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Abstract. The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that estimates biomass burning 

in near-real time for global air-quality forecasting.  The model uses a bottom-up approach, based on remotely-sensed 10 

hotspot locations, and global databases linking burned area per hotspot to ecosystem-type classification at a 1-km 

resolution.  Unlike other global forest fire emissions models, GFFEPS provides dynamic estimates of fuel 

consumption and, fire behaviour and fire growth based on the Canadian Forest Fire Danger Rating System. , plant 

phenology as calculated from daily global weather and burned area estimates using near-real-time VIIRS satellite-

detected hotspots and historical burned area statistics. Combining forecasts of daily fire weather and hourly 15 

meteorological conditions with a global land classification, GFFEPS produces fuel consumption and emission 

predictions in 3-hour time steps (in contrast to non-dynamic models that use fixed consumption rates and require 

collection of burned area to make post-burn estimates of emissions).  GFFEPS has been designed for use in near-real-

timeoperational forecasting applications as well as historical simulations for which data are available.  A study was 

conducted runningshowing GFFEPS predictions through a six-year period (2015-2020).  Regional annual total smoke 20 

emissions, burned area and total fuel consumption per unit area as predicted by GFFEPS were generated to assess 

model performance over multiple years and regions.  The modelmodel’s fuel consumption per unit area results clearly 

distinguished grass-regions dominated regions by grassland (Africa) from forested, while alsothose dominated by 

forests (Boreal regions), and showed high variability in regions affected by El Niño and deforestation.  GFFEPS 

carbon emissions and burned area were then compared to other global wildfire emissions models, including GFAS, 25 

GFED4.1s and FINN1.5/2.5.  GFFEPS estimated values lower than GFAS/GFED (80%/74%), and estimated values 

similar to FINN1.5 (97%).  This was largely due to the impact of fuel moisture on consumption rates as captured by 

the dynamic weather modelling.  AnModel evaluation efforts to date are described – an ongoing effort is underway to 

further validate the model, with further developments and improvements expected in the future. 

1 Introduction 30 

Biomass burning from wildland fires and agricultural burning is a major source of carbon emissions and 

greenhouse gases globally.  In 2021, estimates of emissions from wildland fire, deforestation and agricultural burning 

accounted for 1.842.062 Pg C yr-1 (Kaiser and van der Werf, 20222023).  Compared to the total anthropogenic 

emissions of 11.0 Pg C yr-1 for 2021 (40.2 Pg CO2 yr-1, Friedlingstein et al., 2022), biomass burning would 
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amountequate to 1619% of globalthose from anthropogenic emissions; yet much of these emissions (1.75 Pg C yr-1 35 

averaged over 2012–2021; Friedlingstein et al., 2022) are recaptured by carbon uptake in the forests (afforestation, 

reafforestation and forestry) reducing their impact on global concentrations.   

Unlike anthropogenic sources, emissions vary greatly from year to year as wildland fire is a dynamic and highly 

variable event.  Estimates show that between 2003 to 20172020, biomass burning accounted for 1.68 to 781−2.27 

Pg421Pg C yr-1 (Kaiser and van der Werf, 20192023).  Recent events include: 40 

 El Niño events (1997, 2006, 2015, 2019) that triggered extreme emissions from peat fires in Indonesia and 

southeast Asia (Field et al., 2009; Huijnen et al., 2016; Page and Hooijer, 2016; McPhaden, 2023); 

 Australia’s unprecedented fire season in 2019/2020, following its hottest, driest year on record (Abrams et 

al., 2021); 

 California’s record-breaking number of large fires in 2020, exceeding the previous record in 2018 (Keeley 45 

and Syphard, 2021); 

 Canada’s burned area reaching 76,129 km2 on June 26, a record 15.0 Mha for 2023, exceeding the previous 

record of 75,596 km26.7 Mha set for the entire year in 1989 (Lowrie, 2023) and ultimately reaching 

184,961 km² by the close of 2023 (https://ciffc.net/situation/, last accessed 2023-12-05Kolden et al. 2024).   

Wildfires also emit significant quantities of shorter-lived atmospheric pollutants (e.g., nitrogen oxides, volatile 50 

organic gases, carbon monoxide, ammonia, particulate matter, heavy metals; cf. Akagi et al., 2011, Urbanski, 2014, 

Hatch et al., 2017, Wentworth et al., 2018, Hayden et al., 2022, Liu et al., 2023).  Global forest fire emissions of 

particulate matter have been identified as one of the largest sources of atmospheric trace gases and aerosols (Knorr et 

al., 2012), and their global particulate matter emissions have been found to result in 65.6 million deaths annually 

(Chen et al., 2021). Respiratory and cardiovascular deaths have been found to be among the chief causes of global 55 

wildfire PM mortality (Chen et al., 2021; Barros et al., 2023; Matz et al., 2020) and the impacts on the heart have been 

found to extend over several days subsequent to wildfire emissions exposure (Barros et al., 2023).  Accurate emission 

estimates of wildfires for smoke forecasting and inventory accounting are therefore of great importance from the 

standpoint of assessing their impacts on human health and the environment.   

Efforts to model wildfire emissions globally have been on-going since the 1970s (Seiler and Crutzen, 1980).  60 

Currently, several global wildfire emissions models exist (Pan et al., 2020), such as the Global Fire Analysis System 

(GFAS, Kaiser et al., 2012), the Global Fire Emissions Database (GFED, Van der Werf et al., 2017), the Fire 

INventory from NCAR (FINN, Wiedinmyer et al., 2011, Wiedinmyer et al., 2023) and others.  Carbon emissions from 

GFAS (calibrated to partly match GFED emissions) are routinely used to estimate annual carbon emissions from 

wildland fires for the American Meteorological Society’s annual State of the Climate reports (Kaiser and van der 65 

Werf, 20222023).  Wildfire emissions models are also used in conjunction with global chemical transport models such 

as the Copernicus Atmospheric Monitoring System (CAMS), which uses GFAS emissions to provide concentration 

estimates that are linked to human health outcomes (Roberts and Wooster, 2021). 

Emissions models follow one of two general methodologies: either a top-down or a bottom-up approach to 

modelling.  The top-down approach used by GFAS is centered around the satellite-based MODIS active fire products 70 

(the MOD14/MYD14 Level-2) that provide instantaneous observations of actively burning fires and measurements of 
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fire radiative energy (FRE; Mota and Wooster, 2018).  The, the time integral of FRE (as fire radiative power,  (FRP)); 

Mota and Wooster, 2018), and biome-specific conversion factors are used to determine combustion rates, which in 

turn are combined with emission factors to estimate emission rates.  The bottom-up approach used by GFED and 

FINN is based on the product of observed burned area (based on MODIS MCD64A1 mapping algorithm), landscape 75 

maps for fuels (MODIS MCD12Q1 land cover type), along with fuel loads, combustions completeness and emission 

factors. per biome typically collected from the literature (van Leeuwen et al., 2014).  Both top-down and bottom-up 

methodologies use satellite sensors for fire detection (MODIS and/or VIIRS) to identify fire locations spatially and 

temporally (Giglio et al., 2016). 

Each approach has its limitations.  The satellite-based fire detection used by both top-down and bottom-up 80 

methodologies are generally restricted by satellite-overpass times, sensor resolution, observational swath width, heavy 

smoke and cloud cover.  The bottom-up approach is also limited by land-cover and burned-area mapping resolution 

as well as the accuracy of fuel load mapping and fuel consumption modelling.  A methodology to extrapolate the 

contribution of small, undetected fires – especially important for capturing cropland burning – was presented by 

Randerson et al. (2012) and included in GFED4.1s.  The effectiveness of this small fire boost to emissions has been 85 

questioned (Zhang et al., 2018; Gaveau et al., 2021; Ramo et al., 2021) and so GFED5 was developed with scalar 

corrections based on higher-resolution (non-global) datasets from Landsat and Sentinel-2 (Chen et al., 2023)., Hall et 

al., 2024).  Also, Van Wees et al. (2022) incorporated monthly water and temperature stress scalars to model the net 

primary production (NPP) of stem, leaf and root pools at a 500-m spatial resolution into a simplified version the GFED 

model, giving fuel loads a temporal variability. 90 

A second limitation of current models is the use of static values for combustion completeness per biome.  Fire 

behaviour is recognized as being dependent on fuels, weather and topography, with weather in the form of temperature, 

wind, humidity, precipitation, cloud cover and atmospheric stability, being the most variable (Countryman, 1972).  

The Canadian Forest Fire Danger Rating System (CFFDRS, Stocks et al., 1989) addresses these factors daily in the 

Canadian Forest Fire Weather Index (FWI) System (Van Wagner, 1987), a system that has seen uptake not only in 95 

North America but also New Zealand, Mexico, parts of Europe and southeast Asia (Taylor and Alexander 2006). 

A third limitation of many of these models is the timeliness of their products.  Certain models depend on 

remotely-sensed data to build burned areas, accumulated over the course of a month (Giglio et al., 2018, van der Werf 

et al., 2017, Chen et al., 2023).  While such approaches may add precision to predictions, they are of limited benefit 

to operational air-quality forecasts. 100 

The Canadian Forest Fire Emissions Prediction System (CFFEPS) is a model that predicts smoke emissions 

used in air quality forecasts for North America based on the CFFDRS.  Driven by forecasted hourly meteorology at 

detected hotspot locations, the model estimates burned area, the hourly chemical components of fire emissions, the 

plume injection height and vertical distribution of emissions.  Predicted smoke emissions are incorporated into 

Environment and Climate Change Canada’s numerical weather and chemical transport model (the Global 105 

Environmental Multiscale – Modelling Air quality and Chemistry model; GEM-MACH).  The combined system of 

emissions, chemistry and transport is referred to as FireWork., an air quality prediction system that indicates how 

smoke from wildfires is expected to chemically transform and disperse across North America over the next 72 hours.  
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The plume rise component of CFFEPS, as derived from modelled fuel consumption and parameterized heat flux, has 

been extensively validated using satellite plume height observations (Griffin et al., 2019).  As part of FireWork, the 110 

CFFEPS model has been incorporated into ECCC’s operational Air Quality Health Index (AQHI) forecasts for North 

America since 2019 (Chen et al., 2019).  More recent work with CFFEPS has allowed its incorporation on-line into a 

research version of the GEM-MACH two-way coupled air-quality model, in turn accounting for aerosol feedbacks 

between wildfire emissions and regional weather to be simulated (Makar et al., 2020). 

This paper describes the adaptation and extension of the methodologies used in the CFFEPS model to a global 115 

domain, as the Global Forest Fire Emissions Prediction System (GFFEPS) – a system that provides spatiotemporal 

forest fire emissions estimates for air-quality forecasting based on satellite hotspot retrievals, weather and fire 

behaviour modelling at the global scale.  The motivation for this work was the recognized need in extending 

FireWork’s current North American air-quality forecasting to the global domain., thus improving Canadian forecasts 

by introducing near real time global simulations of smoke emissions external to the original North American domain.  120 

With increasing fire frequency, size and intensity, smoke can be injected aloft and transported across oceans. For 

example, smoke from the 2016 Fort McMurray Fire (a.k.a. the Horse River Fire, 2016) affected New York (Wu et al., 

2018) and reached as far as the United Kingdom (Vaughan et al., 2018); similarly, the 2023 wildfires in Quebec were 

observed to transport across the Atlantic impacting air quality of many European communities.  A recent study (Makar 

et al., 2020) showed the impact of forest fire smoke emissions from Eurasia on North American meteorology and air 125 

quality forecasting, highlighting that un-nested continental-only scale air quality models show reduced skill during 

transoceanic smoke transport events.  The impacts of intercontinental pollutant transport have also been demonstrated 

elsewhere in the literature (e.g., Huang et al., 2017).   

This paper sets out to document the data, the methodology and resulting predictions of the GFFEPS model, 

comparing it to other published global fire emissions models as a first step towards larger validation efforts. Chapter 130 

1 provides an introduction with historical content and need for the work.  Chapter 2 provides the underlying theory of 

the model and foundational work.  Chapter 3 outlines the external data required to drive the model while Chapter 4 

describes the internal calculations and methodology.  Results are presented in Chapter 5, discussion in Chapter 6 and 

conclusion in Chapter 7. 

Two appendices are included.  Comparisons of GFFEPS to field data is presented in Appendix A, where the 135 

GFFEPS methodology of calculating fuel consumption is compared to published field work in Canada, Siberia, 

Indonesia, African and Brazilian savannah, and Australian eucalypt, and compared to values predicted by GFED. 

Appendix B provides a sensitivity analysis, examining the impact of landcover data sets, of agricultural burning and 

small fires and of daily weather. 

2 Theory 140 

A central problem of predicting smoke emissions is the estimation of the amount of forest fuel consumed by 

fire, which in turn is injected into the atmosphere.  For the bottom-up approach, estimating the amount of fuel 

consumed involves estimating the total mass of biomass combustion, which is the product of fuel consumed per unit 

area (kg m-2 or t ha-1) and burned area (m2, ha or km2).  The emissions of specific gas and particle species (collectively, 
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“tracers”) is estimated from final effective mass of fuel consumed multiplymultiplied by emission factors.  Emissions 145 

factors are generally pre-determined values derived from measurements as mass of species emitted per unit mass of 

fuel consumed, typically grams of emitted species per kg of dry fuel consumed (Urbanski, 2014).  Fuel consumed per 

time step is used to calculate total heat flux from the combustion process and then used to calculate plume injection 

height, and parameterize the vertical distribution of the emitted tracers for distribution within a vertical atmospheric 

column.  Species are distributed from the surface to the plume height based on maintaining a constant mixing ratio of 150 

smoke to clean air.  The process and unit convention used in the paper is illustrated in Fig. 1. 

 

Figure 1. Structure of the Canadian Forest Fire Emissions Prediction System (CFFEPS), used by 

GFFEPS.  Historical input data (parallelograms) are shown in blue. Current input data (parallelograms) 

and operational calculations (rectangles) are shown in green. Predictive models (rectangles) are shown 155 

in red (CFFDRS), purple (CFFEPS) and orange (burned area mapping).  Units reflect those used in the 

text.  The plume rise module and the emissions vertical distribution are not discussed in this paper. 
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2.1 The Canadian Forest Fire Danger Rating System 

The Canadian Forest Fire Danger Rating System (CFFDRS) has been an important part of forest protection 

operations in Canada since 1970 (Stocks et al., 1989).  The two principal models of the CFFDRS are the Canadian 160 

Forest Fire Weather Index (FWI) System, which models fuel moisture and potential fire behaviour in the forest, and 

the Canadian Forest Fire Behaviour Prediction (FBP) System, which predicts physical fire behaviour in specific 

vegetative landscapes, referred to as fuel types. 

The Canadian Forest Fire Weather Index (FWI) System (Van Wagner 1987) is a set of numerical codes and 

indices rating relative fire potential.  Built on measurements from jack pine forests near Petawawa ON, the system is 165 

strictly weather dependent and independent of forest fuel type.  Daily and hourly temperature, humidity, wind speed 

and precipitation are used to estimate the various FWI system indices.  The FWI System consists of six components 

that account for the effects of weather on fuel moisture and potential fire behaviour.  The first three components are 

the fuel moisture codes.  These include the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC) and 

the Drought Code (DC).  These are numeric ratings, or indices, of the moisture content of the litter and other fine 170 

fuels, of the loosely compacted organic layers of moderate depth, and of the deep, compact organic layers respectively.  

Their values rise as moisture content decreases.  The remaining three components – the Initial Spread Index (ISI), the 

Buildup Index (BUI) and the Fire Weather Index (FWI) – are fire indices.  These indices represent respectively the 

rate of fire spread, the fuel available for combustion, and the frontal fire intensity; their values rise as the fire danger 

increases.   175 

The FWI system is internationally-recognized and is used by several countries including Canada, certain US 

states, Mexico, ASEAN nations, New Zealand and a number of European nations (Taylor and Alexander, 2006).  Daily 

maps in near-real time are routinely generated and displayed on the Canadian Wildland Fire Information System 

(https://cwfis.cfs.nrcan.gc.ca/home, last accessed 2023-122024-05-28; Lee et al., 2002), the European Fire 

Information System (https://effis.jrc.ec.europa.eu/, last accessed 2023-122024-05-28; Vitolo et al., 2020) and the 180 

Global Wildfire Information System (https://gwis.jrc.ec.europa.eu/ , last accessed 2024-01-2405-28).   

The Canadian Forest Fire Behaviour Predictions (FBP) System (Forestry Canada Fire Danger Group 1992; 

Wotton et al., 2009) is an extension of the FWI system.  It captures the physical measures of fire behaviour within 

certain Canadian landscapes. The FBP system consists of a series of empirical models that predict fire behaviour 

conditions for 18 common fuel types in Canada (see Table 1). Using daily and hourly weather values and indices from 185 

the FWI system as inputs, the FBP system predicts for the prescribed fuel types in Canada measurable physical 

variables including the forward rate of spread (ROS) in m min-1, head fire intensity (HFI) in kW m-1, surface, crown 

and total fuel consumptions (SFC, CFC, TFC) in kg m-2 (where TFC = SFC + CFC) and crown fraction burned (CFB) 

as a fraction or percentage. It is worth noting that the FBP system was designed with a focus on the most hazardous 

fuels in Canada and under high fire behaviour conditions.  Challenges will be present adapting FBP to broader, global 190 

landscapes and addressed in the methodology. 

The fuel consumption values (SFC, CFC, TFC) predicted by FBP system are central to the wildfire emissions 

predictions in CFFEPS and in GFFEPS.  It is assumed that the fuel consumed by the fire translates directly to 

emissions, and that components of tracer emissions, that in turn are injected into the atmosphere, directly contribute 
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to wildfire smoke (i.e., one tonne of fuel consumed becomes one tonne of smoke emissions, including ash and soot).  195 

In forecast model applications, FWI values and FBP predictions can be calculated daily and hourly with outputs from 

numerical weather models, and tracer emissions can be calculated in near-real time for fire locations as they are 

identified. 

 

Table 1. Canadian Forest Fire Behavior Prediction (FBP) System fuel types. 200 

Group/Identifier Descriptive name 

Coniferous 

C-1 Spruce-lichen woodland 

C-2 Boreal spruce 

C-3 Mature jack or lodgepole pine 

C-4 Immature jack or lodgepole pine 

C-5 Red and white pine 

C-6 Conifer plantation 

C-7 Ponderosa pine - Douglas-fir 

Deciduous 

D-1 Leafless aspen 

D-2 Aspen - green 

Mixedwood 

M-1 Boreal mixedwood - leafless 

M-2 Boreal mixedwood - green 

M-3 Dead balsam fire mixedwood - leafless 

M-4 Dead balsam fire mixedwood - green 

Slash 
 

S-1 Jack or lodgepole pine slash 

S-2 White spruce-balsam slash 

S-3 Coastal cedar - hemlock - Douglas-fir slash 

Open 
 

O-1a Matted grass 

O-1b Standing grass 

 

2.2 The Canadian Forest Fire Emissions Prediction System 

GFFEPS follows the same general methodology as its predecessor CFFEPS, which has been documented in 

recent publications (Makar et al., 2020, Chen et al., 2019).  CFFEPS uses fire weather conditions modelled by the 

FWI system and fire behaviour by the FBP system to determine fuel consumed per unit area. per time step (1 hour in 205 

CFFEPS; 3 hours in GFFEPS).  Burned area (per day) in CFFEPS is based on annual ecoregion and vegetation-specific 
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burned-area climatology normalized by the number of satellite-detected hotspots (Chen et al., 2019).  For CFFEPS, 

values of historical average burned area per hotspot (i.e., burn-area climatology for 10 years from 2012-2021) were 

calculated by each fuel type and ecoregion for each province/territory, by relating recorded hotspots to annual burned 

area statistics as reported by provincial and territorial agencies (the National Burned Area Composite (NBAC): 210 

https://cwfis.cfs.nrcan.gc.ca/datamart/download/nbac, last accessed 2023-12-04).2024-05-28). The process followed 

by CFFEPS/GFFEPS and unit convention used in the paper is illustrated in Fig. 1. 

The application of CFFEPS calculations is conducted on each satellite-detected hotspot.  Fire weather 

conditions are interpolated to the hotspot location and fire behaviour is calculated based on the fuel type sampled at 

the hotspot location.  Burned area per day, based on the burned-area climatology, is used and persistence of burned-215 

area rate is assumed for the ensuing 24-hour forecast period.  Fuel consumption per time step is calculated using a 

diurnal pattern of area growth per hour. 

While CFFEPS has been demonstrated to be an excellent means of near-real-time wildfire emission estimate 

for air-quality forecast application within a North American context, several critical issues arise when expanding its 

utility to the global scale.  These include expanding the FWI calculations to a global domain, establishing a global 220 

fuels map compatible with the FBP system, and determining the most relevant, compatible fuel type and fuel 

consumption equations within the CFFDRS framework to represent global landscapes. 
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Figure 1. Structure of the Canadian Forest Fire Emissions Prediction System (CFFEPS), used by 

GFFEPS.  Historical input data (parallelograms) are shown in blue. Current input data (parallelograms) 225 

and operational calculations (rectangles) are shown in green. Predictive models (rectangles) are shown 

in red (CFFDRS), purple (CFFEPS) and orange (burned area mapping).  Units reflect those used in the 

text.  The plume rise module and the emissions vertical distribution are not discussed in this paper. 

 

2.3 Global Models 230 

There are several published global fire-emissions models (Pan et al., 2020).  For this study we included  

 Global Fire Assessment System (GFAS1.2, Kaiser et al., 2012), 

 Global Fire Emissions Database (GFED4.1s, van der Werf et al., 2017), 

 Fire Inventory from NCAR (FINN 1.5/2.5, Wiedinmyer et al., 2011, Wiedinmyer et al., 2023). 
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The GFED and FINN models use the bottom-up approach and estimate effective fuel consumption rate E (mass 235 

of fuel consumed per unit area per time – kg m-2 d-1 or tonnes ha-1 d-1) based on the equation of Seiler and Crutzen 

(1980): 

𝐸 = 𝐵𝐴 × 𝐹𝐿 × 𝐶𝐶 × 𝐸𝐹         

 (1) 

where burned area (BA) is a measure of the spatial extent of fire activity over a period of time (ha d-1), fuel load (FL) 240 

is the biomass of combustible fuels (t ha-1) on the landscape, and combustion completeness (CC) is the percentage of 

the total available biomass consumed by fire (%).  For final emission rates related to chemical component emissions 

such as CO, CH4 and particulate matter, the effective fuel consumed (BA x FL x CC) is multiplied by species-specific 

emission factors (EF) in g of emissions per kg of dry fuel consumed.  These factors are typically derived from field 

or laboratory measurements and can be specific to fuel type and burn conditions as measured by combustion efficiency 245 

(Urbanski 2014, Chen et al., 2019). 

Expanding CFFEPS into the global domain, GFFEPS follows a similar methodology to GFED and FINN.  An 

adjusted version of Eq. (1) is used in GFFEPS as the FL x CC term is replaced by the total fuel consumption (TFC) 

of the Canadian Forest Fire Behaviour Prediction (FBP) system.  In doing so, daily fire behaviour is captured by using 

the FWI and FBP systems; we replace the static combustion completeness used by standard bottom-up models such 250 

as GFED and FINN with more dynamic parameterizations contained within the CFFDRS framework.   

The global regions commonly used in global fire-emissions analyses are shown in Fig. 2 and described in Table 

2.2. 
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Figure 2. Global regions and regional abbreviations used in this study following those defined in Giglio 

et al. (2006).  See Table 2 for complete description. 

 260 

Table 2. Global regions used in this study following those defined in Giglio et al. (2006). 

Abbreviation Region Description 

BONA Boreal North America Alaska and Canada 

TENA Temperate North America Continuous United States 

CEAM Central America Mexico and Central America 

NHSA Northern hemisphere South America South America north of the Equator 

SHSA Southern hemisphere South America South America south of the Equator 

EURO Europe Europe including Baltic states,  

excluding Belarus and Ukraine 

MIDE Middle East Africa north of tropic of Cancer,  

the Middle East and Afghanistan 

NHAF Northern hemisphere Africa Africa between the Tropic of Cancer  

and the Equator 

SHAF Southern hemisphere Africa Africa south of the Equator 

BOAS Boreal Asia Russia north of 55oN 

CEAS Central Asia China, Mongolia, Russia south of 55oN, former 

Central Asian USSR 

SEAS Southeast Asia Pakistan, India and Indochina 

EQAS Equatorial Asia Malaysia, Indonesia and  

Papua New Guinea 
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AUST Australia Australia and New Zealand 

3 Data 

To calculate global fire emissions, critical input data are needed.  These include global land classifications, 

satellite-detected fire locations (a.k.a. hotspots), daily global weather, plant phenology and agricultural burning 

statistics.  These data sources are external to the daily operational running of GFFEPS (Fig. 1) and require 265 

preprocessing. 

3.1 Land Classification 

A land classification system is required to link tree species and landscapes at fire locations to fire behaviour, 

fuel consumption and emissions as predicted by FBP.  Global climate models use a variety of vegetation classification 

systems.  The Global Land Cover 2000 Project by European Commission (GLC2000, Bartholome and Belward, 2005) 270 

is such a product (Fig. 3 and Table 32) and was adopted in the development of this initial version of GFFEPS.  

Developed in collaboration with a network of partners around the world, the general objective of GLC2000 was to 

provide a harmonized land-cover database over the whole globe for the year 2000.  The year 2000 was selected as a 

reference year for environmental assessment in relation to various activities.  While other land use databases are 

available (e.g., MODIS, etc.), GLC2000 was selected for its global spatial resolution with 1-km at the equator, for its 275 

level of detail in the number of land use types, for ease of data usage, accessibility and for consistency throughout our 

analysis.the national-level ground-truthing data used in its construction, for ease of data usage, accessibility and for 

consistency throughout our analysis.  While acknowledging the 25-year age of the GLC2000 dataset, we note that 

land use changes occurring subsequent to the year 2000 are unlikely to result in a significant change in biomass burning 

emissions in an on-line model such as GFFEPS.  For example, vegetation classes rarely change (e.g. deciduous forests 280 

rarely change into coniferous) and most land use changes, whether they were a result of disturbance (fires, 

deforestation) or urbanization, would result in landscapes less fire prone and this in turn would be reflected by a 

reduced number of hotspots.  In turn, reduced hotspot detection would result in less smoke emissions, capturing the 

impact of the land use change.   However, we note that the same methodology developed here using GLC2000 may 

be used with other land-use databases, including time-varying databases such as those provided by satellite retrievals 285 

(e.g. MODIS).  We present comparisons between GFFEPS configured for MODIS land use data versus GLC2000 in 

Appendix B.1. 
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Figure 3. Global Land Cover 2000 classification.  See Table 32 for land classification descriptions for 290 

numbered values appearing in the legend. 

 

Table 32. Global Land Classification 2000 (GLC 2000) codes and descriptions. 

GCL 2000 Description 

1 Tree Cover, broadleaved, evergreen 

2 Tree Cover, broadleaved, deciduous, closed 

3 Tree Cover, broadleaved, deciduous, open 

4 Tree Cover, needle-leaved, evergreen 

5 Tree Cover, needle-leaved, deciduous 

6 Tree Cover, mixed leaf type 

7 Tree Cover, regularly flooded, freshwater (& brackish) 

8 Tree Cover, regularly flooded, saline water 

9 Mosaic: Tree cover / Other natural vegetation 

10 Tree Cover, burnt 

11 Shrub Cover, closed-open, evergreen 

12 Shrub Cover, closed-open, deciduous 

13 Herbaceous Cover, closed-open 

14 Sparse Herbaceous or sparse Shrub Cover 

15 Regularly flooded Shrub and/or Herbaceous Cover 

16 Cultivated and managed areas 

17 Mosaic: Cropland / Tree Cover / Other natural vegetation 

18 Mosaic: Cropland / Shrub or Grass Cover 

19 Bare Areas 

20 Water Bodies (natural & artificial) 

Global Land Cover 2000 Classification

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
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21 Snow and Ice (natural & artificial) 

22 Artificial surfaces and associated areas 

23 No data 

 

A review of regional descriptions of each land classification provided a means to assign FBP fuel types to all 295 

GLC2000 classifications present in each region based on expert opinions. The assigned fuel for specific classifications 

may vary between regions and confidence in assignments varies.  The resulting mapped FBP fuel types are shown in 

Fig. 4. 

 

 300 

 

Figure 4. Canadian Forest Fire Behaviour Prediction (FBP) System fuel types as assigned from the 

Global Land Classification 2000.  See Table 1 for descriptions of FBP fuel types appearing in the legend. 

TM and OM, not listed in Table 1, represent treed and open muskeg.   

 305 
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We note that both the land use classification (GLC2000) and the region classification are used in determining 

the fuel assignment.  For example, peatlands in the tropics differ from those in northern latitudes (see 4.3.1 Peat Fires 

and Appendix section A.3); coniferous forests differ between North America, Eurasia and Australia (see Appendices 

A.1, A.3, section 4.3.2 and Appendix A.5).  310 

Certain GLC2000 land cover classifications, such as peat lands (described as “regularly flooded”), do not have 

any corresponding fuel types in FBP.  Methods for representing these are discussed in the supplemental information 

section. described in Appendix A.  Also, GLC2000 land classifications 16, 17 and 18 were assigned to agriculture 

regions and treated separately. (see 3.5 Agricultural Burning).  The resulting map (Fig. 5) presents the supplemental 

fuel types, which take precedence over the FBP fuel types where they occur.   315 

 

 

 

Figure 5. Supplemental fuels as described in the supplemental information sectionChapter 3.4 and in 

Appendix A.  Note that these fuels take precedence over the FBP fuel types presented in Fig. 4. 320 

 

In addition to the land-cover classification, GFFEPS requires surface fuel load, forest floor depth and bulk 

density data (https://www.ciffc.ca/publications/glossary, last accessed 2024-01-2405-28) for FBP system calculations 
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(derivation of these data are discussed later in the methodology section).  As part of the GFED3.x and 4.x wildfire 

emissions model, van Leeuwen et al. (2014) and van der Werf et al. (2017) collected detailed fuel load and 325 

consumption data from 201 and 591 sites respectively through literature reviews.  However, the biomes used by GFED 

do not directly correspond to land classifications in the GLC2000; therefore, the biomes of these sites were matched 

to GLC2000 land classifications, with varying degrees of confidence depending on the number of sites within biome 

and the consistency of correspondence between biome and GLC2000 land use classifications.  Given the matches, 

fuel load values were then applied (see supplemental informationAppendix A). 330 

3.2 Satellite Hotspots 

GFFEPS requires the times and locations of active fires.  Similar to most global fire emission models, these 

are obtained in the form of hotspots identified from infrared satellite imagery. GFFEPS uses hotspots detected by the 

Visible Infrared Imaging Radiometer Suite (VIIRS) sensor and obtained from the Fire Information for Resource 

Management System (FIRMS) provided by NASA and the U.S. Forest Service. The VIIRS sensor was first launched 335 

on board the Suomi National Polar-Orbiting Partnership (S-NPP) satellite in 2011 (also onboard NOAA-20, NOAA-

21 satellites since 2017 and 2022, respectively) and provides coverage of every location on the globe at least twice 

daily, with higher frequency at high latitudes. Not all fires are detected; some are too small, some are short-lived and 

burn between satellite overpasses, and some burn under thick cloud cover or heavy smoke that render them invisible. 

In spite of these limitations, hotspot data fromwe selected VIIRS provides a picture ofdata because it is sub-daily, 340 

global fire activity that is consistent, continuous, readily available, higher resolution than alternative sensors, available 

in near-real time, and sufficiently complete.expected to continue well into the 2030s.   

Hotspot data from other sensors is available from FIRMS as well, including the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the Advanced Baseline Imager (ABI).  VIIRS was selected because of its higher 

resolution (375m, compared with 1 km for MODIS and 2+ km, depending on latitude, for ABI) but in the future, data 345 

from other sensors could be incorporated as inputs to GFFEPS.  Unlike other top-down approaches that use 

quantitative FRE/FRP to parameterize fuel consumption, GFFEPS does not use satellite sensor quantitative 

measurement; instead, only high-resolution hotspot location and ignition timing is required.  This allows potential 

future expansion of GFFEPS to use other remote sensing data, including radiometric measurements such as 

Interferometric Synthetic Aperture Radar (InSAR) with the advantage of detecting fire through cloud and smoke at 350 

high spatial resolution (Ban et al., 2020; Goodenough et al., 2014). 

3.3 Global Weather 

Global weather conditions, essential in calculatingpredicting FWI, are calculated with ECCC’s Global 

Environmental Multiscale (GEM) model.  GEM is the core numerical weather prediction (NWP) model of ECCC’s 

operational weather prediction services.  Global scale GEM currently provides gridded meteorological conditions at 355 

15-km resolution every 3-hour time steps to calculate fire behaviour conditions and smoke emissions in GFFEPS.  

Extracted surface variables include windspeed, relative humidity, temperature and 24-hour accumulated precipitation 

to calculate FWI; additional variables including vapour pressure deficit, solar day length etc. were extracted for FBP. 
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Daily FWI is central to the GFFEPS system: noon values are used to calculate the FWI values, which are then 

used to predict fire behaviour and resulting smoke emissions. For example, the Buildup Index (BUI) is one of the FWI 360 

indices and a principal driver in calculating fuel consumption in the FBP system.  Environment and Climate Change 

Canada now has FWI calculations incorporated as part of model product processes in regional weather forecasts.  

Figure 6 shows a sample global map of daily value of the Buildup Index (BUI) predicted for the reported hotspots for 

September 1, 2019.  

 365 

Figure 6. Buildup Index (BUI) for September 1, 2019 as interpolated to the 63,566 hotspot locations 

observed on that date.  The BUIThe BUI, a principal driver in calculating fuel consumption in the FBP 

system, is calculated using meteorological data from Environment and Climate Change Canada’s Global 

Environmental Multiscale (GEM) model. 

 370 

3.4 Plant Phenology 

Seasonal cycles in plant characteristics, known as phenologies, significantly influence the timing and quantity 

of live vegetative growth.  These phenological changes influence overall fuel moisture levels (considering both live 

and dead fuels) and consequently impact fire behaviour.  In temperate and boreal ecosystems during spring, deciduous 

trees in the temperate zones emerge from winter dormancy, leafing out through the growing season before shedding 375 

leaves as they return to dormancy in autumn (Alexander, 2010a; Quintillio et al., 1991). Similarly, grasses green-up 

in the spring and reach maturity, then desiccate in the summer heat, either dying off or re-entering dormancy in warm 

temperate, Mediterranean, and tropical climates with a strong wet-dry seasonality such as Australia (Cheney and 

Sullivan, 2008). Grasses as well as trees in cool temperate and boreal regions are controlled by a combination of 

photoperiod and freezing temperatures initiating grass curing (Jolly et al., 2005).   Coniferous crowns undergo an 380 

important seasonal dip in foliar moisture during the spring as needles transpire while the roots are still frozen that has 

impacts on the initiation of crown fire (Alexander, 2010a). These effects have an important impact on smoke emissions 

and hence have been addressed within GFFEPS. 
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3.4.1 Growing Season Index 

Deciduous leaf-out (greenness), and grass dormancy (curing), are important factors in fire behaviour.  The FWI 385 

system does not have a built-in method to predict these phenologies; instead, the FBP system relies on users to provide 

both grass curing fraction as well as the leaf-out status of deciduous vegetation based on physical observations. To 

address this in GFFEPS, the Growing Season Index (GSI) by Jolly et al. (2005) was used as a surrogate to capture the 

seasonal dynamics of deciduous leaf-out.  This model uses simple threshold functions (zero below a minimum value, 

one above a maximum value and a linear relation from 0 and 1 between the minimum and maximum values; reversed 390 

in the case of vapour pressure deficit) based on the following three observable parameters: 

 minimum temperature (linear response range between -2oC and 5oC), 

 vapour pressure deficit (linear response range between 900 Pa and 4100 Pa), 

 hours of daylight (linear response range between 10 hrs and 11 hrs). 

A daily GSI is calculated as the product of these three output values; afterwards, a moving average over the 395 

previous 21-days’ GSI values is applied to reduce abrupt daily variability thus better mimicking plant response (Jolly 

et al., 2005).  Figure 7 shows a sample global map of daily value of the GSI predicted for the reported hotspots for 

September 1, 2019.  

  

 400 

Figure 7. Growing Season Index (GSI) for September 1, 2019 as interpolated to the 63,566 hotspot 

locations observed on that date.  The GSI provides a method to estimate the greenness of deciduous 

forests and degree of grass curing, both important factors in fuel consumption.  The 21-day average GSI 

is calculated using meteorological data from Environment and Climate Change Canada’s Global 

Environmental Multiscale (GEM) model. 405 

 

The GSI is a surrogate for the greenness of the Normalized Difference Vegetation Index (NDVI; Pettorelli, 

2013), typically measured via remote-sensing approaches.  GSI provides a continuous calculation of the greenness 

value, both spatially and temporally, easy for forecast application, while NDVI must be stitched togetherand gap-filled 
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from satellite data.  Regardless, in that is significantly more complicated and laborious.  The GSI is also currently 410 

used by the futureUS Forest Service as part of the National Fire Danger Rating System 

(https://www.firelab.org/project/national-fire-danger-rating-system – last accessed 2024-05-28). Nevertheless, as the 

operational system further develops, observed NDVI could one day be timely assimilated and replace the GSI 

calculations for grass curing and deciduous green-up. 

3.34.2 Foliar Moisture Content 415 

The Foliar Moisture Content (FMC) is another phenology required by the FBP system, and is defined as the 

moisture content of live needles in a conifer tree (Alexander, 2010a).  On average, the FMC of coniferous trees is 

120% during the fire season in Canada, but in the spring as the ground thaws, the FMC dips to 85%, reflecting a 

decrease as the foliage transpires while the roots are still frozen.  This spring dip of FMC increases the likelihood of 

crown fire initiation in conifer trees (fires rarely crown in deciduous trees); in turn, this affects crown fuel consumption 420 

(CFC) and thus emissions into the atmosphere.  The Julian date of the minimum FMC is denoted as Do. 

The CFFDRS has a means of calculating the FMC, yet this is only valid in North America.  To expand this to 

a global domain, a new set of equations was developed to calculate FMC in Eurasia following the principles of the 

original approach.  As the spring dip in the FMC value is based on the assumption that the ground is frozen in the 

winter, FMC calculations are limited to northern latitudes where Do exceeds 90 (i.e., minimal FMC occurs on or after 425 

March 31); elsewhere, the default FMC value of 120% is used in the northern hemisphere  In the southern hemisphere, 

a default FMC value of 147% is used year-round, as used in New Zealand (Pearce et al., 2008; Alexander, 2010a), 

where coniferous trees rarely reach freezing conditions .  

The FMC used in the CFFDRS was based on observations from eight stations in Canada (Forestry Canada Fire 

Danger Group 1992).  The assumption was that dates of minimum FMC, Do, followed climatological isotherms along 430 

with elevation adjustments of 0.026 days m-1.  Following the same rationale, climatological maps of isotherms for 

March, April and May were collected for Eurasia.  Assuming a parabolic shape for the April 0oC isotherm, and setting 

the point of minimum latitude at 47oN and 120oE along the isotherm with a second point at 65oN and 30oE to define 

the curve, the resulting equation for the latitude-longitude contour of the date of the minimum FMC becomes 

𝐿𝐴𝑇𝑍 =  (65 − 47)/(30 − 120)ଶ × (𝐿𝑂𝑁 − 120)ଶ  +  47 =  0.0022 × (𝐿𝑂𝑁 − 120)ଶ  +  47. 435 

 (2) 

The resulting curve corresponds to Do, the contour of the Julian day of minimum FMC, chosen as 151.  In 

Canada, Do drops off at approximately 2 days per degree latitude so in Asia, 

𝐷 =  151 +  2.286 ∗  (𝐿𝐴𝑇 –  𝐿𝐴𝑇𝑍).       

 (3) 440 

Using 146oW and 12oW as the lines dividing Eurasia from North America, Do can be calculated for the northern 

hemisphere (not required for the southern hemisphere as noted above). Figure 8 illustrates the global map of the month 

when  the day of minimum FMC (Do) occurs. 
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Figure 8. Month of occurrence of the day of minimum Foliar Moisture Content Content (Do), when the 445 

FMC dips to 85% from 120%.  The no data zone and the southern hemisphere are assumed to have no 

spring dip and thus FMC values are set to a constant 120% and 147% respectively. 

 

3.45 Agricultural Burning 

Agricultural burning is governed by a variety of processes that differ from those encompassed by Eq. (1).  450 

These must be addressed separately in order to properly model the contribution of the agricultural sector to global fire 

emissions.  Croplands cover 12% of the ice-free land surface.  It is estimated that residue burning accounts for 5% of 

global emissions (Cassou, 2018; Bond et al., 2013). Depending on the time of year, farmers may burn the residue after 

harvest. There are a wide variety of crops but the three principal crops whose post-harvest residues are typically burned 

are maize, rice and wheat.  Pouliot et al. (2017) provided fuel loads for these and several other crop residues in the 455 

USA. These are as much as twice the default fuel load of the FBP system’s standing grass FBP O-1 (0.35 kg m-2), 

indicating the need to differentiate agricultural burning from grass fuel.  

In order to include these effects into GFFEPS, agricultural burning calculations were applied to GLC2000 land 

classifications 16, 17 and 18 (see Fig. 3 and Table 32).  Streets et al. (2003) presented the following equation to 

estimate the total mass of crop residue burned in the field (R) as 460 

𝑅 =  𝑃 ×  𝑁 ×  𝐷 ×  𝐵 ×  𝐹        (4) 

where  

 P = crop production;  

 N = crop-specific production-to-residue ratio;  

 D = dry-matter-to-crop ratio;  465 

 B = the percentage of dry matter residues that are burned in the field; 

 F = the crop-specific burn efficiency ratio. 
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The first four terms in Eq. (4) are provided in data collected by the United Nations’ Food and Agriculture 

Organization (FAO).  The FAO collects global agricultural production, presenting national amounts on their 

FAOSTAT page (https://www.fao.org/faostat/en/#data/GB;  last accessed 2023-12-132024-05-28).  This page 470 

provides past crop residue burning values by nation per year.  This value, EFAO, captures dry weight of crop production 

(P), crop-specific production-to-residue ratio (N), dry-matter-to-crop ratio (D) and percentage of dry matter residues 

that are burned in the field (B) as a single value, simplifying the application of Eq. (4) to 

 𝑅 = (𝑃 ×  𝑁 ×  𝐷 ×  𝐵) ×  𝐹 = 𝐸ிை × 𝐹.      (5) 

Values for burning efficiencies (F) for specific crops were then taken from Turn et al. (1997). 475 

Annual statistics of biomass burned (dry matter) from the FAOSTAT were compiled for each country for the 

years 2012, 2015, 2018, 2019 and 2020.  Similarly, the number of VIIRS hotspots occurring within the GLC2000 land 

classifications assigned to agricultural burning were counted for each country for the same years.  National statistics 

were then grouped according to regions outlined by Giglio et al. (2006, see Table 3Fig. 2).  From this, historical 

average emissionsbiomass burned per agricultural hotspot werewas calculated for each region’s agricultural zone, 480 

which were then used in subsequent GFFEPS estimates of emissions from agricultural burning.  The temporal 

behaviour ofEmissions per time step for agricultural fires was based on a modified diurnal curve for agricultural 

burning approximating a Gaussian curve centered on 15:00 LST (Eyth et al., 2022, McCarty et al., 2009). 

We note that this approach is a significant departure from the method used in other global fire emission models.  

Agricultural burning is typically conducted at small scales and short durations and, as a result, are difficult to detect 485 

with satellite-based remote sensing.  GFED4.1s simulates these undetected agricultural fire emissions by extrapolating 

the agriculture areas burned detected by remote sensing (Randerson et al., 2012, van der Werf et al., 2017).  TheHall 

et al. (2024) furthers this by calculating crop-specific burned area conversion factors based on detailed cropland 

mapping.  The FAO statistics approach used by GFFEPS avoids the small fire detection issue associated with 

agricultural burning by using country-specific report data from FAO, while assuming to capture all biomass burned, 490 

including small fires, in agricultural landscapes.  The approach does assume small fires in other, non-agricultural, 

landscapes were deemedare inconsequential.  , which we see as acceptable.  This is certainly the case in Canada, where 

the National Forestry Database (https://cwfis.cfs.nrcan.gc.ca/ha/nfdb, last accessed 2024-05-28) indicates that 

between 1980-2021, fires less than 1 ha, which constituted 73% of fires, account for only 0.03% of the burned area 

nationally; that fires less than 10 ha, which account constituted 87% of fires, account for only 0.18% of the burned 495 

area.   

In principle, the data and methodology outlined for GFFEPS captures all cropsbiomass burned in croplands, 

regardless of fire size, statistically accounted for and reported by individual countries.  With that said, the Tier 1 

methodology used by the FAO to determine this value may not be rigorous in developing countries (Tubiello et al., 

2014) or where illegal agricultural burning is widespread (Hall et al., 2021); nevertheless, its application in GFFEPS 500 

seemed a direct and practical solution tofor real-time smoke forecasting while addressing the small fire issue specific 

to agriculture activities. 
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4 Methodology 

The methodology of CFFEPS is documented in Chen et al. (2019).  GFFEPS follows the same methodology 

as CFFEPS (Chen et al. 2019) but uses additional data sets and alterations described in this section.  Likewise, GFFEPS 505 

follows Eq. (1) and the sectionssection titles described here under the methodology follow each of the Seiler and 

Crutzen equation variables.  : burned area (BA), fuel load (FL), combustion completeness (CC) and emission factors 

(EF).  GFFEPS is then run daily, using observed satellite-detected hotspots and historical average burned area per 

hotspot to calculate burned area (BA), and interpolated fire weather and fuel characteristics at each hotspot to 

determine fuel consumption (FL × CC) and then daily smoke emissions. 510 

Global fire emissions produced by GFFEPS were first examined for interannual and interregional variability, 

then a multi-model comparison was conducted between GFFEPS and four other published wildfire emissions models 

to test its general performance. 

4.1 Burned Area 

GFFEPS requires an estimate of burned area (BA) for each hotspot. Historical data for 2012-2019 was obtained 515 

from the MODIS burned area product (Giglio et al., 20162018), which provides gridded monthly burned area for the 

globe. Total BAburned area and VIIRS hotspot count were determined for each combination of region (Fig. 2 and 

Table 2), month, and land-cover type (Fig. 3 and Table 32). 

Dividing total BAburned area by number of hotspots provides a simple estimate of historical average burned 

area per hotspot. However, in some cases hotspots were found in the same location two or more days in a row, or 520 

within a short period of time. This could represent a pixel partially or incompletely burned, as would be the case if a 

fire was moving slowly, or burning in episodes separated by smouldering.  In other cases, hotspots were occurring in 

a location repeatedly for several months or even years, indicating a non-fire heat source, usually an industrial facility. 

Whatever the underlying reason, it was decided that these hotspots should not be assigned the same burned area as 

lone or isolated hotspots. 525 

For each hotspot, the number of times burned, T, was calculated as the number of hotspots that occurred in the 

last 6 months within the VIIRS I-band pixel (375m) centered on that hotspot. As the current hotspot was included in 

the count, T was always at least 1. The 6-month time frame reflects our assessment that a completely burned vegetation 

is unlikely to regrow quickly enough to be susceptible to fire again within that time. 

Total burned area and the sum of 1/T were derived for each combination of month, region and land-cover type 530 

to derive a burned area estimate for lone hotspots: 

 𝐸 = 𝐵𝐴/ ∑ (1 𝑇)⁄          

 (6) 

where EL is the area-burned estimate for single (lone) hotspots, BA is the total burned area, and Tj is the times burned 

metric and j is the hotspot number.  Note that for repeatedly burned pixels, the use of Eq. (6) prevents their burned 535 

area, and consequently their emissions, from being overestimated. 
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For region-month-landcover combinations with fewer than 1000 hotspots, the resulting EL values were not 

statistically significant; in this case, a larger dataset region-month combinations were used instead, combining all the 

land-cover types together within a region and month. 

In subsequent emissions calculations, the number of times burned is similarly calculated. Area estimates for 540 

lone hotspots (T = 1) were set equal to EL. For hotspots in previously burned pixels, the burned area estimate was set 

to EL divided by the times burned metric: 

 𝐸 = 𝐸 𝑇⁄           

 (7) 

This method reduces the burned area in multiple-hotspot locations, preventing the same fuel from being burned 545 

multiple times during emissions calculations. Hotspots generated by industrial heat sources remain in the dataset, but 

they are assigned a very small burned area; as a result, their impact on emissions estimates is minimized.  

4.2 Fuel Load 

The fuel loads (FL) used in GFFEPS are based on values collected from the literature review by van Leeuwen 

et al. (2014) and from van der Werf et al. (2017) as used in GFED.  From these data, fuel load values were assigned 550 

to surface, crown and grass fuel loads (SFL, CFL, GFL) and averaged across sites with a common GLC2000 land 

classification.  The source data had fields ranging from simple totals to very specific fuel component descriptions per 

site.  When this ancillary data was available, certain heavier fuels were excluded from fuel loads, such as live stems 

and branches with diameters greater than 10 cm, and were deemed inflammable (as residual snags).   

Following this initial classification, attention was given to regional differences, many of which are summarized 555 

in the supplemental sectionAppendix A, especially for high-emitting regional land classifications.  These include 

boreal forests, tropical forests, tropical peat, wooded and open savanna grasslands, and Australian eucalypt forests. 

4.3 Combustion Completeness 

The combustion completeness (CC) used in GFFEPS is based oncaptured by the total fuel consumption (TFC) 

as calculated by FBP., which is equal to the product of Seiler and Crutzen’s fuel load and combustion completeness 560 

(FL × CC).  The forecasted weather and FWI described earlier are combined with the FBP fuel types as derived from 

the GLC2000 land classification to provide the necessary inputs for the FBP calculations.  Total fuel consumption per 

time step is then calculated assuming a diurnal pattern of area growth per hour (Chen et al., 2019). 

Implementing CFFEPS globallyIn implementing a global system, adjustments to the original FBP fuel loads 

and fuel consumption equations were necessaryrequired.  The FBP system was designed specifically for Canadian 565 

fuel types (Table 1).  Extrapolating); extrapolating these to a global environment for fuels outside Canada was 

necessary.  In this process, a few critical limitations in the Canadian-specific FBP system were also recognized and 

addressed, specifically: 

 Surface fuel loads (SFL) were used to adjust the surface fuel consumption (SFC) equations within FBP; 

replacing the original 1.5 and 5.0 kg m-2 present in most FBP fuel consumption equations. 570 
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 Grass fuel consumption (GFC) was separated from surface fuel consumption (SFC); along with crown fuel 

consumption (CFC), expressing a new total fuel consumption (TFC): 

𝑇𝐹𝐶 = 𝐺𝐹𝐶 + 𝑆𝐹𝐶 + 𝐶𝐹𝐶.       

 (8) 

 Grass fuel consumption GFC was adjusted to account for the degree of curing, the process by which grass 575 

dries over the season, by multiplying the grass fuel load by the grass curing adjustment factor (C): 

𝐺𝐹𝐶 = 𝐶 ∗× 𝐺𝐹𝐿.         

 (9) 

 Grass curing adjustment factor was based on the equation derived for dormant grass in savanna grasslands 

using drought code (DC) values (see Appendix A.3):  580 

𝐶 = 100% × (1 − 𝑒ି.ଶ ).       

 (10) 

 Green-up (leaf-out) of deciduous forests (FBP fuel type D-1 and D-2, Table 1), normally a dichotomous 

process in FBP (Alexander, 2010b), was set to a fractional scale and using this the surface fuel 

consumption (SFC) of green deciduous (D-2) was derived by adjusting the surface fuel consumption for 585 

FBP class of “leafless deciduous” (D-1) by (1 - GSI): 

𝑆𝐹𝐶(D-2) = (1 − 𝐺𝑆𝐼) × 𝑆𝐹𝐶(D-1).      

 (11) 

4.3.1 Peat Fires 

Fires in equatorial Asia (Indonesia, Malaysia and New Guinea) in GLC2000 land classifications 7, 8, 9, 11 and 590 

14 (see Table 2) were assumed to be peat fires, which require special consideration.  Field et al. (2004) determined 

that most severe haze events from peat fire smoke in Indonesia occurred at a Drought Code (DC) value of 388.2 and 

higher.  They accordingly assigned boundaries between moderate-high and high-extreme categories at DC values of 

264.4 and 346.9.  Based on these values, a logistic equation was constructed to mimic these conditions 

𝑆𝐹𝐶 = 105.6 ൣ1 + 𝑒ି.ଵ(ିଷ଼ .ଶ)൧⁄         595 

 (12) 

where 105.6 kg m-2 reflects the fuel load of the tropical peatland fuels (van Leeuwen et al., 2014).  A detailed 

description of this derivation is provided in the supplemental sectionAppendix A.3. 

Outside of equatorial Asia, boreal peatlands were assessed as treed (shaded, enclosed) or open peat lands, based 

on, respectively, the “Tree Cover, regularly flooded, freshwater” or “Regularly flooded Shrub and/or Herbaceous 600 

Cover” descriptions in the GLC2000 land classification (Table 32).  Depending on current FWI conditions, a treed 

peatlands fuel type is assigned to boreal mixedwood forest with 50% conifer trees (fuel type M-1/2) when the DC is 

above 330, and to fuel type D-2 at lower DC values; open peatlands are assigned a non-fuel type until the DC reaches 

650, at which point they assumed to burn as fully cured standing grass (O-1b). These thresholds are prescribed 

following earlier study of Thompson et al. (2019). 605 
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4.3.2 Eucalypt 

Over 22% of Australia is forested, of which 78% is eucalypt, also known as jarrah (Sullivan et al., 2012).  

Eucalypt does not fit any fire behaviour reflected in the FBP system so an effort was made to create a fuel consumption 

model specific to eucalypt from the published literature (Hollis et al., 2010).  A sigmoidal fuel consumption 

completeness curve was developed similar in structure to those used in the FBP System (Appendix A.5).  An upper 610 

limit of 90% was used as it was assumed that standing snags would likely be left after a fire-front passage.  The 

resulting equation is 

𝑇𝐹𝐶𝐶𝐶 = 90% × [1 −  𝑒(.ଵଽ ூ)]ଷ       

 (13) 

where CC is the combustion completeness (%).  Total fuel consumption for eucalypt is achieved by multiplying 615 

combustion completeness by a eucalypt fuel load of 7.8 kg m-2 as used in GFFEPS (Sullivan et al., 2012). 

Additionally, Oliveira et al. (2015) examined fire activity in tropical savannas in northern Australia.  They 

described the landscapes as open woodlands, woodlands and open forests with forest protective covers of <10%, 10-

30% and 30-70% respectively.  Average values of these fractions were used in GFFEPS, with the balance as grass 

fuels.  A detailed description of this derivation is provided in the supplemental sectionAppendix A.5. 620 

4.4 Emissions Factors 

For emission factors per chemical species (EF), GFFEPS followsuses the same approach as CFFEPS (values 

presented in Chen et al., . (2019) and Urbanski (2014).  Combustion is divided into three classes based on the crown, 

surface and grass fuel consumptions.  Surface fuel is further divided into litter (0-1.2 cm), upper (1.2-7 cm) and lower 

(7-18 cm) duff layers following fuel-based depths and fuel-dependent bulk densities (mass of fuel per unit volume in 625 

g cm-3, Anderson, 2000; https://www.ciffc.ca/publications/glossary, last accessed 2024-01-2405-28).  The fuel 

consumed in each layer is burned in succession through flaming, smoldering and residual combustion stages, which 

are then convolved with area growth over time.  Emission rates per chemical species emitted are defined through each 

stage of combustion by combining emission factors for flaming, smoldering, and residual with FBP’s CFC, SFC model 

values.  By modelling the total fuel consumption per unit area (kg m-2), emissions per species are calculated based on 630 

species emission factors (g kg-1) as defined in Chen et al. (2019).   

In the current initial application of GFFEPS, for direct assessment of fuel consumption values, and comparison 

with other global fire emissions inventory, a simple unit emission factor is first presented for estimating smoke 

emissions, followed by an application of standard emission factor of 500 g kg-1 for estimating total carbon emissions 

(Thomas and Martin, 2012). 635 

5 Results 

The GFFEPS model was run for six consecutive years (2015 to 2020) to examine the quantitative fire emissions 

globally for each year, and interannual variability predicted by the model.  Model output was measured in total smoke 

emissions released from fires. This equals the total fuel consumed by fire assuming a unit emission factor (1 kg kg-1), 
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thus allowing for a direct comparison to the source FBP calculations.  Afterwards, a multi-model comparison using 640 

carbon emissions factors (500 g kg-1) was conducted between GFFEPS and four other published wildfire emissions 

models and Inventories.  Results in both sections were broken down into the 14 regions following Giglio et al. (2006).  

See TableFig. 2 for the region descriptions and the abbreviations used. 

5.1 GFFEPS Total Smoke Emissions 

Figure 9 shows the regional, annual values of (a) smoke emissions, (b) burned area and (c) average total fuel 645 

consumption per unit area.  Total smoke emissions and burned area are directly estimated by the GFFEPS model.  

Average total fuel consumption per unit area was calculated as smoke emissions over burned area for each of the 

analysis regions.  The annual emission totals, allowing a comparison of regional model results to the original FBP fuel 

consumption calculations. 
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 650 

Figure 9. (a) Regional annual totalsmoke emissions (Mt yr-1), (b) regional annual area burned area (Mha 

yr-1) and (c) average total fuel consumption per unit area (kg m-2) as predicted by GFFEPS for 2015-

2020.  TotalSmoke emissions reflect all smoke emissions released from fires with unitan emission factor, 

equaling equal to the total fire fuel consumption.consumed (1 kg kg-1).  See Table 3Fig. 2 for descriptions 

of regional abbreviations. 655 

Total smoke emissions over the six consecutive years, as shown in Fig. 9(a), indicate the largest emitters being 

SHAF and SHSA, with average annual smoke emissions of 834 and 736 Mt, respectively.  Interannual values are 

relatively consistent through most regions, with the largest range (maximum/minimum) occurring in EQAS (225/12 
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Mt), BONA (71/6 Mt), BOAS (94/18 Mt) and), NHSA (109/24 Mt).) and SEAS (619/195 Mt).  El Niño likely drives 

the variability in EQAS and SEAS, while fire weather conditions likely determine the variability in the two boreal 660 

regions.  The figure also shows possible impacts of El Niño (strong in 2015/16, weak in 2018/19 and early 2020; 

McPhaden, 2023) and changing deforestation legislation in Brazil, affecting South American emissions (El Niño years 

are 2016, 2018 and 2019).. 

Figure 9(b) shows the burned area per region per year.  Sub-Saharan Africa (NHAF+SHAF, but excluding 

MIDE) dominates the global burned area at 254 Mha (69%) of the global average 368 Mha burned annually.  This is 665 

followed by 38.5 Mha in AUST and 32 Mha in South America (NHSA+SHSA).   

The regional burned area predicted by GFFEPS can be compared to national statistics reported by certain 

countries.  Model results indicate that on average 2.06 Mha yr-1 in BONA (Canada and Alaska) during the 6 study 

years.  For the same period, Canada’s National Forest Database reported 2.19 Mha 

(http://nfdp.ccfm.org/en/data/fires.php, last accessed 2023-11-102024-05-28) while Alaska Department of Natural 670 

Resources reported 0.64 Mha (https://forestry.alaska.gov/firestats/index, last accessed 2023-11-102024-05-28).  The 

sum of the two reported values being 2.83 Mha yr-1, which exceeds the GFFEPS prediction by 0.77 Mha.  Similarly, 

GFFEPS predicted on average 2.77 Mha yr-1 in TENA, while US agencies reported 3.18 Mha yr-1 in the lower 48 

states for the same six years (https://www.nifc.gov/fire-information/nfn, last accessed 2023-12-152024-05-28).  While 

GFFEPS estimates only 73% and 87% of the observed values respectively, a correlation between modelled and 675 

reported annual values for the six years is strong in each region (r2 = 0.968 in BONA; r2 = 0.914 in TENA, not shown).  

This suggests the methodology for estimating burned area is appropriate.  Finally, the quality of fire mapping by 

agencies, such as whether unburned areas within fire perimeters are properly mapped, may impact these findings, as 

well as limitation in the MODIS estimates of burned area, but this is beyond the scope of this studyused by GFFEPS 

is appropriate, though with a bias.  On the other hand, reported national statistics of burned area have their own sources 680 

of error.  For example, the level of rigour in mapping varies between Canadian provincial and territorial agencies, 

where unburned areas within fire perimeters may be captured by some agencies and not by others. This variable quality 

is then passed onto the national statistics.  Similar issues are likely occurring in US statistics.  The issue of mapping 

irregularities was also recognized by Fraser et al. (2004), who indicated the coarse resolution burned-area (approx. 1-

km) provided by SPOT VEGETATION and NOAA AVHRR imagery produced burned-area estimates 72 percent 685 

larger than the crown fire burned area mapped at 30 m using Landsat TM (11,039 versus 6,403 ha average area).  This 

bias was attributed to spatial aggregation effects.  In summary, it is difficult to make clear conclusions from national 

statistics but these indicate the GFFEPS methodology is producing realistic results. 

Average total fuel consumption per unit area by year and region, as shown in Fig. 9(c), was calculated as smoke 

emissions over burned area from the annual results.  Globally, the average is 0.81 kg m-2, while regional results vary 690 

from 0.30 kg m-2 in NHAF to 4.21 kg m-2 in EQAS.  Figure 9(c) clearly show regions dominated by forest (e.g., 

BONA, TENA and CEAM) as having higher fuel consumption per unit area on a global basis compared to those 

dominated by grasslands (e.g., NHAF and SHAF).  The figure also shows regions strongly affected by El Niño events 

(EQAS, SEAS) with annual consumption rates doubling in El Niño years (strong in 2015, 2019/16, weak in 2018/19 

and early 2020; McPhaden, 2023). 695 
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Figure 10 shows the regional daily smoke emissions for the six study years by day of year.  Largest emissions 

occur in SHAF during the region’s dry season (mid-May to mid-September) and in SHSA at the end of the dry season 

(August to mid-October).  The latter would be consistent with deforestation burning (Pereira et al., 2022).  

 

 700 
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Figure 10.  Regional daily smoke emissions (Mt d-1) for GFFEPS for the six study years as predicted by 

GFFEPS. Total Smoke emissions reflect all smoke emissions released from fires, with an emission factor 

equal to the total fuel consumed by fire (carbon emissions would be approximately 50% of the total 

emissions).(1 kg kg-1).  See Table 3Fig. 2 for descriptions of regional abbreviations.  705 

5.2 Comparison of GFFEPS to other Wildfire Emissions Models and Inventories 

As noted above, the GFFEPS model was run for six consecutive years (2015 to 2020).  Results for global 

carbon emissions were compared to published results for  

 GFAS (Kaiser and van der Werf, 2022et al., 2012,  https://www.ecmwf.int/en/forecasts/dataset/global-fire-

assimilation-system , last accessed 2024-01-2405-27) 710 

 GFED4.1s (van der Werf et al., 2017, https://www.geo.vu.nl/~gwerf/GFED/GFED4/, last accessed 2023-

08-112024-05-27), 

 FINN version 1.5 (Wiedinmyer et al., 2011, https://www.acom.ucar.edu/Data/fire/, last accessed 2023-08-

112024-05-27), 
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 FINN version 2.5 (Wiedinmyer et al., 2023, https://rda.ucar.edu/datasets/ds312.9/dataaccess/, last accessed 715 

2023-08-112024-05-27).   

Annual values of global carbon emissions for all five models are presented in Fig. 11.  Results show a wide 

range of values from 1166 Tg C yr-1 in 2018 by GFFEPS to 4231 Tg C yr-1 in 2019 For FINN 2.5.  In half of the years, 

GFFEPS produced the lowest results with values ranging from 1166 to 1789 Tg C yr-1.  Compared to the other models, 

GFFEPS estimated values lower than GFAS/GFED (80%/74%), while it estimated values similar to FINN1.5 (97%).  720 

The lower values are largely attributed to the inclusion of daily fire behaviour in the combustion completeness 

calculations, not accounted for in the other models.  

 

Figure 11. Annual carbon emissions (Tg C yr-1) of GFFEPS and other global wildfire emissions models 

included in this study. 725 

 

Figure 12 shows a comparison of average annual regional carbon emissions from GFED4.1s and GFFEPS 

(regional values were not readily available for the other models).  The regions of largest GFED emissions are much 

lower in GFFEPS.  Sub-Saharan Africa (NHAF+SHAF) accounting for 1007 Tg C (49.5% of the total global 

emissions) in GFED, is reduced to 588 Tg C (39.8%) in GFFEPS.  On the other hand, South America (NHSA+SHSA) 730 

increases from 304 Tg C (14.9%) in GFED to 403 Tg C (27.2%) in GFFEPS.  Also, GFFEPS has greater emissions 

in six of the 14 regions: CEAM, SHSA, EURO, MIDE, CEAS and SEAS.  These are areas dominated by agricultural 

burning, highlighting the impact of using FAO’s crop-burning statistics. 
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Figure 12. Average annual emissions (Tg C yr-1) by region for GFED4.1s and GFFEPS.  See Table 3Fig. 735 

2 for descriptions of regional abbreviations. 

 

Figure 13 shows the annual burned area from the MODIS burned area (MCD64A1) that is used by GFED prior 

to incorporating small fires, GFFEPS and FINN 1.5/2.5.  FINN 1.5 calculates burned area based on active fire pixels 

detected by the MODIS Aqua and Terra satellites at 1 km2 (0.75 km2 in grasslands/savannas) per detection, which is 740 

then adjusted by percent tree, non-tree vegetation, and bare cover at 500m as provided by MODIS Vegetation 

Continuous Fields (VCF).  FINN 2.5 (Wiedinmyer et al., 2023) uses a more sophisticated approach, aggregating 

VIIRS hotspots to create burned area polygons. GFFEPS is in line with most area-burned statistics including the 

MODIS burned area (MCD64) and FINN 1.5, while FINN 2.5 appears to estimate twice the burned area of the other 

models. 745 
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Figure 13. Annual area burned area (Mha yr-1) of GFFEPS and other global wildfire emissions models 

included in this study.  The MCD64MCD64A1 data reflects the area burned area data used by GFED 750 

(prior to small fire adjustments). 

 

Daily burned-area values are available in FINN products allowing a comparison between GFFEPS and the two 

FINN implementations.  Figure 14 shows a sample comparison (2017) between GFFEPS and FINN 1.5/2.5.  This 

pattern is similar to other years.  GFFEPS shows lower area-burned amounts during Feb-Mar and higher during Oct-755 

Nov.  This may be occurring during harvest periods when small fires dominate some landscapes. 
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A comparison of daily area-burned values suggests a pattern of results where GFFEPS burned area consistent 

with FINN 1.5 (MODIS-based). ), while FINN 2.5 is predicting twice the burned area. Simple regressions indicate 

correlations (not shown) of r2=0.61 between GFFEPS and FINN 1.5 and 0.71 between GFFEPS and FINN 2.5 (when 

the intercept is forced to zero, the correlations increase to 0.92 and 0.94 respectively).  The close agreement between 760 

GFFEPS and FINN 1.5 reflects their mutual dependence on MODIS data for burned area; FINN 2.5 follows an 

alternate methodology of calculating burned area based on aggregating daily observed hotspots into defined fire 

perimeters.  This approachis of interest as FINN1.5 differs from GFFEPS in its method of calculating area burned.  

On the other hand, FINN 2.5 approach, using aggregated VIIRS hotspots to create burned area polygons, increases 

the burned area by a factor of two, which is reflected in the higher carbon emissions shown in Fig. 11.  11.  These 765 

values are in-line with the global annual emissions estimate of 774 Mha yr-1 produced by most recent GFED5 (Chen 

et al., 2023).  A similar approach is currently being considered for GFFEPSGFFEPS shows lower area-burned amounts 

during Feb-Mar and higher during Oct-Nov.  This may be occurring during harvest periods when small fires dominate 

some landscapes. 

 770 
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Figure 14. Daily area burned area globally (Mha d-1) for GFFEPS and FINN1.5/2.5 for the study year 

2017. 775 
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6 Discussion 

There are no direct measurements of global fire emissions and thus there is no definitive answer as to which of 

the five models/versions examined in this study provides the best estimate of fire emissions on a global scale.  Based 

on the principles of fire, physics and remote sensing, we demonstrated that the GFFEPS general approach to global 780 

fire emission estimates are reasonable and realistic.  Pan et al. (2020) demonstrates the range of predictions from six 

models, while this manuscript shows the range of predictions among three published models and GFFEPS. 

Results from six consecutive years of emissions comparisons show that the GFFEPS model is in general 

agreement with well-established models.  Each of these models emphasizes one aspect over the others in the Seiler 

and Crutzen equation (Eq.1): GFED places its efforts on accurately predicting area burned, while FINN focuses on 785 

emissions factor estimates for a large number of chemical species.  The methodology presented in GFFEPS focuses 

on the dynamic predictions of fire behaviour, fuel consumption and emissions on a daily basis. 

With regards to the similarities between GFFEPS and GFED4.1s, this should not be a surprise as much of the 

GFFEPS methodology and input data is similar to that used in GFED4.1s.  Nonetheless, the key essential 

differencedifferences between the two models isare that GFED4.1s uses static fuel loads and consumption 790 

completeness per biome, while GFFEPS models these dynamically, both spatially and temporally, achieved by using 

the well-established CFFDRS with FBP fuel consumption driven by FWI fire weather.; that GFFEPS considers plant 

phenology not explicitly recognized in GFED; and that GFFEPS calculates real-time burned area based current 

hotspots and historical statistics, while GFED uses burned area data accumulated over the course of a month from 

remotely sensed data.  While the underlying CFFEPS system was designed for Canada and North America, model 795 

results show that the approach making use of CFFDRS parameters is robust and adaptable to conditions beyond North 

America. 

The benefit of producing the three components of Fig. 9 is important as that it helps to validate the GFFEPS 

calculations.  While we cannot directly measure global emissions, we can measure certain components.  The burned 

area (Fig. 9(b)) can be directly compared to national statistics where available, while the total fuel consumption per 800 

unit area (Fig. 9(c)) appear to fit within expected values for various landscapes.  Together, they indicate the calculated 

global emissions (Fig. 9(a)) produced by GFFEPS are realistic.  Further refinement of the burned area and fuel 

consumption models will then help to improve model accuracy. 

Figure 9 also helps to illustrate the source of variability in global emissions.  For example, the figure shows the 

magnitude of smoke emissions (Fig. 9(a)) in sub-Saharan Africa is primarily a result of the burned area (Fig. 9(b)) by 805 

low-intensity fires, as indicated by the low value for the total fuel consumption per unit area (Fig. 9(c)).  Conversely, 

higher fuel consumptions (Fig. 9(c)) are shown in the forested regions in North America while variable consumptions 

in southeast and equatorial Asia reflect the impact of El Niño on the regions. 

When compared to other models, differences in estimated carbon emissions appear between the models within 

and across regions.  Indeed, each of the models may be superior at modelling emissions in specific regions, while 810 

weaker in others.  Evaluating regional variability is beyond the scope of this study.  Other factors appear in the inter-

annual results such as possible impacts of changing deforestation burning policies in Brazil as emissions vary from 

year to year (Fig. 9(a); Schmidt and Eloy, 2020).  El Niño events have been linked to global fire activity and emissions, 
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and representation of this in weather data used by models can vary and appear linked to emission differences as impacts 

to southeast and equatorial Asia in 2015/2016, 2018/2019 and 2019early 2020. 815 

The GFFEPS model is largely based on the well-established CFFDRS system of fire behaviour and fuel 

consumption and the regional CFFEPS fire emissions model.  The inclusion of the CFFDRS system allows for a clear 

and scientific method to directly incorporate NWP model forecasted meteorological conditions, near-real-time fire 

location measurements, and fuel moisture estimates as driving forces in daily fire activity accounting and emission 

calculations.  Of the models presented in this study, GFAS and FINN provide comparable, near-real-time products; 820 

while these models include forecasted weather and fire locations,, yet they do not address the near-real-time dynamic 

fuel moisture and fire behaviour captured by the CFFDRS as used in GFFEPS. 

Extending the CFFDRS to a global environment was a challenge, and in this initial global application exercise, 

several important assumptions were made.  One such assumption was the introduction of the GSI as a means for 

modelling plant phenology responses in predicting seasonal leaf-out of deciduous forests, and grass curing though a 825 

DC-based approach.  Applying these effects on fuel consumption was understandably unaddressed in the original, 

Canadian-focused, FBP system.  Canada’s fire danger group focused much of its attention on hazardous fuels, 

capturing spread rates and fire behaviour in the situations that threaten fire fighter and community safety; little 

attention was made for the aftermath of fire activity in terms of accounting for smoke and carbon emissions in the 

1970s through 1990s when the Canadian FBP system was developed.  Also, green grass and leaf-out deciduous posed 830 

little threat and thus received cursory assumptions. 

Another issue in extending CFFEPS to a global domain was the lack of data from field experiments and 

measurements outside of Canada encompassing more diverse environment conditions.  This was required not only for 

validation, but also for building a parameterization to expand the FBP approach to modelling fire behaviour in a 

broader domain. (as presented in Appendix A).  Papers such as Hoffa et al. (1999) and Shea et al. (1996) were 835 

invaluable in understanding fires in African savannah.  There again, the authors focused their attention on the dry 

season and highest flammability, and this may influence GFFEPS results outside of these high-burning seasons. 

The methodology of assigning burned area per hotspot with the burned-area climatology dataset was an early 

assumption of CFFEPS carried over into GFFEPS.  It provides a means of derivingpredicting burned area forin near-

real-time, for model forecast operational applications as compared to the hindcast, retrospective approach used in most 840 

other global fire emissions models.  Discrepancies did arise, as evident in current 2016-2020 comparison where 

GFFEPS underestimates burned area in boreal and temperate North America relative to nationally-reported statistics.   

Incorporating small fires was recognized as a non-negligible issue.  Researchers developing the GFED model 

focused efforts into extrapolating burned area by small fires from coarser-resolution data, whereas, the use of United 

Nations’ FAO crop-burning statistics for agricultural regions in GFFEPS provided an alternate route., following 845 

methods commonly applied in anthropogenic emission inventory assessments (Streets et al., 2003).  While small fires 

may have some impact on fires outside of the agricultural zone, it was deemed an acceptable route given the relative 

contribution of agricultural fires compared to wildfire emissions. 

GFFEPS follows the satellite-based fire detection methodology and is faced with the traditional issues 

associated with that approach, namely restricted byrestrictions due to satellite-overpass times, sensor resolution, 850 
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observational swath width, heavy smoke and cloud cover.  Other limitations of the bottom-up approach used by 

GFFEPS include land-cover and burned-area mapping resolution as well as the accuracy of fuel load mapping and 

fuel consumption modelling.   

The GFFEPS model as presented in this manuscript is intended as a proof of concept: we havehas demonstrated 

the ability to model fuel consumption dynamically and its utility for forest fire emissions simulations, particularly in 855 

near-real-time forecasting applications, on a global level.  There is still much work to be donethe potential for future 

improvements.  Many of the spatial components, specifically FBP fuels and fuel load assignments, need more rigorous 

examination and validation.  A number of assumptions and generalizations were made to allow the model to function 

using global input data.  Further work is required toeffort could improve on and validate these initial findings.  The 

model as developed is adaptable and open to improvements. 860 

Efforts are currently underway to validate GFFEPS against TROPOMI measurements, similar to Canada-only 

plume rise (Griffin et al., 2020) and CO emissions (Griffin et al., 2023) exercises that have yielded favourable results.  

Other regional studies may provide additional validation data through remote sensing, particularly on a regional or 

individual fire basis.  For example, Nguyen and Wooster (2020) estimated biomass burning in Africa using 

geostationary fire radiative power (FRP) and aerosol optical depth (AOD); Hayden et al. (2022) conducted airborne 865 

measurements of 193 compounds from 15 instruments, including 173 non-methane organics compounds (NMOG) 

downwind of a small peat-dominated wildfire at La Loche, Saskatchewan, as part of the Alberta oil sands field study;  

Adams et al. (2019) used remote sensing to directly measure CO, NH3 and NO2 from the 2016 Horse River fire near 

Fort McMurray, Canada, while Stockwell et al. (2022) conducted similar measurements over western US fires.  

Applying such approaches on a global scale would be beneficial to validatingfor further validation of GFFEPS as well 870 

as assessing the feasibility in further applications with global chemical transport models. 

Future direction of the GFFEPS model includes integration with the global GEM-MACH chemical transport 

model, and running the model operationally to provide boundary data and input for the regional FireWork model 

utilizing CFFEPS model.  This would allow for the transcontinental transport of smoke emissions intoand further 

refine the regional air-quality forecasts for Canada.  Efforts are underway to link CFFEPS with a predictive fire-875 

growth model (Anderson et al., 2009) and coupling the impact of smoke plumes generated by CFFEPS on ground 

temperatures as presented in public forecasts (Makar et al., 2020).  Finally, initial steps have begun to link GFFEPS 

to the Canadian Earth System Model (CanESM5; Swart et al., 2019) and the Canadian fourth generation atmospheric 

global climate model (CanAM4; von Salzen et al., 2019) for integrated study of climate driven impacts on regional 

wildfire risks, and air quality analysis. 880 

7 Conclusion 

This paper presents the Global Forest Fire Emissions Prediction System (GFFEPS) as a model to estimate 

emissions of smoke from biomass burning globally.  Based on the regional Canadian Forest Fire Emissions Prediction 

System (CFFEPS), the methodology has been extended to a global environment.  Both systems are based on the well-

established Canadian Forest Fire Danger Rating System.  By using forecasted 3-hour meteorological conditions 885 

produced by Environment and Climate Change Canada’s Canadian Global Elemental Multiscale (GEM) model, daily 
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fire weather calculated with FWI, and fire behaviour, area growth, fuel consumption estimated from FBP, the GFFEPS 

model is shown to produce estimates fire emissions in an operational setting. 

The model uses a bottom-up approach and is based on remotely-sensed hotspot locations and predicted burned 

area.  Using forecasted meteorological conditions, daily fire weather, historical burned area per hotspots and a global 890 

land classification at a 1-km resolution, GFFEPS provides dynamic estimates of fuel consumptions and area growth 

in near-real time, differentiating it from other global emissions models.   

A study was conducted running GFFEPS through a six-year period (2015-2020).  Results were compared to 

other global emissions models including GFAS, GFED4.1s and FINN1.5/2.5.  GFFEPS estimated values lower than 

GFAS/GFED (80%/74%), while it estimated values similar to FINN1.5 (97%).  Differences are largely due to its 895 

inclusion of daily weather as predicted by the GEM model and fire behaviour modelling provided through the 

CFFDRS.  

This manuscript presents the initial release of the GFFEPS model.  Its development is on-going and future 

avenues are recognized and being pursued, including incorporating the model to existing air-quality models, coupling 

CFFEPS/GFFEPS with predictive fire-growth models, and linking the model to global climate models.  This paper 900 

presents the methodology currently used in the model, and shows it providing realistic results in line with other models.  

Efforts are underway to validatecontinue validation of the model, improve its sub-components and expand its use to 

other global air-quality and climate models. 

 

8 Appendix A. Supplemental Information: Fuel Consumption Models 905 

Efforts to validate fuel consumption models used in GFFEPS were conducted using data from published 

studies.  These studies documented observed weather, fire behaviour and fuel consumption associated with prescribed 

fires in specific landscapes and forest stands.  These results are compared with fuel consumption predicted by GFFEPS 

and by GFED4. 

GFFEPS follows the Canadian Forest Fire Danger Rating System (CFFDRS, Stocks et al., 1989), specifically, the 910 

Canadian Forest Fire Weather Index (FWI) system (Van Wagner 1987) and the Canadian Forest Fire Behavior 

Prediction (FBP) system (Forestry Canada Fire Danger Group 1992; Wotton et al., 2009).  To calculate fuel 

consumption, GFFEPS requires:  

 a fuel model compatible with the FBP system, 

 FWI values on the date of the fire, 915 

 latitude, longitude, and Julian date for Foliar Moisture Content (FMC) calculation, 

 daylength and vapour pressure deficit for Growing Season Index (GSI) calculation (Jolly et al., 2005). 

GFFEPS uses the Global Land Cover 2000 Project (GLC2000, Bartholome and Belward, 2005) to determine 

fuel models. GLC2000 provides spatial land cover classifications for the globe at a 1-km resolution.  For the purposes 

of validating fuel consumption, a representative GLC2000 classification, shown in italics (e.g., needle-leaved, 920 

evergreen), was selected for each study landscape. 
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Historical fire weather values were taken from a high-resolution (0.25o) global re-analysis of fire weather 

conditions from 1979 to 2018 (McElhinny et al. 2020), except when values were included in specific studies 

(Alexander et al., 1991, Stocks et al., 2004, Stocks 1989, Stocks 1987a, Stocks 1987b, Quintilio et al., 1991).  Duff 

moisture Codes (DMC) and Drought Codes (DC) were retrieved and from these, Buildup Indexes (BUI) were 925 

calculated following the FWI system equations. For the purposes of this study, daily values of GSI were used in place 

of 21-day averages as historical weather to calculate a 21-day average were not readily available (historic papers 

typically included meteorological values the day of observed burns alone). 

Given the input represented or derived from observed data in each individual study, predicted GFFEPS fuel 

consumption was calculated using the FBP system equations.  Fuel loads, largely based on van Leeuwen et at. (2014), 930 

were used as global default values in the FBP calculations (see 4.2 Fuel Load); regional fuel load values presented in 

this supplemental information section replace global defaults.  Consumption rates following the GFED methodology 

are also presented for comparison.  Note that GFED values are based on version 4.1s fixed fuel loads and consumption 

rates per region and fuel with no allowance for variable meteorology and fire weather (see 1.0 Introduction). 

A.1 Boreal Forest 935 

The Canadian Forest Fire Behaviour Prediction (FBP) System is based on case studies of fire behaviour in the 

Boreal Forest (Table A.1).  These studies include fuel loads and depths, noon weather observations (temperature, 

relative humidity, wind speed, etc.) as well as the calculated FWI values (FFMC, DMC, etc.).  Fuel loads used in 

GFFEPS were based on default values in the FBP manual. 

 940 

Table A.2. Canadian Forest Fire Behavior Predictions (FBP) System fuel types included in this study. 

 

 

FBP 

 

 

Fuel description 

 

 

Reference 

Surface 

fuel load 

(kg/m2) 

Crown 

fuel load 

(kg/m2) 

C-1 Spruce–Lichen Woodland Alexander et al. 1991 1.5 0.75 

C-2 Boreal Spruce Stocks et al. 2004 5.0 0.8 

C-3 Mature Jack Pine Stocks 1989 5.0 1.15 

C-4 Immature Jack Pine Stocks 1987a 5.0 1.20 

M-3/4 Dead Balsam Fir  

Mixedwood–Leafless 

Stocks 1987b 5.0 0.8 

D-1 Leafless Aspen Quintilio et al. 1991 1.5 * 

*Crown fuel load for D1 is not applicable 

A.1.1 Coniferous 

The GLC2000 lacks the detail required to distinguish all the fuels presented in these studies.  Instead, needle-

leaved, evergreen land cover classification is represented in GFFEPS simply as a C-2 (boreal spruce) fuel type for 945 
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North America.  GFFEPS thus uses the C-2 surface fuel consumption calculation with the default C-2 surface fuel 

load of 50 t ha-1 and an average crown fuel load of 10 t ha-1 as documented in the FBP manual. 

Figure A.1 shows the scatter plot of observed versus predicted total fuel consumption.  Predicted values are 

based on GFFEPS calculations, assuming all fuels as C-2 (boreal spruce) fuel type, while using the observed using 

weather conditions from the source papers.  The resulting correlation coefficient (r2) was 0.416.  Forcing the regression 950 

through the origin, we find the predicted data is overpredicting the observed fuel consumption by only 2.5%.   

 

Figure A.1. Observed total fuel consumption vs GFFEPS predictions for Boreal coniferous forests 

assuming all fuel as C-2.  Points coloured to reflect the fuel type from each study.  The constant value of 

GFED predictions (3.5 kg/m2) is shown as an orange dashed line. 955 

 

Using a fuel load of 69 t ha-1 with a combustion completeness of 51%, GFED predicts a fixed fuel consumption 

3.5 kg m-2 for Boreal Forest, regardless of season, and does not distinguish between conifer and deciduous (van 

Leeuwen et at., 2014). 
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A.1.2 Deciduous 960 

Deciduous stands in the Boreal Forest are represented by aspen in the CFFDRS.  Quintillio et al. (1991) 

documented spring fires in leafless aspen stands in central Alberta.  Note that one reported burn was removed from 

this comparison.  As the authors wrote: 

  “Two of the plots were jointly reburned, and, among other data, a 10-fold increase in fire intensity was 

documented, due largely to aspen mortality in 1972 and the subsequent increase in fuel load.” 965 

These two reburned plots (their 3b&c) were reported as a single data point with fuel consumption of 3.402 kg m-2, 

which exceeded the default fuel load of 15 t ha-1 (1.5 kg m-2).  The frontal fire intensity of this fire was 57,261 kW/m.  

Including this point would skew the regressions and thus were removed. 

Using the original study results (less the removed plots), observed fuel consumptions were compared to those 

predicted by GFFEPS.  The default FBP surface fuel load of 15 t ha-1 was used in the GFFEPS calculations.  The 970 

Growing Season Index (GSI) was then introduced as a modifier to the predicted fuel consumption, with GSI values 

ranging from 0.0 to 0.55 with an average of 0.18 (see Eq. (9) under 4.3 Combustion Completeness). 

Figure A.2. shows the scatter plot of observed fuel consumption versus that predicted by GFFEPS.  Including 

GSI in the calculations changed the regression from a negative correlation (r2 = 0.037) to positive (r2 = 0.221). 

There is no clear fuel type in GFED that represents North American aspen forests (van Leeuwen et at., 2014).  975 

They report a fuel consumption of 3.5 kg m-2 for the Boreal Forest, and 5.8 kg m-2 for the temperate forest (fuel load 

of 115 t ha-1 and combustion completeness of 61%), both of these values exceed all observed values in Quintillio et 

al. (1991).  
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 980 

Figure A.2. Observed total fuel consumption vs GFFEPS predictions for Boreal deciduous forests.  

Green and brown indicates the use of GSI as a modifier for greenup in fuel consumption calculations.  

Dotted lines show regressions through respective datasets. 

 

 985 

Note that as the only deciduous fuel type in the FBP system, D-1/2 (leafless/ leafed) aspen fuel type was used 

globally to represent a number of broadleaved land cover types in GLC2000 used by GFFEPS.  Fuel loads and 

greenness varied between regions and classifications. 

A.1.3 Siberia 

McRae et al. (2006) studied fire behaviour in Scotch Pine forests in central Siberia.  Following the same 990 

methodology as Canadian forests, study results were compared to predictions based on GFFEPS.  Foliar moisture 

content (FMC) equations developed for Eurasia were used as described in the manuscript. (Chapter 3.4.2).  

The reported results were compared to each of the seven FBP coniferous fuel types as well as the M-3/4 - Dead 

Balsam Fir mixedwood fuel type.  Table A.2 summarizes the regression results.  Immature jack pine (C-4) provided 

the best fit to the data (r2 = 0.921) while mature jack pine (C-3) provided the fit closest to unity (a = 1.036) and C-2 995 

was closest to intercepting the origin (b = 0.165).  Figure A.3 shows scatter plots of the study data against GFFEPS 

predictions using fuel types with the best results. 
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Table A.2. Summary of correlation coefficients (r2)results of study-based observed fuel 

consumptions in Scotch pine versus GFFEPS predictions using various FBP fuel types.  Best fits 1000 

per column are shown in bold. 

 Surface 

fuel load 

(kg/m2) 

Crown fuel 

load 

(kg/m2) 

 

 

r2 

 

a 

(slope) 

 

b (intercept) 

C-1 1.5 0.75 0.300 0.351 0.51 

C-2 5 0.8 0.852 0.846 0.165 

C-3 5 1.15 0.873 1.036 0.449 

C-4 5 1.2 0.922 1.28 -0.763 

C5 5 1.2 0.894 0.731 -0.337 

C6 5 1.8 0.894 0.731 -0.337 

C7 1.75* 0.5 0.620 0.469 1.638 

M-3/4 5 0.8 0.805 0.704 0.787 

*Surface fuel load of C7 is a blend of forest floor (2.0 kg m-2) and woody fuel loads (1.5 kg m-2). 
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Figure A.3. Observed total fuel consumption for central Siberian Scotch pine forest vs GFFEPS 

predictions using various FBP fuel types.  Dotted lines indicate regression lines for respective fuel types. 

The constant value of GFED predictions (3.5 kg/m2) is shown as an orange dashed line. 

 

It is expected that Scotch pine forests are best represented by the FBP mature and immature pine fuels found 1010 

in Canada.  With that said, Siberia, like Canada, is covered by a wide variety of coniferous and deciduous forests.  A 

large component of these are larch forests that lose their needles every winter.  No studies were found for comparative 

purposes.   

For GFFEPS purposes, a C-2 – boreal spruce fuel type was used for tree cover, needle-leaved, evergreen in 

northern Eurasia, northeastern Europe and North America; C-3 – mature jack pine in remaining areas.  Fuel loads 1015 

varied between regions. 

A.2 Tropical Forest 

A validation of model calculations against original source material was conducted for tropical fires in the 

Amazon.  Source materials used were readily available papers referenced by van Leeuwen et al., 2014 (Carvalho et 

al., 1995; Fearnside et al., 1993; Fearnside et al., 2001; Guild et al., 1998; Kauffman et al., 1993; Kauffman et al., 1020 

1998; Ward et al., 1992).  Fires in these studies were all land clearing, conducted for agricultural use.  Trees were 

typically felled at the onset of the May-September dry season and burned at the end of the dry season.  Natural fires 

in uncleared lands in the Amazon are rare (but are now increasing) and when they occur, they burn in the understorey, 

likely undetected by remote sensing (Withey et al., 2018). 

The most representative classification of tropical rainforest in the GLC2000 land classification categories is 1025 

Tree cover, broadleaved evergreen.  Sampling the fire locations on the GLC2000 spatial dataset: 

 8 fires occurred in Tree Cover, broadleaved, evergreen (Carvalho et al., 1995; Fearnside et al., 1993; 

Fearnside et al., 2001; Guild et al., 1998; Kauffman et al., 1998) 

 2 fires occurred near Tree Cover, broadleaved, evergreen (Kauffman et al., 1993; Ward et al., 1992), 

 3 fires occurred in Bare Areas, but described in the text as 12-year regrowth after slash-and-burn 1030 

(Kauffman et al., 1993), 

 4 southern fires in Herbaceous Cover, closed-open were described as savanna and left out of analysis 

(Ward et al., 1992), 

where near is defined as having an adjacent cell categorized as Tree Cover, broadleaved, evergreen on the 1km 

resolution dataset. 1035 

The D-1 - Leafless Aspen FBP fuel type was used for downed trees (hence, greenup was deemed unnecessary).  

Various slash fuels in the FBP system were also examined but did not improve on the following results.  

Figure A.4 shows the scatter plot of observed total fuel consumption versus that predicted by GFFEPS.  Points 

have been colour -coded based on their general land classification.  Including all data points produces a poor 

correlation (r2 = 0.04) but by removing the outliers associated with burns after recent regrowth and those classified as 1040 

near, but not within, broadleaf evergreen, increase the correlation to r2 = 0.732. 
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Figure A.4. Observed total fuel consumption vs GFFEPS predictions for tropical forests assuming all 

fuel as D-1.  Points coloured to reflect the general land classification from each study.  The constant value 

of GFED predictions (12.6 kg/m2) is shown as an orange dashed line. 1045 

 

For tropical forests, GFED uses a fuel load of 285 t ha-1 and a combustion completeness of 49%, yielding a 

constant fuel consumption of 12.6 kg m-2.  Fuel loads for GFFEPS were calculated following data collected by van 

Leeuwen et al. but heavier fuels (20.5 cm diameter) were left out (assumed to be uncombusted) to give a fuel load of 

117.9 t ha-1.  Adjusting this value by a bias correction of 155%, the fuel load becomes to 182.8 t ha-1.  The bias 1050 

correction was based on a decision to include all points.  This was made to avoid extreme overpredictions in the fringe 

areas, in this case representing 5 of the 13 points.  All points covered site characteristics inconsistent over the eight 

published reports and while some studies produced outliers, their overall results were deemed valuable. 

The Buildup Index (BUI) of the FWI system was compared directly to percent fuel consumed as shown in Fig. 

A.5.  This supports the weather-based approach used by GFFEPS.  Lower consumption (<60%) in tree cover, 1055 

broadleaved, evergreen supports excluding heavier fuels from the analysis. 
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Figure A.5. Observed Buildup Index (BUI) and combustion completeness at published fire sites.  Points 

coloured to reflect the general land classification from each study. 

A.3 Tropical Peat 1060 

Field et al. (2004) studied air quality in western Indonesia using the Drought Code (DC) to predict visibility.  

In their study, a nonlinear regression model was developed relating visibility and DC.  Based on their model, a logistic 

model for fuel consumption, FC (kg m-2), was built using their point of inflection (DC = 551) and shape scale 

controlling the curvature (S = 123.7) 

𝐹𝐶 = 105.6 /(1 + 𝑒
ఱఱభషವ

భమయ.ళ )        1065 

 (A.1) 

 

where 105.6 kg m-2 (1056 t ha-1) is the fuel load from van Leeuwen et al. (2014) for tropical peat.   

2015 was an exceptional year for smoke emissions in the region.  Kaiser et al. (2016) estimated that over 15% 

of 2015 global emissions were from fires in tropical Asia.  To examine this, hotspots were collected between 0o and 1070 

4oS latitude and 112oE and 116oE longitude for 2015.  Fuel consumption based on our logistic model was calculated 

using the daily average DC values of these hotspots (based on the GEM model FWI as described in the manuscript), 

which ranged from 5.15 to 458.1 and averaged 116.3. 

Figure A.6 shows a comparison of daily hotspots and calculated fuel consumption.  Both show peak activity in 

the fall, though the predicted fuel consumption spread is wider than the principal hotspot activity.  A background fuel 1075 

consumption of 1.213 kg m-2 results when DC = 0.  This could be removed in the future but in the absence of hotspots, 

this may be immaterial. 
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Figure A.6. Fire characteristics in southern Kalimantan for 2015.  Hotspot countHotspots (blue) 

represent regionthe daily number of hotspots observed between 0o and 4oS latitude and 112oE and 116oE 1080 

longitude.  Fuel consumption (red) based on logistic model and average DC values of hotspots occurring 

in the region. 

 

Graham et al. (2022) evaluated fire behaviour in drained tropical peatlands, examining smouldering peat fires 

at five locations in Kalimantan during August and September, 2015.  This provided data to validate our logistic model.  1085 

Fuel consumption was calculated using DCs from the reanalysis data (McElhinny et al. 2020) with all five locations 

occurring in the same reanalysis grid cell.  Choosing representative DC values was an issue as a precipitation event 

appears to have occurred, as on August 28, 2015 the DC dropped from 443 to 123 in the reanalysis data.  This was not 

noted by Graham et al. and may not have happened at any of the study sites.  To test the impact of this event, the 

adjacent reanalysis cell to the east where the precipitation did not occur was included for comparison.  A second 1090 

alternative was used based on the daily average DC values for hotspots occurring in the study area (between 2.2064 

oS and 2.5226oS latitude and between 114.39 oE and 114.63175 oE longitude) based on an ECCC GEM-MACH model 

run.  These values ranged from 147 to 291, which were higher than average DC of 116.3 for 2015. 

Figure A.7 shows a scatter plot of the study data versus GFFEPS predictions.  Fuel consumption based on the 

reanalysis data produced a negative trend, while results based on the reanalysis cell to the east produced consumption 1095 

values 3 to 5 times higher than those using the average DCs of the hotspot in the area.  Linear regressions of the latter 

two produced correlation coefficients (r2) of 0.801 and 0.822, suggesting GFFEPS performed well for this tropical 

peatland location (given its few data points). 
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Figure A.7. Observed fuel consumption in tropical peatlands in southern Kalimantan, Indonesia vs 1100 

GFFEPS predictions.  Predicted consumption for the nine data points using the reanalysis DC data (red), 

DCs using DCs from the reanalysis grid cell 27 km due east (blue) and using daily DCs averaged from 

the hotspots occurring in the study area (green). The constant value of GFED predictions (31.4 kg/m2) is 

shown as an orange dashed line. 

 1105 

For tropical peatland, GFED uses a fuel load of 1056 t ha-1, combustion completeness of 27%, yielding a fuel 

consumption rate of 31.4 kg m-2.  This value is close to consumption rates observed east of the study. 

The observed values were highly variable and this was acknowledged by Graham et al. (2022).  The August 

28 precipitation event played a significant role, as shown by the data.  The DC average likely shows the general impact 

of precipitation on the sites while DC east shows the conditions without.  In the DC reanalysis results, the two outlying 1110 

points with low observed values (<2 kg m-2) and high predicted values (>25 kg m-2) may reflect a discontinuity in 

timing the transition from dry to wet conditions.  This is certainly a possibility given these points were from one site 

sampled on August 20.  It is possible that the site received precipitation prior to the August 28 event, yet without on-

site weather observations, this is only speculation.   

In terms of GFFEPS validation, it appears the predicted values of the DC average follow the observed data 1115 

closely, with a correlation of 0.8219.  The dry conditions shown by DC east match well with the GFED value but that 
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may be due to the common fuel load value used by both models.  Unfortunately, there is no reported precipitation data 

to be certain as to what happened at the study site.  Closer examination of tropical peat fires is in order but such studies 

are not available in the current literature. 

A.4 Wooded and Open Savanna Grasslands 1120 

Savanna fires were examined based on original work by Hoffa et al. (1999), Shea et al. (1996) and de Castro 

and Kauffman (1998) as referenced and used in van Leeuwen et al. (2014).  Hoffa et al. (1999) studied 13 prescribed 

burns conducted in the early dry season (June to August) in Kaoma Local Forest 310, western Zambia (14o52’S, 

24o49’E); as part of the South African Fire-Atmosphere Research Initiative (SAFARI) project, Shea et al. (1996) 

documented 10 fires in Kruger National Park, South Africa (31o14’00”E, 25o15’13”S), three fires in Kasanka National 1125 

Park , Zambia (12o35’S, 30o21’E) and one near Choma, Zambia (16o50'S, 26o59'E) ; and de Castro and Kauffman 

1998 examined fires in the Brazilian Cerrado, a mosaic of savanna and forests near Brasilia, at the Reserva Ecológica 

do Instituto Brasileiro de Geografia e Estatística (IBGE) and the Jardim Botânico de Brasilia (JBB) (15o51’S, 

47o63’W). 

Dambo is an African grassland, seasonally flooded during the rainy season.  It occupies 10% of Zambia.  1130 

Miombo is an open-canopy, semideciduous woodland with a grass and shrub understory.  It covers 12% of Africa and 

80% of Zambia.  In Shea et al. (1996) 12 burns were conducted in dambo grasslands, 2 in miombo woodlands; in 

Hoffa et al. (1999), 7 burns were conducted in dambo and 6 burns in Miombo. The four Cerrado sites in de Castro and 

Kauffman (1998) were conducted across a range of densities: campo limpo (pure grassland), campo sujo (a savanna 

with a sparse presence of shrubs), and  two variants of Cerrado sensu stricto (a dominance of trees with scattered 1135 

shrubs and a grass understorey). 

Grass curing, a measure of percent dead/dormant/dry as opposed to live/growing/green grass, is a driving factor 

in the rate of spread in grass fuels in the FBP system.  The system assumes complete consumption of grass fuels – a 

generalization made by those who developed the system (see 6. Discussion).  An alternative approach used by GFFEPS 

is that grass fuel consumption is related to grass curing following the same relationship as used for rate of spread.  1140 

Grass typically follows a seasonal pattern of growth during the spring (or rainy season) followed by drying and 

mortality during the summer (or dry season).  Figure A.8 shows the relationship of grass curing (reported as % 

dormancy) at the burn sites in the three publications and the DC from the FWI system as interpreted from the global 

re-analysis of fire weather conditions (McElhinny et al. 2020).  A power law relationship was derived with a 

correlation of 0.2515.  GSI was considered as a possible predictor to grass curing but the correlation was negligible in 1145 

these studies. 
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Figure A.8 The relationship of grass curing (% dormancy) to Drought Code (DC) observed at the sites 

in the three publications. 

 1150 

Figure A.9 shows the scatter plot of observed total fuel consumption versus that predicted by GFFEPS.  

Following GFFEPS methodology, dambo grassland savanna was assigned a standing grass open fuel type (O-1B) with 

an average total fuel load of 4.0 t ha-1 based on the average total biomass reported in Hoffa et al. (1999) and Shea et 

al. (1996).  Fuel consumption was calculated as the product of the grass fuel load and the percent curing.  Miombo 

woody savanna was assigned a leafless aspen fuel type (D-1), given the predominance of down and dead fuels.  Fuel 1155 

load of 9.2 t ha-1 was used based on the average total fuel loads.  The DCs required for grass curing and BUIs required 

for D-1 calculations were based on McElhinny et al. (2020) global reanalysis (with overwintering).  Correlation values 

(r2) were 0.312 for dambo grassland and 0.673 for miombo woodland though both were far from the line of equality.  
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Figure A.9. Observed fuel consumption in dambo grasslands and in miombo woodlands compared to 1160 

predictions. Three separate studies are shown. The constant values of GFED predictions (0.43 and 0.51 

kg/m2) are shown as orange dashed and dotted lines. 

 

Data from de Castro and Kauffman (1998) was intentionally left out of calculations given the broad range of 

site descriptions.  Also, two outliers (due to their heavier fuel loads) tended to dominate and influence the correlations.  1165 

Their points are shown on the graphs for comparative purposes. 

An alternative approach was conducted, calculating grass fuel consumption and surface (non-grass) fuel 

consumption separately and then combining these afterwards.  In dambo landscapes, the average grass fuel load was 

2.18 t ha-1 and surface fuel load 1.83 t ha-1.  In miombo, the average grass fuel load was 1.06 t ha-1 and the surface fuel 

load 8.13 t ha-1.  While this approach improved the correlations, the separation from the line of equality remained (not 1170 

shown).  To better match to the average fuel consumption values, the fuel loads were adjusted to correct for the bias, 

as shown in Figure A.10, bringing the predictions in line with the observed values. Correlation values (r2) were 0.330 

for dambo grassland and 0.709 for miombo woodland.   

The GFED model describes dambo as grassland savanna and uses a 5.3 t ha-1 fuel load with an 81% combustion 

completeness resulting in 0.43 kg m-2 fuel consumption.  It describes miombo as woody savanna with a 11 t ha-1 fuel 1175 

load, 58% combustion completeness and 0.51 kg m-2 fuel consumption.  These relations are shown as horizontal lines 

of constant prediction for comparison purposes.  Admittedly, the GFFEPS predictions are a modest improvement over 

the constant values for the GFED predictions, but this is a result of the high variability of the fuel loads in the source 
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material.  It does indicate GFED predictions are 10 to 20% or more higher than GFFEPS.  Given the frequency of fire 

on the African savanna, such a difference would amount to substantially higher emissions in GFED predictions.  1180 

Finally, we note the need for further studies of fire behaviour over a wider range of conditions in this region, in order 

to evaluate weather-based models such as ours.   

 

Figure A.10. Predicted vs observedObserved fuel consumption in savanna landscapedambo grasslands 

and in miombo woodlands compared to predictions using the modified fuel consumption approach.  1185 

Three separate studies are shown. The constant values of GFED predictions (0.43 and 0.51 kg/m2) are 

shown as an orange dashed and dotted lines. 

A.5 Australia Eucalypt Forests 

Over 22% of Australia is forested, of which 78% is Eucalypt (Sullivan et al. 2012).  Eucalypt (Jarrah) does not 

fit the typical fire behaviour reflected in the Canadian system so an effort was made to create a fuel consumption 1190 

model specific to eucalypt from the published literature.  In 1983, Australian agencies conducted the Aquarius project.  

This project studied a number of aspects of fire in dry eucalypt forests, including fire behaviour, fire line productivity 

and workers’ safety and health (Budd et al. 1997). 

Hollis et al. (2010) summarized woody fuel consumption in eucalypt fires for 18 of the 32 fires of project 

Aquarius (among other fires) at McCorkhill forest block (33°56′38”S, 115°31′52”E as reported in Burrows et al, 1195 

2019).  Dates for these fires were collected from Cheney et al. (2012) and from Gould (pers. comm. 2022).  BUIs were 

then ascertained from 1983 re-analysis data (McElhinny et al. 2020).  Sigmoidal curves similar in structure to those 

used in the Canadian Forest Fire Behaviour Prediction (FBP) System were used.  An upper limit of 90% was used as 
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it was assumed that standing snags would likely be left after a fire-front passage.  This is supported by the highest 

reported observation in the Aquarius studies.  As sigmoid curve fitting is inexact, four models were constructed based 1200 

on successive power increments and a minimization of the sum of residuals.  Figure A.11 shows the chosen, resulting 

curve.  The choice of best model fit is speculative, given the spread of the data and the closeness of the curves.  Total 

fuel consumption for eucalypt is achieved by multiplying combustion completeness by a eucalypt fuel load of 7.8 kg 

m-2 as used in GFFEPS (Sullivan et al., 2012). 

 1205 
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Figure A.11. Total fuel consumptionConsumption completeness (%) in dry eucalypt forests based on 

Project Aquarius observations.  Data points for 18 Aquarius fires are labelled.  A linear regression 

through the origin shown as a dashed line.  A sigmoidal curve shows the chosen fit based on successive 1210 

power increments. The constant value of GFED predictions (68.1%) is shown as an orange dashed line. 

 

For eucalyptus, GFED reports an average combustion completeness of 6668.1% (shown on the figure) and fuel 

consumption of 7.9 kg m-2. 

It is worth noting that the fire sites reported in Project Aquarius reflect the coarse woody debris left from forest 1215 

management practices.  This is evident in some of the other sites reported by Hollis et al. (2010), with pre-fire woody 

fuel loads in excess of 1000 t ha-1 at Warra, Tasmania – a wet eucalypt forest site.  Sullivan et al. (2012) reports a 

typical fuel load of 78 t ha-1 in Jarrah (tall understorey), matching the average of all dry eucalypt sites in Hollis et al. 

(2010).  This value was then assumed for all Australian forests. 

Another factor to address is forest coverage.  Oliveira et al. (2015) examined fire activity in tropical savannas 1220 
in northern Australia.  They described the landscapes as open woodlands, woodlands, and open forests with 
forest protective covers of <10%, 10-30% and 30-70% respectively.  Average values of these were used in 
GFFEPS, with balance as grass fuels following the blended approach used in savanna.Appendix B. Sensitivity 
Analysis  

A sensitivity analysis was conducted to test the extent to which input parameters and methodologies used by 1225 

GFFEPS affects the output emissions estimates.   The analysis focused on three factors: land cover maps, agricultural 

burning and daily weather.  Each of these specific factors was examined separately while maintaining the integrity of 
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the remaining GFFEPS calculations. Results are presented as total smoke emissions, which are twice the carbon 

emissions (500 g kg-1). 

B.1 Land Cover 1230 

The GFFEPS model, as presented in this study, uses the GLC2000 dataset as land cover classification system.  

The decision to use GLC2000 was made in the early stages of GFFEPS model development.  We needed a global land 

use of sufficient resolution that was easy to employ and GLC2000 was well suited for this purpose, providing a single 

map global coverage at a 1-km resolution.  An important benefit of using the GLC2000 was the national expertise and 

ground truthing involved in the generation of that dataset.  While the GLC2000 dataset is now 25 years old, this was 1235 

seen as less critical as vegetation rarely changes (deciduous forests rarely change into coniferous) and most subsequent 

changes, whether they were a result of disturbance (fires, deforestation) or urbanization, would result in landscapes 

less fire prone - and this would be reflected by a reduced number of hotspots in these areas.  For example, there should 

be fewer hotspots (if any) appearing in a burn scar.  Consequently, the potential for post-2000 land changes to 

significantly affect model output is reduced, despite the 25-year age of GLC2000. 1240 

However, to confirm this hypothesis, a test was conducted, comparing GFFEPS model predicted smoke 

emissions for 2019 using the GLC2000 land cover scheme against predicted emissions instead using the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12C1) Version 6.  The MODIS dataset is a 

product of the USGS presenting land cover at a 0.05 degree (5,600 m) spatial resolution.  It is produced annually is a 

spatially aggregated and reprojected version of the tiled MCD12Q1 Version 6 (500 m) data product.  Both follow the 1245 

International Geosphere–Biosphere Programme (IGBP) for its land classifications.  The MODIS dataset thus is less 

likely to be subject to age-of-dataset issues. 

Implementing the IGBP land classification in the GFFEPS model was achieved by matching IGBP land 

classification categories (as provided in the MCD12C1 map product) to GLC2000 categories.  A cross tabulation of 

IGBP versus GLC2000 land classification occurrences as reported in the daily observed hotspot data was used to find 1250 

matching classifications.  Observation dates selected were January 1, April 1, July 1 and October 1, 2019 (40,227, 

57,639, 68,824 and 53,350 hotspots respectively) to account for any seasonal variation.  Table B.1 shows the matching 

IGBP and GLC2000 land classifications achieved looking at the entire set of 220,040 hotspots, globally, for the four 

days.  However, issues with this initial assessment were discovered.  For example, the boreal forest, primarily a 

coniferous forest, was largely described by the MODIS data set as Woody savannas and thus initially matched with 1255 

Tree Cover, broadleaved, deciduous, closed in GLC2000, a description more typical in Africa.  This was rectified by 

conducting cross tabulation for each of the 18 geographic regions in the GLC2000 data set (not shown in the table).   

Subsequently, the GFFEPS model was run, sampling the 2019 MCD12C1 land cover category at each detected hotspot 

and replacing it with a regional matched GLC2000 land classification.  Results were then compared to the original 

GFFEPS results.  In doing so, the spatial representation of the MCD12C1 is captured while maintaining the fuel and 1260 

fire behaviour associated with GCL2000 land classification categories. 

  



 

57 
 

Table B.1 Matching IGBP and GLC2000 land classifications globally (regional specific matches may 

differ). 

IGBP Description GLC200

0 

Description 

1 Evergreen Needleleaf Forests 4 Tree Cover, needle-leaved, evergreen 

2 Evergreen Broadleaf Forests 1 Tree Cover, broadleaved, evergreen 

3 Deciduous Needleleaf Forests 5 Tree Cover, needle-leaved, deciduous 

4 Deciduous Broadleaf Forests 2 Tree Cover, broadleaved, deciduous, closed 

5 Mixed Forests:    

      outside Africa 6 Tree Cover, mixed leaf type 

      inside Africa 2 Tree Cover, broadleaved, deciduous, closed 

6 Closed Shrublands 12 Shrub Cover, closed-open, deciduous 

7 Open Shrublands 14 Sparse Herbaceous or sparse Shrub Cover 

8 Woody Savannas 2 Tree Cover, broadleaved, deciduous, closed 

9 Savannas 3 Tree Cover, broadleaved, deciduous, open 

10 Grasslands 12 Shrub Cover, closed-open, deciduous 

11 Permanent Wetlands 15 Regularly flooded Shrub and/or Herbaceous Cover 

12 Croplands 16 Cultivated and managed areas 

13 Urban and Built-up Lands 22 Artificial surfaces and associated areas 

14 Cropland/Natural Vegetation Mosaics 17 Mosaic: Cropland/Tree Cover /Other natural vegetation 

15 Permanent Snow and Ice 21 Snow and Ice  

16 Barren 19 Bare Areas 

17 Water Bodies 20 Water Bodies 

 1265 

Figures B.1 and B.2 present the resulting daily values of global emissions shown as a time series and as a 

scatter plot, respectively.  The time series shows a similar pattern for the two models with GLC2000 predicting lower 

values than MCD12C1 in the winter and higher values in the summer.  The scatter plot shows near equality between 

the two model predictions (a slope of 0.98) when forced through the origin, with an r2 of 0.93. Total annual emissions 

were 2,957 and 3,028 Mt as predicted by GLC2000 and MCD12C1 respectively.  That is, on a global basis, the relative 1270 

impact of the updated land use information is relatively small.   

A factor contributing to the residual differences would be the data resolution.  The MCD12C1 has a 0.05 degree 

(~5.6 km) spatial resolution, while GLC2000 has a 1 km resolution.  This suggests 31 GLC2000 cells would occur in 

each MCD12C1.  Spatial aggregation may thus account for some of the variation.   

 1275 
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Figure B.1. Time series of daily global emissions for 2019 using the GLC2000 versus the MODIS 

MCD12C1 land classification. 

 

Figure B.2. Scatter plot of daily global emissions for 2019 using the GLC2000 versus the MODIS 1280 

MCD12C1 land classification. 

 

Figure B.3 shows the annual total emission values regionally, where GFFEPS differences associated with the 

two land use datasets become more apparent.  Largest differences occurred in EQAS, NHAF and BONA, where 

GLC2000 predictions were 61%, 65% and 67% of those for MCD12C1, while in SHAF GLC2000 predictions where 1285 

166% of those for MCD12C1.  These differences are likely to poor matching of coniferous versus deciduous forests, 

a distinction not captured in MCD12C1 classifications Savannas and Woody savannas (as previously described).  The 
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difference between coniferous and deciduous fuels is critical in the FBP fire behaviour calculations and any 

misclassification would have an impact on predictions.  Also, difficulties mapping fire emissions and land 

classifications in Africa have been discussed in various papers (Ramo et al., 2021; Nguyen and Wooster, 2020; Zhang 1290 

et al. 2018), possibly accounting for the discrepancy shown in this comparison. 

 

Figure B.3. Regional annual emissions for 2019 using the GLC2000 versus the MODIS MCD12C1 land 

classification. 

B.2 Agriculture 1295 

The sensitivity of the GFFEPS model to agricultural burning and small fires was examined.  As presented in 

chapter 3.2, our approach used FAO agriculture burning statistics to predict emissions in cultivated zones.  Using 

national annual values of biomass of residual crops burned divided by the number of hotspots that occurred per nation 

per year, a historical average biomass burned per hotspot was determined.  This was then applied to future, observed 

hotspots to predict biomass burned from agricultural burning.  The benefit of this method is that national statistics as 1300 

reported to the FAO should account for all biomass burned, including that from small fires, which are undetected by 

satellite observation.   

The sensitivity of the FOA approach within GFFEPS was assessed by replacing the FAO agricultural burning 

with grassland fires at a fixed grass fuel load (GFL) of 0.60 kg m-2, a value equal to the average crop residue fuel 

produced by different crops in the US (Lal 2004).  Then a historical average burned area per hotspot was calculated 1305 

by the method described in chapter 4.1.  No allowance for small fires was included in these fixed GFL calculations.  

The sensitivity test with fixed fuel loads is used to demonstrate the relative impact of small fires as well as the details 

of the agricultural fires parameterization on model results. 

Figures B.4 and B.5 present the daily values of global emissions following the FAO approach versus the fixed 

GFL shown as a time series and as a scatter plot.  These figures show a close agreement between the two predictions 1310 

with an r2 of 0.996 and a slope of 0.991.  This indicates that for 2019, and likely other years, agricultural burning had 
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an insignificant impact on global emissions beyond being modelled as a grass fuel and that small fires were 

inconsequential on a global scale. 

 

Figure B.4. Time series of daily global emissions for 2019 using the FAO statistical approach versus a 1315 

fixed grass fuel load (GFL) of 0.60 kg m-2 for agriculture. 

 

 

Figure B.5. Scatter plot of daily global emissions for 2019 using the FAO statistical approach versus a 

fixed grass fuel load (GFL) of 0.60 kg m-2 for agriculture. 1320 

 

Locally and regionally, however, the agricultural burning methodology has a larger impact.  Figure B.4 shows 

most variation between the methods occurs near the origin, and closer examination reveals this variation occurring 
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primarily in the agricultural regions.   Examining the regional differences within agricultural areas we find that in 

Europe, which has a large fraction of agricultural land though a small contribution to total emissions, the FAO 1325 

approach used by GFFEPS produced 4.7 times the emissions produced using the average fuel load.  Similarly, the 

FAO approach relative to the fixed values generates in TENA 2.9, in CEAS 2.3 and in MIDE 2.1 times the emissions.  

These are similar to recently published results by Hall et al. (2024), who reported a 2.7-fold increase in annual average 

cropland burned area (2003–2020) in cropland regions using the new global cropland area burned dataset (GloCAB) 

over the MCD64A1 product. 1330 

While the use of a single, fixed fuel load may be simplistic, this variation shown cannot simply be attributed 

to denser crop fuel loads.  Wooded areas embedded in agricultural fields could contribute to larger fuel loads but the 

likely explanation is that these larger values are a result of smaller, undetected fires.   This indicates the importance 

of properly modelling small fires in agricultural regions, and this would have an impact on air quality forecasting in 

these regions. 1335 

 

 

Figure B.6. Daily emissions in Europe (Mt) for 2019 using the FAO statistical approach versus a fixed 

grass fuel load (GFL) of 0.60 kg m-2 for agriculture. 

 1340 

B.3 Daily Weather 

The use of daily weather to predict fire behaviour and emissions is central to the GFFEPS model, due to its 

intended use in real time air-quality forecasting.  Along with daily observed hotspots to determine burned area, the 

weather and fuel type drives fuel consumption as predicted by the FBP system, the Growing Season Index (GSI) 

restricts fuel consumption in deciduous and grass fuels and the Foliar Moisture Content (FMC) affects the crown fuel 1345 

consumption. 
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The relative sensitivity to daily weather variation was assessed by comparing the standard GFFEPS model 

predictions to those generated using a fixed consumption completeness, which when multiplied by the fuel load 

determines the amount of fuel consumption per area (similar to the FBP’s total fuel consumption).  This latter 

simulation thus eliminates the impact of meteorological variability.  Consumption completeness values per GLC2000 1350 

land classification were not available so general values were assigned to forest (50%), grassland (75%) and peatland 

(25%) fuel types, based on average values for these categories from van Leeuwen et al. (2014). 

Figures B.7 and B.8 present the daily values of global emissions using daily weather to drive FBP fuel 

consumption versus a constant combustion completeness, shown as a time series and as a scatter plot.  These show 

close agreement between the two approaches with an r2 of 0.979.  The slope of 0.95 suggests that by using daily 1355 

weather, the emissions drop by 5%, but this is an unreliable conclusion as the emissions are largely dependent on the 

general value used for combustion completeness. 

 

 

Figure B.7. Time series of daily global emissions for 2019 using the daily weather to drive FBP fuel 1360 

consumption versus a constant consumption completeness. 
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Figure B.8. Scatter plot of daily global emissions for 2019 using the daily weather to drive FBP fuel 

consumption versus a constant consumption completeness. 1365 

 

The variation around the emissions, especially at the lower end again suggests regional differences.   In North 

America, emissions rates were lower when daily weather was employed: 71% in BONA, 75% in CEAM and 85% in 

TENA.  In Boreal Asia (Figure B.9), emissions were higher (298%) when daily weather was employed, due to the 

strong impact of weather on smoke estimates from burning peatlands, while in Australia emissions were 149% using 1370 

the daily weather, reflecting the impact of El Niño.  This indicates the impact of daily weather on air quality forecasting 

in these regions. 
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Figure B.9. Daily emissions in Boreal Asia for 2019 using the daily weather to drive FBP fuel 1375 

consumption versus a constant combustion completeness. 
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