifications of model configuration choices and some more minor comments on the presentation of the results. Overall, this is an important and well written manuscript suitable for publication following these revisions."	We are grateful to the reviewer for reviewing the manuscript, for their positive remarks on this work, and for recommending publication following their suggested revisions.	N/A
	Reviewer #2 General Comments:		
1	There are a large number of models, statistics and maps presented in this paper which makes it difficult to form an overall view of the improvement in model performance across generations. I would suggest you include a summary table of the mean absolute error, bias magnitudes and Perkins Skill	Thank you for this suggestion, we have created a table showing the mean absolute biases for climate means, climate extremes and Perkins Skill Scores for the majority of the analyses performed. Please see Table 1 below	This table is included in the revised Supplementary Material as Table S1 (p. 10) and this table is referred to in the revised manuscript.

	Scores reported across the paper and supplementary materials.	(pp. 30-31; also added to the revised manuscript).	
2	The text at lines 137-140 suggests that the NARCLIM2.0 model	Thanks for pointing this out – this text is	The following text has been added to the
	configurations have been selected based on empirical	re-phrased in the revised manuscript as	revised manuscript (lines 151-158):
	performance during a single year, and that compatibility	shown in the column right, because the	
	between parametrisation schemes or recommendations from	WRF parameterisation options were	"The seven ERA5 WRF configurations were
	the WRF model developers may not have been considered.	selected based on their performance in	selected from an ensemble of seventy-
	Please add some text to provide assurance that these for each	previous studies (e.g. via literature	eight structurally different WRF RCMs.
	of the 7 selected configurations, the combination of	review). Most parameterizations were	Each of these seventy-eight RCMs used
	parametrisation schemes is physically sensible. For example,	tested independently, such as those for	different parameterisations for planetary
	have these combinations been used and recommendations by	the planetary boundary layer (PBL) or	boundary layer, microphysics, cumulus,
	separate studies, developed and tested in combination, or at	microphysics. However, some were	radiation, and land surface model, where
	least not contain schemes developed specifically for use with a	tested in combination, such as PBL	parameterisation options were selected via
	different setup or combinations precluded in the WRF user	schemes combined with microphysics	literature review and recommendations
	guide? Are the PBL schemes compatible with the surface	schemes, and they all performed well.	from WRF model developers. These test
	schemes, and is shallow convection appropriately dealt with by		RCMs were run for an entire annual cycle
	the combination of PBL and convection schemes?	When building the different	(2016 with a two-month spin-up period
		configurations of the WRF model for	commencing 1 November 2015). The seven
		test simulations, we were aware of	ERA5 WRF configurations were selected
		are not compatible with each other due	from this larger ensemble based on their
		to overlapping functionalities or specific	skill in simulating the south-eastern
		design constraints. For instance:	Australian climate, whilst retaining as much
			independent information as possible
		The Kain-Fritsch (KF) cumulus	(Evans et al. 2014; Di Virgilio et al. in
		scheme and the Thompson	review)."
		microphysics scheme should not	
		The Yonsei University (YSU) PRI	
		scheme should not be used with	

	the Monin-Obukhov surface	
	layer scheme.	
	The Noah land surface model	
	(LSM) should not be used with	
	the Pleim-Xiu (PX) PBL scheme.	
	• The Rapid Radiative Transfer	
	Model for Global Circulation	
	Models (RRTMG) longwave and	
	shortwave schemes should not	
	he used with other radiation	
	schemes like Dudhia or	
	Goddard	
	Goddard.	
	We availed these incompatible	
	apphinations when setting up physics	
	to the second DCM shill in simulating	
	tests to assess RCIVI skill in simulating	
	the south-east Australian climate for	
	the NARCIIM2.0 project. After this	
1	test/model development process, we	
	also sought advice from WRF	
	developers on the physics	
	parameterisations being used for	
	NARCliM2.0.	

3 More would in thes datase schem	details on common aspects of the experimental design be welcome: how are ozone and aerosols represented se models? How frequently does the SST update? What ets have been used as static inputs to the land-surface nes (vegetation fraction etc)?	 SST is updated daily Aersols are used the default WRF option aer_opt=0, therefore aerosols were not applied. Ozone is default for radiation models used Static inputs for land-surface schemes are also WRF defaults 	No changes to manuscript.
4 As the forms referen vegeta	e differences between the parametrisation schemes a large component of this paper, please provide nces for the schemes. Some explanation of the dynamic ation scheme would also be welcome.	The revised manuscript includes the text shown column right providing high- level explanation of the dynamic vegetation cover option that is used with the Noah-MP land surface model. Also, we have included citations for the physics parametrisations in Table 1 in the main text, which is where these schemes are listed. However, in more detail on Noah-MP's dynamic vegetation cover option allows for the prognostic representation of plant phenology, leaf area index (LAI), and canopy stomatal resistance. Vegetation dynamics in the Noah-MP modelling system encompass plant	The following text has been added to the revised manuscript (lines 140-147): "Four of the ERA5-RCMs used the Noah- MP LSM with its 'dynamic vegetation cover' option activated (referred to as 'dynamic vegetation' in the WRF users' guide) (Niu et al., 2011). When deactivated (the default), monthly leaf area index (LAI) is prescribed for various vegetation types and the greenness vegetation fraction (GVF) comes from monthly GVF climatological values. Conversely, when dynamic vegetation cover is activated, LAI and GVF are calculated using a dynamic leaf model. We clarify here that dominant plant-functional types do not change when using this option, but only the LAI and GVF,

 photosynthesis, respiration, and the partitioning of assimilated carbon among various plant parts, including leaves, roots, and wood. This system can represent both seasonal and long-term changes in vegetation phenology and carbon exchanges over the land surface (Ise et al., 2017; Gim et al., 2017; Gim et al., 2017). The incorporation of vegetation dynamics and photosynthesis-based stomatal resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial 	
partitioning of assimilated carbon among various plant parts, including leaves, roots, and wood. This system can represent both seasonal and long- term changes in vegetation phenology and carbon exchanges over the land surface (Ise et al., 2010; De Kauwe et al., 2017; Gim et al., 2017). The incorporation of vegetation dynamics and photosynthesis-based stomatal resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
among various plant parts, including leaves, roots, and wood. This system can represent both seasonal and long- term changes in vegetation phenology and carbon exchanges over the land surface (Ise et al., 2010; De Kauwe et al., 2017; Gim et al., 2017). The incorporation of vegetation dynamics and photosynthesis-based stomatal resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
leaves, roots, and wood. This system can represent both seasonal and long- term changes in vegetation phenology and carbon exchanges over the land surface (Ise et al., 2010; De Kauwe et al., 2017; Gim et al., 2017). The incorporation of vegetation dynamics and photosynthesis-based stomatal resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022).De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
 can represent both seasonal and long- term changes in vegetation phenology and carbon exchanges over the land surface (Ise et al., 2010; De Kauwe et al., 2017; Gim et al., 2017). The incorporation of vegetation dynamics and photosynthesis-based stomatal resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial 	
 term changes in vegetation phenology and carbon exchanges over the land surface (Ise et al., 2010; De Kauwe et al., 2017; Gim et al., 2017). The incorporation of vegetation dynamics and photosynthesis-based stomatal resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial 	
and carbon exchanges over the land surface (Ise et al., 2010; De Kauwe et al., 2017; Gim et al., 2017). The incorporation of vegetation dynamics and photosynthesis-based stomatal resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
surface (Ise et al., 2010; De Kauwe et al., 2017; Gim et al., 2017). The incorporation of vegetation dynamics and photosynthesis-based stomatal resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
 al., 2017; Gim et al., 2017). The incorporation of vegetation dynamics and photosynthesis-based stomatal resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial 	
 incorporation of vegetation dynamics and photosynthesis-based stomatal resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial 	
and photosynthesis-based stomatal resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
resistance in the Noah-MP LSM enables the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
the exploration of carbon partitioning within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
within plant compartments (e.g., leaves, roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
roots, and stems) and provides a prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
prognostic representation of vegetation growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
growth and senescence through canopy states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
states, such as LAI (Hosseini et al. 2022). De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
A. P., Zaehle, S., Asao, S., Guenet, B., et al. (2017). Challenging terrestrial	
al. (2017). Challenging terrestrial	
biosphere models with data from the	
long-term multifactor Prairie Heating	
and CO 2 Enrichment	
experiment. Global Change Biol. 23,	
3623–3645. doi: 10.1111/gcb.13643	
Gim, H. J., Park, S. K., Kang, M., Thakuri,	
B. M., Kim, J., and Ho, C. H. (2017). An	
improved parameterization of the	
allocation of assimilated carbon to plant	
parts in vegetation dynamics for N oah-	

		MP. J. Adv. Model. Earth Sys. 9, 1776– 1794. doi: 10.1002/2016MS000890	
		Ise, T., Litton, C. M., Giardina, C. P., and Ito, A. (2010). Comparison of modeling approaches for carbon partitioning: impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. <i>J. Geophys. Res.:</i> <i>Biogeosci.</i> 4, 115. doi: 10.1029/2010JG001326	
		Hosseini A, Mocko DM, Brunsell NA, Kumar SV, Mahanama S, Arsenault K and Roundy JK (2022) Understanding the impact of vegetation dynamics on the water cycle in the Noah-MP model. Front. Water 4:925852. doi: 10.3389/frwa.2022.925852	
5	The selection of RCMs for this study comes across as ad-hoc and incomplete: HadRM3P, RegCM4 and REMO2015 also contributed ERA-interim driven simulations to CORDEX-CMIP5 Australasia but have not been evaluated. Additionally, three additionally, three ERA5-driven CORDEX-CMIP6 Australasia	The primary focus of this paper is to evaluate the performance of the ERA5 driven NARCliM2.0 (WRF) simulations. Comparison with previous ERA-Interim driven WRF simulations is done to	The text below mentioning another ERA5- driven evaluation RCM also contributing to CORDEX-CMIP6 has been added to the literature review section of the revised Introduction (lines 65-70):
	simulations appear to have also been recently published before the submission date. While including extra models at this stage may be out of scope, the paper may sit better in the literature if it focuses purely on NARCLIM/WRF-based models.	elucidate the generational improvement in climate simulation. A comprehensive assessment of all ERA- Interim driven simulations is outside the scope of this paper. Further studies that evaluate different RCMs downscaling	"Previous work to dynamically downscale ERA5 over CORDEX Australasia includes the BARPA-R (Bureau of Meteorology Atmospheric Regional Projections for Australia) regional climate model which
		ERA-Interim/ERA5 would be useful.	simulates over CORDEX Australasia at 17

km resolution (Ho Additionally, in the revised version of the Introduction for this manuscript, we the Australian clin have also cited a recent evaluation of performance ove CORDEX CMIP6 RCMs (i.e. BARPA-R; bias in daily maxi Howard et al. 2024; GMD) – please see added text in column right. inland Australia."	
	oward et al., 2024). RPA-R's skill in simulating mate observed good erall, including a 1°C cold imum temperatures and to 25 mm/month over
6 On a similar note, you may consider acknowledging that NARCLIM2.0 will contribute to an ensemble of downscaled climate projections for Australasia. (e.g. https://www.sciencedirect.com/science/article/pii/S2405880 723000298) Agreed, in the revised manuscript, we acknowledge this (please see text to right). Text and citation manuscript, lines 723000298) "(NARCliM2.0) is ensembles generated ownscaled climate complexity of the set of	below added to revised 5 130-131: one of several RCM rating dynamically ate projections for asia (Grose et al. 2023)" M., Narsey, S., Trancoso, , Delage, F., Dowdy, A., Di erson, I., Dobrohotoff, P., uniyar, S., Henley, B., ktus, J., Abramowitz, G., XH., and Takbash, A.: A ulti-model downscaling lerpin climate change alia, Climate Services, 30,

7	Map quality: stippling is hard to see, while coastlines and state	Good suggestions – we have modified	Please see comment left. All map-based
	boundaries show up as inconsistently rendered, adding to	the figures to improve clarity as	figures are modified in the revised
	confusion. Can these be improved? Perhaps the figures would	suggested by decreasing stippling	manuscript as per the reviewer's
	be easier to read if the stippling density was decreased and line	density and increasing their marker size,	suggestions and shown in the sample
	thicknesses increased.	and also ensuring a clearer/more	revised plot on p.32 in this document.
		consistent representation of	
		state/jurisdictional boundaries – please	
		see example of one of the revised	
		figures below (p. 32). All map-based	
		figures will be revised accordingly in a	
		revised version of the main text.	
8	Can you provide a recommendation of which of R1-R7 you would recommend to be used in downscaling GCMs going forward?	Agreed - the revised manuscript includes the new section of text shown in column right providing a suggestion for which of R1-R7 might be prioritised for subsequent CMIP6-forced dynamical downscaling.	New text added to the revised manuscript Discussion (lines 597-628): "Although a single 'all-round' best- performing ERA5-RCM configuration cannot be selected, the RCM performances for the climate variables and statistics assessed here yield some insights if selecting a subset of ERA5-RCM configurations for subsequent CMIP6- forced downscaling. Overall, ERA5-R1 provides a good simulation of both mean and extreme maximum temperature and is broadly comparable to the other ERA5- RCMs with respect to minimum temperature. However, its simulation of mean and extreme precipitation is relatively poor as compared to most ERA5- RCMs, ERA5-R2 has an unusual

	performance profile relative to the other
	ERA5-RCMs. Although ERA5-R2 shows
	generally good performance for minimum
	temperature, extreme maximum
	temperature and precipitation, it shows
	poor performance for mean maximum
	temperature in that is considerably more
	cold-biased than the other ERA5-RCMs.
	ERA5-R2 is the only ERA5-forced RCM
	configuration in this ensemble to use Kain-
	Fritsch cumulus physics, and it shows mean
	maximum temperature biases of roughly
	similar magnitude and spatial pattern as
	the ERA-Interim WRFJ and WRFK RCMs
	which also use the same scheme. However,
	ERA5-R2 also generates a strong mean
	maximum temperature cold bias over
	south-eastern Australia at the 4 km
	convection-permitting scale which does
	not use cumulus parameterisation. ERA5-
	R3 shows good performance for mean
	minimum temperature and mean
	precipitation and reasonable performance
	for mean maximum temperature. The
	performance of ERA5-R4 is broadly similar
	to ERA5-R3, but it has substantially inferior
	performance versus ERA5-R3 for maximum
	and minimum temperature extremes.
	ERA5-R5 shows consistently good
	performance for maximum temperature.

	The performance of ERA5-R5 in simulating
	precipitation over Australia at 20 km
	resolution is not impressive versus the
	other ERA5-RCMs and it shows strong dry
	biases over northern Australia. However,
	ERA5-R5 is the best-performing model in
	this ensemble for mean and extreme
	precipitation at the 4 km convection
	permitting scale. Both ERA5-R6 and ERA5-
	R7 frequently show the strongest biases,
	typically over large regions such as eastern
	Australia for both temperature variables,
	and over northern Australia for
	precipitation. As such, they are the poorest
	performers overall in the ERA5 ensemble,
	with performance for extreme minimum
	temperature often being particularly poor.
	From the specific perspective of the ERA5-
	RCM performances, and based on the
	present evaluations, overall ERA5-R3 and
	ERA5-R5 may be considered favourable
	RCM configurations for CMIP6-forced
	dynamical downscaling. However, as
	noted, some other ERA5 RCM
	configurations show good performance for
	specific variables and statistics, and thus
	could warrant inclusion in a larger
	ensemble and/or one adopting a sparse
	matrix approach (Christensen and
	Kjellström, 2020)."

	Reviewer #2 Line Specific Comments:		
9	Line 10: Please be more explicit about what these statistics (0.54K; 0.81K) are. They seem to be from R5 but I'm not sure why (R1 has a lower mean absolute error for the p99).	Agreed – please see column right for the revised text that is included in the revised manuscript.	New text added to revised manuscript (Abstract, lines 9-12): "ERA5-RCMs substantially reduce cold biases for mean and extreme maximum temperature versus ERA-Interim-RCMs, with the best-performing ERA5-RCMs showing small mean absolute biases (ERA5- R5: 0.54K; ERA5-R1: 0.81K, respectively), but produce no improvements for minimum temperature."
10	Lines 11-12 and lines 479-486: I can't see systematic improvement in mean state precipitation of the 7 CORDEX- CMIP6 RCMs over the 6 CORDEX-CMIP5 RCMs. Certainly, WRFJ has a very large wet bias, however the performance of WRFL is comparable to R3 and R4.	Agreed – the text should be much more specific because for the 20km outer domain these performance improvements are principally evident over south-eastern Australia, and also for the convection-permitting (4 km) inner domain over south-east Australia. Text revised accordingly in both locations as shown right.	Original text (at lines 11-12 in Abstract): "ERA5-RCM precipitation simulations show lower bias magnitudes versus ERA-Interim- RCMs, though dry biases remain over monsoonal northern Australia and extreme precipitation simulation improvements are principally evident at convection- permitting 4 km resolution." Revised text in Abstract (lines 12-16): "At 20 km resolution, improvements in mean and extreme precipitation for ERA5- RCMs versus ERA-Interim RCMs are principally evident over south-eastern Australia, whereas strong biases remain

			over northern Australia. At convection-
			permitting scale over south-eastern
			Australia, mean absolute biases for mean
			precipitation for the ERA5-RCM ensemble
			are around 79% smaller versus the ERA-
			Interim RCMs that simulate for this
			region."
			Also, revised text at lines 513-515 (see
			qualifiers added in bold):
			"Overall, CORDEX-CMIP6 ERA5-RCMs
			confer improvements in the simulation of
			mean precipitation over south-eastern
			Australia relative to the CORDEX-CMIP5
			ERA-Interim RCMs, with two ERA5 RCMs in
			particular (R3, R4) showing considerable
			improvements over this region."
11	Line 194: Please specify the bin width used when calculating	The bin width used for precipitation is	All PDF figure captions in the revised
	the Perkins Score.	0.5 mm. The bin width used for	manuscript now state the relevant bin
		temperature variables is 1 K. This	widths (please see above examples for new
		information is added to the relevant	regionalised PDFs requested pp. 12-13)
		figure captions in the revised text.	

12	Lines 380-383: Please review the meaning in this paragraph as	Agreed – text is revised to improve	Previous text:
	it's confusing. In the first sentence you say the ERA5-driven and	clarity/meaning as shown right.	
	ERA-interim driven simulations are similar, in the second you say that the ERA5-driven show large reductions in biases.		"Without switching the driving reanalyses, ERA5-forced CORDEX-CMIP6 'NARCliM2.0' RCMs and ERA-Interim CORDEX-CMIP5 RCMs simulate annual mean maximum temperature over the inner domains (Fig. 8) in a similar manner as compared to over Australia (Fig. 3). That is, the ERA5- NARCliM2.0 RCMs show large reductions in the marked cold biases (Fig. 8b-i) that characterise the ERA-Interim-forced RCMs (Fig. 8j-m), with ensemble mean biases of 1.09K and 2.46K, respectively."
			Revised text (lines 417-419): "Prior to switching the driving reanalyses of the two generations of RCMs, the ERA5- NARCliM2.0 RCMs show large reductions in cold bias (Fig. 8b-i) relative to the ERA- Interim-forced RCMs (Fig. 8j-m), with ensemble mean bias magnitudes of 1.09K and 2.46K, respectively."

13	Lines 341 and elsewhere: consider saying 'bias magnitudes' (or	Phrasing revised throughout.	Phrasing modified throughout the revised
	mean absolute error) over biases in the text.		manuscript.
14	Lines 488-490: I don't agree that the convection-permitting	The text is revised to more accurately	Previous text, lines 488-490:
	P99s from R3-R7 are markedly improved over WRFK and WRFL:	state the nature of differences in	
	perhaps a little along the coast but it's fairly marginal.	performance. That is, at convection	"However, over the convection-permitting
		permitting scale of 4 km, whilst two of	domain, many ERA5-RCMs show enhanced
		the ERA5-RCMs perform poorly for P99	simulation of extreme precipitation relative
		precipitation (R1 and R2), the best-	to the ERA-Interim RCMs, except ERA5-R1
		performing ERA5-RCM for P99	and R2 which are strongly wet-biased."
		precipitation (R3) shows an area-	
		averaged bias of 8.08 mm versus 9 mm	Revised text (lines 523-525):
		to 14.33 mm for the three ERA-I-RCMs	
		simulating at 10 km. Hence, overall, we	"However, at convection-permitting scale,
		observe a small performance	some ERA5-RCMs show small
		improvement, but it's not a marked	improvements of around 10% in the
		one. Please see previous version of the	simulation of extreme precipitation relative
		text versus the revised text in column	to the ERA-Interim RCMs, except ERA5-R1
		right.	and R2 which are strongly wet-biased."

15	Figure 8-13: are you able to include cutouts of the 20km outer	We appreciate the rationale for this	
	domains of ERA5 R1-R7 in these figures?	suggestion; however, we are also	
		concerned that this might constitute	
		including a lot of plot panels in Figure 8-	
		13, which be too much for some	
		readers.	

Table 1. Diagnostics for seven (R1-R7) ERA5-forced regional climate models (RCMs) and six ERA-Interim-forced RCMs and their respective ensemble means for 1981-2010 with Australian Gridded Climate Data as reference data. Mean absolute biases are shown for annual and seasonal mean maximum and minimum temperature and precipitation, for annual extreme maximum and minimum temperature and precipitation, as well as Perkins Skill Scores (PSS) for the daily distributions of these variables for the CORDEX-Australasia domain over Australia (20 km resolution). Bold values indicate which of the ERA5-RCMs R1-R7 has the best diagnostic score from this RCM set.

			CORDEX Australasia (20 km)				
			Clim	nate Mean	s:	Climate Extremes:	
	6	5014	M	ean bias		Mean bias	PSS
variable	Generation	RCIVI	Annual		JJA 1.24	Annual	NI / A
		Ensemble	0.85	0.81	1.34	0.80	
		KI D2	0.83	0.68	1.10	0.73	0.957
		RZ	1.61	1.23	2.30	1.02	0.917
	ERA5-RCMs	K3	0.90	0.80	1.35	0.88	0.950 0.958 0.942 0.922 0.938 N/A 0.940 0.945 0.880
		R4	0.92	1.03	1.01	1.26	0.958
		R5	0.54	1.09	0.84	0.81	0.942 0.922
		R6	0.85	1.18	1.58	0.86	0.922
tasmax (K)	-	R7	0.85	0.99	1.39	1.08	0.938
		Ensemble	1.33	0.80	2.24	0.91	PSS N/A 0.957 0.917 0.950 0.958 0.942 0.922 0.938 N/A 0.940 0.945 0.880 0.945 0.940 0.945 0.940 0.945 0.944 0.937 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.933 0.933 0.930 N/A 0.937 0.933 0.930 N/A
		WRFJ	1.58	1.29	2.26	1.56	
		WRFK	1.37	1.06	2.02	1.32	
	ERAI-RCMs	WRFL	2.67	0.99	5.67	1.11	
		WRFSWWA	1.07	0.92	1.33	0.89	0.952
		CCAM	0.98	0.97	1.57	1.44	0.952 0.904 0.946
		CCLM	0.92	0.94	1.21	1.37	0.946
		Ensemble	0.73	0.89	0.96	1.48	0.880 0.952 0.904 0.946 N/A 0.943 0.935
		R1	0.95	1.12	0.85	1.30	0.943
		R2	0.77	1.03	0.70	1.02	0.935
		R3	0.77	1.02	0.96	1.47	N/A 0.943 0.935 0.938
	ERA5-RCIVIS	R4	0.81	0.73	1.23	1.90	0.944
		R5	0.93	1.22	1.07	1.55	0.937
		R6	0.89	1.23	1.24	1.69	0.933
tasmin (K)		R7	0.89	0.99	1.41	1.97	0.930
		Ensemble	0.73	0.69	0.76	1.01	N/A
		WRFJ	0.63	0.69	0.76	0.96	0.976
		WRFK	0.70	0.72	0.78	0.96	0.975
	ERAI-RCMs	WRFL	1.47	0.78	2.80	2.86	0.915
		WRFSWWA	1.75	1.78	1.68	2.15	0.912
		CCAM	1.07	0.59	1.82	1.50	0.945
		CCLM	2.25	1.75	2.75	3.33	0.900

		Ensemble	7.28	18.42	4.31	8.64	N/A
ERA5-RCMs pr (mm)	R1	13.48	27.82	5.17	20.02	0.773	
		R2	11.33	22.79	5.06	14.83	0.817
		R3	8.31	19.72	5.02	9.80	0.805
	R4	7.46	16.33	5.67	9.21	0.801	
	R5	12.59	33.93	5.21	11.40	0.814	
	R6	16.29	49.29	6.16	10.25	0.787	
	R7	15.92	46.43	6.23	9.91	0.787	
ERAI-RCMs		Ensemble	7.48	12.73	5.96	7.60	N/A
	WRFJ	20.65	31.54	12.38	8.75	0.798	
	WRFK	12.86	23.31	9.83	11.06	0.770	
	WRFL	7.81	15.96	7.63	9.45	0.678	
	WRFSWWA	9.81	16.82	7.75	20.94	0.806	
		CCAM	10.39	22.85	9.17	15.77	0.837
	CCLM	11.66	24.05	5.61	17.69	0.798	

Figure 3 (Revision): As per Figure 3 in the first submission of this manuscript ("Annual mean near-surface atmospheric maximum temperature bias with respect to Australian Gridded Climate Data (AGCD) observations for 1981-2010. ...") but with stippling density decrease and marker size increased, and clearer/more consistent representation of state/jurisdictional boundaries.