
RC2:

In this study, Zhao et al. present an operational Southern Ocean Ice Prediction System

and exhibit its ability for Antarctic sea ice prediction on synoptic time scales. They

developed the prediction system based on MITgcm and assimilated satellite-derived

sea ice concentration data, making predictions for the future 7 days. The prediction

system shows promising skill in predicting the sea ice concentration, sea ice thickness,

sea ice drift, and sea ice convergence.

Considering the limited effort for the operational Antarctic sea ice prediction when

compared to its Arctic counterpart, this study is valuable by providing evidence of the

model’s ability for skillful Southern Ocean and sea ice prediction. In addition, the

manuscript is well-organized and easy to understand. However, I found some points

to be further clarified, which are listed below. I suggest a major revision is needed.

Response:

Dear reviewer, thanks a lot for your time and valuable comments on this manuscript.

In the revised manuscript, we rename the original experiment as DA_Forecast run,

and involve two additional experiments in the analysis: a experiment without any data

assimilation (NoDA_Forecast) and a experiment of persistence forecast (PE_Forecast).

The setting of the NoDA_Forecast run is the same to the DA_Forecast run except that

no observational data has been assimilated. The PE_Forecast run uses the initial

condition of the DA_Forecast run as forecasts of the following 168 hours. Note that

the PE_Forecast run includes the observational sea ice concentration information due

to data assimilation. Our replies to your comments and suggestions are as follows.

Major comment:

1. Despite the main point of this work being to demonstrate the ability of the

prediction system for the operational Antarctic sea ice prediction, the added scientific



discussions will improve the manuscript a lot. The following are a few examples, but

not limited to these.

（1）Why is the RMSE of prediction in Fig. 3 smaller than the RMSE of observation

February and March? Why does the RMSE of prediction peak in April?

Response:

The AMSR2 data was assimilated into the ensemble of model restart fields on a daily

basis, and an analyzed (updated) ensemble of model restart fields was generated. The

analyzed model restart fields combined the modeled sea ice states with the

observational sea ice states. Initialized from the analyzed ensemble of model restart

fields, each ensemble member was integrated for 168 hours driven by atmospheric

forcing. So the forecasts included not only the observational information, but also sea

ice changes generated by model physics, which caused the better performance of the

DA_Forecast run in comparison with that of the AMSR2 data, especially at lead time

of 24-hour and 72-hour in January‒early March and May‒September.

Figure 4 shows that large sea ice concentration RMSE appears in most areas of sea ice

zone around the Antarctica in March‒April, suggesting that the model has a relative

low capacity in correctly simulating sea ice growth rate during this onset‒to‒fast

freezing period. This partly originates from that the sea ice model in the SOIPS uses

the zero-layer ice/snow thermodynamics (Semtner, 1976), which is a simple sea ice

model compared to sophisticated multi-layer ice/snow thermodynamical models.

We added the statement of “The AMSR2 sea ice concentration data was assimilated

into the ensemble of model restart fields on a daily basis, and an analyzed (updated)

ensemble of model restart fields combining the modeled and observational sea ice

states was generated, which were further integrated for 168 hours driven by

atmospheric forcing. The forecasts included not only the observational information,

but also sea ice changes generated by model physics. This causes the better

performance of sea ice concentration forecasts in the DA_Forecast run in comparison



with that of the AMSR2 data, especially at lead time of 24-hour and 72-hour in

January‒early March and May‒September. On the other side, large sea ice

concentration RMSE appears in most areas of sea ice zone around the Antarctica in

March‒April, suggesting that the model has a relative low capacity in correctly

simulating sea ice growth rate during this onset‒to‒fast freezing period. This probably

originates from that the sea ice model in the SOIPS uses the zero-layer ice/snow

thermodynamics, which is a simple sea ice model compared to sophisticated

multi-layer ice/snow thermodynamical models.” into the revised manuscript.

（2）L180-190: it’s interesting to know how many errors can be explained by the

difference between OSISAF and AMSR2 and how many are caused by error growth

during the model integration.

Response:

The monthly patterns of the RMSEs of sea ice concentration between the AMSR2 and

OSISAF data (Figure R1) show large values in the northern marginal ice zone and the

coast while small values in between, which sets the base for those between the

forecasts and the OSISAF data. Due to the large spatial-temporal differences of the

sea ice concentration RMSE, it is hard to quantitatively clarify how many errors are

caused by error growth during the model integration. As a reference, with respect to

the OSISAF data, the annual mean RMSEs of the AMSR2 data, the forecasts at lead

times of 24-hour, 72-hour, 120-hour and 168-hour are 0.165, 0.15, 0.16, 0.17 and 0.19,

respectively. The rates of the RMSE of the forecasts to the AMSR2 data are 91%,

97%, 103%, and 115%, respectively. We put Figure R1 into the supplementary

material.



Figure R1. Monthly patterns of the RMSEs of sea ice concentration between the

AMSR2 and OSISAF data. (a)‒(l) denote October 2021‒September 2022.



（ 3）What model deficiency in Fig. 5 leads to an increase in predicted IIEE in

March-April and a decrease in April-May? Why is there little difference in IIEE for

different lead times in January-June, but significant differences in other months?

Response:

As mentioned in the response to your major comment 1(1), the model has a relative

low capacity in correctly simulating sea ice growth (expansion) rate during

March‒April (the onset‒to‒fast freezing period). This probably originates from that

the sea ice model in the SOIPS uses a simple zero-layer ice/snow thermodynamics.

Figure R2 shows the monthly patterns of sea ice edge forecasts at lead time of

168-hour with respect to the OSISAF data. In comparison with July‒December, the

sea ice zone is smaller during January‒June, so the integrated ice-edge error grows

moderately in response to prolonged forecast lead time. Moreover, the sea ice edge

locates more north during July‒December, and the marginal ice zone is more close to

the ACC-impacting areas where active oceanic and atmospheric dynamical processes

promote the amplification of the integrated ice-edge error along with the prolong of

forecast lead time.

We added the statement of “In comparison with July‒December, the sea ice zone is

smaller during January‒June, so the IIEE grows moderately in response to prolonged

forecast lead time. Moreover, the sea ice edge locates more north during

July‒December, and the marginal ice zone is more close to the ACC-impacting areas

where active oceanic and atmospheric dynamical processes promote the amplification

of the IIEE along with the prolong of forecast lead time.” into the revised manuscript.

We put Figure R2 into the supplementary material.



Figure R2. Monthly patterns of sea ice edge forecasts at lead time of 168-hour with

respect to the OSISAF data. (a)-(l) denote October 2021‒September 2022. The blue

lines denote the DA_Forecast run. The red lines denote the OSISAF data. The gold

contours denote the IIEE.



（4）In Fig. 9, why the evolution of forecast errors in magnitude of sea ice drift is

different from that in direction? Additionally, due to the complexity of the South

Pacific Ocean current system, it is recommended to showcase the drift forecast

capability in more ways, such as its spatial distribution.

Response:

Similar to the patterns of sea ice concentration RMSE (Figure 4 in the original

manuscript), the monthly patterns of the magnitude bias between the sea ice drift

forecasts at lead time of 24-hour and the NSIDC data (Figure R3) show large values

in the northern marginal ice zone and the coast, while small values in between. During

January‒March, the Antarctic sea ice zone shrinks to its annual minima, large biases

in magnitude of sea ice drift occur in most sea ice areas, and thus the mean absolute

error in magnitude of sea ice drift forecasts is large during January‒March (Figure 9

in the original manuscript). In other months, large biases in sea ice drift direction

forecasts also occur in the densely packed sea ice zone, especially the

Bellingshausen-Amundsen-Ross Seas and the southeastern Antarctic Ocean sector

(Figure R4), thus the mean absolute error in direction of sea ice drift forecasts is large

in other months. We added Figure R3, R4 into the revised manuscript.



Figure R3. Monthly patterns of the magnitude bias between the sea ice drift forecasts

at lead time of 24-hour and the NSIDC data. (a)-(l) denote October 2021‒September

2022.



Figure R4. Monthly patterns of the absolute bias between the direction of sea ice drift

forecasts at lead time of 24-hour and the NSIDC data. (a)-(l) denote October 2021‒

September 2022.



2. Compared to other studies, an important feature of this research is the incorporation

of ice-shelf model. Thus,

(1) Please provide more details on the ice-shelf model and coupling method.

According to Line 98-99, it’s hard to realize the differences between the ice-shelf

model used here and boundary conditions used in previous studies.

Response:

We apologize for the misleading statement. At the current stage, the ice-shelf modular

in the MITgcm is not a sophisticated ice-shelf model, yet this ice-shelf model can still

function as an effective static boundary condition. This ice-shelf model was

developed by Losch (2008). Since Losch (2008) has provided a description of this

ice-shelf model in detail, we have not repeated the documentation of this model in this

study. We agree with the reviewer that we should describe the ice-shelf model more

clearly.

The ice-shelf model affects the coupled model system through dynamics and

thermodynamics. Dynamically, the ice shelf draft on the top of the water column has a

similar role as the surface orography. Underneath an ice shelf, the pressure at the top

of the water column is the sum of the atmospheric pressure and the weight of the ice

shelf column. Thermodynamically, the freezing and melting at the basal surface of the

ice shelf can induce effective heat flux and virtual salt flux at the ice‒ocean interface,

with an additional tendency term of temperature and salinity to the ocean at the depth

of the ice-shelf draft. Then, a boundary layer between the ice shelf and the ocean is

formed. In addition, the application of partial cells has also been introduced in the

ice-shelf model, and thereby it can properly represent the geometry of the

sub-ice-shelf cavity and allow for an accurate and smooth solution at the

ocean‒ice-shelf interface.

We added the statement of “The ice-shelf, serving as as a static surface boundary

condition, exerts dynamic and thermodynamic influences on the underlying ocean and



thus affects ocean circulation and sea ice (Losch, 2008). Dynamically, the ice shelf

draft on the top of the water column has a similar role as the surface orography.

Underneath an ice shelf, the pressure at the top of the water column is the sum of the

atmospheric pressure and the weight of the ice shelf column. Thermodynamically, the

freezing and melting at the basal surface of the ice shelf can induce effective heat flux

and virtual salt flux at the ice‒ocean interface, with an additional tendency term of

temperature and salinity to the ocean at the depth of the ice-shelf draft. Then, a

boundary layer between the ice shelf and the ocean is formed. In addition, the

application of partial cells has also been introduced in the ice-shelf model, and

thereby it can properly represent the geometry of the sub-ice-shelf cavity and allow

for an accurate and smooth solution at the ocean‒ice-shelf interface.” into the revised

manuscript.

(2) More analyses should be conducted to highlight the advantages of this feature. For

example, the Larsen-B ice shelf collapsed in January 2022 (doi: 10.5194/tc-2023-88),

which occurred during the experimental period, so it is advisable to investigate the

impact of this event on sea ice assimilation and prediction.

Response:

Since the ice-shelf model functions as a static surface boundary condition, the

ice-shelf model does not simulate collapse of ice-shelf, and the ice-shelf topography

remains unchanged during the experimental period.

We added the statement of “On the eastern side of the Antarctic Peninsula, the

multi-year landfast ice in the northern Larsen B embayment breakout and

disentangled from the Larsen B ice shelf in January 2022 (Ochwat et al., 2024). Since

the involved ice-shelf model does not simulate collapse of ice-shelf and the ice-shelf

topography remains unchanged in the SOIPS, replacing the simple static ice-shelf

modular by a sophisticated thermodynamic‒dynamic ice-shelf model may further



improve the performance of the SOIPS on sea ice forecasts.” into the revised

manuscript.

Minor comment:

Line 66-71: Because the preceding paragraph mentioned the advantages of regional

models, it might be better to illustrate data assimilation studies based on regional

models, such as SOSE.

Response:

We added the statement of “The Southern Ocean State Estimate (Mazloff et al., 2010)

constrains model state using in situ and satellite measurements through 4D-Var data

assimilation.” into the revised manuscript.

Line 82: Considering the submission is in 2024 and an operational forecasting system

is involved, the experiment should be extended to include 2023 when the Antarctic

sea ice reaches its minimum extent.

Response:

Thanks for the suggestion. We prefer to keep the original study period in the revised

manuscript. Meanwhile, we have validated the sea ice extent forecasts before

September 2023 in the operational record and put Figure R5 into the supplementary

material. The minimum sea ice extent forecasts of the DA_Forecast run at lead time

of 24-hour are 1.73×106 km2 in 2022 and 1.49×106 km2 in 2023. The minimum sea

ice extent derived from the AMSR2 data are 1.76×106 km2 in 2022 and 1.63×106 km2

in 2023. The SOIPS predicted a lower sea ice extent minimum in 2023 than in 2022.



Figure R5. Sea ice extent evolution of the AMSR2 data (black line) and the

DA_Forecast run at lead time of 24-hour (blue line), 72-hour (green line), 120-hour

(yellow line), and 168-hour (red line).

Line 93: Considering that one important application of this system is for shipping

services, the higher model resolution would indeed be preferable. Therefore, why not

use a higher-resolution model such as MITgcm with 1/6° (doi:

10.1002/2016jc012650)?

Response:

We agree with your comment. At current stage, the use of low-resolution MITgcm

model in the SOIPS is determined by the limitation of computational resource in the

operational implementation. We have cited Verdy and Mazloff (2017) in the revised

manuscript.

Line 130-132: Please provide more details on the initial field perturbation process,

such as which variables are perturbed? What is the explained variance of the first 11

EOF modes?

Response:

We revised the sentence to “The initial ensemble of SOIPS is generated by disturbing

the latest state of the model free run including sea ice concentration and thickness.”.



We have cited Pham (2001) in the revised manuscript, which introduces the method

of applying an order-2 sampling scheme to leading EOF modes to generate

perturbation.

The explained variances of the first and the 11th EOF modes are 47.48% and 0.66%,

respectively. The first 11 EOF modes account in total for 69.34% of total variance.

Line 135-136: Please provide more information about the observational errors used in

the assimilation. For example, is 0.15 the representative error of observations? If so,

how are instrument errors identified?

Response:

We used a uniform value of 15% as the representative error of the AMSR2 sea ice

concentration observations for simplicity in the SOIPS. We don’t know how the

instruction errors are identified, but according to the manual of the AMSR2 sea ice

concentration product, the AMSR2 observations have different errors in different sea

ice concentration ranges. In densely packed sea ice zone, the instrument error should

be lower than 15%.

Line 138-140: The author's previous study used JRA55 as the atmospheric forcing,

while this study uses GFS. Given the importance of atmospheric forcing for Antarctic

sea ice simulation, did the author optimize the model parameters after changing the

atmospheric forcing, as in doi: 10.1016/j.ocemod.2023.102183? If optimization has

been conducted, are there significant changes in the model parameters? If not, could

some of the subsequent results be attributed to the mismatch between the atmospheric

forcing and the model, such as Line 213-214?

Response:

The JRA55 data is reanalysis data which can not be used to drive operational sea ice

forecasts. The GFS product is an operational weather forecasting product.



We did not optimize the model parameters. According to our experience of polar sea

ice modeling, the zero-layer ice/snow thermodynamics have low capacity in correctly

simulating sea ice extent expand/shrink rate during melt/freeze transition period. We

suspect that the mismatch between forecasts and observations in March‒April

originates from use of the zero-layer ice/snow thermodynamics, rather than from the

change of atmospheric forcing.

We have cited Pascual-Ahuir and Wang (2023) in the revised manuscript.

Line 155: is it OSI-401-d?

Response:

The data ID is OSI-401-b before 24 April 2023, thereafter changed to OSI-401-d.

We have updated the data statement in Code and data availability.

Line 163-165: I would argue that the RMSE increases to the end of March, followed

by a decrease starting from April.

Response:

We revised the sentence to “Basically the RMSEs between the SOIPS forecasts and

OSISAF data gradually increase during October‒March (hereafter the latter month in

such expressions that the latter month is earlier than the former month denotes the

month of the next year) followed by a decrease starting from April.”.

Line 208-209: It’s hard to follow and please rewrite this sentence.

Response:

We revised the sentence to “With respect to the OSISAF data, the curves of IIEEs of

the DA_Forecast run at different lead times have similar shapes to that of the

assimilated AMSR2 data.”.



Line 219-221: It’s very interesting and It would be more valuable if the author could

present the correction method and the corrected IIEE.

Response:

Thanks for the comment. We will perform the IIEE correction in future work.

Line 252-253: It's recommended to add the uncertainty of ICESat-2 to Fig. 8. From

Fig. 7, the uncertainty appears to be around 0.5m, while in Fig. 8, the prediction error

in the southern Weddell Sea and the western Ross Sea seem to reach up to 0.6m. Are

these errors beyond the uncertainties of the observation? Why are the prediction errors

of SIT larger in these areas?

Response:

We have added the ICESat-2 uncertainty into the figure and replaced the original

Figure 8 by Figure R6 in the revised manuscript. The prediction errors in the southern

Weddell Sea are in the range of the ICESat-2 uncertainty, but the prediction errors in

the western Ross Sea are out of the range of the ICESat-2 uncertainty. We suspect that

the larger SIT bias in these areas are caused by the poor simulation of growth rate of

sea ice thickness during the freezing seasons, partly originating from the biases in the

simulated ocean temperature or air temperature in the GFS data.



Figure R6. Seasonal patterns of the Antarctic sea ice thickness. The columns from left

to right denote the DA_Forecast run at lead time of 24-hour, the ICESat2

observations, their deviations, and the uncertainties of the ICESat2 observations,

respectively. The panels from top to bottom denote October‒December,

January‒March, April‒June, and July‒September, respectively.

Line 295: Please provide the specific definition of Sea ice convergence rate. What are

the similarities and differences between the sea ice convergence rate and the

divergence of sea ice drift?

Response:



We defined sea ice convergence rate (SICR) as )( yvxuSICR mm 

(negative value represents sea ice dispersion, positive value represents sea ice

accumulation). (um, vm) are the ice drift components on the model coordinates. Sea

ice convergence rate is the opposite of the divergence of sea ice drift.

We revised the sentence to “Sea ice convergence rate (SICR), defined as

)( yvxuSICR mm  (negative value represents sea ice dispersion, positive

value represents sea ice accumulation), is a useful metric in guiding ship navigation in

sea ice zone.”.

There are quite a few typos. For instance, an extra hyphen of “synoptic-scale” in

Line 332 and an extra left parenthesis in Line 359.

Response:

All revised.


