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Abstract. This paper introduces the AtsMOS workflow, designed to enhance mountain meteorology predictions through the

downscaling of coarse numerical weather predictions using local observational data. AtsMOS provides a modular, open-source

toolkit for local and large-scale forecasting of various meteorological variables through modified Model Output Statistics –

and may be applied to data from a single station or an entire network. We demonstrate its effectiveness through an example

application at the summit of Mt. Everest, where it improves the prediction of both meteorological variables (e.g., wind speed,5

temperature) and derivative variables (e.g., facial frostbite time) critical for mountaineering safety. As a bridge between numeri-

cal weather prediction models and ground observations, AtsMOS contributes to hazard mitigation, water resource management,

and other weather-dependant issues in mountainous regions and beyond.

1 Introduction

Accurate mountain weather forecasts facilitate improved hazard mitigation for the 300 million mountain inhabitants worldwide10

and contribute to effective sustainable resource management (e.g., Miner et al., 2020; Corbari et al., 2022). Furthermore, they

are relevant to the 1.6 billion who live downstream of mountains, and depend on their supply of freshwater or are susceptible

to their hazards (Immerzeel et al., 2020). However, producing skilful forecasts in such environments is challenging. Major

topographic variations cause large spatial variability in the weather, meaning that reality can diverge substantially from Nu-

merical Weather Prediction (NWP) grid-point forecasts within typical 102-103 km2 grid-cell areas (Zhang et al., 2022). Whilst15

consistent biases can be adjusted for (e.g., mismatches in elevation between forecast grid points and land surface locations of

interest with knowledge of the lapse rate; Minder et al., 2010), the impact of unresolved processes – for instance, local valley

or glacier winds driven by surface heat fluxes (Khadka et al., 2022) – is challenging to correct for a priori.

Although advances in NWP, such as finer grid resolutions and refinement of physical parameterisation schemes, may enhance

forecast performance in mountainous terrain, progress can be costly and slow (Bauer et al., 2015). A cheaper, faster, and more20

flexible option to improve forecasts for target locations is to statistically post-process NWP output through calibration to
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observations. Model Output Statistics (MOS), which applies multiple linear regression to adjust forecast fields, has historically

been the most popular method in this regard (Glahn and Lowry, 1972; Glahn, 2014). In particular, MOS can be used to

create forecasts of variables (predictands) not available in NWP model output (Rasp et al., 2020). Recent advancements in

computational power have enabled machine learning to improve the performance of weather forecasts (Lam et al., 2023),25

including through post-processing (e.g., Lagerquist et al., 2017; Herman and Schumacher, 2018; Han et al., 2021; Grönquist

et al., 2021).

However, practical barriers may limit the uptake of such developments at scale. For example, without reference workflows

to facilitate the non-trivial task of accessing and pre-processing large NWP datasets forecasts improved by machine learning

are unlikely to reach the diverse range of potential end users in mountainous environments (Table 1). The benefits of highly30

accurate local weather predictions for use in other (e.g., hydrological) modelling chains may not be achieved if such forecasts

are not made available in an interoperable format that follows well-known conventions, such as the ‘CF’ – Climate and Forecast

convention (Eaton et al., 2023).

Table 1. Examples of weather variables (predictands) and sectors in which highly accurate, site-specific forecasts may be desirable. 1The

term mountaineering is used to represent a wider set of similar activities – e.g., hiking, skiing and climbing.

Predictand Example sector(s)

Precipitation amount and phase Hazard forecasting (flood, avalanche); resource planning

Maximum wind gust Aviation; 1mountaineering; hazard (avalanche) forecasting

Ground temperature (Road) transport; mountaineering

Wind chill temperature Mountaineering

Cloud base and cloud top Aviation; mountaineering

Probability of rime ice accretion Communications

Facial frostbite time Mountaineering

Hence, our paper aims to introduce a user-friendly, lightweight version of MOS to fill this gap. We describe modular Python

code that calibrates and applies MOS, including state-of-the-art machine learning algorithms, to produce corrected forecasts in35

an interoperable format that can feed into other automated workflows to enable at-scale MOS. We anticipate that these features

of AtsMOS will, combined with efforts to improve the availability of high-altitude weather observations worldwide (GEO

Mountains 2022), offer a step change in the ability to forecast critical mountain weather variables.

In Section 2 we describe the main features of AtsMOS, before illustrating its use in forecasting the weather on the summit

of Mt. Everest, where highly accurate predictions can be the difference between life and death (Section 3). In Section 4 we40

discuss opportunities and challenges in using AtsMOS more broadly.
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2 The AtsMOS workflow

2.1 Workflow overview

AtsMOS is designed to be a computationally light and flexible template. It has (i) a flexible loading and preprocessing module,

which draws in external data, deals with erroneous or missing data and prepares it for further analysis. Our code here is intended45

as a template such that users may set up their own data loading and pre-processing as the need arises. We do not, therefore,

describe each operation in detail but instead refer readers to the documented AtsMOS jupyter notebook associated with this

paper. (ii) A core processing module, comprising a modular suite of statistical and machine learning techniques to calibrate

and perform data corrections, with XGBoost being the default and most advanced option. (iii) A post-processing module to

calculate derivative variables and export the data in the self-describing and interoperable MDF format (GEO Mountains, 2022;50

Figure 9).
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Figure 1. Overview diagram of the AtsMOS workflow. The loading of historical GFS data and loading and preprocessing of instrumental

data are flexible components subject to user modification, while the others are fixed in this workflow.
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2.2 Data access and preprocessing

AtsMOS is currently designed to be used with data from the Global Forecasting System (GFS) data from the US National Cen-

tre for Atmospheric Research, which is freely available on a global scale and real-time basis (https://rda.ucar.edu/datasets/ds084.1/).

Alternative global or regional numerical prediction models, such as those produced by the European Centre for Medium-Range55

Weather Forecasts (ECMWF) or national meteorological agencies would also be suitable, particularly if real-time data can be

accessed through an Application Programming Interface (API).

GFS forecasts are computed every 6 hours, with a lead time from 0 to 384 hours (16 days). Pressure-level data are generally

preferred for mountain forecasting applications because the real-world surface in such regions is likely to be very different (e.g.,

in elevation and surface type) from the model surface (Mass et al., 2008), and hence we anticipate greater general predictability60

using data from the free atmosphere. We evaluated different methods for accessing GFS data and found that the web subsetting

form is generally the most convenient for accessing historical archive data (rda.ucar.edu/datasets/ds084.1/dataaccess/), while

the online THREDDS server is best for downloading real-time data (https://tds.scigw.unidata.ucar.edu/thredds/catalog/idd/forecastModels.html).

As such we include a preset module in AtsMOS for both automatically downloading and pre-processing real-time data, but

only apply the pre-processing for the historical archive data. Historical archive data need only be downloaded once for pre-65

trained MOS models to be created (see below), which may then be run on any real-time data, ensuring the model remains

computationally efficient.

We include example scripts in the AtsMOS jupyter notebook used to preprocess instrumental data (Figure 2). For instance,

it is often necessary to synchronise measurement and NWP measurement measurement timings - in the Everest example

presented below instrumental data has a higher measurement frequency than the GFS data (6-hours). We also include scripts70

for error-checking and filtering of unreliable data, although we note that these are heavily dependent on the type and location of

the sensor. We encourage users to carefully consider what if any, processing steps are necessary to field data treated as ’ground

truth’, as any errors or biases remaining will be learnt by the model. We discuss this in further detail in our limitations section.

2.3 Core machine learning

For the core processing, AtsMOS applies Model Output Statistics (MOS) to the GFS data, with a range of possible correction75

algorithms for the user to select from depending on predictand type (e.g., binary or continuous) and the weighting of inter-

pretability versus performance (Table 2). In our case study below (Section 3), we compare the results from applying simple

linear regression and XGBoost (Chen and Guestrin, 2016). Linear regression works well when the relationship between the

predictor and target variable is approximately linear. Its coefficients provide clear insights into the impact of each feature,

making it valuable for tasks where interpretability is crucial. However, linear regression cannot resolve nonlinear relationships80

in the data (without transformations to the input variables) and is sensitive to data quality and outliers limiting its predictive

performance in many real-world cases. We implement a standard ordinary least-squares-based linear regression algorithm in

AtsMOS, which does not require any parameter choices.
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XGBoost is at the other end of the complexity spectrum, combining decision trees with gradient boosting to improve com-

putational efficiency and predictive performance, particularly in high-dimensional, nonlinear data scenarios. It has been shown85

to outperform most methods in terms of predictive accuracy (Chen and Guestrin, 2016) and is robust to overfitting, but its

complexity can make it less suitable in cases where model transparency is essential and understanding the reasons behind

incorrect predictions is key. A range of different parameters in XGBoost can be modified from their default values, including

the type of objective function used (here, squared error), the learning rate (here, 0.1), the number of estimators (here, 250), the

maximum tree depth (here, 4) and more (Chen and Guestrin, 2016). There is no parameter set that is optimal for all datasets.90

We tune the default parameters for AtsMOS based on the Mt Everest case study described in section 3, which we expect to

be broadly applicable (if not optimal) for a wide range of cases. Users may easily run custom hyperparameter tuning for other

custom datasets, but we do not include this in the default workflow due to its high computational cost.

AtsMOS is designed to be modular, such that users can easily define new core ML processing algorithms where either

methodological advances or specifics of their dataset demand a different approach. We implement linear regression, Random95

Forest, and XGBoost algorithms, and note that most alternative ML techniques implemented in the scikitlearn python package

can also be used by changing a single line of code. An overview of the advantages and limitations of the different models

implemented is provided in Table 2. Beyond the initial model evaluation (discussed in section 3.3), we do not split the in-

strumental data into testing and training data. Instead, we train the ML model of choice using the full instrumental record to

maximise both the volume and diversity of training data. We train a separate ML model for each forecast lead time as data error100

is expected to vary with lead time. All pre-trained ML models are saved once training is completed, and can be directly loaded

from file for future AtsMOS runs. In cases where no new instrumental data is available, this enables highly-efficient runs in

which model training can be bypassed entirely (Figure 2). Where novel instrumental data is regularly available, we recommend

periodic re-training of ML models to maximise expected forecast skill.

2.4 Post processing and validation metrics105

Once the appropriate ML model has been trained using the historical data, AtsMOS can process the real-time GFS forecast

to produce corrected forecasts. The calibrated forecast may be a continuous variable (e.g. wind speed), a probability (e.g.

probability of winds above a given threshold), or a binary categorized field (e.g. winds above or below a given threshold)

depending on the processing choices made and project requirements. We also highlight that the flexible approach of AtsMOS

enables prediction of any variable for which observations exist, and which are sensitive to the atmospheric state. We showcase110

this in Section 3, making predictions for facial frostbite time – an important variable for mountaineering, which is not available

as a direct output from any NWP model.

We use a range of possible metrics to evaluate model performance, including three primary metrics: Kling-Gupta Efficiency

(KGE; Gupta et al., 2009), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). These metrics provide a

comprehensive assessment of the model’s accuracy, precision, and overall performance. KGE offers a balanced evaluation by115

combining correlation, bias, and variability, making it particularly suitable for hydrological and meteorological applications.

MAE measures the average magnitude of errors, providing a straightforward interpretation of forecast accuracy. RMSE, on
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Table 2. Different machine learning algorithms currently implemented in AtsMOS, along with strengths and weaknesses. AtsMOS is mod-

ular, and users can easily define new core processing algorithms.

Algorithm Description Strengths Weaknesses

Linear regression Regression using ordinary least

square fit

Computationally efficient, ex-

plainable

Sensitive to outliers, liable to

overfitting, many assumptions

(linearity, normality of errors).

Cannot resolve nonlinear rela-

tionships in the data.

Random Forest Scikitlearn ensemble decision

tree regressor

Computationally efficient for

large parameter spaces, robust

to multiple non-dependent vari-

ables, allows for easy inspec-

tion of feature importance to

enhance model interpretability

Computationally expensive for

large datasets, lower reliability

for unbalanced datasets, more

complex than regression.

XGBoost Optimized distributed gradi-

ent boosting and parallel tree

boosting algorithm

Most advantages listed for Ran-

dom Forest, computationally

efficient for large parame-

ter spaces, highest accuracy

method in several machine

learning competitions

Limited interpretability relative

to other algorithms, remains li-

able to overfitting for small

training datasets, cannot rea-

sonably extrapolate beyond the

range captured in the training

data.

the other hand, emphasizes larger errors, highlighting potential issues in model predictions. Additionally, our implementation

supports a variety of other metrics which may be added if users require, including R2, residual skewness, residual kurtosis,

slope, intercept, Nash-Sutcliffe Efficiency (NSE), correlation, relative variance, and bias, allowing for a thorough validation of120

the model across different aspects of performance and different expected error profiles.

2.5 Data export

As a final stage in AtsMOS, the corrected forecast variables are saved along with their metadata in the self-describing and

interoperable MDF format (GEO Mountains, 2022). This final export stage has the benefit of: (i) enabling easy usage of the

custom forecasts in other applications, or plotting dashboards; (ii) ensuring that the variables are saved with all necessary125

context for long-term archiving; and (iii) through standardized nomenclature, enabling easy comparison with other forecast

datasets and external validation.
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Figure 2. AtsMOS process workflow, described further in the documented AtsMOS jupyter notebook at zen-

odo.org/doi/10.5281/zenodo.10889509.

Overall, the AtsMOS workflow is designed to be lightweight and flexible, while enhancing the predictive skill of large-scale

forecasts using local observations.

3 Example application: Mt Everest summit meteorology130

3.1 Background

As the highest peak on Earth, Mt. Everest sees hundreds of attempts to scale its 8850 m a.s.l summit each year. Fatalities are

common, including 17 fatalities in spring 2023 (Ellis-Petersen, 2023), and an overall mortality rate of around 1 % over the past

decade (Huey et al., 2020). Weather is a major contributor to these, playing a role in 25 % of deaths (Firth et al., 2008), due
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to the hazard from extremely low barometric pressure (low oxygen availability) and severe cold hazard that climbers may be135

exposed to (Moore and Semple, 2006; Matthews et al., 2020a, 2022). The latter is sensitive to wind speed (Moore and Semple,

2011), which if high enough may also directly blow climbers off the mountain. Therefore, climbers limit their summit attempts

to periods when the Subtropical Jet’s retreat leaves lower wind speeds on the mountain. Therefore, accurately forecasting these

periods of lighter winds is critical for minimizing the risk of climbing Mt Everest.

Whilst deciding the acceptable wind speed threshold for summit attempts is dependant on individual climbers’ risk tolerance,140

physical considerations suggest that a human with an effective surface area (Ap) of 0.5 m2 is at risk of being blown over if the

wind force (F ) exceeds 72 N (Hugenholtz and VanVeller, 2016; McIlveen, 2002). F is related to the wind speed (v) according

to:

F =
1

2
ρv2ApCD (1)

where ρ is the air density (kg m−3) and CD is the drag coefficient (dimensionless). Using CD=0.6 from McIlveen (2002),145

the critical wind speed (vc) yielding 72 N can be evaluated:

vc =

√
144

(0.3ρ)
(2)

At the altitude of the highest camp (the South Col: 7,945 m a.s.l:Figure 3) on Mt. Everest’s main route from Nepal –

which marks the beginning of the ‘death zone’ – ρ (which depends on temperature and pressure) is, on average, 0.52 kg m−3,

translating to vc = 30.3 m/s according to data from May 2019 until June 2023 (see the following section). To illustrate the use150

of AtsMOS for the delivery of decision-critical forecasts we therefore use a new network of Mt. Everest weather stations (see

below) to develop predictions of (1) absolute wind speed; and (2) the probability of speeds exceeding both 30 m/s and 20 m/s.

The upper threshold is used to identify dangerous winds (high hazard), whilst the lower we regard as potentially dangerous

(medium hazard) and hence a conservative threshold for identifying suitable weather for a summit attempt. We also showcase

the flexibility of AtsMOS to directly forecast key variables such as windchill temperature and facial frostbite time.155

3.2 Mount Everest weather data

In spring 2019, a network of five automated weather stations was installed on the Nepali side of Everest, known locally as

Sagarmatha or Qomolangma, including three stations above the basecamp at Camp 2 (6464 m), the South Col (7945 m), and

Balcony (8430 m; Matthews et al. (2020a)). Of these, the two highest stations: the ‘South Col’ (7,945 m a.s.l) and the ‘Balcony’

(8,430 m a.s.l) were positioned to monitor the potentially dangerous winds on the upper mountain. However, the Balcony’s160

record is relatively short (due to wind damage), and considered unrepresentative of the upper mountain due to sheltering under

common flow directions. A further station was installed at 8810 m altitude on the highest elevation exposed bedrock near the

summit (the ‘Bishop Rock’) in Spring 2022, which is currently the highest altitude weather station in the world with publicly
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available data (Matthews et al., 2022). Note that another station was installed by a Chinese team at a similar altitude on the

North side of the mountain in 2022, although its status and data availability are unknown.165

Biship Rock (Summit)
Station
8.810 m

Figure 3. Location of the weather stations on Mt Everest. Modified after (Matthews et al., 2020b)

Three of the four weather stations (Bishop Rock or ‘Summit’, Balcony, and South Col) were installed with two separate wind

speed sensors. The dual-sensors were installed for redundancy in the event of one failing, but are also valuable for evaluating

the reliability of wind speed observations. Recovery of destroyed monitoring equipment showed that the wind-speed sensors

can suffer mechanical failure (breakage of the anemometer cups) and growth of rime-ice that result in incorrect measurements,

but that is not evident from a single time series. Therefore, we apply a moving-window cross-correlation between the two170

sensors’ time-series in the pre-processing stage of AtsMOS to identify periods of decorrelation and unreliable data. We use a

minimum correlation threshold of 0.9 measured over a 14-day window for both the mean and maximum hourly wind speed

(measured at 5-s intervals) to determine reliable data and mask out data points falling below this threshold (Figure 5 top two

rows).

Only the South Col station has a data record covering a period longer than a few months and across multiple years. While175

this station is located almost 1000 m below the summit, its position at the head of the Khumbu Valley with an open westerly

aspect (the dominant wind direction) means that its wind speeds are very similar to the summit (Pearson’s r-value = 0.85). We

apply the dual-sensor correlation threshold (0.9), and filter out winds with a direction outside the range 270 ± 45 degrees due

to the risk of topographic shielding outside this window. The lower elevation leads to a slight negative bias in wind speed at

the South Col, which is on average 18% slower than summit winds. We linearly regress the remaining South Col wind record180
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against the filtered summit record and use this to create a synthetic summit record. The resulting record contains just over 1

year of data, spread across two 6-month periods from 06/2019 to 01/2020 and 05/2022 to 01/2023 (Figure 5).

For the NWP component of the AtsMOS loading and pre-processing stage data were loaded and pre-processed from the

Global Forecasting System (GFS) (https://rda.ucar.edu/datasets/ds084.1/) We downloaded all 10 variables: precipitation, tem-

perature, relative humidity, N-S wind speed, E-W wind speed, vertical velocity, geopotential height, absolute vorticity, cloud185

mixing ratio, and ozone mixing ratio. We choose to include all variables (irrespective of whether physical connections to the

predictand could be identified a priori) because (i) their variations could provide insight into relevant sub-grid scale process,

and (ii) the default machine learning method we select (XGBoost) is robust to overfitting and collinearity. A user-supplied list

of variable names can also be supplied to AtsMOS to limit the variables used in model fitting. The data were downloaded for

a 9x9x3 data cube centred on the summit of Sagarmatha/Qomolangma, with 9 data points in each horizontal direction (from190

27-29 degrees latitude and 86-88 degrees longitude at 0.25 degree spacing) and 3 vertical pressure levels (350, 400, and 450

hPa). We use the geopotential height from the three pressure levels to linearly interpolate or extrapolate all variables to a fourth

vertical level, corresponding to the summit elevation at 8849 m. Finally, we calculate the horizontal and vertical gradients

in the 9 variables, to further account for potential drivers of relevant sub-grid scale processes. A full list of all 172 variables

and derivatives used is in the supplement. We separately download the GFS historical archive (via the NCAR web portal) and195

real-time GFS forecast (programmatically from the THREDDS server - see notebook), with the former used to calibrate our

data corrections and the latter used to produce corrected forecasts.

For the core processing component of AtsMOS we use (simple) linear regression and (complex) XGBoost algorithms to

improve the GFS forecast for the wind speed at the summit of Sagarmatha/Qomolangma. To avoid issues with temporal

autocorrelation of training and validation data, we split our time series in half in January 2021. This test-train split provides200

us with 6 months of training data and 6 months of validation data from 06/2019 to 01/2020 and 05/2022 to 01/2023. We run

each MOS algorithm twice, once training on data from 2019 and testing on data from 2022 and vice versa. Linear regression

is applied using just the GFS model wind speed interpolated to the 8849 m summit altitude as the only predictor variable;

XGBoost, on the other hand, is trained using all 172 GFS variables and spatial derivatives. We reproduce the simple and

complex MOS workflows for several GFS lead times: analysis (0 h nowcast), 24 h, 48 h, 120 h (5 day), and 240 h (10 days).205

While predicting Sagarmatha/Qomolangma wind speed as a continuous variable is scientifically interesting, a categorical

prediction of dangerous versus safe winds may be of more use to the majority of potential end users (Sherpas and mountaineers).

We therefore employ a wind speed threshold of 30 m.s-1 to classify our synthetic wind time series into a time series of

dangerous winds. We also use a second, lower threshold of 20 m.s-1 to classify potentially dangerous winds. A wind speed of

30 m.s-1 corresponds approximately to the wind speed required to blow a human off their feet at Sagarmatha/Qomolangma210

summit conditions (Section 3.1) We intentionally do not call winds below this threshold ‘safe’ as they can still be hazardous in

a range of ways (including slowing ascents and increasing exposure), but they correspond to conditions during which – at least

in principle – a typical climber should not be in danger of being blown from the mountain. We use the same XGBoost MOS

to run the categorical forecast, using GFS lead times of 0 h (analysis), 48 h, and 240 h (10 days). For the 0 h and 48 h lead

times we forecast dangerous winds at the native GFS 6 h temporal resolution. For the 240 h (10 days) lead time, however, we215
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inverse the problem and classify 48 h (2 days) periods during which all winds are below the given threshold. The objective of

classifying low-wind periods with a 10-day lead time is to enable earlier identification of favourable summit weather conditions

and a better distribution of climbs throughout the season to prevent potentially dangerous overcrowding.

Everest (8848 m)

Khumbu
Glacier

Ground observations

Model pressure level 3

Model pressure level 2

Model pressure level 1

Interpolation to summit elevation

Global NWP model

Local 3D grid of variables on pressure levels

Summary data table of key 
meteorological parameters

Focus on area of interest:
select relevant pressure levels 
and interpolate to elevation

Figure 4. Module for extracting key meteorological parameters from the global Numerical Weather Prediction (NWP) model around a point

of interest (typically, the location of the ground observations). Both horizontal and vertical derivatives are calculated from the NWP data to

supplement the ML training dataset.

3.3 Results and model evaluation

We test the AtsMOS dataset by training it on data from the first period (2019-2020) and predicting data over the second period220

(2021-2022) and vice versa. This enables a more robust validation than random test-train splitting of the dataset, by reducing

inflation of model ability caused by meteorological time series temporal autocorrelation. We evaluate three different learning

techniques: simple linear regression, Random Forest, and XGBoost (Figures 5, 6, 7).

Linear regression produces a reasonable overall fit to the data (Figure 6), with a model wind speed-field measured wind

speed R2 of 0.87, a root mean squared error (RMSE) of 10.59 m.s-1, and a mean absolute error (MAE) of 7.87 m.s-1. The225

Kling-Gupta efficiency of these datasets is 0.73, evaluating a combination of their correlation, relative variation, and mean
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Figure 5. Validation of observational time series. Wind speed data shown in black (upper row) was considered reliable based on the dual-

sensor correlation (lower row), while wind speed data show in red was judged unreliable and removed.

bias and with higher values reflecting a better fit (Gupta et al., 2009). In particular, linear regression successfully matches the

magnitude of winds during the majority of the low-wind (monsoon) season from July to October. However, it fails to match

the magnitude of the highest wind-speed events, with a clear overestimate evident.

Random Forest produces a good overall fit to the data, with a model wind speed-field measured wind speed R2 of 0.92 and230

a root mean squared error (RMSE) of 8.52 m.s-1, and a mean absolute error (MAE) of 6.33 m.s-1. The Kling-Gupta efficiency

of these datasets is 0.77. There are three notable improvements of the model trained with Random Forest regression relative

to standard linear regression: the estimates are more closely clustered along the 1:1 model-data line, the timings of high-wind

episodes in the model better match those observed in the data, and the magnitude of high-wind peaks better matches across

both datasets – although a small bias towards higher winds than reality remains.235

XGBoost produces a good fit to the data, with a model wind speed-field measured wind speed R2 of 0.93 and a root mean

squared error (RMSE) of 7.95 m.s-1, and a mean absolute error (MAE) of 5.97 m.s-1. The Kling-Gupta efficiency of these

datasets is 0.79. The overall performance of the model trained with XGBoost is similar to that trained with Random Forest,

with a slightly improved fit across all metrics. The timing of high-wind events is well predicted and, while the model still tends

to overestimate the magnitude of high-wind events, the bias is lower (bias score: 0.86 for XGBoost, relative to 0.84 for Random240

Forest and 0.81 for linear regression).

We then apply the AtsMOS workflow on a real-time case study for the approximately two-week (384-hour) period from 20

July 2023 to 05 September 2023 using GFS forecast data as described in the methods. As well as calculating the wind speed,

temperature, and precipitation, we compute forecasts of two derivative variables: wind chill temperature and facial frostbite

time (Moore and Semple, 2011). Both wind chill temperature and facial frostbite time are calculated based on wind speed and245

temperature forecasts according to the formulas of Moore and Semple (2011). Wind chill temperature reaches as low as -45
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Figure 6. a. Observed (Red) and modelled (black) wind speed for the first observational period at the summit, with model (here, Linear

Regression) training using only the second period (2019). b.,c.,d. Difference between modelled and observed wind speed shown as a dif-

ference bar chart, scatterplot, and histogram respectively. The statistics are as follows: R2=0.87, Root Mean Squared Error (RMSE)=10.59,

skew=0.37, kurtosis=1.25, Mean absolute error (MAE)=7.87, Nash-Sutcliffe Efficiency (NSE)=0.78 , Kling-Gupta Efficiency (KGE)=0.73,

correlation=0.93, relative variance=0.81, bias=0.81.

degrees celsius on 03/09/2023, also aligning with the shortest facial frostbite time of less than 7 minutes (Figure 9). Forecast

wind speeds do not exceed 20 m.s-1, but reach more than 19 m.s-1 on the night of 20-21 July 2023, with the short forecast lead

reducing the uncertainty for the forecast. The facial frostbite time briefly falls below 10 minutes this night also driven by the

high wind speeds, and the wind chill temperature fluctuates between -35 and -40 C – well below the air temperature (-20C),250

highlighting the importance of the wind speed in modulating the cold hazard, and thereby the value of computing this derived

variable with AtsMOS.

4 Discussion and broader applicability

The AtsMOS workflow builds on advancements in machine learning and data accessibility to improve mountain weather

forecasts by downscaling coarse numerical model outputs to specific locations of high value. Through a case study focusing255
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Figure 7. a. Observed (Red) and modelled (black) wind speed for the first observational period at the summit, with model (here, Random

Forest) training using only the second period (2019). b.,c.,d. Difference between modelled and observed wind speed shown as a difference

bar chart, scatterplot, and histogram respectively. The statistics are as follows: R2=0.92, RMSE=8.52, skew=0.39, kurtosis=1.2, MAE=6.33,

NSE=0.84, KGE=0.77, correlation=0.96, relative variance=0.84, bias=0.84.

on Mt. Everest summit meteorology, we demonstrate the effectiveness of AtsMOS in refining wind speed (and wind chill

temperatures) critical for assessing risks for mountaineering. This workflow is open-source, flexible, and computationally

cheap – enabling more accurate mountain weather predictions across many different environments.

Our Mt. Everest case study showcases a local application of the AtsMOS workflow, for an environment in which moun-

taineers and Sherpas knowingly expose themselves to potentially deadly conditions (Moore and Semple, 2006, 2011; Matthews260

et al., 2020b). Therefore, more precise meteorological forecasts are critical for expedition planning. First, by more accurately

predicting wind speeds, our system enables expedition organizers to identify windows of potentially ‘safe’ (lower wind) con-

ditions with approximately two weeks’ notice, allowing the timing of trips to the upper mountain to be determined at an earlier

date. This is invaluable for optimizing expedition scheduling, maximizing the likelihood of successful summit attempts, and

potentially improving safety by preventing dangerous overcrowding from teams rushing to exploit weather windows at late265

notice. Second, the shorter lead time, and more precise AtsMOS forecasts assist in preventing climbs during times of dan-

gerous weather, thereby enhancing safety. By providing reliable forecasts for both dangerous and potentially dangerous wind
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Figure 8. a. Observed (Red) and modelled (black) wind speed for the first observational period at the summit, with model (here, XGBoost)

training using only the second period (2019). b.,c.,d. Difference between modelled and observed wind speed shown as a difference bar

chart, scatterplot, and histogram respectively. The statistics are as follows: R2=0.93, RMSE=7.95, skew=0.29, kurtosis=1.69, MAE=5.97,

NSE=0.86, KGE=0.79, correlation=0.96, relative variance=0.85, bias=0.86.

thresholds, our workflow empowers expedition leaders to make informed decisions, avoiding ascent attempts during periods of

heightened risk.

The flexible nature of our workflow enables outputs with different levels of complexity (e.g. Figure 9), ranging from binary270

classifications (‘dangerous/safe’), raw meteorological variable forecasts (wind speed, temperature, etc.), and derivative vari-

ables (e.g. facial frostbite time). This flexibility offers a wide range of possibilities to enable expedition planners who, armed

with more information, should be able to plan safer climbs, thereby reducing the risk of attempting this iconic mountain. One

example is shown in Figure 9c, with ‘medium’ and ‘high’ hazard times delineating periods with high probabilities of strong

winds. The evaluation of hazard probability with AtsMOS is seen as a particularly important feature for end-users. If properly275

calibrated, it more clearly aligns the forecast product with decision-making. Without the MOS approach here, expedition plan-

ners would likely need to consult ensemble forecasts (e.g., the Global Ensemble Forecasting System) to produce comparable

probabilities, associated with a non-trivial increase in data processing for support teams; and/or burden on the expedition plan-

ner to interpret the forecast. Of course, we also note here for AtsMOS to be used within such ensemble forecasting systems –
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Figure 9. Example of real-time forecast for wind(a.), precipitation (d.), temperature (e.), as well as derivate variables of wind chill temperature

(f., WCT) and facial frostbite time (g., FFT; Moore and Semple, 2011). The raw GFS estimates of wind speed and precipitation are shown

in red alongside our predictions, note how the AtsMOS wind speed estimates are substantially higher and precipitation substantially higher.

The probability of exceedance of different wind speed thresholds, 20 and 30 m/s, is also shown in (b.), with related hazard classification with

medium hazard denoted as >20% probability of winds exceeding 20 m/s and high hazard as >20% probability of winds exceeding 30 m/s.
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for example, propagating the ensemble members through the ML algorithms calibrated on the deterministic forecast to explore280

uncertainty more fully. This can ultimately combine the benefits of both the ensemble forecast and reduced bias from local

calibration.

While the AtsMOS workflow’s potential to improve local mountain meteorology forecasts is promising, it is important to

acknowledge its limitations. The most significant constraint lies in the workflow’s dependence on the two underlying data

sources: numerical weather prediction data and instrumental/field data. AtsMOS outputs therefore rely on the assumption that,285

while these datasets may contain uncertainties or noise, they both contain real and useful information about local meteorological

conditions. There are a number of scenarios in which this may not be the case for either dataset, for instance, large-scale NWP

models missing key local processes (leading for example, to a poor representation of convection), or sensors may become

degraded and record false data (for instance, a wind sensor covered in rime-ice). This limitation is present at both the training

and prediction stages of the process. The effectiveness of the workflow is, therefore, highly dependent upon the availability290

and quality of ground observations, which are particularly rare in remote and high-altitude regions like Mt. Everest (Matthews

et al., 2020a; Thornton et al., 2022). The applicability of AtsMOS may also be limited in regions with unique or extreme

meteorological conditions not adequately captured by existing NWP models – even with the aid of machine learning to extract

additional information. – which may be of concern if these regions are of particular interest for hazard mitigation. We note,

however, that the latter may be guarded against by using near real-time (i.e., lagged) observations from the telemetry-enabled295

weather stations (Chkeir et al., 2023).

We also highlight caution in the application of machine learning algorithms. Whilst techniques like Random Forest and

XGBoost can offer enhanced predictive capabilities, they may also introduce complexities in model interpretation and require

careful validation to ensure robust performance. These limitations underscore the need for ongoing refinement and validation

of the workflow to optimize its utility and effectiveness in diverse mountainous environments. One specific concern in the300

usage of tree-based machine learning algorithms such as Random Forest or XGBoost is that they cannot reasonably extrapolate

beyond the range captured in the training data. This is a particular concern in areas with strong seasonal variation, where

training on one season alone may lead to failure to produce meaningful predictions in the other season. In the case of Everest,

this limitation is mitigated by having data covering the transition from low to high wind season, but in areas where this is not

possible alternative methods may need to be considered.305

Another type of ‘overfitting’ may occur if machine learning inadvertently reproduces biases in the observations, for example,

due to instrumentation errors. This challenge should be taken seriously, as the error could be systematic and dangerous. For

example, if icing of wind sensors occurred preferentially in conditions of low temperature and high winds (i.e., periods of

greater cold stress), the machine learning, trained on the errors, would underestimate the hazard most when it was greatest.

Such risks highlight the importance of thoroughly quality checking the observations in the pre-processing stage of the AtsMOS310

workflow. We note that, on Mt. Everest, the station design enables the detection of such icing through the use of redundant

wind sensors (Matthews et al., 2020a, 2022). We hope that ongoing efforts to develop a Universal High Altitude Observing

Platform (to enhance mountain weather monitoring worldwide) also be designed with such challenges in mind (Napoli et al.,

2023). More generally, we emphasise that the AtsMOS approach to forecast improvement differs from efforts to embed ML in

17



NWP (e.g. Frnda et al., 2022). In this case, ML algorithms do not replace high-quality observational data; rather they emphasise315

the need for it and amplify any limitations of the data. By investing in data quality and instrumentation and leveraging ML

alongside this, we increase our potential for accurate and actionable meteorological forecasts in mountainous regions.

In addition to ensuring the accuracy and reliability of sensor data, effective data management practices are crucial for

maximizing the utility and impact of field datasets, particularly in the context of mountain meteorology. Good metadata, which

provides detailed information about the characteristics and origins of the data, is essential for understanding and interpreting320

observational datasets. Interoperability, where data can be integrated and exchanged across different platforms and systems

with minimal barriers, becomes increasingly important when considering the generalizability of findings and methodologies

to other mountainous environments. While the specific challenges and characteristics of each mountain region may vary, the

fundamental principles and approaches developed for mountain meteorology research can often be applied more broadly and

insights and techniques developed in one region can inform and benefit studies in others. Promoting robust data management325

practices is key for both the effectiveness of individual research efforts and the broader advancement of mountain meteorology

as a field.

Whilst we have demonstrated the added value of improving weather forecasts for Mt. Everest with AtsMO, we anticipate

much greater benefits from this approach than just improving the safety of mountaineering expeditions. For instance, the ability

to forecast thresholds for rainfall-triggered landslides, snow avalanches, or flooding relies heavily on accurate meteorological330

data and predictive models. By integrating high-resolution local meteorological data from AtsMOS into early warning systems,

communities can better prepare for and respond to extreme weather events, reducing the risk of casualties and damage. Fur-

thermore, on a regional or national scale, the integration of detailed mountain meteorology datasets into larger-scale networks

enhances the effectiveness of early warning systems by providing comprehensive coverage of weather patterns and potential

hazards across diverse landscapes. Improved prediction of meteorological conditions in mountainous regions has far-reaching335

implications for promoting the resilience and safety of mountain communities and ecosystems and is an important component

of effective early warning systems for many hazards.

5 Conclusion

In conclusion, the AtsMOS workflow represents a computationally efficient template for downscaling numerical model out-

puts using one or a small number of field observations. The template outlines a flexible, modular workflow, for custom pre-340

processing of field observations or numerical weather model outputs depending on the need, and provides several possible

core learning algorithms ranging from simple linear regression to more complex Random Forest and XGBoost. We explore

an example application at Mt. Everest, which demonstrates its practical utility in improving the prediction of critical weather

parameters for mountaineering safety. There are limitations to this approach, including reliance on high-quality sensor data

and potential biases inheritance in machine learning algorithms. Moving forward, continued research and observation network345

development hold promise for improving the accuracy and reliability of mountain meteorology forecasts, ultimately enhancing

hazard mitigation efforts, and contributing to the resilience of communities living in these landscapes.
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