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Abstract. Irrigated cultivation exerts a significant influence on the local climate and the hydrological cycle. The North China 

Plain (NCP) is known for its intricate agricultural system, marked by expansive cropland, high productivity, compact rotation, 

a semi-arid climate, and intensive irrigation practices. As a result, there has been considerable attention on the potential impact 

of this intensive irrigated agriculture on the local climate. However, studying the irrigation impact in this region has been 15 

challenging due to the lack of an accurate simulation in crop phenology and irrigation practices within the climate model. By 

incorporating double-cropping with interactive irrigation, our study extends the capabilities of the Weather Research Forecast-

Crop (WRF-Crop) model, which has previously demonstrated commendable performance in simulating single-cropping 

scenarios. This allows for two-way feedback between irrigated crops and climate, further enabling the inclusion of irrigation 

feedback from both ground and vegetation perspectives. The improved crop modeling system shows significant enhancement 20 

in capturing vegetation and irrigation patterns, which is evidenced by its ability to identify crop stages, estimate field biomass, 

predict crop yield, and project monthly leaf area index. In the next phase of our research, we plan to employ this integrated 

crop modeling system under various irrigation scenarios toThe improved simulation for large-scale irrigated crop in the NCP 

can further enhance our understanding of the intricate relationship between agricultural development and climate change.  

 25 

 

Plain Language Summary.  

Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate, but the existing climate 

models do not accurately simulate the crop and irrigation. To address this limitation, we add a double-cropping function to 

Weather Research Forecast model. We also recalibrate the parameters to simulate the crop growth and irrigation amounts more 30 

accurately. Our improved model better captures crop calendar, biomass, vegetation fraction, as well as monthly leaf area index. 
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1 Introduction 

Agriculture serves as one of the primary drivers of land use changes (Goldewijk, 2001) and the largest consumer of water 

resources globally (Foley et al., 2011). To increase crop productivity and feed the exploding population, irrigation has rapidly 35 

expanded in the past decades, and accounts for over 70% of the global freshwater withdrawal today. This intensive and 

extensive irrigation undoubtedly exerts a significant influence on the hydroclimate (McDermid et al., 2023; Siebert et al., 

2010). While it is widely acknowledged that irrigation has a cooling and moistening effect on a global scale (Cook et al., 2011; 

Lo et al., 2021; Pokhrel et al., 2012; Puma and Cook, 2010), its influence is non-linear and location-specific at regional scales, 

as it greatly depends on the agricultural and climatic conditions of the region in which it is deployed (Fan et al., 2023; Im et 40 

al., 2014; Kang and Eltahir, 2018, 2019; Pei et al., 2016; Tuinenburg et al., 2014; Wey et al., 2015; Yang et al., 2019). 

Consequently, these complex and unpredictable changes induced by irrigation have attracted considerable attention, 

underscoring the need to improve crop representation and effectively simulate the interactions between irrigated cultivation 

and regional climate. 

 45 

Numerous studies have simulated the irrigated crops using traditional agricultural models (DeJonge et al., 2012; Menefee et 

al., 2021) or offline land surface models (Lombardozzi et al., 2020; Yin et al., 2020). However, while the vegetation patterns 

and irrigation practices gradually alter the climatic processes, the changing climate also influences back onto crop growth 

(Ahmed et al., 2015; Choi et al., 2017; Pielke et al., 2007; Ramankutty et al., 2006; Yang and Wang, 2023). This two-way 

interactive feedback between irrigated agriculture and climate can only be captured when employing an interactive crop system 50 

within the climate models (Chen and Xie, 2011; Harding et al., 2015; Lu et al., 2015). These interactive crop models can not 

only capture the temporal pattern of crop growth, but also depict spatial heterogeneity at regional scales with relatively fast 

computational speed (Chen and Xie, 2011; Liu et al., 2016; Oleson et al., 2013; Yin and van Laar, 2005). When simulating the 

water forcings that sustain crop growth, some models simply assume no irrigation (Liu et al., 2016), while others incorporate 

irrigation with fixed amount (Vira et al., 2019) or dynamically adjust the irrigation amount based on daily soil conditions 55 

(Ozdogan et al., 2010; Qian et al., 2013; Valayamkunnath et al., 2021; Wu et al., 2018b; Yang et al., 2016, 2017, 2019, 2020). 

With these algorithms to simulate crop phenology and irrigation behaviour, multiple studies have reported significant 

enhancements in dynamic vegetation predictions and a better understanding of irrigation impact (Xu et al., 2019; Yang et al., 

2016; Zhang et al., 2020).  

 60 

However, irrigated agriculture has not been explicitly represented in most regional climate models. One key issue is the 

inadequate coupling between the crop module and the irrigation module. For instance, many studies adopt prescribed 

vegetation, which means that the crop growth may not be sensitive to the water forcings (Lu et al., 2015). Also, the irrigation 

activation is often prescribed by date rather than following the actual crop season. The missing connection between crop and 

irrigation introduces uncertainties in capturing the climatic processes, as both crop physiology and climate variations 65 
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dynamically influence each other (Fang et al., 2001; Porter and Semenov, 2005). The second issue is the applicability. Global-

scale datasets related to cropland factors have not kept pace with other vegetation mappings (Oleson et al., 2013), and thus, 

schemes are predominantly developed and calibrated in field scale in the United States, which are mostly rainfed cropland 

(Menefee et al., 2021). Therefore, regionalizing the algorithmsmodel and improving their adaptation for large-scale irrigation 

over other parts of the world becomes imperative. 70 

 

Previous studies have shown that the regionalization process significantly improves the model performance. This process 

includes not only parameter calibration (Hong et al., 2015; Liu et al., 2010; Park and Park, 2021; Xie et al., 2007) but also 

algorithm modifications to enhance the model's applicability to different regions (Bou-Zeid et al., 2007; Livneh and 

Lettenmaier, 2013; Song et al., 2022). For instance, recalibration has been shown to significantly enhance crop prediction 75 

accuracy in Northeast China and southwestern Europe (Asmus et al., 2023; Yu et al., 2022). Introducing new tuning factors 

into the default equation can aid in simulating unique vegetation patterns within specific study domains (Wu et al., 2018b). 

Upgrading a variable such as the irrigation threshold from a single constant to a spatially varied 2D variable can better capture 

the spatial variability of irrigation application (Xu et al., 2019; Zhang et al., 2020). Additionally, incorporating new irrigation 

methods for paddy cropland improved irrigation predictions for southern Asia (Yao et al., 2022). These enhancements 80 

underscore the importance and efficacy of regionalization in improving the simulation in irrigated agriculture. 

 

As a key agricultural region, the North China Plain (NCP) encompasses more than 40% of China's total harvested area (FAO, 

2019). Approximately two-thirds of the land within the NCP is dedicated to cropland, contributing to nearly half of the nation’s 

wheat production and one-third of the corn production (Wang et al., 2008). However, the annual precipitation in the NCP is 85 

only around 800mm, which is nearly half of that in southern China (Zhe et al., 2014), increasing its dependency on irrigation. 

Spatially, approximately 40% of the farmland in the NCP relies on irrigation (Portmann et al., 2010; Siebert et al., 2013). The 

significant effects of irrigation on the relatively dry climate in the NCP have been demonstrated (e.g. Fan et al., 2023). Thus, 

the NCP is an ideal testbed for studying irrigated crops and climate feedback, rooting not only in its extensive cropland and 

high productivity, but also in its semi-arid background, and intense irrigation. This specific crop rotation exerts a profound 90 

influence on vegetation patterns and irrigation requirements, consequently leading to notable regional climate modifications 

(Jiang et al., 2021). This crop rotation greatly affects the vegetation pattern and irrigation demand, further alter the regional 

climate (Jeong et al., 2014). Furthermore, the spring irrigation, which is supplied for winter-season cropping during relatively 

dry season, can have a particularly pronounced impact on the local climate (Fan et al., 2023; Wu et al., 2018b). However, most 

current crop models in land surface models (LSMLSMs) primarily account for single cropping. Therefore, it is necessary to 95 

consider this distinctive double-cropping rotation, along with other local characteristics, to accurately capture the crop growth 

and irrigation activities. 
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Given the unique characteristics of the NCP, our research aims to simulate the irrigated crop growth with a double-cropping 

rotation, which is specifically tailored for the NCP and its surrounding region. To achieve this, Noah-Multiparameterization 100 

land surface model with multiparameterization options (Noah-MP) (Niu et al., 2011) has been selected, as it already 

encompasses several functions related to cultivation simulation, and has consistently exhibited exemplary performance in 

previous studies when simulating single-cropping scenarios (Liu et al., 2016; Xu et al., 2019; Zhang et al., 2020). Its crop 

model is already implemented within the Weather Research and Forecasting Model (WRF) (Skamarock et al., 2019) to enable 

two-way nested feedback between the crop system and climate dynamics. While conducting parameter calibration and adopting 105 

local inputs to capture more local details, we also try to integrate satellite data to assess its ability in large-scale simulation. By 

integrating and regionalizing the crop modeling system, this study primarily focuses on the model development and its 

predictability assessment in crop phenology and irrigation requirements, which represents a promising avenue for advancing 

our understanding of the coupled human-natural system. The incorporation of satellite input also holds the potential to enhance 

the applicability of our approach in various regions beyond the current study area. 110 

2 Model Description and Experiment Design 

The study domain is centered on the NCP, encompassing a significant portion of China's cropland. Given the unique 

characteristics of this region, we anticipate that the model will exhibit the following capabilities: 

- Accurate representation of the general vegetation and irrigation patterns in the NCP region, especially the presence 

of double crop seasons. 115 

- Integration of direct interactions between crops, irrigation, and climate, with sensitivity of each factor to the other 

two. In other words, the model should account for the influence of crop growth and irrigation practices on the local 

climate, while also considering the impact of climate conditions on crop development and irrigation requirements. 

2.1 Study Area 

Figure 1 illustrates some key background variables, outlining the NCP region within black boxes. The topography and cropland 120 

fraction are basic geostatic inputs for the WRF, initially retrieved from the United States Geological Survey and Moderate-

resolution Imaging Spectroradiometer (MODIS), respectively. Notably, the NCP region, being the largest plain in eastern 

China, exhibits an average elevation below 100m (Fig. 1a), contributing to its suitability for cultivation. Despite the high 

cropland fraction exceeding 95% in most of the pluvial area (Fig. 1b), the climatology annual precipitation (retrieved from 

China Meteorological Forcing Dataset) in 2000-2009 is merely half that of southern China (Fig. 1c), highlighting the need for 125 

irrigation. According to the FAO AQUASTAT database (Siebert et al., 2013), irrigated cropland constituted more than 70% 

of the total land use in the pluvial area in 2005 (Fig. 1d). 
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Figure 1: (a) Topography (m), (b) Cropland fraction (%), (c) annual precipitation (mm/day), and (d) irrigated land fraction (%). 

Figure 1: (a) Annual precipitation (mm/day) and basic geostatic variables applied in this project including (b) topography (m), (c) 
cropland fraction (%), (d) irrigated land fraction (%). 130 

 

2.2 Model Configuration and Experiment Design 

The study employs the Advanced Research version of the WRF Model (version 4.35), a non-hydrostatic numerical weather 

prediction model that has been widely adopted in regional studies. Model domain is shown in Fig. 1. This study only employs 

a single domain which is depicted as the entire map in Fig. 1, while the inner black box in Fig. 1 serves solely for the 135 

identification of the NCP region. The horizontal grid spacing is 27km, with 38 vertical layers in the atmosphere and 4 soil 

layers below the ground. Its physical options mostly follow Fan et al. (2023), including the WRF double-moment 5-class 

microphysical parameterization (Hong et al., 2004), the Rapid Radiative Transfer Model as the longwave radiation scheme 

(Mlawer et al., 1997), the Dudhia shortwave radiation scheme (Dudhia, 1989), the Yonsei University planetary boundary layer 

scheme (Hong et al., 2006), the scale-aware New Simplified Arakawa-Schubert scheme (Han and Pan, 2011; Kwon and Hong, 140 

2017), and Noah-MP land surface model coupled with our improved crop and irrigation schemes (Ek et al., 2003). The initial 

and lateral boundary conditions are obtained from the 6-hourly ERA5ERA-Interim reanalysis dataset, which helps to reduce 

the uncertainty arising from the boundary condition (HersbachDee et al., 20202011). 

 

We commence by calibrating the crop growth and irrigation behaviour in 2005, representing normal conditions based on the 145 

East Asian Summer Monsoon Index (following the definition from Li & Zeng, 2002). To account for the typical sowing of 

winter wheat in the autumn of the preceding year, all simulations are initiated on 1st March 2004. This allows for a spinning-

up period of at least six months before the 2004-2005 crop season, ensuring that the model was appropriately initialized for 

accurate simulations. Subsequently, a ten-year period spanning from 2005 to 2014 is employed for validation, utilizing long-

term data to assess the overall performance and the stability of both crop prediction and irrigation simulation, respectively. 150 
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Table 1. Description of all WRF simulations 

WRF simulation 
Model 

Vegetation Crop Irrigation 

CTL Prescribed Input   

CROPdef Predicted by crop model default version  

CROPnew Predicted by crop model improved version  

IRRdef Predicted by crop model improved version default version 

IRRnew Predicted by crop model improved version improved version 

 

Detailed information regarding all WRF simulations can be found in Table 1, which provides a detailed description of how 

vegetation, crops, and irrigation are simulated in our study. All models are inactive in the control experiment (CTL), in which 155 

static vegetation with predefined monthly patterns from satellite data is employed. The crop and irrigation model can be applied 

either in the default version or the improved version. The default crop model is conducted using the original scheme proposed 

by X. Liu et al. (2016) and parameters derived from Z. Zhang et al. (2020), while the improved crop model involved both 

modifications to the algorithms and recalibration of the parameters. In order to exclusively demonstrate the advancements 

made by the crop model, the irrigation component remains inactive in both CROPdef and CROPnew. This implies that no 160 

supplementary water is introduced to the cropland, thereby highlighting the impact solely attributed to the crop model. The 

added value of our improvements on the irrigation model can be discerned through a straightforward comparison between 

IRRdef and IRRnew simulations. In IRRdef, the default version of dynamic irrigation is derived from He et al. (2023) and 

serves as the baseline for the improved version. In the default version, the target soil moisture availability as a parameter 

threshold is uniformly set to 0.8, as suggested by Fan et al. (2023), while in the improved version, it exhibited spatial variability 165 

between provinces. The detailed improvements made to the crop and irrigation models will be explained in Sections 2.3, and 

2.4, respectively. 

 

2.3 Modification of the crop model 

2.3.1 Crop area and FVEG prediction 170 

In order to achieve efficient computation, the crop module developed by X. Liu et al. (2016) is selected as the foundation for 

crop simulation. This particular crop model is initially designed for crop fields and thus applied uniformly to all the grids 

within the domain. However, to extend its application to a larger domain that has various land-use types, the model needs to 

be exclusively activated on crop grids, while non-crop grids still utilize prescribed vegetation as the CTL. A crop grid is defined 

based on MODIS land-use classification as either 'Croplands' or 'Cropland/Natural Vegetation Mosaic'. This definition aligns 175 

with Fan et al. (2023), and is similar to the approach employed by Yu et al. (2022) who set a threshold of 50% cropland 

percentage, since the majority of grids in the NCP region contain over 90% cropland (Fig. 1b).  
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Figure 2. Satellite-based daily FVEG (vegetation fraction) and LAI+SAI (sum of leaf area index and stem area index) over the crop 
season are represented by colorful dots for each grid in NCP. Different dot colors indicate different crop types. The lines display the 
relationships that we attempted to simulate the FVEG based on LAI+SAI. 180 

 

Although the dynamic leaf area index (LAI) and stem area index (SAI) can be calculated based on crop growth and climate 

conditions, the default crop model simply assumes the vegetation fraction (FVEG) to be 95% for all grids at all times (red line 

in Fig. 2), to represent the dense vegetation in the crop field. However, this fixed value is not appropriate for regional-scale 

applications. FVEG is a fractional factor that determines the proportion of solar radiation captured by the canopy, as well as 185 

the contribution of vegetation to the ground-released energy. Considering the long-term impact of vegetative radiation and 

canopy interception (Liu et al., 2020; Wang et al., 2007), FVEG should be correlated with the vegetation growth with spatial 

and seasonal variation. Therefore, we first try to correlate the FVEG with LAI/SAI using the empirical relationships (shown 

in Equation 1 and the thick black line in Fig. 2). This equation is proposed by Niu et al. (2011) and further testified by L. Wu 

et al. (2018b) in the NCP region. However, according to the MODIS observation retrieved from the input of the CTL, it is 190 

imperative to note that the original curve underestimates the FVEG at low LAI+SAI and overestimates it at high LAI+SAI, 

which poses a potential risk to the reliability of the predictions. More specifically, at the onset of the crop season (when 

LAI+SAI is small), accurate LAI+SAI estimation leads to an underestimation of the calculated FVEG. This, in turn, results in 

reduced shortwave radiation intercepted by vegetation and a slower rate of photosynthesis. Consequently, the leaf growth is 

undervalued in the next timestep, and the less LAI creates a larger bias on the FVEG prediction. This positive feedback 195 

continues to accumulate underestimation during subsequent iterations, and ultimately, results in the failure of the entire crop 

season. Similarly, the curve exhibits an exaggerated FVEG during the flourishing period (when LAI+SAI is large), which 

easily leads to uncontrollable overgrowth. This susceptibility underscores the necessity to consider and address this inherent 

limitation. Even when employing the best-fitting curve, this issue persists for almost half of the grids (for those who have 

greater FVEG at low LAI+SAI or lower FVEG at high LAI+SAI) .). Therefore, we finally adopt the adjusted line by proposing 200 

a constraint on the range of FVEG, limiting it to [0.25, 0.75], instead of utilizing the full range of [0, 1]. This allows for a slight 
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overestimation in the initial stages and an underestimation towards the end, ensuring a successful startup and a steady 

progression toward its peak. The adjustment on this equation enables the spatial and temporal variations of FVEG, as well as 

the vegetation responses to the irrigation application. Quantitatively, the adjusted curve demonstrates improved performance 

compared to the one extracted by Niu et al. (2011), achieving an R-square score of approximately 0.8, suggesting a 205 

commendable fit of the adjusted curve. It is worth noting that this validation focuses solely on the crop season in NCP. When 

adopting this crop model in other regions, a re-calibration would be required to ensure that the equation exhibits a slight 

overestimation during the initial stages and an underestimation towards the later stages of crop growth. Equations (1) and (2) 

below represent the original FVEG equation by Niu et al. (2011) and the adjusted FVEG suggested in this study, respectively: 

 210 

Niu	et	al. (2011)Original	FVEG = 1 − e!"#.%&×()*+,-*+)/	, FVEG	ϵ	[0,1]	     (1) 

Adjusted	FVEG = 0.75 − 0.5 × e!"#.%&×()*+,-*+)/, FVEG	ϵ	[0.25,0.75]          (2) 

 

2.3.2 From single cropping to double cropping 

The default model only considers single cropping, allowing different crops spatially but only one crop type per grid. However, 215 

NCP widely adopts double-cropping rotation, as evident from satellite vegetation patterns (Qiu et al., 2022; Wu et al., 2010; 

Yan et al., 2014; Yuan et al., 2020). The first growing season typically begins in late spring to early summer and extends until 

mid to late autumn, followed immediately by the second growing season which stops just before the restart of the first growing 

season. And it’s necessary to consider the second crop season in the irrigated crop system, because the dry soil in the winter 

and spring probably requires a significant irrigation supply (Fan et al., 2023; Koch et al., 2020; Wu et al., 2018b; Yang et al., 220 

2016). According to the crop prevalence (Qiu et al., 2022; Wu et al., 2010), we select winter wheat and summer maize for 

double cropping region (shown in orange in Fig. 3a), as identified by satellite data (Qiu et al., 2022), and spring maize for 

single cropping region (shown in blue in Fig. 3a).  

 

The planting and harvesting dates are fed into the crop model to define crop seasons, whose spatial variability is claimed to be 225 

beneficial to the accuracy of crop growth prediction (Xu et al., 2019; Zhang et al., 2020). The harvesting date of the spring 

maize is assigned to be 15 days after the physiological maturity date obtained from a satellite-based post-processed dataset 

(Luo et al., 2020). The planting date is determined as 15 days prior to the V3 stage, which represents the early vegetative stage 

of maize when the third leaf is fully expanded. Similarly, for double-cropping regions, the maturity dates of wheat and maize, 

with a 15-day buffer, mark the end of the respective cropping seasons, while the subsequent cropping season starts 5 days later. 230 

The ’15-day’ buffer and ‘5-day’ interval are roughly defined according to the LAI pattern in Luo et al. (2020). Few grids not 

covered by the satellite dataset are assigned 1 May (121st Julian Day) and 11 October (284th Julian Day) as the default planting 
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and harvesting date for maize, respectively, based on field study (Yu et al., 2022). The planting date and the harvesting date 

also perform similar spatial patterns to those generated by Wu et al. (2010). 

 235 

2.3.3 Input Setting and Parameter Calibration 

Starting with the parameters for one-year corn in Bondville (Zhang et al., 2020), we chose the Yucheng (36.83°N, 116.57°E) 

and Shenyang (41.52°N, 123.39°E) stations for calibration because of their availability of long-term data (provided by National 

Ecosystem Science Data Center, National Science & Technology Infrastructure of China). As shown in Fig. 3a, Yucheng 

represents a double-cropping system as a typical representation of the NCP region, while Shenyang, located nearby, represents 240 

a single-cropping system. The availability of long-term data at these stations ensures the reliability and robustness of our 

calibration process. 

Figure 3. Spatial distribution of (a) the cropping system, (b-e) harvest date and planting date for wheat and maize over a year based 
on the chronological order. ‘E. Apr’ and ‘L. Apr’ is the abbreviation for Early and Late April. 

Figure 3. Spatial distribution of (a) the cropping system with two stations used for calibration, (b-e) harvest date and planting date 245 
for wheat and maize over a year based on the chronological order. ‘E. Apr’ and ‘L. Apr’ is the abbreviation for Early and Late 
April. 

 

Based on the defined cropping area, the planting and harvesting dates are determined using the method outlined in section 

2.3.2. The chronological sequence of these dates is presented in Figs. 3b-e. In regions with a single cropping system, spring 250 

maize is typically planted in May and harvested in September. On the other hand, in those double-cropping regions, winter 

wheat is usually harvested in late May or early June, immediately followed by the planting of summer maize. Next, maize 

harvest generally takes place in late September or early October, again followed by the planting of winter wheat, which 

continues to grow until the next year.  

 255 

In the case of spring maize and summer maize, we first try to adopt the parameters from previous studies to keep the generality, 

and only recalibrate if necessary. For instance, large regional uncertainties may exist in the rubisco capacity (Vcmx25) and the 
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leaf area per living leaf biomass (BIO2LAI) for summer maize (Yu et al., 2022; Zhang et al., 2020), which probably require 

local validation. Conversely, a new set of parameters is developed specifically for winter wheat, drawing upon statistical 

information from the Yucheng station, satellite datasets, and other agronomy studies (Zhang et al., 1991, 2023). More 260 

specifically, the calibration for winter wheat includes the identification of crop stage, the calculation of general growth rate 

and the establishment of carbohydrate allocation. It is important to highlight that the calibration process was specifically carried 

out with the incorporation of updated irrigation algorithms, because the high productivity observed in the NCP is 

predominantly supported by irrigation in reality. Table S1 provides the adjusted parameters for wheat and maize, along with 

the supporting scientific references and recalibration procedures. Parameters are initially recalibrated in Yucheng and 265 

recalibration proceduresShenyang using station data. Subsequently, these parameters are applied to the whole domain, with 

validation of vegetation pattern (i.e., LAI, FVEG, grain mass and crop calendar) conducted to ensure their spatial applicability 

to the whole region. 

 

The recalibration starts from crop-stage identification, since it relies purely on the accumulated GDD and is less affected by 270 

other crop parameters. The GDD-related parameters are retrieved from Zhang et al. (2020) and Zhang et al. (1991), and then 

validated with the heading date and maturity date retrieved from the satellite data (Luo et al., 2020). The crop stage comprises 

the pre-planting stage, three vegetative stages (emergence, initial vegetative, post-vegetative), two reproductive stages (initial 

reproductive, post-reproductive), and finally, one maturity stage. During the vegetative stage, a majority of carbohydrates are 

allocated to the leaves and stems, while in the reproductive stage, the allocation shifts towards the grain.  275 

 

Next, the general growth rate including BIO2LAI can be extracted from the station data, and Vcmx25 can also be estimated 

using the monthly satellite data of gross primary product (GPP) and LAI, since the photosynthesis rate and the LAI can be 

considered linearly related, especially on sunny days when the canopy temperature is around 25°C (He et al., 2023). The GPP 

and LAI that we adopted for validation are initially derived from MODIS products but have undergone further post-processing 280 

to generate a more continuous monthly pattern (Wang et al., 2020; Yuan et al., 2020). Furthermore, the AVCMX, which 

represents the crop sensitivity to the temperature, can be determined by the gradient of biomass accumulation (Huang et al., 

2022), especially in spring and autumn with greater temperature changes. For maize, the values of VCMX25 and AVCMX 

have simply followed the previous studies, while BIO2LAI is subject to recalibration, as its necessity of recalibration has been 

demonstrated by Yu et al. (2022). 285 

 

Following the establishment of the general photosynthesis rate, we proceed to fine-tune the distribution of carbohydrates 

among the leaf, stem, and grain compartments, based on the annual cycle of leaf mass and stem data obtained from the station 

data. Any remaining carbohydrates are allocated to the root. In cases where the recalibration of the distribution scheme alone 

does not yield satisfactory predictions, adjustments to the turnover and translocation rates are implemented. Additionally, the 290 

crop yield will be validated through comparisons with remotely sensed estimations from Grogan et al. (2022). 
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2.4 Modification of the irrigation model 

Since our study focuses on the NCP, which predominantly practices dryland cultivation (Zhu et al., 2014), the irrigation 

methods will mostly pertain to dryland irrigation, excluding grassland irrigation and paddy field irrigation (Huang et al., 2021). 

To avoid difficulties in modeling canopy interception and surface losses inherent in sprinkler and fast flooding techniques, we 295 

opt for drip irrigation using the Noah-MP version 5.0 model (He et al., 2023). This choice simplifies the system while 

maximizing water resource utilization. The default irrigation module is employed from the planting date to the harvesting date. 

In order to establish a stronger connection between irrigation and crop growth, irrigation is initiated when the crop emerges 

and stopped when the crop physiologically maturedmatures. Thus, a reciprocal relationship between crop growth and irrigation 

is established. As an example, the introduction of irrigation can lead to a cooling effect, consequently decelerate the GDD 300 

(Growing Degree Day) accumulation, slower down crop growth and extends the crop season. This, in turn, requires a longer 

irrigation period. 

 

The default Irrigationirrigation can be activated anytime when soil moisture is below a certain threshold within the growing 

season, which might not be realistic in large-scale applications. In accordance with previous investigations, we add constraints 305 

that the irrigation is implemented solely during the local time window of 6 A.M. to 10 A.M. to minimize evaporative losses 

(Ozdogan et al., 2010; Qian et al., 2013; Yang et al., 2016). Furthermore, the inclusion of winter cultivation necessitates the 

imposition of temperature limitation, as irrigation under freezing conditions is deemed impractical and detrimental to winter 

wheat (Yang et al., 2016). To make sure the soil is appropriate for irrigation, we check whether the mean temperature of the 

uppermost soil layer within the preceding 24-hour period exceeds 5°C. Additionally, we follow the rules from the default 310 

irrigation model that the irrigation can be promptly suspended in the presence of precipitation exceeding a threshold rate of 

1mm/hr. 

 

The default daily irrigation amount is resolved according to Equation (3) based on the soil moisture and vegetation fraction 

which is fixed to be 0.95. When adopting it to large-scale irrigation, we replace the 0.95 with the irrigation land fraction 315 

(IRRFRA) map around 2005 from the Food Agriculture Organization database (Siebert et al., 2013).  

Default	Irrigation	Amount = ∫(SMCLIM − SMCAVL) ∗ 0.95       (3)  

Improved	Irrigation	Amount = ∫(SMCLIM − SMCAVL) ∗ IRRFRA      (4) 

 

Irrigation is required when the soil moisture is lower than the predefined irrigation threshold called management allowable 320 

deficit (MAD). MAD is a decimal number between 0 and 1, indicating the cursor between the wilting and the saturated soil 

moisture. Soil The expected soil moisture after irrigation (SMCLIM) is defined by the MAD, and the soil water deficit is the 

gap between current soil moisture availability (SMCAVL) and the expected soil moisture defined by the MAD 
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(SMCLIM).SMCLIM. The total irrigation amount is the integrated deficit of all soil layers. Thus, the default daily irrigation 

amount is resolved as follows, based on the soil moisture and vegetation fraction which is fixed to be 0.95:  325 

S(SMCLIM − SMCAVL) ∗ 0.95 

When adopting it to large-scale irrigation, we improve the irrigation amount by replacing the constant 0.with IRRFRA, i.e., 

the irrigation land fraction map around year 2005 from the Food Agriculture Organization database (Siebert et al., 2013) as 

follows 

S(SMCLIM − SMCAVL) ∗ IRRFRA 330 

It is also stated that the county-level calibrated irrigation thresholdMAD significantly enhances the irrigation prediction (Xu 

et al., 2019; Zhang et al., 2020). Similarly, we calibrated the irrigation threshold province by province using the updated 

irrigation function, and finally apply this MAD spatial map to IRRnew. As a comparison, IRRdef only adopts 0.8 as a uniform 

threshold which is simply calibrated by the national total amount (Fan et al., 2023). 

3 Results 335 

3.1 Irrigation Simulation 

Figure 4 visually illustrates the enhanced predictive capability of our model in accurately capturing the irrigation pattern. It is 

challenging to obtain a grid-based observation irrigation map that covers the entirety of eastern China, thus, we mainly adopt 

the province-based statistical dataset (National Bureau of Statistics of China, 2005). However, it is only provided as annual 

agricultural water usage which not only comprises irrigation, but also husbandry, forestry, and fishery consumption (National 340 

Bureau of Statistics of China, 2005). So firstly, agricultural water withdrawal (Fig. 4ba) is converted to net irrigation (Fig. 

4cb) by multiplying the provincial ratios from Zhu et al. (2012). For better visualization, irrigation is redistributed to each crop 

grid based on the irrigation fraction (Fig. 4ac). In other words, the weighted provincial mean value of the redistribution map 

(Fig. 4d) is the same as the statistical irrigation usage (Fig. 4cb). Surprisingly, in Fig. 4d, the annual irrigation outside the NCP, 

such as the southern coastal region, is much more intense than that in the NCP region. This is likely because the statistical 345 

“Irrigation Withdrawal” also includes the great consumption used for other crop types such as raising rice in the extensive 

paddy field. Our model, however, is currently designed to primarily simulate dryland irrigation and may not accurately 

represent water usage in other specific crop types (Yao et al., 2022). Thus, for provinces outside the NCP, we induce another 

satellite-based dataset, while keeping the realistic statistic for our targeted NCP region. Its irrigation amount is grid-based (Fig. 

4e) and highly similar to the irrigation land fraction, but it probably has greater uncertainty since it’s not a direct measurement 350 

but an empirical estimation based on the water budget orientally (Zhang et al., 2022). Conclusively, the statistical irrigation in 

the targeted  NCP (i.e., Beijing, Tianjin, Hebei, Shandong, and Henan, follows D. Wu et al., 2018Wu et al., 2018a) is coupled 

with the satellite-based irrigation in other regions to be the final irrigation map we used for calibration and validation (Fig. 4f). 
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Figure 4. Spatial maps of 2005 (a) irrigation fraction (same as Fig. 1d), (b) agricultural usage, (c) estimated irrigation usage, (d) 
statistical irrigation, e) satellite irrigation, f) observation irrigation, (g) simulated irrigation using the default irrigation scheme 355 
(IRRdef), (h) simulated irrigation using improved irrigation scheme (IRRnew), and (i) irrigation range among 10 ensemble members 
using different initial conditions (j) MAD (Manageable allowable deficit) irrigation threshold adopted in IRRnew. 

Figure 4. Spatial maps of 2005 (a) agricultural usage, (b) estimated irrigation usage, (c) irrigation fraction (same as Fig. 1d), (d) 
statistical irrigation, e) satellite irrigation, f) observation irrigation, (g) simulated irrigation using the default irrigation scheme 
(IRRdef), (h) simulated irrigation using improved irrigation scheme (IRRnew), (i) MAD (Manageable allowable deficit) irrigation 360 
threshold adopted in IRRnew and (j) irrigation range among 10 ensemble members using different initial conditions. For easy 
comparison, all subplots with blue colors (Fig. 4a,b,d,e,f,g,h) adopt the same color scale. 

 

The default irrigation scheme (Fig. 4g) exhibits a tendency to overestimate irrigation in the central NCP, deviating from the 

observed pattern where irrigation is more prevalent in the western part along the mountain. As expected, the implementation 365 

of the spatially varied irrigation threshold demonstrates a considerable improvement (Fig. 4h), closely resembling the observed 

spatial variability. Figure 4(j)4i presents the province-based MAD threshold we adopted, which is calibrated using the 

observation. Certain provinces in the NCP exhibit higher thresholds, even approaching 1, indicating the model’s attempt to 

achieve near-saturation of the soil. To assess the uncertainty raised from the initial conditions, we conducted nine other 

simulations starting on consecutive days beginning from March 2nd until March 10th, together with IRRnew starting from 370 

March 1st, composing a 10-member ensemble with different initial conditions. The ensemble variability depicted in Fig. 4ij is 

predominantly less than 0.05 mm/day, which is notably smaller in comparison to the annual irrigation amount. This suggests 

that the spin-up time utilized in the simulation is sufficient, and the initial conditions do not introduce significant uncertainty 
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to the irrigation simulation, which further reinforces the reliability and robustness of the model in capturing the irrigation 

dynamics. 375 

Figure 5. Monthly irrigation (lines) and LAI (bars) using default irrigation scheme (IRRdef) and improved irrigation scheme 
(IRRnew). Monthly values are the average of all crop grids in the NCP over the period of 2005-2014. 

 

Figure 5 offers a visual representation of the long-term impact of the scheme improvement on the irrigation pattern, showcasing 

the average results over a 10-year period. The lines depict the monthly irrigation levels, while the bars represent the averaged 380 

LAI across all crop grids in the NCP region. The default irrigation scheme tends to apply excessive irrigation during the winter 

season, which can be attributed to the relatively drier soil conditions and thus larger gap between the soil moisture and the 

MAD threshold. However, irrigation under freezing conditions is deemed impractical and detrimental to winter wheat (Yang 

et al., 2016). Thus, despite the intense winter irrigation, the corresponding vegetation growth, as indicated by the LAI, shows 

insignificant improvement. On the other hand, the improved model effectively avoids unnecessary winter irrigation, allowing 385 

for a greater allocation of water resources during the spring and summer seasons when crop growth is more pronounced. 

Consequently, this strategic water distribution leads to more flourishing vegetation during the summer season. In summary, 

the improved model provides enhanced water support to the crops while also conserving irrigation consumption on an annual 

basis. 

 390 

Figure 6 presents irrigation impact on energy partition by depicting the differences between the irrigation simulation (IRRnew) 

and the non-irrigation simulation (CROPnew). The upper panel visualizes the spatial changes, while the lower panel illustrates 

the monthly averaged changes for the entire NCP region (represented by the blue line) and the double-cropping region 

(represented by the orange line). As expected, the increased soil moisture contributes to a higher latent heat flux, with 

maximum increase over 40 W/m2. Conversely, irrigation-induced evaporation cools the surface, leading to a reduction in 395 

sensible heat flux, with the sharpest decrease around 30 W/m². The cooler surface also reduced longwave radiation emitted 

from the surface, causing increases in net radiation with the greatest change about 15 W/m². Overall, the increase in latent heat 
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flux surpasses the decrease in sensible heat flux, and when combined, their changes partially balance out to equal the net 

radiation. The most substantial changes are observed in southern Hebei province, which aligns with the irrigation fraction map 

(Fig. 4c). In the lower panel, all monthly patterns exhibit two peaks, with a larger peak in June and a smaller peak in September. 400 

The monthly pattern within the double-cropping area shows more pronounced changes and a more distinct two-peak structure. 

Furthermore, the irrigation responses of all variables display similar spatial and temporal patterns to the irrigation amount, 

indicating a strong correlation between irrigation application and these observed changes. 

Figure 6. Irrigation-induced changes (IRRnew-CROPnew) in the climatology spatial pattern (upper panel) and mean monthly 
pattern (lower panel) of various variables, including irrigation, soil moisture, skin temperature, latent heat flux, sensible heat flux, 405 
and net radiation. The blue line represents the average value for all grids in the North China Plain (NCP), while the orange lines 
correspond to the double-cropping area only. 

 

3.2 Evaluation of crop growth 

The evaluation of the crop simulation encompasses several key aspects, including crop stage identification, annual cycle of 410 

leaf and stem mass, crop yield prediction, and general LAI simulation. These components will be scrutinized to assess the 

validity and accuracy of the crop simulation. 
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Figure 7. Biomass comparison between simulation and station data at Yucheng and Shenyang. Black dots indicate station 
observations, while the lines represent the simulation results. Panels (a-d) illustrate the annual cycle of each simulation for the year 415 
2005 as well as the corresponding station data. Panels (e-h) present the ten-year biomass of the IRRnew (with improved crop and 
improved irrigation model) alongside the station data.  

 

0

100

200

300

400

J F M A M J J A S O N D

a) Leaf Mass (g/m2) at Yucheng Station (2005)

0

100

200

300

400

J F M A M J J A S O N D

b) Leaf Mass (g/m2) at Shenyang Station (2005)

0
100
200
300
400
500

J F M A M J J A S O N D

c) Stem Mass (g/m2) at Yucheng Station (2005)

0
400
800
1200
1600
2000

J J M A M M J J A S O N D

d) Stem+Grain Mass (g/m2) at Shenyang Station (2005)

0

200

400

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

e) Leaf Mass (g/m2) at Yucheng Sta4on (2005 -2014)

0

200

400

600

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

f) Stem Mass (g/m 2) at Yucheng Sta4on (2005 -2014)

0

200

400

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

g) Leaf Mass (g/m2) at Shenyang Sta4on (2005 -2014)

0

1000

2000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

h) Stem+Grain Mass (g/m2) at Shenyang Sta4on (2005 -2014)

2005 data is not available, thus, 2009-
2018 climatology monthly mean is used 
for calibration. 



17 
 

3.2.1 Validation of crop calendar and grain yield in 2005 

Figure 6. Comparison of the crop growth calendar and yield by comparing the heading date, maturity date, and annual yield for 420 
wheat and maize between observation (OBS) and simulation (CROPdef using default crop model, CROPnew using improved crop 
model, and IRRnew using both improved crop model and improved irrigation model).  

Figure 6 shows the progressive improvements made by each step of the model modification in predicting the crop phenology. 

Typically, winter wheat heads in March and matures in May, while maize heads in August and matures in September. The 

default crop model only considers single cropping without winter wheat. Moreover, the heading date of CROPdef is observed 425 

to be one or two months earlier than the observations, and the maturity date also exhibits deviations, being earlier in the NCP 

but later in Northeast China. This suggests that employing a uniform starting and ending time Is not suitable for a regional 

domain. The enhanced crop model, CROPnew, incorporates double cropping and spatially varied planting and harvesting 

dates, resulting in more accurate crop growth duration across the two seasons. The early bias is further mitigated by irrigation, 

as the presence of moist soil induces primary cooling, subsequently decelerating temperature accumulation and postponing the 430 

growth stage.  

 

Similar enhancement can be observed when assessing the crop yield (third row in Fig. 6). The initial CROPdef only considers 

a single maize season, and it proves to be inadequate for the heavily irrigated NCP region, even with the exaggerated 

assumption of a fixed FVEG value of 0.95. Despite the recalibration of parameters and adjustments to the planting and 435 

harvesting dates, which realizes the double cropping simulations in the CROPnew, production in the NCP region is still 

severely hindered by the limited water availability. Similar to the previous validation of crop calendar, the activation of the 

irrigation in IRRnew noticeably promotes the crop growth. This highlights the importance of irrigation in sustaining the 

compact rotation and high productivity in the NCP. In contrast, irrigation impact in northeast China is relatively less significant, 

which aligns with the fact that the majority of the cropland in northeast China is rainfed. In conclusion, each of the following 440 

factors, implementation of double cropping, adoption of spatially varying input, and integration of irrigation, holds significant 

importance in accurately simulating the crop calendar and grain yield. 

 

3.2.1 Validation of biomass in Yucheng and Shenyang Station 

The station-based biomass in year 2005 is adopted for calibration (Fig. 7a-d). The biomass cycle in Yucheng station clearly 445 

exhibits two distinct peaks, representing two crop seasons. Implementation of double-cropping function reshapes the pattern 

from single-peak to double-peak, and the application of irrigation extends the winter wheat growth, shifting the peak to the 

right side and resulting in a better match with the observation. Furthermore, the improvements in the irrigation model lead to 

significant enhancements at the Yucheng station, particularly for summer maize. This aligns with the previous conclusions, as 

well as the suboptimal maize growth under water stress conditions captured by another crop model (Song and Jin, 2020), 450 

further approving the positive influence of the improved irrigation model on crop growth. On the other hand, irrigation is not 
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intensely adopted in northeast China, and thus, does not make a noticeable impact at Shenyang Station (Fig(Figs. 7b and 7d). 

The long-term biomass results, displayed in Figs. 7e-g, provide additional long-term validation for the crop simulation. While 

the model does not fully capture the inter-annual variability, it does exhibit some fluctuations that align with observed patterns. 

For instance, the winter wheat crop in Yucheng show poorer growth in 2012, while the crop in Shenyang performs worse in 455 

2010.  

 

3.2.2 Validation of crop calendar and grain yield in 2005 

To evaluate the performance of the stage identification process within the crop model, we compare the 10-year mean heading 

and maturity dates from each simulation with the satellite estimations (first two lines in Fig. 6 top and middle panels in Fig. 460 

8). Since the model accumulates carbon to grain starting from the initial reproductive stage, we considered regarded the 

entering start of the initial reproductive stage as the heading date, which aligns with the heading date identified by the time of 

maximum LAI in the satellite estimation. Similarly, the transition day from the post-reproductive stage to the maturity stage 

is regarded considered as the maturity date. According to the algorithm, the heading and maturity dates can be regarded 

considered as rough indicators of the transition from the vegetative stage to the reproductive stage, and ultimately to the 465 

maturity stage. This validation process allows us to assess the model’s ability to accurately simulate the temporal development 

of crop growth. 

 

Figure 8 shows the progressive improvements made by each step of the model modification in predicting the crop phenology. 

Typically, winter wheat heads in March and matures in May, while maize heads in August and matures in September. The 470 

default crop model only considers single cropping without winter wheat. Moreover, the heading date of CROPdef is observed 

to be one or two months earlier than the observations, and the maturity date also exhibits deviations, being earlier in the NCP. 

This suggests that employing a uniform starting and ending time is not suitable for a regional domain. The enhanced crop 

model, CROPnew, incorporates double cropping and spatially varied planting and harvesting dates, resulting in more accurate 

crop growth duration across the two seasons. The early bias is further mitigated by irrigation, as the presence of moist soil 475 

induces primary cooling, subsequently decelerating temperature accumulation and postponing the growth stage.  
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Figure 8. Comparison of the crop growth calendar and yield by comparing the heading date, maturity date, and annual yield for 
wheat and maize between observation (OBS) and simulation (CROPdef using default crop model, CROPnew using improved crop 
model, and IRRnew using both improved crop model and improved irrigation model).  
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Similar enhancement can be observed when assessing the crop yield (bottom panels in Fig. 8). Due to the limited availability 480 

of grid-scale yield data, the computed 2015 crop yield from the Global Agro-Ecological Zones (GAEZ) model is used as the 

observational benchmark. The initial CROPdef only considers a single maize season, and it proves to be inadequate for the 

heavily irrigated NCP region, even with the exaggerated assumption of a fixed FVEG value of 0.95. Despite the recalibration 

of parameters and adjustments to the planting and harvesting dates, which realizes the double cropping simulations in the 

CROPnew, production in the NCP region is still severely hindered by the limited water availability. Similar to the previous 485 

validation of crop calendar, the activation of the irrigation in IRRnew noticeably promotes the crop growth. This highlights 

the importance of irrigation in sustaining the compact rotation and high productivity in the NCP. In conclusion, each of the 

following factors—implementation of double cropping, adoption of spatially varying input, and integration of irrigation—

holds significant importance in accurately simulating the crop calendar and grain yield. 
Figure 7. Biomass comparison between simulation and station data at Yucheng and Shenyang. Black dots indicate station 490 
observations, while the lines represent the simulation results. Panels (a-d) illustrate the annual cycle of each simulation for the year 
2005 as well as the corresponding station data. Panels (e-h) present the ten-year biomass of the IRRnew (with improved crop and 
improved irrigation model) alongside the station data.  

 

3.2.3 Validation of long-term LAI and FVEG 495 

In comparison to winter wheat, the simulation of maize does not exhibit a perfect match with the observed data, as fewer 

parameters have undergone recalibration. However, despite these imperfections, the model demonstrates a reasonable 

performance in simulating crop growth, especially when considering its overall predictability across the entire NCP region. 

This is evident in the validation of monthly LAI whose accuracy plays a crucial role in determining land-atmosphere interaction 

and energy partitioning (Liu et al., 2016). Figure 89 compares the simplest crop model and the final integrated system with 500 

observation, emphasizing the remarkable improvement achieved through the integration and regionalization processes. Figure 

S1 provides an extended version inclusive of all simulations and whole simulation domain, thoroughly visualizing the gradual 

improvement made by each step. The observed LAI demonstrates a gradual increase until May, with a slight decline in June, 

indicating the harvest of winter wheat. In the second crop season, there is a notable rise in LAI during July and August, 

reflecting substantial growth and vegetation development during this period, followed by a gradual decline in September and 505 

October.  

 

It becomes evident that the CROPdef lacks representation of the first crop season and exhibits an early and truncated second 

crop season in the NCP. The inclusion of irrigation, both in the IRRdef and IRRnew models, significantly enhances crop 

growth in the double cropping region, highlighting the crucial role of irrigation in this region. Conversely, the crops in 510 

Northeast China, where rain-fed agriculture predominates, exhibit reasonably satisfactory growth even without irrigation. This 

regional disparity in crop sensitivity to irrigation can be aptly captured by the improved system. In line with the previous 

figures, the IRRnew proves particularly beneficial for the growth of summer maize. Its avoidance of unnecessary irrigation 
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during the freezing winter months allows for greater resource allocation during the productive summer period, resulting in 

improved growth and development. Generally, the IRRnew simulation successfully captures the spatial and temporal LAI 515 

patterns, particularly in the NCP region, which demonstrates a superior capability in accurately representing the dynamics of 

crop growth compared to the initial crop model. In addition to the LAI, the joint crop modeling system also demonstrates 

reasonable predictability in monthly FVEG (Fig. S2). Consequently, this expanded functionality offers valuable opportunities 

to conduct sensitivity tests, enabling a deeper understanding of the agriculture-related climate response. 

 520 

Figure 89. Monthly LAI patternpatterns of the satellite observation, (OBS), simulation with default crop model only, (CROPdef), 
and simulation with improved crop and improved irrigation. (IRRnew) from March (MAR) to October (OCT). 
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3.2.4 Quantitative validation of long-term irrigation and yield  

To further quantify the accuracy and stability of the simulation, Fig. 910 compared the irrigation intensity and crop yield from 

the IRRnew results with the province-based statistics data spanning the entire period from 2005 to 2014. Each dot represents 525 

one province and most provinces are simply depicted gray dots. Three provinces with large cropland extent in the NCP, —

Shandong, Henan and Hebei, —are depicted in red dots with horizontal and vertical error bars showing the inter-annual 

variability of both observation and simulation., respectively. Most of the dots, especially the red dots, are located in close 

proximity to the diagonal line, indicating a reasonably accurate predictability of irrigation amounts and crop yields. The 

comparable lengths of the horizontal and vertical error bars suggest that the uncertainties associated with the observation and 530 

simulation, respectively, are at least comparable. Furthermore, the model demonstrates greater accuracy and reliability in 

simulating winter wheat, which underwent more comprehensive calibration, compared to the maize. 

 
Figure 910. Validation of the climatological mean of annual irrigation and crop yield across provinces. The red dots correspond to 
the three provinces with extensive cropland coverage in the North China Plain (NCP), while the horizontal and vertical error bars 535 
depict the inter-annual variability observed in both the simulationsof observation and actual measurements.simulation, respectively. 
The gray dots represent the remaining provinces. 

 

4 Discussion and conclusion 

The validation process has brought to light several limitations of the current model. To start with, the model design restricts 540 

the simulation ofto only one crop type per grid. This simplification may contribute to inaccuracies in predicting the leaf mass 

of summer maize at the Yucheng Station, which can be revealed by the inconsistency of LAI observation (Fig. 89) in the NCP 

region and the leaf mass at the Yucheng Station (Fig. 7). While the LAI values indicate that September should have a smaller 

LAI compared to July (Fig. 89), the station data suggests that September actually has a greater leaf mass than July (Fig. 7). 
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This discrepancy is likely attributed to two factors. Firstly, the specific leaf area, or BIO2LAI in the model, varies across 545 

different crop stages, as supported by both station data and existing literature (Amanullah, 2015; Zhou et al., 2020). In other 

words, the leaves may be thinner in July, while they become thicker in September. The second reason is that the observed LAI 

pattern represents a spatial average value over the grid, which may contain a diverse range of crops. Consequently, the specific 

station data for summer maize may not align well with the spatially averaged LAI. Since this study primarily focuses on the 

regional scale rather than individual field points, we prioritize matching the spatial LAI pattern while partially sacrificing the 550 

accuracy in predicting station biomass. As a result, the simulated LAI pattern is well-matched in the NCP region, while the 

predicted leaf mass for summer maize may not closely align with the station data. On the contrary, winter wheat greatly, even 

exclusively dominates the first crop season, and thus the station data and spatial pattern are consistent and can both be captured 

by the model (Fig. 7 and Fig. 89). Also, the predicted LAI is completely cleared up after harvesting, since each grid can only 

predict one type of growth pattern, which is different from the gradual fading observed in June and October. 555 

It is important to acknowledge that the model performance may be less satisfactory in southern NCP. There is some 

underestimation of LAI compared with northern China. This could potentially be attributed to the limited predictability of 

FVEG. Even in regions where the model currently exhibits reasonable performance, uncertainty can arise from the model's 

sensitivity to soil moisture (Wang, 2005). Adopting satellite-based estimated irrigation datasets may also introduce uncertainty, 

thus, it becomes crucial to conduct model sensitivity tests under varying water forcings for future irrigation impact studies.  560 

- To enhance our understanding of the irrigation impact on regional climate, our study focuses on simulating irrigated 

crop growth in the NCP region using the WRF-Crop model. In order to improve the model's capabilities, we have implemented 

the following enhancements: 

- Incorporating the winter crop season and facilitating double cropping, which was previously absent in the WRF-Crop 

system. 565 

- Establishing a linkage between the FVEG and crop-based LAI to capture spatial and seasonal variations, as well as 

enable its sensitivity to water forcings. 

- Calibrating parameters and utilizing local input data for winter wheat and maize to accurately represent the general 

vegetation patterns in the NCP region. 

- Integrating the irrigation scheme with the crop simulation, activating irrigation based on the crop stage to account for 570 

the climate's impact on the irrigation season. 

- Implementing a temperature check before irrigation to prevent harmful irrigation during freezing periods. 

- Calibrating the irrigation threshold on a province-by-province basis to ensure more realistic estimates of irrigation 

amounts. 

 575 

These enhancements significantly improve the model's performance in identifying crop stages, estimating field biomass, 

predicting crop yield, and projecting monthly leaf area index. Importantly, our study demonstrates the reasonable performance 

of this regional-scale application in the NCP region, despite the distinct climate background compared to the model's original 
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development in the central US. This implies the potential application of itthe WRF in other agricultural zones. And most of 

our validation data is derived from satellite observations, indicating the possibility of adopting itthis model in regions even 580 

with limited ground-based data. Also, the integrated crop system clearly highlights the significance of an appropriate irrigation 

scheme in the NCP region. Future studies will connect the irrigated system with the groundwater layer, since the NCP heavily 

relied on groundwater-supplied irrigation. Groundwater depletion can also lead to hydrological changes (An et al., 2021; 

Famiglietti, 2014), further impacting the interactions between cultivation and climate. 
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