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Abstract. Organic matter (OM) composition plays a central role in microbial respiration of dissolved organic matter 13 

and subsequent biogeochemical reactions. Here, a direct connection of organic carbon matter chemistry and 14 

thermodynamics to reactive transport simulators has been achieved through the newly developed Lambda-15 

PFLOTRAN workflow tool that succinctly incorporates carbon chemistry data generated from Fourier transform ion 16 

cyclotron resonance mass spectrometry (FTICR-MS) into reaction networks to simulate organic matter degradation 17 

and the resulting biogeochemistry. Lambda-PFLOTRAN is a python-based workflow, executed through a Jupyter 18 

Notebook interface, that digests raw FTICR-MS data, develops a representative reaction network based on substrate-19 

explicit thermodynamic modeling (also termed lambda modeling due to its key thermodynamic parameter λ used 20 

therein), and completes a biogeochemical simulation with the open source, reactive flow and transport code 21 

PFLOTRAN. The workflow consists of the following five steps: configuration, thermodynamic (lambda) analysis, 22 

sensitivity analysis, parameter estimation, and simulation output and visualization. Two test cases are provided to 23 

demonstrate the functionality of the Lambda-PFLOTRAN workflow. The first test case uses laboratory incubation 24 

data of temporal oxygen depletion to fit lambda parameters (i.e., maximum utilization rate and microbial carrying 25 

capacity). A slightly more complex second test case fits multiple lambda formulation and soil organic matter release 26 

parameters to temporal greenhouse gas generation measured during a soil incubation. Overall, the Lambda-27 

PFLOTRAN workflow facilitates upscaling by using molecular-scale characterization to inform biogeochemical 28 

processes occurring at larger scales. 29 
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1 Introduction 31 

Microbial respiration of dissolved organic carbon (DOC) is a main driver of environmental biogeochemical processes. 32 

Mechanistic biogeochemical models often rely on lumping organic matter into a few distinct carbon pools (e.g., 33 

dissolved, sorbed, mineral associated or refractory, labile, etc.) (e.g., Fatichi, et al., 2019, Robertson et al., 2019, Wang 34 

et al., 2013) but do not fully consider the properties of the organic matter (OM) compounds individually. Pooled 35 

carbon approaches have benefits, such as assigning variable levels of bioavailability, however, this approach does not 36 

capture the complex temporal dynamics of respiration driven by OM composition, as aerobic respiration rates have 37 

been linked to organic carbon concentration, thermodynamics of the OM (Stegen et al., 2018, Garayburu-Caruso et 38 

al., 2020), as well as the diversity of OM compounds present (Lehmann et al. 2020, Stegen et al., 2022). Such findings 39 

highlight the importance of incorporating individual OM chemistry into biogeochemical modeling to capture, and 40 

ultimately predict, system behavior more accurately. 41 

There are many advanced instrumentation techniques capable of detecting and identifying individual OM formulae 42 

that comprise a bulk OM sample (e.g., GC-MS, HPLC-MS, Fourier transform ion cyclotron resonance mass 43 

spectrometry [FTICR-MS], etc.). For instance, FTICR-MS is a powerful, high-resolution, method that identifies 44 

molecular formulae for individual organic compounds. In any given environmental sample, FTICR-MS (or other ultra 45 

high-resolution methods) will typically resolve thousands of discrete OM molecular formulae, each with a unique 46 

mass and elemental composition (Cooper et al., 2020, Bahureksa et al., 2021). UnfortunatelyHowever, untargeted 47 

analytical techniques like FTICR-MS are only able to determine if a compound is present and cannot quantify the total 48 

concentration associated with each organic matter molecule. Still, such techniques do provide immense amounts of 49 

characterization data encompassing a deeper analytical window than measuring a small number of individual 50 

biomarkers quantitatively (e.g., Ward et al., 2013). However, the ability to Uutilizinge such high-resolution molecular 51 

data in reactive transport modeling frameworks affords new opportunity to advance carbon cycling in terrestrial, 52 

riverine and coastal systems despite of has remained a challenge and is typically not consideredvarious theoretical and 53 

computational challenges.  54 

Substrate-explicit thermodynamic modeling (SXTM) provides an avenue for incorporating individual OM reactivity 55 

based on thermodynamics (Song et al., 2020) into reactive transport models. The SXTM procedure takes the individual 56 

chemical formula derived from FTICR-MS (or another high-resolution technique) and uses its thermodynamic 57 

properties to generate an oxidation reaction for each molecular formula present in a sample. The corresponding 58 

reaction stoichiometry is then determined by considering catabolic, anabolic, and metabolic reactions and balancing 59 

energy for the overall metabolic reaction, allowing for the development of an aerobic respiration expression for each 60 

OM formula.  61 

Still, the sheer number of compounds identified in each sample proves difficult for model integration.  Typically, 62 

reactive transport simulators consider only a small number of primary species in their reaction networks, and most 63 

could not support modeling each of the thousands of organic matter molecules individually. Here, the developed 64 

Lambda-PFLOTRAN workflow addresses this challenge through grouping, or binning, similar compounds based on 65 



   

 

3 

 

their thermodynamic properties, allowing for the number of species considered within the reaction network to be 66 

reduced, and thus decreasing the required computational resources.  67 

Lambda-PFLOTRAN is a python-based workflow that digests raw FTICR-MS data, develops a representative reaction 68 

network based on substrate-explicit thermodynamic modeling (Song et al., 2020), and completes a biogeochemical 69 

simulation with the open source, parallel reactive flow and transport code, PFLOTRAN (Hammond et al., 2014). 70 

PFLOTRAN is developed under an open source, GNU LGPL license. The term ‘lambda’ is used here because λ is a 71 

key parameter in the SXTM, which quantifies thermodynamic favorability of aerobic respiration of OM. The 72 

connection between the unique reaction network developed for each FTICR-MS sample hinges on the use of 73 

PFLOTRAN’s reaction sandbox capability (Hammond, 2022). The reaction sandbox gives the ability to define 74 

additional custom, kinetic reactions beyond standard formulations (e.g., mineral precipitation-dissolution, Michaelis-75 

Menten, etc.). The Lambda-PFLOTRAN workflow enables upscaling by using molecular-scale information to inform 76 

larger scale biogeochemical processes occurring throughout a watershed which can be simulated with PFLOTRAN. 77 

Herein we describe the Lambda-PFLOTRAN workflow process including the governing expressions, workflow steps, 78 

data requirements, as well as the associated assumptions and limitations. Two illustrative test cases are also included 79 

to demonstrate the use of the workflow. to utilize, parametrize, and model real datasets.  80 

2 Methods 81 

2.1 Conceptual Model 82 

Respiration modeling herein is based on thermodynamic theory by Desmond-Le Quemener and Bouchez (2014) which 83 

was updated for multiple OM formulas by Song et al. (2020). The generalized form of OM molecule is assumed to 84 

take the form of CaHbNcOdPeSz
f. Each molecular formula then undergoes respiration (i.e., reaction with oxygen) based 85 

on the following general reaction expression:  86 

𝑦𝑂𝑀𝑖
𝑂𝑀𝑖 + 𝑦𝐻2𝑂𝐻2𝑂 + 𝑦𝐻𝐶𝑂3

−𝐻𝐶𝑂3
− + 𝑦𝑁𝐻4

+𝑁𝐻4
+ + 𝑦𝐻𝑃𝑂4

−2−𝐻𝑃𝑂4
−2− + 𝑦𝐻𝑆−𝐻𝑆− + 𝑦𝐻+𝐻+ + 𝑦𝑒−𝑒− +87 

𝑦𝑂2
𝑂2 + 𝑦𝐵𝐵𝑀 = 0,           (1) 88 

This generalized expression is used to describe the oxidation of any OM molecule, i, and has been normalized to one 89 

mole of biomass (BM) produced. BM is assumed to have a formula of CH1.8O0.5N0.2 (Stephanopoulos et al., 90 

1998; Kleerebezem and Van Loosdrecht, 2010). OMi represents the OM molecules as informed by FTICR-MS. Each 91 

y represents the reaction stoichiometry for that reactant (y < 0) or product (y > 0). While this expression is specific for 92 

cases where oxygen is the electron acceptor, such an expression could be updated for alternative electron acceptors.   93 

Substrate-explicit thermodynamic modeling expressions developed from Song et al. (2020) were implemented in a 94 

reaction sandbox within PFLOTRAN. The expressions were implemented in a general manner allowing for flexibility 95 

in handling variations in FTICR-MS data and several user adjustable analysis configurations. 96 

https://www.frontiersin.org/articles/10.3389/fmicb.2020.531756/full#B54
https://www.frontiersin.org/articles/10.3389/fmicb.2020.531756/full#B54
https://www.frontiersin.org/articles/10.3389/fmicb.2020.531756/full#B26
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The microbial growth kinetics are described by Eq. (2): 97 

𝜇𝑖
𝑘𝑖𝑛 = 𝜇𝑚𝑎𝑥𝑒𝑥𝑝(−

𝛼|𝑦𝑂𝑀𝐶,𝑖|

1000𝑉ℎ[𝑂𝑀𝐶.𝑖]
)𝑒𝑥𝑝(−

𝛼|𝑦𝑂2,𝑖
|

1000𝑉ℎ[𝑂2]
),       (2) 98 

where 𝜇𝑖
𝑘𝑖𝑛 is the unregulated uptake rate of reaction for OMi [hr-1],  𝜇𝑚𝑎𝑥 is the maximal microbial growth rate [hr-99 

1], 𝑦𝑂𝑀,𝑖 is the stoichiometry for OMi [mol-OM ꞏ mol-biomass-1], 𝑉ℎ is microbial harvest volume [m3]. Given the 100 

physical interpretation of 𝑉ℎ as the microbial harvest volume, it is assumed here that the value of 𝑉ℎ is the same for 101 

both OMi and O2, [OMi] is the organic matter concentration of OMi [mol-OMꞏL-1],  𝑦𝑂2,𝑖 is the stoichiometry for O2 102 

for respiration of OMi [mol-O2ꞏmol-biomass-1], [O2] is oxygen concentration [mol-O2ꞏL-1], α is a microbial unit 103 

conversion [mol-biomass] and 1000 is the conversion of m3 to L. 104 

Further, using a cybernetic modeling approach (after Song et al., 2018), all the unregulated uptake rates (𝜇𝑖
𝑘𝑖𝑛) are 105 

normalized by the sum of unregulated uptake rates across all reactions, i following Eq. (3): 106 

𝑢𝑖 =
 𝜇𝑖

𝑘𝑖𝑛

∑  𝜇𝑖
𝑘𝑖𝑛𝑛

𝑖=1

           (3) 107 

where 𝑢𝑖 is the fraction of the unregulated rate [-]. The final regulated rate, ri [hr-1] for each reaction is then computed 108 

following Eq. (4): 109 

𝑟𝑖 = 𝑢𝑖𝜇𝑖
𝑘𝑖𝑛,           (4) 110 

For implementation within PFLOTRAN, the use of inhibition terms was required to prevent negative concentrations 111 

once a reactant is nearly depleted.  For a reaction to proceed, all reactant species must be present above a minimum 112 

concentration even if the molecules do not explicitly control the respiration rate (i.e., species other than OM and O2, 113 

Eq. (2). If a reactant concentration falls below a threshold concentration, the respiration rate is inhibited. Reactant 114 

inhibition is computed by Eq. 5 (Kinzelbach et al., 1991) for reactant species j: 115 

𝑰𝒋 =  𝟎. 𝟓 + 
𝒂𝒓𝒄𝒕𝒂𝒏([𝑪𝒋]−𝑪𝒕𝒉𝒋)∙𝒇

𝝅
,         (5) 116 

where Cth,i is the threshold concentration [M], f is the threshold scaling factor [-]. The default 𝐶𝑡ℎ𝑗
 is 10-20 M.  117 

The reaction rates are also inhibited by the microbial carrying capacity of the system, Icc, as follows in Eq. (6): 118 

𝐼𝐶𝐶 = 1 −
[𝐵𝑀]

𝐶𝐶
            (6) 119 

where [BM] is the biomass concentration [mol-BMꞏL-1], CC is the biomass carrying capacity [mol-BMꞏL-1]. Icc has a 120 

non-negativity constraint, so if [BM] > CC, then Icc = 0.  121 

These inhibition factors are applied to the overall rate expression as shown in Eq. (7). 122 
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𝑟𝑖,𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑 = 𝑟𝑖𝐼𝐶𝐶 ∏ 𝐼𝑗
 
    ∀ 𝑦𝑖,𝑗 < 0,         (7) 123 

The overall individual species rates, d[Cj]/dt, [mol-speciesꞏL-1ꞏhr-1] are then computed as follows with Eq. (8): 124 

 
𝑑𝐶𝑗

𝑑𝑡
= (∑ 𝑦𝑖,𝑗𝑟𝑖,𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑

𝑛
𝑖=1 )[𝐵𝑀],          (8) 125 

where j is the species index. The total number of species includes 7 general species (i.e., HCO3
-, NH4

+, HPO4
-, HS-, 126 

H+, O2, BM (i.e., Eq (1)) and the OM species considered (i.e., typically 10). i is the reaction index, n is total number 127 

of reactions as based on the total number of OM species (typically, with this workflow n =10). 𝑦𝑖,𝑗 is the coefficient 128 

for species j in reaction i. 129 

 130 

The expression for biomass is also modified to account for biomass decay (note all biomass stoichiometries are 1 by 131 

definition): 132 

𝑑𝐵𝑀

𝑑𝑡
= (∑ 𝑦𝑖,𝑗𝑟𝑖,𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑒𝑑

𝑛
𝑖=1 )[𝐵𝑀] − 𝑘𝑑𝑒𝑔[𝐵𝑀],       (9) 133 

where kdeg is the biomass decay rate [hr-1]. 134 

 135 

2.2 Lambda Analysis and Binning 136 

To reduce the number of organic compounds considered in the simulation, OM molecules are grouped, or binned, 137 

based on their λ value computed by Eq. (10):  138 

𝜆 =
Δ𝐺𝑟,𝑎𝑛𝑎𝑏𝑜𝑙𝑖𝑐+Δ𝐺𝑟,𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

(−Δ𝐺𝑟,𝑐𝑎𝑡𝑎𝑏𝑜𝑙𝑖𝑐)
,         (10) 139 

where ∆G are the Gibbs energies for the anabolic and catabolic reactions and the associated dissipation energy, 140 

respectively. The value of λ is indicative of how many times the catabolic reaction needs to be completed to provide 141 

the energy required to synthesis one mole of biomass. Lower λ values suggest higher thermodynamic favorability of 142 

OM respiration. Using the chemical formula determined for each OM molecule, the energy balance equations are 143 

solved providing the overall reaction stoichiometry Eq. (1) and the λ is calculated. Using the λ value for each molecule, 144 

the cumulative probability distribution for the sample is produced (Figure 2). 145 
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 146 

Figure 1: Flow Chart of the Lambda-PFLOTRAN Workflow. 147 

 148 

It is this conversion from individual compounds to a distribution that is critical for reducing the entire sample down 149 

to a representative set of expressions. The λ bins are then formed by splitting the cumulative probability distribution 150 

into equally weighted sections as which to define the overall sample by. The illustrative example shown in Fig. 2 151 

demonstrates the sample distribution being divided into 10 sections (i.e., in this case each section contains 10% of the 152 

overall sample distribution).  153 
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 154 

Figure 2: Lambda binning to convert raw FTICR-MS into a representative reaction network using the cumulative probability 155 

distribution function (CDF) for Test Case 1a. Vertical lines display the average λ value for each of the 10 bins (left to right, λ bin 156 

1 to 10). 157 

 158 

Each section is used to determine a representative organic matter formula and the associated reaction and 159 

stoichiometry of that λ bin. The group of representative reactions (one per bin) is called the reaction network. A 160 

demonstrative reaction network defined by λ analysis and binning is shown in Table 1. 161 

 162 

Table 1: Reaction Network Developed from Lambda Theory for Test Case 1a 163 

Bin Number 
Representative Organic 

Matter Species Formula 
λ 𝒚OMC 𝒚HCO3

- 𝒚NH4
+ 𝒚HPO4

- 2- 𝒚HS
- 𝒚H

+ 𝒚O2 

1 C31H44N0.33O4.8P0.6S0.3 0.021 -0.05 0.64 -0.17 -0.18 0.03 0.02 -1.07 

2 C26H39N0.20O7.0P0.6S0.1 0.026 -0.07 0.68 -0.10 -0.19 0.04 0.01 -1.06 

3 C22H36N0.24O7.5P0.5S0.1 0.031 -0.08 0.69 -0.02 -0.18 0.04 0.01 -1.06 

4 C20H32N0.28O7.3P0.4S0.1 0.035 -0.08 0.72 -0.08 -0.18 0.04 0.01 -1.05 

5 C19H29N0.48O7.9P0.3S0.2 0.041 -0.09 0.79 -0.17 -0.16 0.03 0.02 -1.04 

6 C18H26N0.68O8.1P0.2S0.2 0.046 -0.10 0.85 -0.27 -0.13 0.02 0.02 -1.03 

7 C17H24N0.69O8.1P0.2S0.2 0.053 -0.11 0.90 -0.32 -0.12 0.02 0.02 -1.02 

8 C15H20N0.67O7.6P0.2S0.2 0.062 -0.13 0.94 -0.42 -0.11 0.02 0.03 -1.00 
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9 C13H19N1.13O87.4P0.1S0.2 0.073 -0.15 1.01 -0.48 -0.03 0.01 0.03 -1.00 

10 C10H15N1.56O6.5P0.1S0.2 0.100 -0.21 1.17 -0.75 0.12 0.01 0.04 -0.97 

 164 

Currently, the representative OM molecule that defines each bin is computed as the average chemical formula of all 165 

the molecules present in that λ section. The disadvantage of this approach is that unrealistic compounds are defined 166 

as representative molecules instead of realistic molecules. The issue with selecting a single, but real compound, from 167 

within each λ section resides in chemical complexity and variation - for instance some molecules may contain low 168 

levels of phosphorous or sulfur and others may not contain either element in the chemical formula. Thus, requiring 169 

the representative chemical formula to be a real compound present in the sample would create basis which would 170 

propagate through the reaction network and into the resulting biogeochemical simulation results. 171 

2.3 Lambda-PFLOTRAN Workflow 172 

The Lambda-PFLOTRAN workflow digests raw FTICR-MS data, calculates the λ distribution for the sample, 173 

generates the λ bins and corresponding reaction network, and completes a biogeochemical simulation using 174 

PFLOTRAN. Further, we incorporated sensitivity analysis and ensemble data assimilation to enable an in-depth 175 

exploration of the impact of reaction parameters on respiration as well as a straightforward parameter estimation 176 

method to fit model parameters to experimental data. 177 

The workflow is implemented through a user-friendly Jupyter notebook interface (Kluyver et al., 2016) where a user 178 

can configure the simulation parameters by adjusting initial concentrations, λ binning configuration, parameter values 179 

and/or ranges, and data assimilation options. Based on the user’s data file and the associated parameters, scripts within 180 

the Jupyter notebook write the corresponding PFLOTRAN input files, including OM molecules and aqueous 181 

chemistry. The PFLOTRAN simulations are completed locally through a Docker container making this capability 182 

much more user-friendly and accessible. The progress of the data assimilation tool used for parameter fitting is 183 

illustrated within the Jupyter notebook. The resulting best fit final biogeochemical simulation is output visually with 184 

plots and as a text file (when applicable).   185 

The Lambda-PFLOTRAN workflow steps are shown in Figure 1 and described in detail in the following subsections: 186 

2.3.1 Step 1 – Workflow configuration 187 

The first step is to set up the workflow configuration for a Lambda-PFLTORAN application. This includes specifying 188 

the file and folder locations of the following information: 1) FTICR-MS raw data file (.csv), 2) initial species 189 

concentrations file (.csv) that includes starting molar concentrations for HCO3
-, NH4

+, HPO4
2-, HS-, H+, O2 (aq), BM 190 

and total organic carbon (TOC), 3) PFLOTRAN database template file, 4) PFLOTRAN executable file, 5) workflow 191 

output folder, and if completing parameter estimation, (6) the data observation file (.csv), if applicable. 192 

The user is also asked to configure workflow settings related to: (1) the lambda analysis configuration, including 193 

number of λ bins and method to define the λ bins (i.e., cumulative vs uniform); (2) the respiration modeling parameter 194 
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setup, including the list of the parameters to be estimated and their associated upper and lower bounds and (3) the data 195 

assimilation configuration (see below).  196 

2.3.2 Step 2 – Organic Matter Chemistry using Lambda Analysis 197 

With only an input of FTICR-MS data, the workflow first performs the lambda analysis (Section 2.2) to group OM 198 

molecules into various λ bins based on each compound’s thermodynamics (Figure 2) and produce the corresponding 199 

reaction network for respiration (Table 1). The default number of λ bins is 10, although this can be adjusted in the 200 

workflow configuration by the user, if desired. The generated reaction network is then automatically parsed by the 201 

workflow into a text file that can be read by PFLOTRAN.  202 

2.3.3 Step 3 – Sensitivity Analysis using Mutual Information 203 

This step performs the global sensitivity analysis on the parameters to be estimated. Ensemble parameters are first 204 

generated by randomly sampling from their predefined ranges in the configuration step and saved into an HDF5 file. 205 

Then, the workflow generates a PFLOTRAN input deck to conduct ensemble simulations using the ensemble 206 

parameters. The generated ensemble model states enables a global sensitivity analysis using mutual information 207 

(Cover and Thomas, 2006; Jiang et al, 2022) as follows: 208 

𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)𝑌=𝑦𝑋=𝑥 ,     (11) 209 

where x and y are the specific values of X and Y, respectively; H(Y) is the Shannon’s entropy of Y; H(Y|X) is the 210 

conditional entropy of Y given X; p is the probability density function. Higher I indicate stronger sensitivity between 211 

X and Y. Besides sensitivity analysis, the ensemble parameter/states also serve as the prior information for parameter 212 

estimation at the next step. 213 

2.3.4 Step 4 – Parameter Estimation using Ensemble Smoother for Multiple Data Assimilation 214 

The workflow adopts Ensemble Smoother for Multiple Data Assimilation (Emerick and Reynolds, 2013; Jiang et al, 215 

2021), abbreviated as ESMDA, for data assimilation in this step. Rooted in ensemble Kalman filter, ESMDA is an 216 

iterative data assimilation approach that assimilates the observations on the entire time period for multiple times to 217 

reduce the uncertainty of the estimated or posterior parameters. During each iteration of ESMDA, the model 218 

parameters are updated based on the following equation: 219 

𝑚𝑘,𝑙
𝑢  = 𝑚𝑘,𝑙

𝑓 
+ 𝐶𝑀𝐷,𝑙

𝑓
(𝐶𝐷𝐷,𝑙

𝑓
+ 𝛼𝑙 𝐶𝐷)

−1
(𝑑𝑜𝑏𝑠 + √𝛼𝑙𝐶𝐷

1

2𝑧𝑘 − 𝑑𝑘,𝑙
𝑓

) ,  𝑘 = 1, … , 𝑁𝑒  𝑎𝑛𝑑 𝑙 = 1, … , 𝐿,   (12) 220 

where the subscripts k and l are the indices of the ensemble member and the iteration, respectively; the superscripts u 221 

and f are the updated and forecast parameters or states, respectively; Ne is the number of ensemble members; L is the 222 

number of iterations; mf
k,l  and mu

k,l
 are the kth ensemble member of the forecast/prior and updated/posterior 223 

parameters, respectively, at the lth iteration; dobs is the observation; zk is the observation noise sampled from 224 
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independent standard normal distributions for the kth ensemble member; df
k,l is the kth ensemble member of the 225 

predicted observation states by the model using mf
k,l; Cf

MD,l is the cross-covariance matrix between the prior parameters 226 

mf
l and the predicted observation states df

l; Cf
DD,l is the auto-covariance matrix of the predicted observation states df

l; 227 

CD is the auto-covariance matrix of the observation error; and αl is the inflation coefficient at the lth iteration with the 228 

sum of all αl equal to one. 229 

 230 

Here, the assimilation starts with taking the ensemble model parameters/states in Step 3 and the provided observations, 231 

and calculates the posterior parameters using ensemble Kalman filter, updates the prior parameters with the current 232 

posterior for the next iteration, and then repeats the whole process for multiple times (typically 3 to 5 iterations, as 233 

defined by the user). The final estimated parameters are obtained from the posterior parameter at the last iteration and 234 

are updated in the parameter HDF5 file. The parameter estimation is implemented in a way that allows assimilating 235 

either a single (e.g., Test Case 1) or multiple observed species simultaneously through a simple change of the inputs. 236 

For example, if temporal experimental or field data is available for oxygen, pH, and total carbon, all these data sources 237 

could be simultaneously fit to, with only minor adjustments to Jupyter notebook. 238 

2.3.5 Step 5 – Simulation Output and Visualization 239 

The last step performs the ensemble simulation of the biogeochemical modeling a final time using the estimated 240 

parameters in Step 4. Optionally, users can further pick the realization with the best performance. The user has the 241 

option to select their preferred goodness of fit metric from the following options as a means for selecting the best 242 

performing simulation: R-squared (R2), Root Mean Squared Error (RMSE), Modified Kling-Gupta Efficiency 243 

(mMKGE), Nash-Sutcliffe Model Efficiently Coefficient (NSE), or Correlation Coefficient (CorC). Based on the 244 

selection, the final time series of aqueous chemistry, oxygen consumption, CO2 production, and lambda binned, and 245 

total organic carbon concentrations will be computed and plotted. 246 

3 Test Cases 247 

3.1 Test Case 1 - Oxygen Depletion Incubation Experiments.  248 

In the first illustrative example, the lambda pipelinworkflowe was used to fit three lambda model parameters (µmax, 249 

Vh, and CC) to laboratory incubation experiments where oxygen levels were measured over two hours in a closed 250 

reactor. The incubation experiments were completed as part of the Worldwide Hydrobiogeochemistry Observation 251 

Network for Dynamic River Systems (WHONDRS) program (Goldman et al, 2020). For these incubations, sediment 252 

was taken from three locations within a stream (i.e., upstream [Test Case 1a], midstream [Test Case 1b], and 253 

downstream [Test Case 1c]) in the Yakima River Basin in Washington, USA for subsequent laboratory respiration 254 

experiments. FTICR-MS was used to determine the OM chemistry from each sediment sample, resulting in variable 255 

formulae being identified in each sample. Formula assignments for all the samples included herein were completed 256 

using formultitudeformularity (Tolic et al., 2017).  Total dissolved organic carbon concentration paired with the 257 

FTICR-MS sample and biomass measurements taken at the start of each experiment were used as the initial 258 
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concentrations for each of the simulations. Due to the absence of quantitative data related to how the total carbon mass 259 

is distributed between various the OM compounds, the total carbon concentration (on a per-C basis) was assumed to 260 

be split equally between each of the λ bins. The total organic carbon concentration was distributed into each λ bin 261 

using Eq. (13). While this assumption results in equal distribution of carbon between the bins, consequently, it assigns 262 

different initial species concentrations due to varying carbon concentrations between the molecules. 263 

[𝐶λbin]0 =
[𝑇𝑂𝐶]

𝑛𝜆𝑏𝑖𝑛𝑛𝐶𝜆𝑏𝑖𝑛
          (13) 264 

Where: [𝐶λbin]0 is the initial species concentration in each λ bin [molꞏL-1]; 𝑇𝑂𝐶 is the total organic carbon measured 265 

[mol-carbonꞏL-1]; 𝑛𝜆𝑏𝑖𝑛 is the number of 𝜆 bins [-]; and 𝑛𝐶𝜆𝑏𝑖𝑛 is the number of carbon molecules in the assumed 266 

formula for the 𝜆 bins [mol-carbon ꞏ mol-molecule-1].   267 

Using the Lambda-PFLOTRAN workflow, the FTICR-MS data from each laboratory experiment was digested into 268 

the corresponding λ bins to create the individual reaction network. The Jupyter Notebook for this example is 269 

“Test_Case1-WHONDRS.ipynb” and is available at https://doi.org/10.15485/2281403. The resulting λ binning and 270 

associated reaction network for Test Case 1a are shown in Figure 2 and Table 1. Test cases 1b and 1c are in the 271 

Supporting Information (Fig. S1 - S2 and Tables S2 - S3). The calculated parameter sensitivity is shown in Figure 3, 272 

which indicates the results highly sensitive to all three parameters, in particular µmax and Vh more so than and CC. 273 

 274 

 275 

Figure 3: Illustrative Example of Sensitivity Analysis Output during Parameter Estimation. Example shown here provides the 276 

sensitivity of three fitted parameters (µmax, Vh, and CC) on temporal aqueous O2 concentrations as a function of time.  277 

µmax Lambda expression parameters were was fit to the provided experimental oxygen data. The final lambda binned 278 

fit, along with  and the final fit to the experimental data and corresponding carbon consumption (individual and total) 279 

and aqueous chemistry is displayed in Figure 4 3 (and in the supporting information Fig. S2 S1 and S3 S2 for Test 280 
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Cases 1b (midstream) and 1c (downstream), respectively). The workflow was also run where µmax was fit again, but 281 

this time assuming a generic OM form of CH2O. This, allowing To evaluate the allows for comparison between using 282 

information foruse of lambda binned OM obtained from FTICR-MS (Figure 43), . the workflow was also run for a 283 

baseline case where µmax was fit again, but this time assuming a generic bulk OM form of CH2O for comparison. Fitted 284 

µmax values for the lambda binned model is 0.25 min-1 (R2 = 0.99) and fitted µmax to the bulk OM CH2O model is 0.032 285 

min-1 (R2 = 0.96). Vh and CC are fixed at assumed values of 10 m3 and 1 M, respectively in both simulations.In this 286 

case, the same set of lambda parameters were fit to the oxygen consumption experimental data, which also resulted in 287 

successful fit (R2 = 0.990 for lambda binned model; R2 = 0.987 for bulk model).  288 

 289 
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Figure 4: Test Case 1a Results – Oxygen Consumption (top left) where Lambda-PFLOTRAN workflow was used to fit (blue line) 290 

to experimental respiration data (red dots) and the corresponding Total Carbon Consumption (top right); Individual Organic Matter 291 

Consumption by λ bin (middle left); corresponding biogeochemistry including O2 (aq) (blue); Biomass (green); NH4
+ (orange); 292 

HS- (purple); and HPO4
-- (red) (middle left); and CO2 production (bottom left) for the upstream incubation. The dashed orange 293 

lines in the top two figures show simulation results assuming a generic OM species of CH2O for comparison. Fitted values for the 294 

lambda binned model are µmax = 0.25 min-1, Vh = 9.7 m3, and CC = 0.49 M (R2 = 0.990), and fitted bulk OM CH2O model value 295 

are µmax = 0.05 min-1, Vh = 3.3 m3, and CC = 0.58 M (R2 = 0.987). 296 

 297 

Figure 3: Test Case 1a Results – (a) Oxygen Consumption where Lambda-PFLOTRAN workflow was used to fit (blue line) to 298 

experimental respiration data (red dots) and (b) Total Carbon Consumption; (c) Individual Organic Matter Consumption by λ bin; 299 

and (d) biogeochemistry including O2 (aq) (blue); Biomass (green); NH4
+ (orange); HS- (purple); and HPO4

-- (red); and (e) CO2 300 



   

 

14 

 

production for the upstream incubation. The dashed orange lines (in a, b and e) show simulation results assuming a generic OM 301 

species of CH2O for comparison.  302 

However, even over the short time frame of this simulation (i.e., only 120 minutes), the difference between assuming 303 

the generic CH2O and using the more detailed organic matter chemistry resulted in different predictions of total carbon 304 

and CO2 generation. The bulk OM model predicts more carbon consumption and greater CO2 production than the 305 

binned lambda binned model. The bulk OM model estimates that 6550% of the initial total carbon is consumed over 306 

the first 120 mins, whereas the lambda binned model predicts 5434% consumption. Similarly, the bulk OM model 307 

estimates approximately 4135% more CO2 generation as compared the lambda binned model. The effects on aqueous 308 

chemistry over this short duration are more muted, albeit still present.  309 

3.2 Test Case 2 - Respiration Incubation Experiments.  310 

Test Case 2 uses soil respiration incubation data from Ward et al. (2023) aimed at investigating the influence of soil 311 

type, oxygen condition (aerobic vs. anaerobic), and seawater exposure (fresh vs. saline) on respiration extent and rate. 312 

For these experiments, temporal measurements were collected for CO2 generation, dissolved organic carbon (DOC), 313 

organic matter formulas via FTICR-MS and other bulk aqueous chemistry (i.e., pH, NH4
+, and other metals and ions) 314 

creating a rich dataset for calibration of system specific lambda model parameters. These incubations were setup by 315 

adding dry soil to the reactor and then adding water (resulting in a soil:water ratio ranging from 1:11 to 1:16). The soil 316 

and water were shaken vigorously for five minutes, and then sampled for the initial time point prior to officially 317 

starting the incubation. For the aerobic experiments, the reactor headspace was cycled every 24 hours to measure CO2 318 

generated but also to ensure the system was kept aerobic; this was only performed five days per week, with no 319 

measurements taken on the weekend due to logistical constraints. Upon experiment completion, the increase in DOC 320 

concentrations indicated organic carbon was being kinetically released from the soil into the aqueous phase over the 321 

course of the 21-day experiment. Similarly, measured NH4
+ concentrations also increased during the experiment. To 322 

address this within our reactive transport model, a source of nitrogen was assumed to be released from the soil as well 323 

(Nrelease). Both carbon and nitrogen release are included in this example and are assumed to follow a zero-order constant 324 

release rate. Any organic carbon released from the soil was fractionated into each λ bin on the same per-carbon basis 325 

assumed for the initial total organic carbon. This was implemented through a dependent function that calculated the 326 

release of carbon into each λ bin based on a fitted single bulk krelease rate. Mathematically in PFLOTRAN the constant 327 

oxygen conditions were implemented through a gas-liquid partitioning expression with a fast exchange term. These 328 

three additional processes were added to describe the experimental conditions of Test Case 2 more accurately (i.e., 329 

release of carbon, nitrogen and sustained aerobic conditions); however, a PFLOTRAN input deck can be expanded 330 

and customized to include a host of additional processes and full geochemistry for a specific system of interest. For 331 

instance, aqueous complexation, mineral dissolution and precipitation, sorption, and redox reactions can be added, all 332 

of which can influence the resultant pH and carbon, nitrogen, and other nutrient dynamics.  333 

The workflow was used to fit µmax, Vh, CC, kdeg, as well as krelease, to the temporal CO2 generation for a single aerobic 334 

soil incubation (Figure 5). The Jupyter Notebook for this example is “Test_Case2-Colloids.ipynb”.  335 
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 337 

Figure 54. Test Case 2 Results – (a) CO2 production top left where Lambda-PFLOTRAN workflow was used to fit (blue line) to 338 

experimental respiration data (red dots) and (b) the corresponding Total Organic Carbon top right; (c) Individual Organic Matter 339 

Consumption by λ bin bottom left and (d) the corresponding biogeochemistry including O2 (aq) (blue); Biomass (green); NH4
+ 340 

(orange); HS- (purple); and HPO4
-- (red) bottom right. Dots indicate experimental data. The dashed orange lines in the top two 341 

figures show simulation results assuming a generic OM species of CH2O for comparison. Fitted parameters for lambda binned 342 

model were krelease = 5.5x10-12 day-1; µmax = 37.6 day-1, Vh = 5.0 m3, CC = 0.12 M, and kdeg = 1x10-3 day-1 (R2 = 0.953) and fitted 343 

bulk OM CH2O model values were krelease = 2.0x10-12 day-1; µmax = 47 day-1, Vh = 1.0 m3, CC = 0.77 M, and kdeg = 0.15 day-1 (R2 =  344 

0.909). 345 

The best fit results indicate a superior fit using the lambda binned OM over the bulk OM model and in fact, the bulk 346 

model is unable to successfully capture the temporal evolution of the CO2. It should be noted that both model fits are 347 
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highly sensitive to the allowable parameter space as user defined by the lower and upper parameter bounds. For the 348 

purposes for showcasing the workflow, five parameters were estimated in this test case example, and as a result the 349 

models are likely over parametrized given the amount of data available. Parameter sensitivity over the course of 350 

simulation time is shown in Figure 5 and suggests this system is highly sensitive to Vh. It should be noted that both 351 

these model fits are also highly sensitive to the allowable parameter space as user defined by the lower and upper 352 

parameter bounds. 353 

 354 

Figure 5. Test Case 2 - Sensitivity Analysis Output during Parameter Estimation. The sensitivity of five fitted parameters (krelease, 355 

µmax, Vh, CC, and kdeg) on temporal aqueous CO2 concentrations as a function of time.  356 

Any additional experimental data, either collected during incubations or through independent experiments (e.g., 357 

carbon release from the soil in an abiotic system), would be expected to help constraint the model and improve 358 

parameterization. Additionally, it is unclear why the model is unable to capture the total organic carbon behavior in 359 

Test Case 2. One potential explanation is that some of the released organic carbon may not be fully bioavailable and 360 

thus the model may be compensating for this by artificially reducing the concentration of OM available for respiration. 361 

4 Variability and Impact of Organic Matter Speciation 362 

The variability in OM speciation was briefly assessed by comparing FTICR-MS data from Test Cases 1 and 2. Each 363 

identified OM species was classified into one of nine compound classes. For Test Case 1, the average of the three Test 364 

Case 1 samples (1a - upstream, 1b - midstream, and 1c - downstream) was computed. The predominant classes were 365 

proteins (34 ± 1%), lignin (26 ± 1%), and lipids (13 ± 2%), with the errors representing the standard deviation among 366 

the Test Case 1a-c samples. The low standard deviation suggests consistent reproducibility in OM speciation for 367 

samples taken from nearby locations. In contrast, OM in Test Case 2 was primarily composed of lignin (37.4%) and 368 

concentrated hydrocarbons (32%). The full distribution of compound classes is presented in Figure 5. 369 



   

 

18 

 

 370 

Figure 5. Distribution of Organic Matter Compound Classes: (a) Test Case 1 and (b) Test Case 2.  371 

Note: Test Case 1 is the average of Test Case samples 1a-c. ConHC = Condensed Hydrocarbon; UnsatHC = Unsaturated 372 

Hydrocarbon 373 

 374 

The influence of the sample OM speciation on the λ binned reaction networks was also assessed. Figure 6 illustrates 375 

the impact of OM speciation on the corresponding λ binned reaction networks, with three key observations. First, the 376 

variability in OM speciation between different samples is evident when comparing Test Case 1 and Test Case 2. To 377 

enhance visual clarity, the range of Test Case 1 samples (1a-c) is depicted as a grey shaded region, showing the spread 378 

between the minimum and maximum values of the three samples. For Test Case 2, data from the single FTICR-MS 379 

sample is represented by blue dots. Test Case 1 and 2 have distinct λ derived reaction networks as indicated by the 380 

little overlap between the grey region and the blue dots in Figures 6b-i.  381 
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 382 

Figure 6. Comparison of Lambda-Binned Reaction Network Parameters: (a) number of carbons in the OM; stoichiometric 383 

coefficient, 𝑦, for (b) OM, (c) O2, (d) HCO3
-, (e) NH4

+, (f) HS-, (g) HPO4
--, (h) H+; and (i) ratio of OM/O2 coefficients for Test 384 

Case 1a-c (grey dots); the average of all λ bins for Test Case 1 (grey line); Test Case 2 (blue x); and the average of all λ bins for 385 

Test Case 2 (blue line). The grey shaded area highlights the range of values for Test Case 1a-c for better visual comparison.  386 

 387 

Second, the λ binning process captures the OM speciation variation within a sample. To illustrate this intrasample 388 

variability, a line representing the average of all λ bins is shown on Figure 6 (grey line for Test Case 1, blue line for 389 

Test Case 2). The difference between the reaction network coefficients (vertical axis) for the λ binning (grey shaded 390 

area and blue dots) and the Test Case average lines highlights the extent of this variability. Finally, although the λ 391 

binning process resulted in a similar number of carbon atoms to OM molecules within each λ bin for both test cases 392 

(Figure 6a), the resulting stoichiometric coefficients in the reaction networks differ significantly (Figures 6b-h). These 393 

stoichiometric differences lead to variations in biogeochemical outcomes, such as OM-to-oxygen utilization ratios 394 

during aerobic respiration (Figure 6i). These differences are due to the additional elements beyond carbon in the OM 395 

molecules (i.e., nitrogen, oxygen, sulfur, hydrogen, and phosphorus). 396 

 397 
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Another important aspect is the comparison against assuming a generic, bulk OM composition, which does not account 398 

for OM speciation as informed by FTICR-MS or similar methods. The reaction network developed for a generic OM 399 

molecule of CH2O is shown in Eq. 14. 400 

2.03 CH2O + 0.98 O2 + 0.2 NH4
+ → 1.03 HCO3

- + 1.23 H+ + 0.4 H2O + CH1.8O0.5N0.2   (14) 401 

This reaction network is used in the Lambda-PFLOTRAN workflow for bulk OM simulations.  402 

To further assess and isolate the effect of OM speciation, extended forward simulations were performed by only 403 

varying FTICR-MS input data (Figure 7). FTICR-MS samples from Test Cases 1a-c and Test Case 2 were tested. 404 

These simulations replicate Figure 3 (i.e., Test Case 1a conditions and fitted µmax values) with the expectation of OM 405 

speciation, and demonstrate the significant impact of OM chemistry and speciation on overall predicted behavior, 406 

especially over longer time periods. 407 

 408 

 409 

Figure 7. Influence of OM Speciation on Oxygen Consumption. FTICR-MS data from Test Cases 1a-c (grey shaded area), and 410 

Test Case 2 (blue line) were used as inputs. Bulk CH2O OM (green line) was also plotted for reference. Best fit µmax values to Test 411 

Case 1a were used (i.e., lambda binned µmax = 0.25 min-1; bulk OM µmax = 0.032 min-1). 412 

 413 

The clear variability in OM speciation, differences between a generic OM reaction network and one informed by 414 

FTICR-MS, and the impact of OM chemistry on biogeochemical predictive simulations underscore the importance of 415 

incorporating site-specific OM chemistry informed by ultra high resolution characterization into biogeochemical 416 

models. 417 

4 5 Conclusions 418 

Overall, Lambda-PFLOTRAN workflow provides an important linkage between molecular scale organic matter 419 

characterization and reactive transport simulations. This workflow allows for the influence of organic matter 420 

composition to be utilized within simulators to provide a more comprehensive understanding of the system chemistry 421 
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and behavior, moving beyond the standard assumption of bulk organic matter chemistry and composition. While there 422 

are current limitations due to how composition is characterized and quantified, this workflow connecting 423 

characterization information to simulations is an important advancement that can be refined as these laboratory 424 

techniques improve over time.  425 

One of the major limitations surrounding this method, is the lack of understanding of organic matter compound 426 

bioavailability, resulting in a large conceptual gap as to how various organic carbon compounds may be utilized by 427 

microbes. In the absence of such information, all identified organic matter molecules are assumed to have equal 428 

bioavailability within this modeling framework when, in reality, compounds will exhibit varying degrees of 429 

bioavailability depending on factors such as associated size fraction, carbon pool, and environmental factors (Schmidt 430 

et al., 2011; Ahamed et al., 2023). Until improved understanding is established to discern individual compound 431 

bioavailability, this will remain as a limitation.  432 

Another limitation of this method resides around the analytical limitations of organic carbon characterization and 433 

quantification. For instance, FTICR-MS focuses on water soluble organic matter which may provide a bias in the 434 

types of carbon identified by this technique (Tfaily et al., 2017). Additionally, as mentioned previously, FTICR-MS 435 

is qualitative, it does not provide structural information and will not differentiate between different isomers that have 436 

the same molecular formulas, it is only able to identify molecular formula is present or absent and not the concentration 437 

associated with each peak. Here, this has been addressed by assuming equal distribution of total carbon between the 438 

formulas within each λ bin on a per-carbon basis. This caveat can be easily updated in the workflow if new analytical 439 

advances are made that provide more quantitative information. Some existing approaches could be suitable for this 440 

type of modeling such as using quantitative biomarkers that cover major compound classes (Kim and Blair, 2023); 441 

but further advances in obtaining both high resolution and quantitative OM characterization would greatly aid in how 442 

we understand and model ecosystems.  443 

444 
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