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Abstract. Snow is a key component of the cryosphere and has significant impacts on surface energy 

balance, hydrology, atmospheric circulation, and etc. In addition, numerous studies have indicated that 

snow impurities, especially nitrate, are sensitive to sunlight and can be photolyzed to emit reactive 

species including NO2 and HONO, which serve as precursors of O3 and radicals and disturb the 20 

overlying atmospheric chemistry. This makes snow a reservoir of reactive species, and this reservoir is 

particularly important in remote and pristine regions with limited anthropogenic emissions. The 

magnitude of snow chemical emissions is also influenced by snow physical properties, including snow 

depth, density and concentrations of light-absorbing impurities (e.g., BC and dust). Exploring and 

elucidating the emissions and atmospheric consequences of the snow-sourced reactive species require a 25 

global or regional model with a snow module. Here, we parameterized atmospheric nitrate deposition 

and its distributions in snow using a regional chemical transport model, i.e., the WRF-Chem (Weather 

Research and Forecasting Model coupled with Chemistry) model, and evaluated the performance of the 

WRF-Chem model in simulating snow cover, snow depth, and BC, dust and nitrate concentrations with 

field observations in northern China which is one of the regions with dense and prolong snow cover. In 30 

general, the model simulated spatial variability of nitrate mass concentrations in the top snow layer 

(hereafter NITS) are consistent with observations. Simulated NITS values in Northeast China from 
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December 2017 to March 2018 had a maximum range of 7.11–16.58 µg g⁻¹, minimum range of 0.06–

0.21 µg g⁻¹, and a four-month average of 2.72 ± 1.34 µg g⁻¹. In comparison, observed values showed a 

maximum range of 9.35–33.43 µg g⁻¹, minimum range of 0.09–0.51 µg g⁻¹, and an average of 3.74 ± 35 

5.42 µg g⁻¹. The model results show an underestimation especially in regions closes to large cities in 

northeastern China, most likely due to the underestimation of NOx emissions in these regions. 

Additionally, nitrate deposition, snowpack accumulation processes, and challenges in capturing fine-

scale emission variability may also contribute to the bias. These results illustrate the ability of WRF-

Chem in simulating snow properties including concentrations of reservoir species in northern China, 40 

and in the future, we will incorporate snow nitrate photolysis in the model, exploring the emissions of 

snow NOx from nitrate photolysis and the impacts on local to regional atmospheric chemistry and air 

pollutant transformations. 

 

1 Introduction 45 

Through the effects on surface albedo and energy balance, snow cover has important impact on 

Earth’s climate system (Flanner et al., 2011). In particular, the snow’s depth, grain size, and impurities 

can affect its albedo, which in turn significantly influences surface warming as a result of the swift 

feedback on snow structure, snow sublimation rates, and snow melt rates (He et al., 2018; Picard et al., 

2012). What is more, snow is also significant in atmospheric chemistry. Under appropriate conditions 50 

(e.g., illuminated by sunlight), photolysis of snow impurities can lead to the release of reactive species, 

including nitrogen oxides (NO + NO2 = NOx) and reactive halogens, to the overlying atmosphere, 

disturbing atmospheric chemistry (Dominé and Shepson, 2002; Grannas et al., 2007; Zatko et al., 2016). 

Improving the understanding of the spatiotemporal variations in snow physical and chemical properties 

is thus important for assessing the effects of snow cover on climate and atmosphere environment. 55 

As one of the major chemicals in snow, nitrate is perhaps one of the most important reactive species. 

In particular, snow nitrate is active under sunlight, and its photolysis results in emissions of NOx and also 

HONO into the boundary atmosphere (Chu and Anastasio, 2003; Zatko et al., 2013; Chen et al., 2019; 

Barbero et al., 2021). In pristine regions with snow cover, long-range transported atmospheric nitrate 

deposited and preserved in snow could serve as a potentially important secondary source of NOx, which 60 

is important for local production of O3 and OH radicals (Bouwman, 1998; Hall and Matson, 1999; Li et 

al., 2015; Logan, 1983; Nelson et al., 2023). The latter are important for atmospheric reactivity, or more 
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specifically, the so-called atmospheric oxidation capacity. Previous studies have investigated the 

photolysis of snow nitrate in polar regions. For example, when considering the emissions of NOx from 

snow nitrate photolysis, there is a potential doubling of O3 levels and significant increases of 5 to 6 times 65 

in the level of OH in the overlying atmosphere in Greenland and Antarctica (Zatko et al., 2016). In 

addition to polar regions, Zatko et al. (2016b) investigated the effects of snowpack emissions on local 

atmospheric chemistry in a north American site located at midlatitudes but with extensive snowfall in 

winter. They also found significant emissions of NOx from snow, although the contribution to the local 

NOx budget was relatively small given that extensive anthropogenic emissions persist at the studied site, 70 

originating from traffic related to oil and natural gas extraction activities. At another mid-latitude site, 

Kalamazoo, Michigan, Chen et al. (2019), observed up to 44% higher HONO levels in a snowy urban 

environment than in other regions without snow. The high HONO concentration is in part due to snow 

nitrate photolysis, and the subsequent photolysis of HONO produces OH, which serves as another 

important OH source in addition to the common O3 photolysis channel. 75 

Northern China is renowned as one of the regions with the densest winter snow cover, boasting a 

broad extent of snow coverage that can reach 85% (Zou et al., 2022). Moreover, the duration of snow 

cover is notably extensive, with certain frigid areas experiencing snow coverage for as long as 120-140 

days per year (Wang and Chen, 2022). Compared to those in polar regions, the snow in this region has 

higher nitrate concentrations, i.e., 0.1 - 30 µg g-1, ~ three orders of magnitude higher than those in polar 80 

regions (0.1 - 200 ng g-1) (An et al., 2022; Legrand and Mayewski, 1997; Wendl et al., 2015; Zhang et 

al., 2013; Jiang et al., 2021) and can receive more actinic fluxes. These conditions may facilitate snow 

nitrate photolysis, making it a potentially important source of NOx and HONO, which are limited from 

other sources in winter due to low human and bacterial activities in snow-covered regions. In addition, 

the prevailing northern wind in winter would transport snow-sourced NOx and/or the subsequent 85 

enhanced atmospheric O3 and other species to downwind regions, including the northern China Plain 

(NCP), where severe haze and O3 pollution occur frequently in winter. However, whether snow emission 

can influence atmospheric chemistry and air quality in downwind regions remains to be further 

investigated. 

Moreover, quantifying the snow emissions of reactive species and the impacts on the overlying 90 

atmosphere as well as downwind regions requires an atmospheric chemical transport model with snow 

modules that can simulate snow physical and chemical properties, including snow cover, snow depth and 
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snow impurities (e.g., BC, dust, and nitrate concentrations), and also be able to calculate the radiative 

transfer of actinic flux in snow, the associated snow photochemistry and the emissions of reactive species 

into the overlying atmosphere. Zatko et al. (2016) have added a NO3
- photolysis parameterization to a 95 

global chemical transport model, that is the Goddard Earth Observing System (GEOS) Chemistry model 

(GEOS-Chem). However, as an offline model, GEOS-Chem uses archived meteorological fields, which 

generally have coarse resolutions, and errors can be caused by regional or smaller-scale simulations (Yu 

et al., 2018); moreover, GEOS-Chem cannot simulate meteorological-chemical interactions, which may 

be important for modeling or forecasting snow cover changes and their impacts on local to regional 100 

climate and atmospheric chemistry. Therefore, we plan to utilize the WRF-Chem model, which is an 

advanced, on-line regional chemistry model with a relatively well-developed snow module. However, 

before doing that, we have to first incorporate snow nitrate simulations into the model, which is currently 

not included in the snow module, and evaluate the ability of WRF-Chem in simulations of snow 

physicochemical properties in northern China. Therefore, this study serves as an evaluation on the 105 

performance of WRF-Chem simulations of snow coverage and snow physicochemical properties in 

northern China, with a development on the modeling of snow nitrate concentrations. This is the first step 

to use the model to investigate the effects of snow cover on local to regional atmospheric chemistry.   

 

2 Model description and parameterizations 110 

2.1 WRF-Chem  

We use the version (v3.5.1) of WRF-Chem updated by the University of Science and Technology 

(USTC) of China in this study. Unlike the version distributed by NCAR to the public, the USTC version 

includes supplemental functionality, such as the online diagnosis of aerosol-specific radiative forcing and 

the aerosol-snow albedo effect (Zhao et al., 2014; Zhao et al., 2013a; Du et al., 2020). The aerosol scheme 115 

employed is the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC – 8 bins) (Zaveri 

et al., 2008), and the gas-phase chemistry mechanism is the Carbon Bond Mechanism Z (CBM-Z)  

(Zaveri and Peters, 1999), both of which are used in this iteration of WRF-Chem. The MOSAIC scheme 

represents aerosol size distributions using eight discrete bins, with each bin covering a specific range of 

dry aerosol diameters: 0.039–0.078 µm, 0.078–0.156 µm, 0.156–0.312 µm, 0.312–0.625 µm, 0.625–1.25 120 

µm, 1.25–2.5 µm, 2.5–5.0 µm, and 5.0–10.0 µm. The model considers main aerosol components 

including nitrate (NO3
-), sulfate (SO4

2-), chloride (Cl-) ammonium (NH4
+), black carbon (BC), dust, and 
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sea salt, and mineral dust. We note the MOSAIC aerosol scheme used in this study does not include 

secondary organic aerosols (SOA), which may affect the production and phase-partition of particulate 

nitrate. When simulate the generation and growth of aerosols, the MOSAIC mechanism takes into 125 

account a variety of chemical and physical processes, including but not limited to gas-to-particle 

conversion, particle nucleation, coagulation, condensation, and evaporation. Additionally, the model 

considers important processes of aerosol deposition, including both dry and wet deposition. These 

processes are critical for comprehending the behavior and fate of aerosols, including their incorporation 

in snow. In the model, particle diffusion and gravitational effects are considered to simulate dry 130 

deposition of aerosol (Binkowski and Shankar, 1995). Wet deposition, including rainout, washout and 

scavenging processes, is also simulated in the model to accurately represent the removal of aerosols 

through precipitation following the methodologies outlined by Easter et al. (2004) and Chapman et al. 

(2008). This research does not explicitly model cloud-ice-borne aerosols. However, it does consider the 

elimination of aerosols as they undergo freezing within droplets.  The removal of aerosols by convection 135 

transport and their wet deposition via cumulus clouds are modeled according to the methods described 

by Zhao et al. (2013b). This study utilizes  the Community Land Model (CLM) v4.0 (Lawrence et al., 

2011) coupled with the Snow, Ice, and Aerosol Radiative Model (SNICAR) (Flanner and Zender, 2005) 

as an option for the land surface model (Jin and Wen, 2012). 

 140 
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Table 1. An overview of the model configurations utilized. 

Option Parameterization schemes 

Simulation periods 

Horizontal resolution  

Model spin-up time 

October 2017 to March 2018 

36 km  

2 months 

Vertical levels 41 (About 8 layers beneath the surface of 1 km) 

Domain sizes 149 × 189 

Photolysis scheme Fast - J 

Aerosol chemistry MOSAIC 8 bin 

Gas-phase chemistry CBM-Z 

Land surface scheme CLM land surface scheme 

Microphysics  Morrison 2-moment 

Longwave Radiation  RRTMG 

Shortwave Radiation  RRTMG 

Planetary boundary layer YSU 

Cumulus Cloud Kain–Fritsch 

 

2.2 Snow simulations in WRF-Chem 155 

Snow accumulations on land surface as well as the physicochemical properties are calculated using 

SNICAR model in WRF-Chem. This mode incorporates a layered structure, considering the vertical 

variability of snow properties and accounting for the heating effects of the underlying ground and its 

influence on snow characteristics  (Flanner et al., 2012; Flanner and Zender, 2005; Flanner et al., 2009; 

Flanner et al., 2007). The theoretical framework of  Wiscombe and Warren (1980) and the two-stream, 160 

multi-layer radiative scheme proposed by Toon et al. (1989) are employed within SNICAR. It has 

excellent performance in simulating snow surface albedo, radiative absorption within snow layers, snow 

impurities, and radiative effects within snow. It was initially utilized by Flanner et al. (2007) to investigate 

snow aging and aerosol heating in a global climate model. The simulated changes in snow albedo based 

on specific black carbon (BC) concentrations have been validated through field measurements and 165 

laboratory experiments  (Brandt et al., 2011; Hadley and Kirchstetter, 2012). In CLM, there are five 

thermal layers that correspond to the radiative layers defined by SNICAR, enabling the vertical resolution 

of densification, snow meltwater transport, and thermal processes (Oleson et al., 2010a). For a more 
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comprehensive understanding of the SNICAR model, refer to Flanner and Zender (2005) and Flanner et 

al. (2012); (Flanner et al., 2007). 170 

To simulate snow nitrate photolysis and its impacts on overlying atmospheric chemistry, one needs 

to obtain snow cover, snow depth, and snow physical and chemical properties, including snow density; 

impurities, including BC, dust; and nitrate. Physical properties are used to simulate radiative transfer in 

snow. While nitrate and other impurities in snow also influence radiative transfer snow, and especially 

nitrate in snow is the source of snow-sourced NOx. Currently, all other components (e.g., BC, dust) but 175 

not nitrate have been included in SNICAR and parameterized by Zhao et al. (2014). In this study, we 

parameterized and included snow nitrate concentration in simulation. 

 

2.2.1 Parameterization of nitrate concentrations in snow 

Currently, SNICAR does not include calculations of nitrate concentrations embedded in snow. In 180 

principle, concentrations of nitrate within each snow layer are mainly influenced by atmospheric 

deposition flux and snow accumulations. After deposition, layer combinations and divisions, and, in a 

rare case, meltwater flushing may also take effect. To quantify nitrates in snow, in this study, we 

parameterized nitrate concentrations in snow by considering the deposition processes of nitrate, including 

both dry and wet deposition. Dry deposition processes (sedimentation and turbulent mix-out) directly 185 

contribute to the accumulation of particulate and gaseous nitrate in surface snow. For gaseous nitrate 

(HNO₃), the dry deposition flux (kg m-2 s-1) is calculated using the following equation: 

                              𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑_𝑔𝑔𝑔𝑔𝑔𝑔  = 𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻3  ×  𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻3  ×  𝐷𝐷𝑔𝑔𝑎𝑎𝑑𝑑                                                            (1)    

where VHNO3 is the dry deposition velocity of gaseous nitrate (m s⁻¹), CHNO3 is the concentration of gaseous 

nitrate in the first (i.e., surface) layer of the atmosphere (ppmv), and Dair is the air density in the surface 190 

layer (kg m-3). For particulate nitrate, the dry deposition flux is calculated for each aerosol size bin as 

follows: 

                              𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑_𝑔𝑔𝑎𝑎𝑑𝑑  = �( 𝑉𝑉𝑛𝑛𝑛𝑛3𝑔𝑔_𝑎𝑎  ×  𝐶𝐶𝑛𝑛𝑛𝑛3𝑔𝑔_𝑎𝑎  ×  𝐷𝐷𝑔𝑔𝑎𝑎𝑑𝑑)
𝑎𝑎

                                              (2)    

where Vno3a_i is the dry deposition velocity of particulate nitrate in each size bin (m s⁻¹), Cno3a_i is the 

concentration of particulate nitrate in each size bin (µg kg-dryair⁻¹), and 𝐷𝐷air is the air density in the 195 

surface layer (kg m-3). 
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For wet deposition, it includes both in-cloud and below-cloud scavenging of gaseous nitrate and 

particulate nitrate including cloud-borne nitrate. In-cloud scavenging refers to the incorporation of 

aerosols and gases into cloud droplets as they form within clouds. Below-cloud scavenging (washout) 

refers to the removal of particulate and gaseous nitrate by falling hydrometeors as they descend below 200 

the cloud, where nitrate compounds are captured through mechanisms like Brownian motion, 

electrostatic forces, collision, and impaction, ultimately leading to their deposition on the snow surface. 

In this study, we estimate the amount of nitrate wet deposition by calculating the concentration changes 

of atmospheric total nitrate during in-cloud and below-cloud scavenging processes. For in-cloud 

scavenging, the concentration of cloud-borne nitrate and gaseous nitrate removed is based on the 205 

following equation:  

                    𝛥𝛥𝐶𝐶𝑎𝑎𝑛𝑛−𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑑𝑑   =  𝐶𝐶𝑛𝑛𝑛𝑛3−𝑐𝑐𝑐𝑐  ×  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑛𝑛,𝑐𝑐𝑐𝑐  + 𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻3  ×  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑛𝑛,𝑔𝑔𝑔𝑔𝑔𝑔                        (3)    

where Cno3-cw is the concentration of cloud-borne nitrate aerosols in cloud, CHNO3 is the concentration of 

gaseous HNO3 in cloud, and Scalein,cw and Scalein,gas represent the scaling factors for in-cloud scavenging 

that indicate the amount of nitrate removed in cloud, respectively. 210 

     For below-cloud scavenging, the removal of nitrate aerosols and gases is represented as: 

     𝛥𝛥𝐶𝐶𝑏𝑏𝑎𝑎𝑐𝑐𝑛𝑛𝑐𝑐−𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑑𝑑,𝑎𝑎  = 𝐶𝐶𝑛𝑛𝑛𝑛3𝑔𝑔,𝑎𝑎  ×  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑎𝑎𝑐𝑐𝑛𝑛𝑐𝑐,𝑔𝑔𝑎𝑎𝑑𝑑,𝑎𝑎  + 𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻3,𝑎𝑎  ×  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑏𝑏𝑎𝑎𝑐𝑐𝑛𝑛𝑐𝑐,𝑔𝑔𝑔𝑔𝑔𝑔,𝑎𝑎                (4)    

where Cno3a,i is the concentration of nitrate aerosols below the cloud in layer i, and Scalebelow,aer,i and 

Scalebelow,gas,i represent the factors for below-cloud scavenging that indicate the amount of nitrate removed 

by impaction-interception in each atmospheric layer. In this study, the calculations of the scavenging 215 

scales for both in-cloud and below-cloud wet removal of nitrate aerosols and gases are based on the 

methodologies of Easter et al. (2004) and Chapman et al. (2008).  

The total nitrate concentration used for wet deposition calculations is the sum of the concentrations 

removed during scavenging. 

The wet deposition flux (kg m-2 s-1) is then calculated using the following equation: 220 

                  𝐹𝐹𝑐𝑐𝑎𝑎𝑤𝑤  =     𝛥𝛥𝐶𝐶𝑎𝑎𝑛𝑛−𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑑𝑑  +  �
�𝛥𝛥𝐶𝐶𝑏𝑏𝑎𝑎𝑐𝑐𝑛𝑛𝑐𝑐−𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑑𝑑,𝑎𝑎  ×  𝐷𝐷𝑔𝑔𝑎𝑎𝑑𝑑,𝑎𝑎  ×  𝐻𝐻𝑔𝑔𝑎𝑎𝑑𝑑,𝑎𝑎�

𝑑𝑑𝑑𝑑
    

𝑛𝑛

𝑎𝑎

         (5) 

where Dair,i is the air density in each atmospheric layer. Hair,i is the thickness of the atmospheric 

layers (m), and dt is the model time step (s). The variable 𝑛𝑛 represents the number of atmospheric layers 

below the cloud.  
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      After deposition, nitrate is mixed instantly and uniformly in the model surface layer, which never 225 

exceeds 3 cm thick. The nitrate mass concentration in surface snow (MNITS: kg kg-1) was calculated by 

deposition fluxes of atmospheric nitrate as follows: 

                                        𝑀𝑀𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁  =  
� �𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑  +  𝐹𝐹𝑐𝑐𝑎𝑎𝑤𝑤�  × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆 �

𝑊𝑊𝑔𝑔𝑛𝑛𝑛𝑛
                                               (6) 

where dtime is the land model time step used in SNICAR(s), as distinct from the dt mentioned above 

used in atmospheric processes, and Wsno is the snow mass in the surface layer (kg m-2). Furthermore, 230 

the CLM continuously builds a new surface snow layer when a fresh snowfall event occurs, and nitrate 

mass concentrations in surface snow are updated as follows: 

                                           𝑀𝑀𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁
𝑛𝑛𝑎𝑎𝑐𝑐 =  𝑀𝑀𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁 +  

∆𝐹𝐹 × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆
∆ 𝑊𝑊𝑔𝑔𝑛𝑛𝑛𝑛

                                                             (7)  

where ∆F is the cumulative wet and dry deposition of atmospheric nitrate during the entire period 

between the newly fallen snow and the previous time step, ΔWsno is the newly gained snow mass 235 

during the entire period between the newly fallen snow and the previous time step, and Δt is the period 

spanning from the newly fallen snow to the previous time step. 

       By repeating the above motioned processes, a snowpack with initial nitrate concentrations in each 

layer of the snowpack was simulated. 

 240 

2.2.2 Potential modification by melting processing after deposition 

Previous studies have shown that at midlatitudes, snow melt occurs occasionally, which will modify 

the concentrations of impurities (Zhao et al., 2014; Flanner et al., 2007; Eichler et al., 2001). Following 

similar processes, we considered the potential effects of these processes on snow nitrate concentrations. 

In particular, the melting of snow can redistribute nitrate (and other species) through the introduction of 245 

excess water into the layer beneath when the meltwater surpasses the layer's retention capacity, which is 

determined by irreducible water saturation and snow porosity. The rate of change in nitrate mass for each 

layer i, due to its incorporation into meltwater, is directly proportional to the mass mixing ratio and with 

the adjustment of a scavenging factor, which can be described as follows: 

                                                      
𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘(𝑞𝑞𝑎𝑎+1𝑆𝑆𝑎𝑎+1 −  𝑞𝑞𝑎𝑎𝑆𝑆𝑎𝑎)  + 𝐷𝐷                                                  (8)     250 

where mi represents the total mass of nitrate within layer i, which is affected by the removal efficiency 

(k) and the water flux leaving the layer (qi). The concentration of nitrate in layer i, denoted as ci, is the 

proportion of the nitrate mass to the total mass of water in both liquid and solid forms within that layer. 
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The term qi+1ci+1 represents the mass flux of water leaving the layer above (i+1) multiplied by the 

concentration of nitrate in that layer, accounting for the transfer of nitrate from the upper layer to the 255 

current layer. D represents the combined effect of total atmospheric particulate and gaseous nitrate 

deposition, which is specifically added to the surface layer of the snowpack. In this study, following 

Flanner et al. (2012) and Zhao et al. (2014), the scavenging ratio (k) for nitrate is assumed to be 0.2. This 

value is highly uncertain for nitrate and needs to be constrained by future observations (Flanner et al., 

2012; Qian et al., 2014; Zhao et al., 2014). However, for this process to be effectively impactful, 260 

significant melting would need to occur. During our simulation period, temperatures in northern China 

were consistently low, primarily below 0°C, and significant melting did not take place. Therefore, we 

believe the impact of this assumption is minimal in this context. It is worth noting that the portion of 

nitrate mass lost through meltwater from the bottom layer of snow is considered to be removed from the 

snowpack and is not accounted for within the model.  265 

In summary, the nitrate concentrations in each snow layer are determined by factors such as 

atmospheric deposition rates, the amount of new snowfall, layer combinations and divisions, and 

meltwater flushing (Oleson et al., 2010b; Flanner et al., 2012; Flanner et al., 2007). When snow layers 

are combined or divided, nitrate masses are redistributed proportionately with snow masses conserving 

nitrate masses within the snow column. 270 

 

2.3 Numerical experiments 

The study employed simulations covering the entire area of China, utilizing a spatial resolution of 

36 × 36 km with a grid composed of 149 × 189 cells, as depicted in Fig. S1. The simulations run from 

December 2017 to March 2018 covering the field campaign period, with an additional two months 275 

modeled before December 2017 as the model spin-up. The starting and side boundary conditions for 

meteorology are drawn from the NCEP Final reanalysis dataset, which provides data at a resolution of 1° 

horizontally and at 6-hour intervals. The specific model setup employed in this research is outlined in 

Table 1, including the Yonsei University (YSU) planetary boundary layer scheme, the Kain-Fritsch 

cumulus parameterization scheme, the Morrison two-moment microphysics scheme, the Rapid Radiative 280 

Transfer Model (RRTMG) for both longwave and shortwave radiation, and the Community Land Model 

(CLM) for land surface processes. The YSU scheme was chosen to parameterize the planetary boundary 

layer processes, while the Kain-Fritsch scheme addresses the representation of convective clouds. The 
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Morrison scheme handles microphysical processes, capturing the characteristics of cloud and 

precipitation formation. The RRTMG schemes accurately modeled longwave and shortwave radiation 285 

interactions. Finally, the CLM scheme accounted for land surface interactions. By integrating these 

schemes, this study aimed to provide comprehensive simulations and insights into the atmospheric and 

snow processes and interactions involved during the selected period. 

For the purpose of modeling anthropogenic emissions, we utilize the 2015 version of the Multi-

resolution Emission Inventory for China (MEIC), which offers a fine resolution of 0.1° × 0.1° (Li et al., 290 

2017a; Li et al., 2017b). To determine the vertical distribution of dust, we apply the GOCART dust 

emission scheme developed by  Ginoux et al. (2001). Subsequently, the generated dust particles are 

assigned to numerous size categories within the MOSAIC aerosol scheme, adhering to the scale-invariant 

fragmentation mechanics for brittle materials as described by Kok (2011). Additional information 

regarding the integration of the dust emission scheme with the MOSAIC aerosol scheme in WRF-Chem 295 

is available in Zhao et al. (2010). Hourly resolved biomass burning emissions, with a 1 km horizontal 

resolution, are obtained from the Fire Inventory from NCAR (FINN) (Wiedinmyer et al., 2011). Biogenic 

emissions were calculated using the MEGAN v2.0 model. 

 

2.4 Observations 300 

2.4.1 Snow and its physicochemical properties datasets 

The main dataset for observing and assessing the simulations of snow and its physicochemical 

properties was obtained from the field study conducted by Che et al. (2022) from December 2017 to 

March 2018, when snow was collected from more than 200 road trips in both the Northeast and Northwest 

regions of China. The observational route in Fig. 1 covers three distinct regions with different climatic 305 

zones, underlying surfaces, and elevations. Extensive field observations were conducted to study snow 

cover characteristics along this route. The sampling points are labeled in Fig. 1 and categorized by region 

and month. At each site, snow samples were collected. A total of 269 snow samples were collected, and 

the concentrations of nitrate and calcium and the snow depth were measured. 

For further information regarding the measurements conducted during the Northern China campaign, 310 

additional details are available in Che (2020). During the campaign, snow samples were collected at 

various depths, yet the concentration of ions was chiefly calculated for the top layer of the snow. Hence, 
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we compare the simulated ion mass content within the uppermost 2 cm of the surface snow layer against 

the average observational data derived from snow samples collected at depths ranging from 2 to 5 cm. 

 315 
Figure 1. Sampling points along the road trip from December 2017 to March 2018 are marked with 
different colors to represent different months. Color indicates different months of the observations. 
 

2.4.2 MODIS-based snow area product dataset 

In addition to field observations of snow impurities and depth, we also collected snow cover data 320 

for comparison with the model simulations. For this study, we utilized the daily cloud-free 500 m snow 

cover dataset over China, compiled by Hao et al. (2022). This dataset is provided as a long-term time 

series resource, offering fine spatial detail at 500 m × 500 m. More information is available at the 

homepage of the National Cryosphere Desert Data Center of China (http://www.ncdc.ac.cn). 

2.4.3 Meteorological and air quality data 325 

To evaluate the model's performance concerning surface temperature and rainfall, which are 

important for snow simulation, we obtained meteorological data on temperature and precipitation from 

the National Climatic Data Center (NCDC) (https://www.ncdc.noaa.gov/). The NCDC has more than 400 

ground stations in China, and data have been collected since 1942. 

 330 

http://www.ncdc.ac.cn/
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3 Results and Discussion 

3.1 Meteorological simulations 

Two key factors affecting the snow simulation are surface temperature and snow precipitation. Since 

there are no publicly available observation data for surface snow precipitation, only temperature was 

compared with observations for model evaluation. Figure 2 displays the 2 m temperature patterns across 335 

China simulated by WRF-Chem and observed, with the left panel showing the spatial distribution of 

temperature, and the right panel illustrating the scatter plot comparison between simulation and 

observation. The background color in the left panel represents the average simulated values from 

December 2017 to March 2018, while the right panel shows the daily averages from the simulation 

corresponding to the observation dates at each station. The scatter plot also distinguishes between regions, 340 

with orange dots representing northern China and blue dots representing southern China. Daily 2 m 

temperature data from December 2017 to March 2018 at 415 sites in China were sourced from the 

National Oceanic and Atmospheric Administration (NOAA). Based on the graph, it is evident that the 

model accurately depicts the spatial patterns and fluctuations in the 2 m temperature, aligning well with 

the observed data. Furthermore, the simulation accurately represents the notable decrease in the 2 m 345 

temperature as latitude increases, ranging from near freezing levels to approximately -30°C. From the 

scatter plot on the right, it can be observed that the model generally performs well in simulating the 2 m 

temperature, closely aligning with the observed data. However, there is a slight underestimation of 

temperature for southern China and a slight overestimation for northern China. Such systematic biases 

have also been reported in other studies (Gao, 2020; Gao et al., 2022; Kong et al., 2019; Yu et al., 2011). 350 

These discrepancies may be attributed to the complexity of regional climate factors, such as varying land 

surface characteristics, boundary layer processes, and the challenges of accurately simulating localized 

weather phenomena like cold fronts or temperature inversions in certain regions. Furthermore, 

differences in the representation of terrain and vegetation between the model and reality could contribute 

to these systematic errors, particularly in regions with complex topography (Gutowski et al., 2020). 355 
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Figure 2. Spatial distribution of 2 m temperature observed and simulated by WRF-Chem over China 
averaged from December 2017 to March 2018. [Left: The background color represents the average 360 
simulated value. Right: Simulated values are the daily averages corresponding to the observation dates 
at each station.] 

 

 

3.2 Snowpack simulations 365 

3.2.1 Spatial distributions of snow cover 

Before analyzing the patterns of light-absorbing impurities in snow, it is crucial to assess the 

simulated snow cover produced by WRF-Chem. Figure 3 shows the spatial patterns of snow cover (the 

percentage of land area with snow at each grid cell) from the WRF-Chem simulation (first column), 

MODIS-based observational data (second column), and the difference between the two (third column) 370 

from December 2017 to March 2018, providing the average results for each month. The MODIS data has 

been averaged to the 36 km WRF grid for a fairer comparison. The third column shows the difference 

map, calculated as the WRF-Chem simulation minus the MODIS observations, highlighting areas where 

the model either overestimates or underestimates snow cover.  Here, snow cover is defined as the snow 

fraction [0-1], which represents the percentage of land area with snow at each grid point. Both simulations 375 

and observations indicate that snow cover is concentrated primarily in China's northeastern, northwestern, 

and Qinghai‒Tibet Plateau regions. The distribution of snow cover generally follows the temperature 

pattern. Areas with lower temperatures tend to have greater snow cover. The highest snow cover 

percentage, up to 90%, is observed in the northeastern region. Both the observations and simulations 

reveal snow accumulations in central China in January 2018. The difference between the simulation and 380 

MODIS data in the third column reveal systematic biases. In particular, the WRF-Chem model tends to 
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overestimate snow cover in parts of northern China, especially in regions with complex terrain or higher 

altitudes. This overestimation could be attributed to the model's potential oversensitivity to cold 

temperatures or its overestimation of snowfall in these colder regions. Complex terrain can also challenge 

the model's ability to accurately simulate microclimatic conditions, leading to discrepancies in snow 385 

cover estimates. Conversely, in southern and central China, the model underestimates snow cover, likely 

due to limitations in how WRF-Chem handles snow accumulation and melting in warmer areas. Overall, 

the model appears to reasonably capture the stable snow cover in most of the regions of interest, though 

some discrepancies remain related to small-scale surface features caused by terrain, with most biases 

staying within 30%. 390 
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Figure 3. Spatial distribution of snow cover simulated by WRF-Chem and observed from MODIS-based 
data across China from December 2017 to March 2018. The data presented are monthly averages, and 
the third column shows the difference calculated as the simulation minus the observation. 395 
 

3.2.2 Snow depth 

Figure 4 illustrates the simulated snow depth from December 2017 to March 2018 along with the 

observations from the field campaign integrated into each panel. The background color in the figures 

represents the monthly average of the simulation results, while the plotted dots indicate the observed data 400 

for that month. In general, the simulation and observation results exhibit consistency in terms of spatial 

distributions and magnitudes, both of which indicate that snow depth is deeper in a northly direction. In 

particular, among the four months, January 2018 had the highest number of observations, distributed 

across the northeastern, northwestern, and Tibet plateau regions of China. The observed data for the other 

three months are primarily concentrated in the northeastern region of China. Detailed comparison maps 405 

for specific regions can also be found in Fig. 4. Over time, the snow cover in the northeastern region 

exhibits dynamic variations (I, III, V, and VII in Fig. 4). From December 2017 to March 2018, there was 

a gradual increase in snow depth each month, reaching its maximum in March 2018. In January 2018, in 

the northeastern region, the model well captured the spatial variations in the observed snow depths, with 

excellent agreement in both high- and low-value areas. (VII in Fig. 4). In March 2018, extensive 410 

observational data were collected, primarily focused on the western Greater Khingan Mountains and the 

Northeast China Plain in Northeast China. From the panel, we can observe that the overall simulation 

performance is quite satisfactory, as it effectively captures the spatial variations in snow depth. The 

simulation successfully reproduced high snowfall values around the Hulunbuir area, located in the Inner 

Mongolia Autonomous Region, reaching up to 29 cm. The March snow variations are clearly visible in 415 

the figure, with snow depths reaching more than 20 cm in both the western Greater Khingan Mountains 

and the Northeast China Plain. In addition, we extracted the simulated values corresponding to the 

observations at each station and plotted them in a scatter plot (Fig. 11a). From the results, most of the 

simulated snow depths align reasonably well with the observations, though underestimation is evident in 

some areas, particularly in regions with lower snow depths. 420 
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Figure 4. Spatial distribution of snow depth (cm) observed and simulated by WRF-Chem and across 
China from December 2017 to March 2018. [Note: The background color in each figure represents the 
monthly average of the simulation results, while all the observations for each month are embedded in 
each panel.] 425 
 

3.3 Modeling of DUST and BC concentrations in snow 

3.3.1 Spatiotemporal variability of Dust in snow 

Figure 5 illustrates the pattern of dust concentration (mg/g) in the top snow layer simulated by WRF-

Chem. Additionally, in the absence of direct dust measurement data, we have graphed the concentration 430 

of the dust tracer calcium ions in the top layer of snow a simulated by the WRF-Chem model together 

with the field campaign observations for each month (Fig. 6). From the figure, it is clear that there are 

significant differences between the dust distributions in each month. For example, in December 2017, 

the dust is mainly concentrated in the northwestern part of China, while in January 2018, it spreads to 

other parts of the northwest and northeast. In February 2018, the dust seems to be more evenly distributed 435 

across northern China, and in March 2018, it is mainly found in the northeastern part of China. These 

variations are associated with the distribution of snow cover in each month. Overall, dust is primarily 

distributed across Northwest China, Mongolia, and Liaoning Province, corresponding with the 

distribution of dust sources (see Fig. S2). In regions near dust source, DSTS is highest (> 3 mg g-1). As 

far away from the source region, DSTS gradually decreases. In Northeast and Central China, the 440 

concentration decreases to approximately 10 µg g-1, and at the further northern boundaries, the 

concentrations can even drop as low as ~100 ng g-1. 

The modeled calcium ion content in the snow was calculated based on the proportion of calcium 

carbonate in the GOCART dust emission mechanism used in WRF-Chem, where calcium is assumed to 
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constitute 0.4% of the total dust mass, and carbonate (CO₃²⁻) accounts for 0.6% (Ginoux et al., 2001; 445 

Kok et al., 2014a; Kok et al., 2014b). However, as our research area is northern China, particularly the 

northwest and Loess Plateau, which is a major source area for dust, these default proportions are not 

representative of the real values as suggested by observations conducted in these regions which indicates 

the mass fraction of calcium in dust ranges from 7% to 12% in northern China (Zhang et al., 2003). 

Therefore, we used the average observed fraction of 9.5% to calculate the modeled calcium 450 

concentrations in this study. Field-observed calcium ion concentrations in the top layer of snow (CAS) 

are indicated by dots superimposed in Fig 6. The simulated CAS values closely match the observations, 

effectively capturing the spatial variation and magnitude of the CAS. The simulation shows the highest 

CAS, exceeding 10 µg g−1, across Northwest China (90–100°E, 40–50° N) in January 2018, where the 

DSTS is also the highest (b) in Fig. 5. Moreover, the high CAS values simulated during this month align 455 

well with the actual measurements recorded, accurately capturing the overall spatial variations. CAS and 

DSTS exhibit similar distribution patterns and are primarily concentrated in the northern and 

northwestern regions of China, such as Inner Mongolia and Liaoning Province. These areas are 

characterized by arid and semiarid climatic conditions and desert landscapes, increasing susceptibility to 

the dispersal of dust particles. In addition, we extracted the simulated values corresponding to the 460 

observations at each station and plotted them in a scatter plot (Fig.11b). From the results, the simulated 

snow calcium ion concentrations generally fall within the same order of magnitude as the observations. 

 



 19 

Figure 5. Spatial distribution of dust concentrations (mg/g) in the top snow layer simulated by WRF-
Chem across China from December 2017 to March 2018 (a–d). 465 

 

 
Figure 6. Spatial distribution of calcium ion concentrations (ug/g) in the top snow layer simulated by 
WRF-Chem, with field campaign observations embedded at specific locations for each month (e–h) 
across China from December 2017 to March 2018. 470 

 

3.3.2 Spatiotemporal variability of BC in snow 

Figure 7 displays the modeled black carbon (BC) concentration distributions across space in the top 

layer of snow across China from December 2017 to March 2018, simulated by WRF-Chem. We do not 

have BC observations during the simulation period, but there were observations in other winters for the 475 

same regions. We compared our simulations with those observations, and the results show that both the 

magnitude and the spatial patterns of our simulated BC concentrations are consistent with the observed 

values reported in the literature (Zhao et al., 2014). In addition, Zhao et al. (2014) also used the same 

model and framework to simulate BC concentrations during the observational period. Their study showed 

reasonable agreement with a median model-to-observation ratio of 1.03.  In the vicinity of approximately 480 

40° N and 125° E in Northeast China, as depicted in Fig.7, the highest concentrations of BC in the top 

snow layer (BCS) reach more than 6000 ng g−1. This region is characterized by significant snow cover 

and depth, as illustrated in Figs. 4 and 5. As far away from northeast China, the BCS decreases and drops 

to less than 50 ng g−1 towards the northwest border of China. This finding aligns with the results of Zhao 

et al. (2014), who reported high BCSs in areas of dense industrial activity and reduced levels (30–50 ng 485 

g−1) at more northerly latitudes in the northern reaches of China, around 51° N. The large spatial and 

temporal variations in BCS are influenced in part by the changes in snow conditions (Fig. 4) and its BC 
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content as represented in the model. During the initial accumulation of snow, the mass of BC within the 

snow is significantly less than the mass of the snow itself, leading to the lowest recorded BCS. As the 

snow begins to melt, BCS continues to rise primarily due to melt enrichment, where melting snow 490 

concentrates BC near the snow surface (Doherty et al., 2013). This effect is further enhanced by dry 

deposition until the snow completely melts. Note that in Jan. 2018, a high concentration of BC was 

simulated in central China, which was due to the low snow accumulation at that time (i.e., low snowfall 

but high BC emissions led to high snow BC content). 

 495 

 
Figure 7. Spatial distribution of BC concentration (ng/g) in the top snow layer simulated by WRF-Chem 
across China from December 2017 to March 2018. [Note: The background color in each figure represents 
the monthly average of the simulation.] 
 500 

3.4 Snow nitrate simulations 

3.4.1 Deposition fluxes of nitrate on snow 

Snow nitrate concentration was calculated by incorporating dry and wet total nitrate (atmospheric 

gaseous and particulate nitrate) deposition fluxes into the SNICAR module in WRF-Chem. Therefore, 

before assessing the concentration of nitrate in the snowpack, it is necessary to evaluate the 505 
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reasonableness of the model-derived deposition fluxes. The simulated spatial distributions of nitrate 

deposition via dry and wet processes on snow from December 2017 to March 2018 are shown in Fig. 8. 

Deposition fluxes only accumulate across snow-covered surfaces, both in space and time. To assess 

nitrate deposition fluxes in winter China, we initially compared our simulation results with findings from 

other simulation studies (Liu et al., 2022a; Ma et al., 2023b; Zhao et al., 2015). Overall, our simulation 510 

results exhibit consistency in terms of the spatial distributions and magnitudes of atmospheric nitrate 

deposition. During the studied period spanning from December 2017 to March 2018, the monthly 

deposition flux of nitrate (including both dry and wet depositions of gaseous and particulate nitrate) in 

China was approximately 0.17 ± 0.007 (mean ±1σ) kg N ha-1 month-1. Among them, dry deposition 

contributed approximately 0.07 ± 0.005 kg N ha-1 month-1, while wet deposition accounted for 0.09 ± 515 

0.007 kg N ha-1 month-1. Wet deposition comprised a slightly greater proportion, constituting 56% of the 

total deposition flux. In comparison, Yu et al. (2019) utilized linear regression and Kriging interpolation 

methods drawing upon data from the Nationwide Nitrogen Deposition Monitoring Network (NNDMN), 

finding that the monthly dry deposition flux of nitrate (including both gaseous and particulate nitrate) 

over China from 2011 to 2015 was approximately 0.27 ± 0.08 (mean ± 1σ) kg N ha-1 month-1 and wet 520 

deposition flux was approximately 0.31 ± 0.23 kg N ha-1 month-1. Note this monthly average are values 

considering data from all 12 months but not only in winter. If considering winter only means, the dry and 

wet deposition fluxes are (0.09 ± 0.03 kg N ha⁻¹ month⁻¹) and (0.10 ± 0.07 kg N ha⁻¹ month⁻¹), 

respectively, assuming the monthly means are approximately 1/3 of summer means according to previous 

nitrate deposition of seasonal research findings (Ma et al., 2023a; Pan et al., 2012). In addition, we found 525 

two observation sites in Jilin and Liaoning provinces in Northeast China from the NNDMN. At the Jilin 

site (124.83°E, 43.53°N), in winter months, the simulated monthly dry deposition of nitrate (atmospheric 

gaseous and particulate nitrate, the same as follows) was 0.07 ± 0.10 kg N ha⁻¹ month⁻¹, and wet 

deposition was 0.16 ± 0.28 kg N ha⁻¹ month⁻¹, with in the ranges of the observed values of 0.13 ± 0.03 

kg N ha⁻¹ month⁻¹ for dry deposition and 0.28 ± 0.11 kg N ha⁻¹ month⁻¹ for wet deposition. At the 530 

Liaoning site (121.58°E, 38.92°N), the simulated dry deposition was 0.18 ± 0.17 kg N ha⁻¹ month⁻¹, and 

wet deposition was 0.79 ± 0.32 kg N ha⁻¹ month⁻¹, while the observed dry deposition was 0.38 ± 0.18 kg 

N ha⁻¹ month⁻¹, while wet deposition was 0.35 ± 0.18 kg N ha⁻¹ month⁻¹. Although at the Liaoning site, 

the modeled wet and dry deposition fluxes are somewhat different from the observations, their sums (i.e., 
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the total deposition fluxes) are close to each other (0.97 ± 0.36 kg N ha⁻¹ month⁻¹ vs. 0.73 ± 0.25 kg N 535 

ha⁻¹ month⁻¹) within the range of uncertainties.  

 
Figure 8. Spatial distribution of (a) dry, (b) wet, and (c) total (dry + wet) deposition fluxes (kg N ha-1 
month-1) of oxidized nitrogen (atmospheric gaseous plus particulate nitrate) on snow simulated by WRF-
Chem in mainland China averaged over December 2017 to March 2018. 540 
 

3.4.2 Nitrate concentrations and spatial distribution in snow 

Figure 9 displays the nitrate concentration distributions across space in the top snow layer simulated 

by WRF-Chem averaged for December 2017 to March 2018, with the field campaign observations of 

nitrate concentration in the top snow layer (NITS). Among the four months, January 2018 had the highest 545 

number of observations, distributed across northeastern and northwestern China. The observed data for 

the other three months are primarily concentrated in the northeastern region of China. During these four 

months, consistent patterns of change were identified, as the model simulating the highest NITS (> 15 

µg g-1) in the region spanning Northeast China (125–132° E, 40–47° N), mainly encompassing the 

provinces of Heilongjiang, Jilin, and Liaoning. In addition, as far away from northeast China, the NITS 550 

decreases and drop to less than 0.06 µg g-1 at the boundary of northern China. This finding aligns with 

our field campaign data, revealing elevated NITS levels (1.03–33.43 µg g−1) in areas characterized by 

heavy industrialization and lower concentrations (0.08–0.4 µg g−1) in the northern regions of China (52° 

N). From a temporal perspective, there was a significant increase in the simulated NITS in northeastern 

Jilin Province from December 2017 to March 2018. This difference may be attributed to the monthly 555 

increase in simulated nitrate deposition in this region, while snowfall slightly decreased in the 

northeastern area during the same period. 

The road trip during the campaign began in Inner Mongolia, which, compared to Northeast China, 

exhibits relatively lower pollution levels, with most observed NITS values below 1 µg g−1. The cleanest 

snow samples, with concentrations in the tens of nanograms per gram range, were collected close to 560 
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China's northern border, while polluted snow was obtained from the industrialized zones of Northeast 

China. The WRF-Chem simulation effectively reproduces the observed notable escalation in NITS 

toward more polluted sites, from 0.08–0.4 µg g−1 at 51° N to more than 10 µg g−1 at 43° N. Both 

temporally and spatially, the simulation results generally align with the observations, albeit with some 

negative biases in relatively clean areas (e.g., Inner Mongolia). 565 

The WRF-Chem model-simulated maximum values ranged from 7.11 to 16.58 µg g-1, while the 

range of the simulated minimum values was between 0.06 and 0.21 µg g-1. The observed maximum 

values varied between 9.35 and 33.43 µg g-1, with observed minimum values falling within the range of 

0.09 to 0.51 µg g-1. In addition to the results described above, we also calculated the overall average 

values for the four months. The simulation results indicate an average concentration of 2.72 ± 1.34 µg g-570 

1, whereas the observed four-month average concentration is 3.74 ± 5.42 µg g-1. This conclusion aligns 

well with the results presented with the findings of Xue et al. (2020), who also conducted observations 

on snowfall in northeastern China from December 2017 to March 2018. Covering the same period and 

region as ours, their results revealed maximum, minimum, and average nitrate concentrations in snow of 

12.25, 0.08, and 3.34 ± 1.00 mg/L, respectively. Although our simulation shows a certain degree of 575 

underestimation at some sites compared to the observational results, the simulated results generally 

capture both the spatial patterns and magnitudes seen in the data. Regarding this underestimation, as 

illustrated in Figure 9, we note that there is a low bias for the NITS in high-pollution areas between 

December 2017 and January 2018. In particular, in high-pollution regions like Jilin Province, the model 

exhibited a negative bias, with an average observation-to-simulation ratio of 1.7, corresponding to a 580 

Normalized Mean Bias (NMB) of 40.29%.  

In addition, we extracted the simulated values corresponding to the observations at each station and 

plotted them as a scatter plot (Fig. 11c). The results show that the model generally underestimates the 

NITS. Typically, such an underestimation of NITS could result from either underestimating the amount 

of snow or underestimating the flux of nitrate deposition within the snow. However, based on the snow 585 

depth simulation results, the snow amount simulation performs better, so snowfall is unlikely to be the 

main cause of this bias. The most likely reason for this underestimation may be that the modeled 

atmospheric nitrate concentration is lower than the actual concentration. Consequently, even with the 

same snowfall amounts, the nitrate deposition would be underestimated. To demonstrate this, we 

analyzed the observed atmospheric nitrate concentrations from Tracking Air Pollution in China  (Geng 590 
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et al., 2017; Liu et al., 2022b) and compared them with the simulated results. We found that in northern 

China, where our study area is located, the simulated atmospheric particulate nitrate concentrations were 

indeed lower than the observed values (Fig. S3). The low simulated nitrate concentrations in northern 

China may be due to incomplete atmospheric nitrate chemistry in the model. However, in other regions 

of southern China, such as Anhui (29.45° N - 34.55° N, 114.95° E - 119.55° E) and Fujian (23.65° N - 595 

28.25° N, 115.95° E - 120.45° E), the simulated atmospheric nitrate concentrations closely matched the 

observations (Fig. S4). Thus, the effect of incomplete atmospheric nitrate chemistry in the model can be 

excluded in this case. Another possible reason for the low simulated nitrate concentrations in northern 

China could be the underestimation of NOx emissions in this region. We also compared the observed and 

modeled atmospheric NO2 concentrations in this region and found that the model indeed underestimated 600 

the NO2 concentrations (see Fig. S5). In conclusion, the underestimation of NITS in the model is most 

likely due to the underestimation of atmospheric nitrate concentrations, which probably originates from 

the model’s underestimate of NOx emissions in this region. 

In addition to analyzing the top snow layer, we further evaluated the model’s performance by 

comparing the vertical distribution of nitrate in snowpack (Figure 10). Here we selected eight specific 605 

sites, and details regarding their locations and sampling information are provided in Table S1. These sites 

were selected because the depth intervals of observed samples in these sites are closers to the model’s 

depth intervals. In the figure, the depth position of each point represents the midpoint of the observed or 

simulated depth layers, with simulations represented by stars and observations by circles. As shown in 

Figure 10, except sites 4 and 7, the model in general captures well the depth variations. At sites 4 and 7, 610 

the observed nitrate concentrations were much higher than other sites, and the model underestimates the 

observations. This pattern is similar to the model-observation comparisons of surface snow nitrate, which 

also indicates the model tends to underestimate surface snow nitrate at sites with high observed 

concentrations. 

Given the substantial fluctuations in the temporal patterns of annual snowpack accumulation and 615 

the challenges in accurately predicting the occurrence of weather phenomena, aerosol releases, and 

deposition processes, it is judicious to compare data by utilizing the long-standing averages obtained 

from both actual and modeled NITS datasets across an extended timespan. Additionally, further 

comparisons were conducted by comparing the averaged model results within the same day with the 

values observed at each site on the same day. However, these analyses showed no significant alterations 620 
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(data not presented). The significant temporal fluctuations in NITS may also pose challenges when 

comparing monthly average values from model simulation result with field observations at particular 

times, a widely used method across global atmospheric modeling research (Huang et al., 2011; Qian et 

al., 2014; Zhao et al., 2014). The sample sites within industrial source regions are subject to increasing 

relative biases, with the model typically underestimating the NITS at these locations. In addition to the 625 

uncertainty in the snow accumulation process mentioned above, this difference may also be related to 

the challenge the model faces in capturing fine-scale variability within grid cells, which tends to be more 

pronounced in regions with high emissions compared to relatively clean areas. 

 

 630 
Figure 9. Spatial distribution of nitrate concentration in the top snow layer observed and simulated by 
WRF-Chem across China from December 2017 to March 2018. [Note: The background color in each 
figure represents the monthly average of the simulation results, while all the observations for each month 
are embedded in each panel.] 
 635 
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Figure 10. Depth profiles of the observed and simulated snow nitrate concentrations (circles for 
observations, stars for simulations). 
 

 640 
Figure 11. Scatter plots of the observations of (a) snow depth (cm), (b) surface snow calcium ion 
concentrations（ug/g）and (c) surface snow nitrate concentrations (ug/g) versus the corresponding 
WRF-Chem simulations in winter 2017–2018. 
 

4 Conclusion 645 

In this study, the WRF-Chem model was used to simulate snow cover, snow depth, and snow 

impurities including BC, dust and nitrate concentration in winter 2017-2018 across China. Field 

observations covering the same regions and periods were used to evaluate the ability of the model. In 

general, the model well captures the observed magnitude and spatial variations of surface temperature, 

snow cover, snow properties, and aerosol contents in snow. In particular, we thoroughly evaluated all 650 

simulation results with observations. Firstly, the model accurately represented the spatial patterns and 
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magnitudes of snow cover and snow depth. Secondly, the simulation results for the were evaluated using 

observational data for snow calcium ions. For snow BC concentrations, while we lack direct observations 

during the simulation period, we assessed the model’s performance by comparing the results with 

observations from the same regions during different winters (Zhao et al., 2014). Thirdly, we evaluated 655 

the simulation of snow nitrate concentrations by comparing with observational data. To assess the reasons 

for the discrepancies between the model and observations, we further discussed the simulation of 

atmospheric nitrate and its deposition fluxes. Overall, the spatial patterns and concentration levels for 

snow nitrate were well represented. However, in high-pollution areas such as Jilin Province, the model 

exhibited larger bias, with an average observation-to-simulation ratio of 1.7, corresponding to a 660 

Normalized Mean Bias (NMB) of 40.29%. 

The most likely reason for the discrepancies in NITS between the model and observations is the 

underestimation of atmospheric nitrate concentrations, which probably originates from the model’s 

underestimate of NOx emissions in this region. Additionally, uncertainties in the deposition processes 

(Akter et al., 2023; Huang et al., 2015; Lu and Tian, 2014), including dry and wet deposition of nitrate 665 

from the atmosphere to the snowpack, could also play a role. Furthermore, post-depositional processes 

could further contribute to the differences between the model and observations. These processes include 

snowfall dynamics, snow accumulation, and gas and aerosol scavenging in the snow  (An et al., 2022; 

Flanner et al., 2012; Li et al., 2022; Poschlod and Daloz, 2024; Qian et al., 2014; Zhao et al., 2014), all 

of which may introduce uncertainties in the simulation of NITS. Another factor contributing to these 670 

discrepancies could be the relatively coarse model resolution, as it may not sufficiently capture the 

heterogeneous spatial distributions of snow and nitrate concentrations, especially when fine-scale 

variations are significant (Berg et al., 2024; Yu, 2013). Overall, however, the model demonstrates its 

ability in capturing the temporal and spatial variations in snow impurity concentrations including nitrate 

in Northern China.  The considerable daily and diurnal fluctuations in simulated NITS emphasize the 675 

need for caution when comparing average values derived from the model with observations, as practiced 

in certain global modeling analyses. (Huang et al., 2011; Qian et al., 2014; Zhao et al., 2014). 

To ensure accurate representation of aerosol contents within snow requires the model to effectively 

simulate the life cycle of aerosols within snowpack, as highlighted in previous studies by Flanner et al. 

(2012) and Qian et al. (2014). Furthermore, uncertainties in the SNICAR model parameters must be 680 

quantified and constrained through observational data. Additionally, it is crucial for the model to 
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precisely replicate the atmospheric aerosol life cycle, encompassing the faithful representation of 

atmospheric aerosol levels and the accurate treatment of deposition mechanisms. Improvements in such 

model parameters and mechanisms would be necessary to further improve the agreement with 

observations. Moreover, other factors such as atmospheric chemistry mechanisms may also need to be 685 

improved to better represent nitrate chemistry, which will be addressed in the next phase of this study. 

       Given the reasonable agreements between the model and observations, we will further incorporate 

snow nitrate photolysis and the subsequent emissions of NO2 and/or HONO to the overlying atmosphere, 

investigating the potential disturbs on local to regional atmospheric chemistry with focuses on aerosol 

burden which is important for atmospheric and snow radiative balances in snow cover regions, and on 690 

the potential effects on air quality originating from the winter snow cover to the downwind regions in 

Northern China. 
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data and scripts used for data processing in this study can be downloaded from 
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