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Abstract. Climate change and industrial fishing have profound effects on marine ecosystems. Numerical models that capture

key features of fish biomass dynamics and its interaction with fishing can help assess the biogeochemical and socio-economic

consequences of these impacts. However, these models have significant biases and do not include many processes known to

be relevant. Here we describe an updated version of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model for

global fish and fisheries studies. The model incorporates new ecological and economic features designed to ameliorate prior5

biases. Recent improvements include reduction of fish growth rates in iron-limited high-nutrient low-chlorophyll regions, and

the ability to simulate fisheries management. Novel features described here include a separation of pelagic and demersal fish

communities to provide an expanded representation of ecological diversity, and spatially variable fishing costs and catchability

for more realistic fishing effort dynamics. We also introduce a new set of observational diagnostics designed to evaluate the

model beyond the boundary of large marine ecosystems. Following a multi-step parameter selection, the updated BOATSv210

model shows comparable performance to the original model in coastal ecosystems, accurately simulating catch, biomass and

fishing effort. The revised model provides a markedly improved representation of fisheries in the High Seas, largely correcting

the biases of the original version, including excessive high-sea catches and too rapid deepening of fishing effort over time. The

updated model code is available for simulating both historical and future scenarios.

1 Introduction15

Recent theoretical and empirical developments have enabled the development of size-based fish community models based

on fundamental ecological principles (Heneghan et al., 2021). Instead of explicitly representing linkages between species

or functional groups in food-webs, aggregated size-spectrum models are founded on properties that emerge at higher levels

of organization, relying on macroecological principles to connect individual growth and metabolism (Brown et al., 2004;

Kooijman, 2010; Hatton et al., 2021) to community level production and biomass (Gascuel et al., 2011; Blanchard et al.,20

2012; Maury and Poggiale, 2013; Jennings and Collingridge, 2015; Petrik et al., 2019; Heneghan et al., 2020). By simplifying

complex ecosystems dynamics into community-level biodiversity (Maury, 2010; Petrik et al., 2019) and regional variations in

trophic efficiency (Du Pontavice et al., 2020) and other ecological variables, these models can project the response of global
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marine ecosystems to warming and shifts in primary production due to climate change (Lotze et al., 2019; Tittensor et al.,

2021).25

The BiOeconomic mArine Trophic Size-spectrum (BOATS) model is a size-spectrum model that incorporates an explicit

representation of commercial fishing effort (Carozza et al., 2016, 2017). The model’s integration of ecological and economic

dynamics enable a clear illustration of the profound effects of advances in fishing technology on historical changes in fish

biomass, as compared to the impacts of climate change (Galbraith et al., 2017; Carozza et al., 2019). The ability to simulate how

fish catches respond to dynamic fishing effort allow optimization of the model’s ecological parameters against observational30

reconstructions of large-scale fish catches (Carozza et al., 2017). Based on this optimization method, BOATS provided new

estimates of the global biomass and cycling rate of fish, indicating a non-negligible impact of fishing on carbon sequestration

and biogeochemical cycles (Bianchi et al., 2021; Le Mézo et al., 2022), and providing mechanistic insights on the historical

progression of fisheries (Guiet et al., 2020). While the model was originally designed under the assumption of open-access

fishing effort, subsequent developments enabled it to investigate the effects of regulatory measures on fish community dynamics35

and their response to long-term and abrupt climate perturbations (Scherrer and Galbraith, 2020; Scherrer et al., 2020).

While BOATS has proven useful for exploring multiple aspects of global fisheries dynamics, comparisons with observations

have also revealed discrepancies that suggest missing mechanisms. For instance, comparison with global fishing effort recon-

structions suggested excessive fishing activity in iron-limited high-nutrient low-chlorophyll (HNLC) regions (Galbraith et al.,

2019). Similarly, while the model provides a realistic representation of coastal fisheries, catches in the High Seas (here defined40

as the regions of the ocean beyond Large Marine Ecosystems) appear to be much larger than recent observational reconstruc-

tions. Specifically, BOATS simulates 40% of global catches beyond the boundary of Large Marine Ecosystems (LMEs) by the

1990s. This is approximately four times larger than the value of 8− 9% from empirical estimates (Watson, 2017; Pauly et al.,

2020). The large High Seas catches coincide with excessive fishing over deep seafloor. During the 1990s, the model’s catch-

weighted mean depth of fishing is 1698m, contrasting significantly with the observational reconstructions range of 154−372m.45

This discrepancy limits the model’s applicability to study the interaction of industrial fishing with High Sea and deep-ocean

ecosystems, and suggests potential shortcomings in the representation of open-ocean food webs.

In parallel, recent studies have shed new light on large-scale aspects of global marine ecosystems and fisheries. Recon-

structions of industrial fishing effort by Global Fishing Watch (GFW, Kroodsma et al. (2018)) highlighted spatial variations

in fishing costs (Sala et al., 2018) and revealed the importance of seamounts in concentrating fishing activity, especially for50

pelagic fisheries in the High Seas(Kerry et al., 2022). New reconstructions of fishing effort that include artisanal and industrial

sectors provide more nuanced insights on the development of regional fisheries (Rousseau et al., 2019, 2024). Regional catch

reconstructions have revealed the importance of “straddling” species, which forage both within exclusive economic zones and

in the High Seas over the course of a year, thus disconnecting regions of fish biomass production from regions of biomass

extraction (Sumaila et al., 2015). Analysis of catch data shows how energy inputs at the base of food webs determine the55

dominance of pelagic vs. demersal communities across latitudes (van Denderen et al., 2018), suggesting different temperature

sensitivities of growth for these groups (van Denderen et al., 2020). Finally, harmonization and in-depth analysis of fisheries-
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independent trawl data has begun to reveal large-scale fish biomass patterns with unprecedented accuracy (Maureaud et al.,

2023).

Here, motivated by discrepancies between observations and simulations with the original BOATS model (BOATSv1) and60

insights from recent large-scale studies, we revise the model formulation to improve its representation of High Sea vs. coastal

fisheries, and of pelagic vs. demersal communities, leading to a significant model update: BOATSv2. The rest of the paper

consists of four main Sections. Section 2 summarizes the main principles of BOATSv1. Section 3 details previous model

developments and new features introduced in BOATSv2. Section 4 describes a revised model optimization procedure, leading

to 5 optimal parameter ensembles. Section 5 compares the old and new model versions, showing how BOATSv2 improves the65

representation of global fisheries, and discussing insights from the new formulation.

2 BOATSv1

The philosophy of BOATS is to ensure global applicability while including sufficient ecological and economic complexity to

represent realistic first-order fishery dynamics. The model is designed with a relatively small number of parameters, facilitating

objective parameter optimization. It can simulate marine ecosystems on a 2-dimensional spatial grid, from small regions to the70

global ocean. In the following, we provide a brief overview of key model principles, and refer the interested reader to Appendix

A for all equations and to previous publications for detailed explanations (Carozza et al., 2016, 2017).

2.1 Ecological module

BOATSv1 simulates the biomass of commercial fish by size, fk (in g m−2 g−1, where g are grams of wet biomass), and its

propagation across a spectrum of size classes [m0,mu], where m is the biomass of an individual fish (in g). Here, different75

fish groups are indicated with the subscript k, with nk groups distinguished by their asymptotic mass m∞,k < mu. The total

biomass density Bk =
∫m∞,k
m0

fk dm is the sum of all biomass across individual size classes (in g m−2). The propagation of

biomass through the size spectrum of each group as a function of time t is described by the McKendrick von Foerster equation,

with appropriate boundary and initial conditions:





∂

∂t
fk =− ∂

∂m
γS,kfk +

γS,kfk
m

−Λkfk −hk

γS,kfk = RP,k
Re,k

RP,k + Re,k
for m = m0

fk = fk,m,0 at t = 0

(1)80

with Re,k and RP,k that are respectively the biomass input potential at recruitment size m0 from eggs production e, and the

primary production input to juveniles (in g m−2 s−1), γS,k a size-dependent growth rate (in g s−1), and Λk a natural mortality

rate (in s−1). The sink term hk (in g m−2 g−1 s−1) is the biomass harvest by fishing that couples the ecological module to the

fisheries dynamics module (see Section 2.2). The initial biomass distribution fk,m,0 approximates an ocean in the absence of

fishing (“pristine”), and is estimated from environmental conditions (Section 3.3).85
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The growth rate, for a given fish size, is proportional to the minimum between the energy provided by primary production to

that size, given trophic transfer across the food-web ξP,k, and the production potential for that size following individual-level

allometric growth ξV B,k (in g s−1):

γS,k = (1−Φk) ξI,k = (1−Φk) min(ξP,k, ξV B,k) = min

(
ϕC,kπm

fk
,Amb− kam

)
(2)

for (1−Φk) the remainder of energy allocated to growth when a fraction Φk is allocated to reproduction (see Appendix A90

for more detail). Thus, when food is limiting, individual fish will grow according to π = Πψ/mψ(m/mψ)τ−1, which defines

a spectrum of available energy from primary production as a function of size (in g m−2 g−1 s−1). Here, τ is the trophic

scaling, and mψ a representative cell size for primary producers (i.e., phytoplankton) at the base of the food-web Πψ (in

mmol C m−2 s−1). These two parameters determine the efficiency of propagation of production through the consumer size

spectrum, and the length of the food-web leading to higher trophic levels. Primary production is equally partitioned across95

the groups, i.e., ϕC,k = 1/nk. When food is in excess of what can be consumed by the standing fish biomass, fish grow

as fast as physiologically possible, given an allometric scaling b, a temperature dependent anabolism Amb = A0 aA(T )mb

and catabolism kam = Aϵa mb−1
∞,km, where A0 is a growth constant (in g s−1), and ϵa an activity fraction. The temperature

dependence aA(T ) follows a van’t Hoff-Arrhenius curve controlled by a growth activation energy ωa,A (in eV).

Recruitment provides the boundary condition, setting the flux of biomass at the lower mass boundary m0. Recruitment is a100

function of the biomass production by mature individuals Re,k = F (γR,k) assuming that a fraction Φk of the input energy is

allocated to reproduction, γR,k = ΦkξI,k. The recruitment flux is determined by summing all individual contributions across

sizes m for a fraction of females ϕf and an egg survival probability se. Primary production limits the survival of recruits,

saturating toward the limit RP,k = ϕC,kπ(m0)m0, which is controlled by the energy available from primary production at the

recruit size m0. In high-biomass regions with large egg production, recruitment is thus generally constrained by π(m0).105

The natural mortality rate (in units of s−1) depends on both individual and asymptotic mass, following:

Λk = eζ1
A0

3
aλ(T )m−hmh+b−1

∞,k (3)

where h is an allometric scaling, and ζ1 (in g s−1) a mortality rate parameter. To account for separate temperature dependencies

between metabolism aA(T ) and other processes such as predator-prey interactions, mortality varies with a distinct temperature

dependence aλ(T ), following a van’t Hoff-Arrhenius curve set by an activation energy ωa,λ (in eV).110

For this ecological module Eqs. (1-3), 9 parameters are not well constrained by the literature (see Table 1): the activation

energies ωa,A−λ; the scaling exponents b and h; the constants A0 and ζ1; the trophic scaling τ = log(α)/log(β), itself a

function of trophic efficiency α and predator-prey mass ratio β; and the egg survival fraction se. In previous work (Carozza

et al., 2017), these parameters are selected from prior ranges by applying a Monte Carlo approach, keeping a small ensemble

of 5 parameter sets to account for parameter uncertainty (see Section 4.2). Compared to the calibration of BOATSv1 (Carozza115

et al., 2017), we assume that a subset of parameters (kE and Π∗) are relatively well constrained, since previous analysis

have shown that their variation had no significant effect. For this update, we replicate the Monte Carlo selection procedure,

after updating a few prior parameter ranges based on recent analyses (α (Stock et al., 2017; Eddy et al., 2020)) and because

previously optimized values were close to the boundaries of the ranges (b, se).
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For a given set of parameters, the dynamics of commercial fish biomass in BOATSv1 is determined by two spatially and120

temporally varying environmental “forcings”: local primary production Πψ and epipelagic temperature T = T75 (average tem-

perature in the top 75m).

2.2 Economic module

BOATSv1 couples fish biomass and fishing effort Ek (in W m−2) to determine fish catch rate Ck (in g m−2 s−1) for each group

k. Fishing effort is typically initialized everywhere at zero and evolves independently in each grid cell under an open-access125

dynamic, proportional to the local net profit (the difference between revenue and cost) as:




d

dt
Ek = κe

revenuek − costk
Ek

Ek = 0 at t = 0
(4)

where κe (in W2 m−2 $−1) is a fleet dynamic parameter that sets the effort adjustment timescale for a given change in profit.

The rate of revenue obtained over a time interval dt at some point in the ocean (in $ m−2 s−1) is determined as a spectrum

rk (in $ m−2 s−1 g−1) that is defined separately for each group fk. It represents the product of catch and the mass-specific130

price fishers are paid at port, integrated across size classes within each group:

revenuek =

m∞,k∫

m0

rkdm dt = pkqkEkdt

m∞,k∫

m0

σkfkdm (5)

where pk is the selling price (in $ g−1) of the group, σkfk is the biomass targeted by fishing, and σk is a size-dependent

selectivity of fishing gear on group k. The selectivity plays a fundamental role by distributing fishing effort across size

classes. Here, it is defined as a sigmoidal curve that applies reduced effort to the smallest sizes, approximating the selec-135

tivity of towed gear such as trawls and seines. The parameter emΘ,k accounts for the uncertainty around a target threshold

mass mΘ,k = dmΘ,kemΘ,kmα,k, which is proportional to the maturity mass for each group mα,k. Specifically, dmΘ,k is set to

select mainly mature individuals (i.e., dmΘ,k = 1) such that emΘ,k reflects a variability around this mass. The catchability qk

(in m2 W−1 s−1) per unit of nominal fishing effort encapsulates the ability of fishing effort to extract fish biomass, reflecting

the inherent characteristics of the fish group as well as the fishing technology (including gear, navigation instruments, sonars,140

and communication) and accrued knowledge (Palomares and Pauly, 2019).

Net profits are determined by subtracting costs from revenues. Similar to revenue, the cost is expressed as the average

expenditure rate per time over an area of the ocean (in $ m−2 s−1). In reality, the cost of fishing includes the purchase and

maintenance of capital, fuel costs for transit between fishing grounds and ports as well as during gear operation, and labour.

In the model, cost is simply proportional to effort, costk = ckEkdt, where ck is the cost per unit effort ($ W−1 s−1). When145

revenue exceeds costs, fishing effort Eq. (4) increases. Any nonzero effort will lead to fish catch:

hk dt dm = qkσk Ek fk dt dm (6)
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Table 1. Model parameters and summary results for the Monte Carlo ensemble (update of Table 3 in Carozza et al. (2017)). The sampling

distribution of each parameter used in the Monte Carlo simulation are shown, where X(p1,p2) represents the probability distribution (N for

normal, U for uniform), and p1 and p2 are the mean and standard deviation of each parameter, respectively, for the pelagic P and demersal D

communities when it applies. Opt. refers to the subset of optimized Monte Carlo simulations, N.O. to the subset of non-optimized simulations.

SD is the standard deviation, and KS p-value is the p-value of the 2-sample Kolmogorov-Smirnov test applied to the optimized and non-

optimized sets. The three last variables are fixed compared to previous optimizations.

Parameter Name Sampling Distribution Mean Opt. Mean N.O. SD Opt. SD N.O. KS-pvalue

ωa,A Growth activation energy
UP (0.45,0.09) 0.50 0.45 0.088 0.089 4.7 10−3

UD(< UP ,0.09) 0.37 0.30 0.14 0.13 2.6 10−3

ωa,λ Mortality activation energy
UP (0.45,0.09) 0.45 0.45 0.079 0.090 0.59

UD(0.45,0.09) 0.45 0.45 0.096 0.090 0.57

b Allometric scaling exponent N(0.55,0.12) & N(0.70,0.12)∗ 0.72 0.63 0.06 0.15 1.4 10−9

A0 Allometric growth constant N(4.46,0.50) 4.7 4.46 0.47 0.50 0.053

h Allometric mortality scaling N(0.54,0.09) 0.51 0.54 0.064 0.089 1.1 10−3

ζ1 Mortality constant N(0.55,0.57) −0.072 0.54 0.38 0.57 3.6 10−10

α Trophic efficiency U(0.23,0.10) 0.14 0.23 0.027 0.098 6.9 10−14

β Predator to prey mass ratio U(5000,2500) 4970 5000 2580 2510 0.94

τ Trophic scaling log(α)/log(β) −0.24 −0.19 0.016 0.063 3.5 10−17

se Egg survival fraction U(0.05,0.028) 0.052 0.050 0.025 0.028 0.49

emΘ,k Selectivity position scaling U(0.75,0.2) 0.77 0.75 0.20 0.20 0.54

log10(mβ) Mean benthic size N(−6.5,0.67) −6.4 −6.51 0.47 0.67 0.064

kE Eppley constant - 0.06 - - - -

Π∗ Nutrient concentration - 0.35 - - - -

cσ Selectivity slope - 17.8 - - - -

∗We merge 2 ensembles of 10000 simulations each, with slightly different distributions for b. The first ensemble prompted re-selection of the parameter range for the second.

which couples the economic and biological modules Eq. (1). A catch limit is imposed for numerical stability (i.e., to prevent

harvesting more fish than the available biomass). The total catch rate for each group is then given by: Ck =
∫m∞,k
m0

hkdm (in

g m−2 s−1.150

In the open-access economic model, only a single parameter, emΘ,k (the threshold mass for fishing selectivity), remains

undetermined and is included in the Monte Carlo analysis. Compared to previous implementations, we fixed the selectivity

slope parameter cσ for all simulations since previous analysis showed limited sensitivity; the range was also updated to reflect

a selectivity around maturation size (Carozza et al., 2017).

In BOATSv1, the ex-vessel fish price pk is generally assumed to be constant in space and time, since observations suggest155

small historical variations (Sumaila et al., 2007; Galbraith et al., 2017). Similarly, cost ck is also assumed constant. Catchability

qk increases annually at a 5% rate that accounts for sustained technological improvements and is the only temporally-varying

economic “forcing”.
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Figure 1. Schematic diagram of the main modules, components, and processes of BOATSv2. Updated from the schematic diagram in Carozza

et al. (2017).

3 BOATSv2

Here we describe the features of BOATSv2 that provide an update to the original BOATSv1. Two of these features were160

introduced incrementally, in previously-published work, in order to capture iron limitation in regions where iron is known

to be scarce (Galbraith et al., 2019), and to represent management of fisheries (Scherrer and Galbraith, 2020; Scherrer et al.,

2020). Below we provide a brief summary of these previous updates, before discussing in detail the novel features. A schematic

of BOATSv2 is provided in Figure 1.

3.1 Previously-published features165

3.1.1 Reduced growth rates in iron-limited regions

Iron limitation of phytoplankton growth is widely recognized in the ocean, most prominently in HNLC regions (Tagliabue

et al., 2017). Less is known about iron limitation of higher trophic levels in the ocean, including fish (Le Mézo and Galbraith,

2021). Multiple lines of evidence suggest that low iron availability also places strong limits on fish growth, and could contribute

to reducing fish abundance in large portions of the High Seas (Galbraith et al., 2019).170

Following Galbraith et al. (2019), we simulate iron limitation of fish by modulating the trophic efficiency α, which deter-

mines the fraction of biomass incorporated into new tissues at each trophic step, with the following function:

αcorr = α

(
kNO−3

kNO−3
+ NO−3

)
(7)

where the surface concentration of nitrate (NO−3 , in µM) is taken as a proxy for iron limitation, in the absence of reliable

globally resolved estimates of surface iron concentrations or plankton iron contents. This formulation smoothly decreases the175

trophic efficiency as surface nitrate increases. The constant kNO−3
= 5 µM controls the strength of this effect, and is constrained
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empirically. Nitrate concentrations are taken as the monthly minimum from the World Ocean Atlas (WOA) climatology (Lo-

carnini et al., 2006) (see Appendix B). Although uncertainties persist regarding the impact of iron limitation on marine preda-

tors, this parameterization effectively reduces an overestimate in fishing effort in the Southern Ocean, North Pacific, and North

Atlantic in BOATSv1 (Galbraith et al., 2019).180

3.1.2 Management with varying effectiveness

In BOATSv1, effort was generally assumed to follow an open-access dynamic Eq. (4). This was modified to represent the

influence of regulation by adjusting fishing effort to align with a prescibed target Etarg,k (Scherrer and Galbraith, 2020), as:
(

d

dt
Ek

)corr
=
(

d

dt
Ek

)
e−S +

(
1− e−S

)
κs (Etarg,k−Ek) (8)

where S is a non-dimensional parameter representing how effectively the target is enforced. When S = 0 the model follows185

open-access dynamics; when S > 0 the nominal effort is nudged towards the target at a rate proportional to the regulation

response parameter κs (m−2 $−1).

This feature showed that strong fisheries regulation is required to prevent overfishing if technological progress keeps in-

creasing, making management effectiveness a key factor in future scenarios (Scherrer and Galbraith, 2020). For the rest of the

paper, we set S = 0, and focus on simulation of historical fisheries up to the time they reached maximum catches, for which190

the open-access dynamic was shown to be adequate (Galbraith et al., 2017; Guiet et al., 2020).

3.2 Novel model features

3.2.1 Separate pelagic and demersal energy pathways

Variations in energy input at the base of marine food webs significantly affect biomass accumulation and cycling, thereby alter-

ing the sensitivity of different fish communities to climate and environmental factors (Petrik et al., 2019). Pelagic communities195

are more tightly tied to surface planktonic production (i.e., net primary production Πψ), whereas benthic communities depend

on the delivery of organic material the seafloor (i.e., particle flux at bottom Πβ in mmol C m−2 s−1) (Stock et al., 2017; van

Denderen et al., 2018). The two types of communities also experience different temperatures, with surface temperature (here,

T = T75) controlling the metabolic rates of pelagic fish, and bottom temperature (T = Tbot) that of demersal fish.

To account for these ecological differences, we modified BOATS to resolve separate pelagic and demersal fish communities.200

Both communities are described by the same set of equations, solved independently (see environmental forcing Fig. 1). Pelagic

fish are forced by surface conditions (Πψ and T = T75), while demersal fish are forced by bottom conditions (Πβ and T = Tbot).

Whereas the energy supply to the pelagic community remains dependent on surface NPP, the particle flux to the bottom

provides the energy input to the demersal community. The particle flux is modeled as a depth-dependent fraction of surface

primary production:205

Πβ = Πψ ∗ peratio ∗
(

zbot
zeu

)ba
. (9)
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This formulation assumes a power-law decrease of the flux of organic material below the euphotic layer, i.e., a typical Martin

curve (Martin et al., 1987; Buesseler and Boyd, 2009). The attenuation coefficient ba =−0.8 and the euphotic layer depth

zeu = 75 m are assumed to be fixed, although they could be modeled to vary with space and time. Here, similar to prior

work (Stock et al., 2017; van Denderen et al., 2018; Petrik et al., 2019), we focus on first-order variations in fish biomass210

in increasingly deep habitats, where food becomes progressively scarce. We calculate the term (zbot/zeu)ba using the high-

resolution bathymetry z′bot from the ETOPO global surface relief at 1/10oth (Amante and Eakins, 2009), and taking the average

across 1o grid cells (zbot/zeu)ba = (z′bot/zeu)ba . Note that, when z′bot is shallower than zeu, export is only determined by the

peratio, which is taken as a function of surface temperature T75 and net primary production Πψ , following Dunne et al. (2005).

In the pelagic ocean, the typical size of phytoplankton, mψ , varies markedly between productive and oligotrophic regions.215

This variation affects both the length of the food web and the proportion of production accessible to fish communities (Ryther,

1969). In analogy with the pelagic ecosystem, we assume that the representative size of benthic organisms at the base of the

demersal food-web, mβ , influences the fraction of energy that reaches demersal fish. For simplicity, we take mβ to be globally

uniform. Unlike mψ , for which empirical parameterizations exist, mβ is poorly constrained, and is included in the Monte

Carlo optimization procedure (Table 1), with a prior range of values [10−8,10−5] g. We keep most food-web parameters the220

same for pelagic and demersal fish, with the exception of the activation energy ωa,A−λ, since observations suggest significant

differences between the two communities (van Denderen et al., 2020).

3.2.2 Heterogeneous costs

Simulations with BOATSv1 suggest that variations in the cost per unit effort of fishing ck (in $ W−1 y−1) played only a

secondary role in the development of global fisheries (Galbraith et al., 2017). Yet, heterogeneous costs in the global ocean225

could modulate the spatial distribution of fishing effort and its evolution over time (Swartz et al., 2010; Anticamara et al.,

2011; Lam et al., 2011). Reconstructions of fishing effort in the High Seas suggest more than twofold average cost differences

between distinct fishing gears and regions (see Sala et al. (2018); Kroodsma et al. (2018) and Appendix C).

To simulate the effect of heterogeneous fishing costs on the historical offshore expansion of fisheries, we replaced the

constant costs per unit effort (ck = 5.85 $ W−1 y−1) in BOATSv1 by spatially-varying costs, using a linear function of the230

distance to shore for effort targeting pelagic fish, dcoast (in km), and a linear function of seafloor depth zbot (in m) for effort

targeting demersal fish (see economic forcing Fig. 1):

ccorrk (x = dcoast,zbot) =





ck when x≤ x∗

ck + δ(x−x∗) when x > x∗
(10)

where x∗ is a reference parameter that determines the boundary between coastal and High Seas regions. For pelagic effort, x∗

identifies a coastal band over which transit costs are assumed to be small compared to other costs. Here we adopt x∗ = 370 km.235

For demersal effort, x∗ identifies a depth threshold above which the cost of setting and hauling gears is negligible compared to

other costs, and set x∗ = 200 m. The parameter δ is the proportionality constant for the increase of costs beyond these coastal

bands (in $ km−1 W−1 y−1 for pelagic effort, and $ m−1 W−1 y−1 for demersal effort).
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For distance-dependent costs, we select δ = 7.9 10−3 $ km−1 W−1 y−1, such that the average High Seas fishing cost is

9.3 $ W−1 y−1, comparable with an empirical upper mean value of 8.9 $ W−1y−1 (see Appendix C). For depth-dependent240

costs, the depth of the fishing grounds zbot is determined from high resolution (1/10oth) bottom topography (Amante and

Eakins, 2009), taking the shallowest depth in each 1o model grid cell. We set δ = 2.5 10−3 $ m−1 W−1 y−1, such that the

average High Seas fishing cost is 9.9 $ W−1 y−1 for exploitation of deep demersal stocks, comparable with an empirical upper

boundary of mean High Seas trawling costs of 9.2 $ W−1 y−1 (Appendix C). We tested distance and depth dependent costs

both separately and combined to determine the impact on the model results.245

3.2.3 Heterogeneous catchability

In BOATSv1, technological progress, represented by an exponential increase in the catchability qk at a rate of 5% y−1, was

shown to be a dominant driver of the development of fisheries (Galbraith et al., 2017). While a homogeneous increase rate ap-

proximates the first-order effect of technological progress well, heterogeneous technological efficiencies among fisheries could

modulate this development across regions (Palomares and Pauly, 2019), especially as separate gears target distinct resources250

and are deployed in different ecosystems (Kroodsma et al., 2018). Similar to cost, spatially-heterogeneous catchability could

have influenced the spatial expansion of fisheries and or the deepening of catches with time (Watson and Morato, 2013).

To simulate the effect of heterogeneous catchability, the exponential increase is spatially weighted (see economic forcing

Fig. 1):

qcorrk (x = zbot,y = P or D) = qk Pr(x) Of(y) (11)255

where Pr(x = zbot) accounts for spatial variations of technological efficiencies with seafloor depth, and Of(y = P or D)

offsets between the catchability of pelagic vs. demersal resources.

Commercially exploited fish often aggregate near seamounts and other shallow features, resulting in the local establishment

of fisheries (e.g. 57% of longlining activity, Kerry et al. (2022)). The coarse resolution of BOATS prevents a direct represen-

tation of seamounts. However, the presence of seamounts could increase both fish biomass density and profitability within a260

model’s grid cell, as opposed to the case where resources were more homogeneously distributed across the grid cell. The pro-

file Pr(x = zbot) parameterizes the effect of seamounts, and more generally an increase in the density of resources in shallow

regions:

Pr(x = zbot) = qmin + (1− qmin)
log10(xmax)− log10(x)

log10(xmax)− log10(xmean)
(12)

Here, qmin = 0.8 is the minimum efficiency of gears targeting pelagic resources (see Appendix D), and xmean and xmax265

respectively 2372 and 5750 m depth, based on the median and deepest depths of seamounts where fishing activity occurs

(Kerry et al., 2022). The depth of the fishing grounds zbot is determined from ETOPO at 1/10th resolution (Amante and

Eakins, 2009), coarsened by taking the shallowest depth in each 1o model grid cell, as described above.

The dominant gears used to target different communities (pelagic vs. demersal) are characterized by different efficiencies

(see Appendix D). We tested the effect of separate catchabilities for pelagic and demersal communities, setting Of(P ) =270
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1.4 Of(D). This offset was estimated from the technology coefficients of different gear targeting pelagic and demersal species,

weighted by the fraction of global fishing effort for 16 different gears (Kroodsma et al., 2018; Palomares and Pauly, 2019).

3.3 Forcing and initialization

Forcing BOATSv2 requires surface temperature T75, bottom temperature Tbot and net primary production Πψ . Since we are

interested in the recent ocean state, we use climatological observations, and, to assess improvements between BOATS versions,275

we adopt the same forcing as in Carozza et al. (2017). Surface temperature (T75) and temperature at the seafloor (Tbot) are

taken from the World Ocean Atlas 2009 (Locarnini et al., 2006). T75 is calculated as the mean temperature over the top 75 m

on a 1o grid. Tbot is calculated by averaging temperatures at different depths, weighted by the fraction of each depth within a

model grid cell as reported by the ETOPO 1/10 bathymetry dataset (Amante and Eakins, 2009). For Πψ we take the average

of three satellite-based estimates at 1o resolution (Behrenfeld and Falkowski, 1997; Carr et al., 2006; Marra et al., 2007). Note280

that Πψ , and then Πβ , are forced once converted to g m−2 s−1.

The model is initialized by a “pristine” ocean biomass distribution determined by spinning-up the model without fishing

for 300 years to reach a steady state. Then, the ecological and economic modules are run together with an increase of the

catchability qk for another 300 years. In a given region, fishing begins once catches becomes profitable (i.e., revenuek > costk

in Equation 4). The open-access dynamics generally drives first an increase in catch, followed by a peak and decline due to285

overfishing (Guiet et al., 2020). To align simulations with observation (see Section 4.1), we estimate the time of the peak catch

integrated across LMEs, and align it with the time of the observed peak catch, which occurs in the 1990s (Pauly and Zeller,

2016).

4 Parameterization and sensitivity

In this Section, we first describe the observation used for the evaluation of BOATSv2, and then detail the procedure used290

to parameterize the model, which is based on the following two steps (Fig. 2). (1) Ecological update: in coastal seas where

economic parameterizations are more homogeneous, we parameterize separate pelagic and demersal pathways (Πψ & Πβ) and

growth limitation in HNLC regions for pelagic species (αcorr), to determine the best parameter sets for the 11 undetermined

parameters of the ecological module (see Table 1). (2) Economic update: we then fine-tune the parameters of the economic

module using spatially heterogeneous costs and catchability in the global ocean (i.e., ccorrk & qcorrk ).295

4.1 Observational data and diagnostics for model evaluation

We use multiple empirical data sources, including catch, biomass and fishing effort, to tune and evaluate BOATSv2. Com-

parisons are made on globally integrated quantities, quantities integrated across LMEs to assess regional variability in coastal

regions, and quantities integrated beyond the boundary of LMEs, across High Seas Ecosystems (HSEs, see Appendix E) to

assess variability in the open ocean away from coastal influences. We focus on observations around the peak catch in the 1990s,300

but also include observations in the 1950s and 2000s for additional insight.
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BOATSv1

BOATSv2

BOATSv2-Bio

Selection of 11 parameters
(Monte Carlo):
- Global catch
- Demersal:pelagic catch
- Catch:biomass
- Size abundance

Selection of economic forcing
- High Seas catch fraction
- Mean fishing depth

+ Pel/Dem pathways
+ Growth limitation

5 best parameter 
sets (10 extended)

ECOLOGICAL UPDATE (inside LMEs)

ECONOMIC UPDATE (including HSEs)

+ costs (ccorr)
+ catchability (qcorr)

Observation: 
- Catch (SAU, WAT) 

- C:B (RAM)

Figure 2. Schematic diagram of the parameterization procedure starting from BOATSv1 (in blue), with two steps: (1) Ecological update (in

green), and (2) Economic update (in red). Observation used for parameterization of both are shown in gray steps.

For fish catch, we use two catch reconstruction datasets: (1) The Sea Around Us project (Pauly et al. (2020), SAU), corrected

for under-reported catch. For the SAU, catches by functional type allow to separate pelagic (P) and demersal (D) species

(see Appendix F). (2) The database from Watson (2017) (hereafter WAT), including wild catch and corrected for illegal and

unreported fisheries. When comparing catches by LME, we focus on 55 LME (out of 66) and ignore the Black Sea and a305

number of high-latitude regions to avoid errors caused by biases in satellite-based chlorophyll and the lack of representation

of the effects of sea ice on the marine ecosystem (as in Carozza et al. (2017)). We define two diagnostics to help correct for

biases in BOATSv1: the fraction of catch in the High Seas, RC = CHS/(CHS +CCS), and the catch-weighted mean depth of

fishing ZC = (
∑
lat,lonCzbot)/(

∑
lat,lonC) (in m).

For biomass observations, we use the RAM Legacy stock assessment database (Ricard et al., 2012). Stock assessment310

data are used to estimate mean catch to biomass ratios (C:B hereafter) in 25 LMEs where enough stock assessments are

available, following Bianchi et al. (2021). We also compare historical changes in fish biomass to a global reconstruction based

on stock assessments (Worm and Branch, 2012). Furthermore, we compare the model with two biomass databases derived

from fisheries-independent surveys: the first, encompassing demersal species across 14 Large Marine Ecosystems (LMEs) in

the Northern Hemisphere, ranging from the Bering Sea to Northern Europe, is based on a recent synthesis of bottom trawl data315

(van Denderen et al., 2023; Maureaud et al., 2023). The second, focusing on pelagic species, is built on standardized trawls of

coastal pelagic species in 2 LMEs along the North American West Coast (Zwolinski et al., 2012).

Finally, we include a comparison with reconstructions of nominal effort for the global fishing fleet in both artisanal and

industrial sectors, to shed light on the regional development of fisheries (Rousseau et al., 2019, 2024). Similar to catch, we

focus on a subset of 55 LMEs where model forcings are more suitable.320
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4.2 Ecological update: Monte Carlo ensemble

To calibrate the revised model and specify the value of 11 poorly determined parameters (Table 1), we adopt an ensemble

Monte Carlo approach, following previous work (Carozza et al., 2017; Bianchi et al., 2021). These parameters impact size-

dependent growth (b, A0, α and β), size dependent mortality (h ζ1), and the effect of temperature (ωa,A/λ). They also impact

recruitment (se), and the biomass transfer towards demersal consumers (mβ). Finally they affect the selectivity of fishing gear325

(emΘ,k ). We keep the same parameters for both pelagic and demersal communities, except for the temperature dependence.

We run 20,000 simulations, each with a distinct combination of parameters, integrated with gradually increasing catchability

over time, and select the best simulations according to global and local criteria. These criteria are updated from Carozza et al.

(2017) to provide an evaluation of the model performance in reproducing the following features of pelagic and demersal

communities:330

– (1) Global catch. Simulations predict a global fish catch in line with observations, when integrated over the 55 LMEs,

for the years of maximum catch in the 1990s, i.e., CSAU−WAT
Globmax ≃ 100×106 ton y−1 (using ton of wet biomass). There

are significant uncertainties around these reconstructions; furthermore, migratory species not represented in BOATS can

influence the model’s maximum yields. Therefore, we allow catches to be within the range, CGlobmax ∈ [70,150]× 106

ton y−1. We find that 12% of simulations in the Monte Carlo ensemble, which spans a total catch range of more than 6335

orders of magnitude (see Fig. 3), satisfy this constraint.

– (2) Demersal:pelagic catch. At the global catch peak, pelagic and demersal catch integrated over all 55 LMEs account

respectively for 45% and 55% of catches in SAU. That is, the ratio between demersal and pelagic catch at peak is

RSAU
Globmax,D/P ≃ 1.2. Because of uncertainties around the SAU reconstructions, the presence of migratory species, and

additional uncertainty in the allocation of pelagic vs. demersal catch (Appendix F) we allow this ratio to vary within the340

range RGlobmax,D/P ∈ [0.8,1.8]. In the Monte Carlo ensemble, this ratio varies by more than 3 orders of magnitude.

However, we find that 20% of the simulations satisfy this condition, leaving us with 3.0% when combined with criteria

1 (Fig. 3).

– (3) Catch:biomass. To ensure that global catches are supported by realistic rates of fish biomass production, we compare

the model catch to biomass ratio (C:B) averaged over 25 LMEs to the observational estimate from the RAM Legacy345

database (see Bianchi et al. (2021)). This is done by retaining simulations for which a Kolmogorov-Smirnoff test in-

dicates that the modeled C:B ratios follow the same distribution as the stock assessment data, rejecting cases where

distributions are found different at the 1% significance level. This condition leaves us with 0.8% of all simulations, when

combined with criteria 1 and 2.

– (4) Size abundance. Finally, to preserve a realistic partitioning of fish catches by size groups, we constrain the catch350

of medium and large sizes to be in the observed range relative to fish in the small group, i.e., 0.3 Csmall < Cmed and

0.1 Csmall < Clrg < 0.8 Csmall. Considering all four criteria, we are left with 42 simulations (0.2%).
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Criteria (1) to (4) identify parameter sets that best capture global properties of catches and properties of fish production

per unit biomass, for both pelagic and demersal species, focusing on well-sampled coastal regions. The optimized parameters,

compared to the non-optimized values, are reported in Table 1. Among these, 5 parameters (6 including the trophic scaling)355

differ significantly from the non-optimized prior distributions, based on a Kolmogorov-Smirnoff test (KS-pvalue<10−2). These

include the growth activation energy ωa,A, the allometric growth and mortality scaling exponents b, h, the mortality constant

ζ1, and the trophic efficiency α. The implications of these differences are discussed in Section 5.1.

Figure 4 shows the timeseries of catch, nominal effort, and biomass, over all 55 LMEs from 1900 to 2050 for the 42 simu-

lations that meet all criteria. In each simulation, global catch increases until reaching a peak, beyond which biomass depletion360

limits recruitment and drives a fall in catch. Effort follows a comparable pattern, but with a consistent time lag. Biomass mono-

tonically decreases from an initial, near pristine state. These features are comparable to observational reconstructions (Fig. 4a,

CSAU and CWAT ). A delayed response of nominal effort is also consistent with observations (Fig. 4b), while the consistent

decrease in biomass compares well with aggregated stock assessment data normalized to the pristine period (Fig. 4c,d).

Similar to prior work with BOATSv1, we focus our analysis on 5 best ensemble members selected to capture parameter365

uncertainty, while maintaining reasonable computational costs. These 5 parameter sets are selected out of the 10 best of the 42

simulations, based on their ability to reproduce regional variability in peak catches by LMEs. The peak catch is determined

almost exclusively by ecological parameters, making it a valuable way to discriminate amongst them (Carozza et al., 2017).

Accordingly, we rank the 42 simulations by the Pearson correlation coefficient of simulated vs. observed catch in the 55 LMEs

(rSAULMEmax) and select 5 ensemble members out of the top 10. These 5 chosen parameter sets comprise diverse shapes of370

catch, effort and biomass histories, but, once averaged together, they provide an ensemble mean that matches the observed

historical development of these quantities across LMEs (rSAULMEmax ∈ [0.63,0.69], see Table 2 and Fig. 4, dark red lines). The

5 parameter sets span relatively wide ranges of values, thereby covering a broad range of uncertainty (see list in Table 2).

The Pearson correlation coefficients rLME90s between observed and simulated catch by LME at global peak are comparable

with and without updated ecological features (see BOATSv1 compared to other model variants, Table 3, rSAULME90s ≃ 0.69375

and rWAT
LME90s ≃ 0.73). However, the updated ecological features provide large improvements in the High Seas (e.g., rWAT

HSE90s

increases from 0.22 in v1 to 0.58).

4.3 Economic update: sensitivity to cost and catchability

As shown in Table 3, increased ecological realism improves the model’s ability to reproduce High Seas fisheries, in particular

the fraction of High Seas catch, RC , and the catch-weighted mean depth of fishing, ZC . These improvements reflect growth380

limitation in HNLC regions (αcorr) (Galbraith et al., 2019), and, to a greater extent, explicit separation of pelagic and demersal

energy pathways (Πψ & Πβ+αcorr, hereafter BOATSv2-Bio, green line Fig. 5a,b).

Since economic drivers could explain additional spatial variability, we also incorporated heterogeneous costs (ccorrk ) and

catchability (qcorrk ) in the simulations. Accordingly, we further evaluated the effect of considering different economic parame-

terizations, and selected the best combination based on global and regional criteria. This evaluation shows that:385
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Figure 3. Simulations of global catch features from the BOATSv2 Monte Carlo ensemble. Total catch at global peak of the 1990s CGlobmax

is shown as a function of the ration between demersal and pelagic catch at the global catch peak, RGlobmax,D/P , for the 20,000 simulations

in the ensemble. Colors show the Pearson correlation coefficient rSAULMEmax of simulated vs. observed (SAU) maximum catch in 55 LMEs
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Globmax = 100× 1012 g y−1, and the

dotted vertical line the observed ratio of demersal to pelagic catch at the global peak, RSAU
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Table 2. List of parameter values for the selected 5 best simulations with updated ecological features.

211 3773 14028 14349 15436

rSAULMEmax 0.66 0.63 0.69 0.68 0.64

ωa,A 0.30/0.16 0.42/0.33 0.42/0.17 0.43/0.12 0.47/0.25

ωa,λ 0.53/0.61 0.47/0.49 0.39/0.61 0.43/0.57 0.42/0.51

b 0.73 0.75 0.75 0.80 0.70

A0 4.35 4.49 4.35 5.04 4.49

h 0.49 0.55 0.46 0.46 0.55

ζ1 −0.10 −0.68 −0.07 −0.25 −0.33

α 0.14 0.09 0.10 0.12 0.12

β 2830 5890 8890 8510 6330

τ −0.24 −0.27 −0.25 −0.23 −0.24

emΘ,k 0.44 0.76 0.97 0.75 0.67

se 9.3 10−2 5.0 10−2 4.8 10−2 2.7 10−2 2.4 10−2

log10(mβ) −6.6 −6.0 −6.1 −6.6 −6.0
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– (1) At the LME level, heterogeneous costs or catchability have little impact on the regional variability of catch at the

time of the global peak (rSAULME90s ≃ 0.69 and rWAT
LME90s ≃ 0.73, Table 3). The comparison reveals overall better correla-

tions when comparing models with WAT catch reconstructions, where most of the improvement is explained by higher

mean catches in Australian LMEs (compare Fig. 5c and d). We also compare the Pearson correlation coefficients of

maximum catch by LME for pelagic and demersal catch separately. While heterogeneous costs or catchability show390

limited impacts, the variability of maximum pelagic yields is less accurately reproduced than maximum demersal yields,

rSAUPLMEmax ≃ 0.46 vs. rSAUDLMEmax ≃ 0.69 (Table 3). This suggests that analogous parameterizations of heterogeneous costs

and catchability will generate comparable variability in LME catches.

– (2) Beyond LMEs, in HSEs, Pearson correlation coefficients at peak rHSE90s indicate a significant improvement from

BOATSv1 rHSE90s < 0.39 (see Table 3) to BOATSv2 rHSE90s > 0.58, showing the importance of separating pelagic395

from demersal pathways to accurately capture the patterns of catch in the open ocean. Introducing specific economic

parameterizations results in only minor variations and does not significantly enhance the accuracy of catches in the

HSEs.

– (3) There is likely an interplay between heterogeneous catchability and costs. To determine how costs influence the catch

fraction in the High Seas, and indirectly the historical offshore expansion of fisheries, we computed the High Sea catch400

fraction in the 1950s (RC50s), and near the global catch peak of the 1990s (RC90s). While we expect RC50s ≃ 0.06 to

increase to only RC90s ≃ 0.09 at global peak, separate pelagic and demersal energy pathways result in RC50s = 0.05

and RC90s = 0.16 (see Table 3). The difference in the 1990s is mostly driven by higher pelagic catch than observed

(RC90s,P ≃ 0.32, compared to 0.11 in observations). Heterogeneous costs, mainly corrected by the distance from shore,

improve this fraction (RC90s,P ≃ 0.30). Note that both cost parameterizations also improve the fraction of demersal405

catch.

– (4) To better characterize the offshore expansion we also computed the catch-weighted mean depth over which fish-

ing occurs, in the 1950s and 1990s, ZC50s−90s. For demersal catch (ZC50s,D < 136 m and ZC90s,D < 206 m), the

mean fishing depth reflects the historical deepening of fishing grounds (Watson and Morato, 2013). For pelagic catch

(ZC50s,P < 266 m and ZC90s,P < 546 m), it reflects an offshore expansion of fishing effort towards High Seas re-410

gions with deeper seafloor. In the model, a rapid offshore expansion of pelagic catch leads to an overestimate of the

mean ocean depth at which fishing occurs (ZC90s ≃ 700, compared to 372 m observed, because ZC90s,P ≃ 1000 m).

Distance-dependent costs slightly improves this discrepancy (ZC90s,P = 873 m). Depth-dependent costs also contribute

to delaying the deepening of demersal catches. Since both depth- and distance-dependent cost parameterizations slightly

improve aspects of the simulations, we retain both parameterizations in the final BOATSv2 update.415

– (5) Finally, to determine how catchability influences the development of High Seas fisheries, we also compare catch

indicators (RC and ZC) with observations for heterogeneous parameterizations of catchability. Compared to BOATSv1,

increased catchability near seamounts reduces the development of fishing over deep seafloor. This improves ZC90s,
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especially for pelagic catches (ZC90s,P decreases to 553 m, Table 3), and thus significantly reduces their offshore

expansion (RC90s,P = 0.27). However, when this correction is applied both to pelagic and demersal communities, the420

maximum depth of demersal catch becomes excessively shallow (ZC90s,D = 103 m). When depth-dependent fishing

costs are also included, demersal catches deviate even more from observations. Therefore, we retain the heterogeneous

catchability parameterization only for pelagic fishing effort in the final BOATSv2 update.

These findings reveal that the representation of fisheries in coastal seas remains largely comparable between BOATSv1 to

BOATSv2, regardless of the details of the economic parameterizations. This confirms that ecological updates primarily con-425

tribute to model improvements, while spatially variable costs and catchability only provide minor adjustments. For the final

reference simulations with BOATSv2, we included costs that increase with the distance from shore, and costs that increase

with seafloor depth for demersal fishing (see Points 3 and 4). We also included catchabilities that decrease with seafloor depth

for the pelagic community (see Point 5). This formulation significantly improves the model’s ability to reproduce the delayed

development of High Seas fisheries, and the progressive deepening of catch (see red lines in Fig. 5a,b).430

In summary, at the LME-level, BOATSv2 and BOATSv1 have similar accuracy in their representation of regional catches

(see rLME90s = 0.69/0.73, Table 3 and Fig. 5c,d). This lack of improvement in the new model version is explained by a limited

accuracy in predicting pelagic catches across LMEs (see rLMEmax,P = 0.46 vs. rLMEmax,D = 0.69, Table 3, and Fig. 5e,f).

Nevertheless, BOATSv2 better captures the large scale variability of catches in the HSEs, which are approximately one order

of magnitude smaller than in LMEs (see rHSE90s = 0.51/0.64, Table 3, and Fig. 5g,h), and better reproduces their historical435

offshore expansion (RC90s = 0.11 and ZC90s = 420 m, Table 3).

5 Results and discussion

5.1 Parameter sensitivity

The best parameter sets selected by the Monte Carlo approach (Section 4.2) provide insights on the functioning of ecological

communities. Of the 11 parameters that were optimized for, 6 have a posterior distribution significantly different from the prior440

distribution (p-values< 10−2, Table 1). The posterior distribution for these 6 parameters was also different when optimizing

BOATSv1 (see Carozza et al. (2017)), confirming their essential role in influencing the sensitivity of the model.

First, the ensemble mean allometric scaling exponent, b = 0.72 (range [0.70− 0.80] for the 5 best ensemble, see Table 2), is

larger than the BOATSv1 value of 0.65 (Carozza et al., 2017), but in the middle of the expected range 0.66−0.75 (Brown et al.,

2004; Kooijman, 2010; Hatton et al., 2019). Second, the mortality constant ζ1 was selected to be slightly negative (−0.07),445

different from the initial distribution (mean 0.54), and the mortality scaling (0.51) was smaller than the mean value (0.54). To

account for a large uncertainty in the trophic efficiency (α) (Eddy et al., 2020), we expanded its prior range to [0.06,0.4] (com-

pared to previous estimates in Carozza et al. (2017)). However, the optimization persistently selected for values comparable to

BOATSv1, with a mean of 0.14 (range [0.09−0.14], Table 2). Although separate pelagic and demersal communities could have

different trophic efficiencies (Stock et al., 2017; Du Pontavice et al., 2020), here for simplicity we adopt the same value. The450
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Figure 5. Evaluation of BOATSv2. (a) Observed and simulated historical development of High Seas vs. coastal seas catch RC . (b) Observed

and simulated historical deepening of global catches ZC . (c,d) Scatter plot of the observed vs. simulated catch at global peak in 55 LMEs, for

SAU reconstructions CSAU
LME90s in (c), and WAT reconstructions CWAT

LME90s in (d). (e,f) Scatter plot of the observed vs. simulated maximum

catch in LMEs, for pelagic CSAUP
LMEmax in (e), and demersal catch CSAUD

LMEmax in (f). (g,h) Scatter plot of the observed vs. simulated catch

at global peak in HSEs, for SAU reconstructions CSAU
HSE90s in (g), and WAT reconstructions CWAT

HSE90s in (h). In panels (a) and (b), SAU

and WAT reconstructions are indicated by solid and dotted lines respectively, BOATSv1 by the blue line, BOATSv2-Bio by the green and

BOATSv2 in red. In panels (c-h) blue dots and lines show BOATSv1, red dots and lines BOATSv2. Numbers next to each dot indicate the

LMEs or HSEs (see regions in Appendix E).
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robustness of the optimized trophic efficiency suggests that sources of variability are captured by other model parameteriza-

tions, e.g., the representative size of primary producers, or the temperature dependence of growth and mortality. Lastly, growth

activation energies (ωa,A) for pelagic (0.50) and demersal (0.37) communities are larger than the prior values. Although the

temperature dependence of mortality (ωa,λ) is not significantly different from the initial values, the optimized values suggest

a stronger sensitivity of growth compared to mortality for the pelagic community (ωa,A−ωa,λ = +0.047 eV), and a stronger455

sensitivity of mortality for the demersal community (−0.082 eV).

Covariations between parameters in the 42-member optimized ensemble reveal compensations between parameter pairs (see

Fig. 6a). The most significant compensations are between parameters controlling the biomass flow through the size spectrum

and biomass losses (see Fig. 6b-d). For instance, an increase in the trophic efficiency (α) can be compensated by a smaller

predator-prey biomass ratio (β), which lengthens the food-web (Fig. 6b, r =−0.66). When more biomass flows across trophic460

levels, longer food chains ultimately lead to greater losses over the food-web, and thus similar fish biomass production. Alterna-

tively, an increase in the trophic efficiency can be compensated by an increase of the mortality constant (ζ1, Fig. 6c, r = 0.42).

When individual growth limits the biomass flow (Equation 2), a larger growth scaling exponent (b) indirectly allows larger

asymptotic sizes (m∞) that are exposed to larger natural mortality; however, since m∞ is fixed (Equation 3), ζ1 decreases to

compensate for the increased losses (Fig. 6d, r =−0.49).465

Correlations between parameters that differ between pelagic and demersal food webs can also reveal trade-offs, particularly

in how activation energies collectively affect the two communities (see Fig. 6e-g). For instance, an increased temperature sen-

sitivity of growth for the pelagic community ωPa,A is matched by an increased sensitivity of growth for the demersal community

ωDa,A (Fig. 6e, r = 0.74), and a shift of the sensitivity of demersal mortality compared to demersal growth ωDa,A−λ (Fig. 6f,

r = 0.65). Another relationship between communities is observed for losses. As the temperature dependence of mortality for470

the pelagic community (ωPa,λ) increases, increasing losses, there is a concurrent decrease in the representative size at the base of

the benthic food chain (log10(mβ). This extends the food chain length, increasing losses in the demersal community (Fig. 6g,

r =−0.40).

While not exhaustive, this parameter analysis suggests trade-offs between biomass production and dissipation in pelagic and

demersal communities (see Fig. 6a for further detail).475

5.2 Catch

5.2.1 Global catch

Relative to BOATSv1, BOATSv2 corrects for the overestimate of High Seas catches (see Fig. 5) while maintaining a similar

skill in reproducing historical variations of LME fish catch (see comparison of model ensemble means with SAU and WAT

reconstructions, Fig. 4). BOATSv2 also shows improved skill in hindcasting the spatial evolution of catchs (see Fig. 7), and480

the offshore and equatorward expansion of fisheries (Swartz et al., 2010; Guiet et al., 2020). In the 1950s (Fig. 7a-c), higher

latitude shelf regions and productive upwelling regions contributed the most to global catches. In the 1990s (Fig. 7d-f), while

high latitudes still produced large catches, subtropical regions were also significantly exploited, especially in shallow regions.
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Figure 6. Emergent relationships between model parameters. (a) Pairwise correlations between model parameters for the 42-member op-

timized ensemble. (b-g) Scatter plots illustrating the relationships between the most strongly correlated parameters: (b) trophic efficiency

(α) and predator-prey mass ratio (β); (c) trophic efficiency (α) and mortality constant (ζ1); (d) growth scaling exponent (b) and mortality

constant (ζ1); (e) growth activation energy for the pelagic community (ωPa,A) and demersal community (ωDa,A); (f) growth activation energy

for the pelagic community (ωPa,A) and difference between growth and mortality activation energies (ωDa,A−λ) for the demersal community;

(g) mortality activation energy for the pelagic community (ωPa,λ) and representative size of organisms at the base of the demersal food web

(mβ). In panel (a), circles indicate p-values<0.05 and stars p-values<0.01. In panels (b-g), the lines show linear regressions for the 42 pa-

rameter values of the ensemble; Pearson correlation r and p-values are reported on each plots. In panels (b-g), red dots indicate the 5 final

best parameter values for BOATSv2, while the black dots show the remaining 5 parameter values among the 10 best; gray dots indicate all

other parameter values.

Productive High Seas areas also supported significant fishing. The expanded representation of ecological processes accounts

for most improvements in the High Seas, while updating economic processes only yields minor improvements (see Appendix485

G).

Despite the closer fit to observations, model biases remain, in particular low offshore catches in the Western Equatorial

Pacific, and excessive catches in the Northern and Southern Atlantic (see Fig. 7d). Processes not included in the model, such as

habitat alteration by bottom-trawling gears, fish stock migrations, management and regulation likely play a role in these biases.

While the observational catch reconstructions used to calibrate the model show differences, likely related to the different490

methods (e.g., using bathymetry or not, compare Fig. 7e,f), biases in simulated catches remain apparent when comparing with

either reconstruction.

Figure 8 shows the differences (residuals) between maximum simulated and observed peak catches in each LME. While

there is an overall improvement from BOATSv1 to BOATSv2 (compare Fig. 8a,b to c,d), areas of over- (e.g., Indian Ocean)
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or under-estimated catches (e.g., North-West Pacific) are correlated between the two model versions, suggesting remaining495

structural biases in the model.

5.2.2 Pelagic vs. demersal catch

Separate pelagic and demersal energy pathways allow simulation of higher taxonomic diversity. At the global peak of the 1990s,

a large fraction of simulated demersal catch is derived from high latitudes (Fig. 9), in general agreement with observations (van

Denderen et al., 2018). At lower latitudes, modeled demersal catches are as abundant as pelagic catches in shallow regions or500

near seamounts, also consistent with observations. Significant biases remain, however, such as in the North Atlantic, where

the simulated demersal catch fraction is lower than observed, and the eastern tropical Pacific, where the demersal fraction is

overestimated.

5.2.3 Catch deepening

The historical expansion of fisheries is associated with a deepening of the catch (Morato et al., 2006; Watson and Morato,505

2013). This can be attributed to the need to find new profitable fishing grounds beyond more accessible coastal regions, as
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Figure 9. Observed and simulated pelagic catch fraction CP
90s/(CP

90s+CD
90s) (in %). (a) BOATSv2 simulated fraction compared to (b) SAU

observation. Very low catch levels are masked (i.e., below 10−3 g m−2 y−1).
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Figure 10. Fishing over increasingly deep seafloors. (a,b) Observed mean catch density (in log10(ton km−2 y−1)) over depth stratas for

pelagic (a) and demersal (b) catch from SAU. (c,d) Simulated mean catch density over depth stratas for pelagic (c) and demersal (d) catch in

BOATSv2 (see Appendix H for comparison with BOATSv1).

well as improvements in fishing technology. The catch density per depth stratum from observational reconstructions reflects

such expansion (see Fig. 10a,b for pelagic and demersal catch in SAU data). The deepening of demersal catches is consistent

with increasingly deep fishing grounds, while the deepening of pelagic catches indicates an expansion of fishing effort towards

deeper regions offshore.510

In the model, decreasing biomass with depth slows the historical deepening of demersal catches (Fig. 10d). Similarly, higher

costs and reduced catchability at greater depths delay the offshore expansion and deepening of pelagic catches (Fig. 10c).

These factors collectively contribute to the slower development of fisheries in deep waters and the reduced catch fraction from

the High Seas, consistent with observational reconstructions (compare with BOATSv1 in Appendix H).

5.3 Effort515

The modeled nominal effort aggregated across the 55 LMEs broadly matches observations (see observation Fig. 4b), with a

slightly earlier decline that falls within the uncertainty range. This could indicate that the model’s effort responds to biomass

depletion faster than observed, or that the model underestimates the resilience of exploited stocks. It could also reflect the lack

of management and subsidies in the model, which influence profitability and the progression of fishing effort.

The significant correlation between modeled and observed effort at peak catch across LMEs (see Fig. 11a, rLME90s = 0.57)520

lends support to the model’s assumption of open-access dynamics. However, significant deviations remain (Figure 11b). For

instance, the model overestimates effort in highly productive shelf regions near the mouth of major rivers such as the Patag-
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Figure 11. Observed and simulated nominal effort in the 1990s, E90s. (a) Simulated effort density per LME compared to observations

ELME90s. (b) Ratio between modeled and observed effort by LME, at the global catch peak in the 1990s. In panel (a), red dots and lines

show BOATSv2 output, blue dots and lines BOATSv1 output; numbers indicate the LMEs (see Appendix E).

onian Shelf or North Brazil shelf, suggesting too rapid development of fisheries compared to neighboring regions. Biomass

redistribution by currents or fish stock migrations could correct this bias. At larger scales, the model underestimates effort

across South-East Asia, consistent with an underestimate of the peak catch. However, effort around Australia is also lower than525

observed, while the model overestimates catches there (see Fig. 8). This mismatch suggests regional differences in economic

drivers, or missing key habitats such as mangroves or reefs. Efficient management might also play a role, although it is unlikely

to be the sole driver across the entire region.

5.4 Biomass

5.4.1 Global biomass530

In the absence of fishing, BOATSv2 estimates a commercial fish biomass of 1.9 Gton aggregated over LMEs, slightly larger

than previous estimates from BOATSv1 (1.6 Gton in Bianchi et al. (2021)). However, because HSE biomass is lower, the LME

biomass accounts for 68% of the global biomass (2.8 Gton), significantly more than the 50% of BOATSv1 (3.3 Gton in Bianchi

et al. (2021)). Thus, BOATSv2 suggests a 10− 15% smaller “pristine” biomass than BOATSv1. When fishing is included

and forced by the historically representative catchability increase, the BOATSv2 commercial fish biomass aggregated across535

LMEs declines by about 50% from 1950 to 2000. This is consistent with both BOATSv1 simulations and global observational

estimates (Fig. 4d, also compare with Worm and Branch (2012)). Interestingly, at peak catch, the LME:HSE difference between

model versions is compensated by differences in fishing effort, so that both LMEs and HSEs hold approximately 50% of the

global biomass at this point (0.9 Gton within LMEs and 0.8 Gton in HSEs with BOATSv2, similar to respectively 0.6 and 0.5

Gton with BOATSv1 (Bianchi et al., 2021)). The optimized parameters of BOATSv2 suggest that the global fish biomass is540

about 40% pelagic and 60% demersal, a partitioning which could be relevant for the biogeochemical cycling and carbon export

effects of fish (Bianchi et al., 2021).
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5.4.2 Regional biomass distributions

In the model, shallow shelves and upwelling systems sustain on average three times more biomass per unit area than the High

Seas (10. vs. 2.9 g m−2 within and outside the LMEs respectively; see also Fig. 12a for local biomass gradients). Validating545

these predictions remains challenging because of observational limitations; however recent compilations offer a new means to

assess them.

For demersal fish, scientific trawl compilations are now available from the Northern Hemisphere, at locations ranging from

Alaska to Europe (Maureaud et al., 2023; van Denderen et al., 2023). Fig. 12 shows that BOATSv2 accurately simulates the

average biomass across these LMEs, and captures the biomass increase from the Gulf of Mexico - Florida (GM-FL) to Europe550

(EU) and North America West coast (NA-W) (see circles Fig. 12b). However, while observations vary over almost two orders

of magnitude, simulated biomasses vary only over one order of magnitude. The model also overestimates biomass in the North

America East coast (NA-E).

These biases might reflect temporal offsets in the depletion of fish biomass over time due to exploitation (see also Fig. 4d),

with the model failing to capture relative differences across LMEs. Indeed, regions where the model overestimates fish biomass555

still have relatively high simulated rates of biomass decline in the 2000s (e.g., LMEs 1, 5, 12). This can eventually deplete

biomass to the observed levels. Conversely, regions where the model underestimates fish biomass (e.g. LMEs 10, 14, 60) are

areas in which simulated fishing effort caused an early biomass decline (see Appendix I). These temporal mismatches could

reflect regional differences in the rate of development of fisheries that are not captured by the simple, globally homogeneous

exponential increase of technology, and by the open access assumption and lack of management. For example, pro-active560

management in Alaskan fisheries has prevented the phase of overfishing that has been common in many other industrial

fisheries worldwide (Worm et al., 2009). Finally, the discrepancies may be exacerbated because observations cover only a

portion of each LME (compare mean biomass densities at LME level vs. grid cells where simulations overlap with observations

in Appendix I).

Aggregated biomass observations for pelagic stocks are scarcer than for demersal stocks. We compare model output with565

scientific trawl data for coastal pelagic species in the California Current and Gulf of Alaska (shown by squares in Fig. 12b)

(Zwolinski et al., 2012). The model simulates overall higher biomass densities than observed, showing a wider ranges of

values. Similar to observations, simulated pelagic biomass densities are lower compared to demersal biomass. A caveat to

this comparison is that estimates of pelagic biomass remain significantly uncertain due to challenges in sampling the three-

dimensional oceanic environment, variability and aggregation in fish populations, uncertainty in sampled depth ranges, net570

avoidance by pelagic fish, and the limited selectivity of pelagic trawls (Kaartvedt et al., 2012; Zwolinski et al., 2012). In

addition, fish migrations can redistribute fish biomass across life stages in ways not captured by the model.

5.5 Implications of the model update

The inclusion of distinct energy pathways and spatially variable economic drivers in BOATSv2 has a limited impact on the

evolution of coastal fisheries over time, but has a large impact on simulated High Seas fisheries. All else being equal, BOATSv1575
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Figure 12. Observed and simulated biomass density. (a) BOATSv2 global mean biomass density in the 1990s, B90s. (b) Demersal biomass

density from bottom trawl surveys (circles) versus simulations, and pelagic biomass density from surface coastal pelagic species trawl data

(squares) versus simulations. Biomass densities are averaged across LMEs for the reference decade of the 2000s. In panel (b), colors indicate

the four different regions shown by the LME boundaries in panel (a), and numbers the specific LMEs (see Appendix E). In panel (b) the

dots indicate median values, and horizontal or vertical lines the 25-75th percentile range; the size of the dots indicates the relative size of the

surface area sampled. Appendix I provides a further comparison of biomass time-series by LME.

and BOATSv2 ensembles show very similar LME-level catch at global peak (see CSAU−WAT
LME90s Fig. 5c,d) and comparable pro-

gression across LMEs from 1950 through 2000. Both are in good agreement with observations (Fig. 13). The key improvement

of BOATSv2 is the representation of High Seas fisheries, where catches are delayed and greatly reduced during the historical

period, bringing the model closer to observations (see dashed lines Fig. 13).

The separation between pelagic and demersal communities influences fish production rates, because these communities580

respond to different environmental drivers (van Denderen et al., 2021; Fredston et al., 2023). Compared to BOATSv1, this

change could influence the resilience of fisheries to fishing and/or climate change. It could also alter the response to regulation,

although we anticipate similar dynamics as in previous work (Scherrer and Galbraith, 2020; Scherrer et al., 2020). A separation

of pelagic and demersal energy pathways is likely to impact the effects of fish on biogeochemistry (Bianchi et al., 2021;

Le Mézo et al., 2022).585

6 Conclusions

We introduce BOATSv2, an expanded version of the BOATS model that separates demersal from pelagic communities and

improves simulation of High Sea fisheries. New model features have little impact in coastal regions, so that BOATSv2 simulates

dynamics and variability in catch and biomass over LMEs that are similar to BOATSv1. The expanded representation of

functional and taxonomic diversity allows more detailed comparisons with observations. In some cases, this reveals new model590

biases, such as in the simulation of demersal catches and biomass in the Western North Atlantic.

We attribute improvements in the simulation of High Seas fisheries to the separation of pelagic and demersal energy path-

ways, supporting the importance of distinguishing these communities (Blanchard et al., 2012; Petrik et al., 2019; Du Pontavice
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Figure 13. Time-series of catch in the global ocean. Historical annual catch in the High Seas (HS) vs. coastal seas (CS). Gray lines show

observational reconstructions from Pauly et al. (2020) (SAU, dark gray), and Watson (2017) (WAT, light gray). Blue lines show output from

BOATSv1, and red lines from BOATSv2. Coastal (solid lines) and High Seas (dotted lines) catches are shown separately.

et al., 2020). We also introduced parameterizations of spatially heterogeneous economic drivers, i.e., fishing costs and catcha-

bility, which further improves the match with observations in the High Seas. However, choosing between different formulations595

for these drivers (i.e., depending on distance from the coast, dcoast, or depth of the seafloor, zbot) was only possible by testing

plausible functional forms and retaining those leading to the largest improvements against empirical data. While this selection

was not exhaustive, our final formulation is consistent with recent observations, such as the effect of seamount on fishing effort

distributions (Kerry et al., 2022), and the historical deepening of fishing as technology progresses (Watson and Morato, 2013).

We acknowledge that the specific choice of functional forms for these parameterizations is not well constrained, and will likely600

require future refinement against observational diagnostics.

Because of the more accurate representation of High Sea fisheries in BOATSv2 relative to BOATSv1, the fraction of catch

that takes place in the High Seas at the time of the global catch peak is reduced from 31% to 11%, bringing it closer to the

observed 8− 9%. Similarly, the mean depth of the catch shoals from 1698 m in BOATSv1 to 420 in BOATSv2, aligning it

to the empirical estimate of 154− 372 m. This update should help reduce model uncertainties in future projections (Galbraith605

et al., 2017; Lotze et al., 2019; Tittensor et al., 2021), and provide a more accurate representation of the role of fish in global

biogeochemical cycles (Bianchi et al., 2021; Le Mézo et al., 2022). Future model improvements could include a representation

of the movement of fish stocks (Sumaila et al., 2015), the role of diverse coastal environments such as mangroves, reefs, and
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lagoons (Tittensor et al., 2010), and a representation of distinct mesopelagic communities (Irigoien et al., 2014; St. John et al.,

2016; Hidalgo and Browman, 2019).610

Code availability. The code of the model, forcing to complete reference simulations, and observation to compare the model are available

through Zenodo (DOI:https://doi.org/10.5281/zenodo.11043334).
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Appendix A: BOATSv2 governing equations and parameters
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Table A1. List of ecological and economic parameters in BOATSv2, for pelagic (P), demersal (D), or both communities. Parameters selected

by the Monte Carlo procedure are reported by the range of best selected values. See more details in Carozza et al. (2016, 2017).

Parameter Name Value [Range] Unit

m0 Lower bound of smallest mass class 10 g

mu Upper bound of largest mass class 100000 g

nk Number of fish size groups 3 Unitless

m∞,k Asymptotic mass of group k (0.3, 8.5, 100) kg

Tr Reference temperature of a(T ) 10 oC

kB Boltzmann’s constant 8.617 × 10−5 eV K−1

ωa,A Growth activation energy of metabolism P: [0.30,0.47]; D: [0.12,0.33]] eV

ωa,λ Mortality activation energy of metabolism P: [0.39,0.53]; D: [0.49,0.61]] eV

b Allometric scaling exponent [0.70,0.80] Unitless

A0 Allometric growth constant [4.35,5.04] g1−b s−1

ϵa Activity fraction 0.8 Unitless

cs Slope parameter of sk 5 Unitless

η Ratio of mature to asymptotic mass 0.25 Unitless

α Trophic efficiency [0.09,0.14] Unitless

β Predator to prey mass ratio [2830,8890] Unitless

τ Trophic scaling [-0.27,-0.23] Unitless

mL Mass of large phytoplankton 4 × 10−6 g

mS Mass of small phytoplankton 4 × 10−15 g

kE Eppley constant for phytoplankton growth1 0.06 o C−1

Π∗ Nutrient concentration1 0.35 mmol C m−3 d−1

mβ Representative mass of benthos [8.3 × 10−7,1.6 × 10−6] g

ba Martin curve attenuation coefficient -0.8 Unitless

zeu Reference euphotic layer depth 75 m

k
NO−3

Nitrate concentration constant 5 µM

ζ1 Mortality constant [-0.68,-0.07] Unitless

h Allometric mortality scaling [0.46,0.55] Unitless

Φf Fraction of females 0.5 Unitless

ΦC,k Fraction of NPP allocated to a group k 1/3 Unitless

se Eggs to recruit survival fraction [0.024,0.093] Unitless

me Egg mass 5.2 × 10−4 g

κe Fleet dynamics parameter 10−6 W $−1 s−1

κs Regulation response parameter 4 × 108 m2 s−1

S Societal enforcement strength (here deactivated) 0 Unitless

cσ Fishing selectivity slope 17.8 Unitless

dmΘ,k Selectivity mass adjustment (1, 1, 1) Unitless

emΘ,k Selectivity mass scaling [0.44,0.97] Unitless

(δz , δd) Rate of cost increase with depth - distance (2.5 × 10−3, 7.9 × 10−3) ($ m−1 W−1 y−1, $ km−1 W−1 y−1)

(zref ,dref ) Reference variables for cost profiles (200,370) (m,km)

qmin Minimum gear efficiency 0.8 Unitless

(zmean,zmax) Reference depths for catchability profile (2372,5750) m

1For estimation of the fraction of large phytoplankton production following Dunne et al. (2005).32
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Table A2. Variables and governing equations for the ecological module of BOATSv2, for pelagic (P), demersal (D), or both communities.

See more details in Carozza et al. (2016, 2017).

Variable and functions Formulation Unit

Size (mass) of fish m g

Time t s

Temperature T (t)

P : T75

D : Tbot

K or oC

Surface nitrate concentration NO3(t) µM

Net primary production Πψ(t) mmol C m−2 s−1

Bathymetry zbot m

Fraction of large phytoplankton production1 ΦL(t) -

Particle export ratio1 peratio(t) -

Fish biomass spectrum of group k fk(m,t) g m−2 g−1

Cumulative biomass of group k Bk(t) =
∫m∞,k
m0

fkdm g m−2

Fish catch spectrum of group k hk(m,t) g m−2 g−1 s−1

McKendrick von Foerster model ∂fk
∂t

=− ∂γS,kfk
∂m

+
γS,kfk
m

−Λkfk −hk -

Recruitment at m = m0 γS,kfk = RP,k
Re,k

RP,k+Re,k
g m−2 s−1

Individual growth rate γS,k = (1−Φk)ξI,k g s−1

Fraction of input energy allocated to growth Φk = sk
1−ϵa

(m/m∞,k)(b−1)−ϵa
-

Individual level total energy input ξI,k = min
[
ϕC,kπm

fk
,Amb− kam

]
g s−1

Growth constant A = A0aA(T ) g1−b s−1

Mass specific investment in activity ka = Aϵam
b−1
∞,k s−1

Fish production spectrum π =


P :

Πψ
mψ

(
m
mψ

)τ−1

D :
Πβ
mβ

(
m
mβ

)τ−1 g m−2 g−1 s−1

Representative mass of phytoplankton mψ = m
ΦL
L m

1−ΦL
S g

Particle flux at bottom Πβ = Πψ peratio

(
zbot
zeu

)ba
mmol C m−2 s−1

Mass structure of energy to reproduction sk =

[
1+

(
m

mα,k

)−cs]−1

-

Mass of maturity mα,k = η m∞,k g

Natural mortality rate Λk = λm−hmh+b−1
∞,k s−1

Mortality constant λ = eζ1
(
A0
3

)
aλ(T ) g1−b s−1

Primary production determined recruitment RP,k = ΦC,kπ(m0)m0 g m−2 s−1

Eggs production determined recruitment Re,k = Φf se
m0
me

∫m∞,k
m0

γR,k(m)
fk(m)
m

dm g m−2 s−1

Energy allocated to reproduction γR,k = ΦkξI,k g s−1

van’t Hoff-Arrhenius equation aa,λ(T ) = exp
[
ωa,λ
kB

( 1
Tr

− 1
T

)
]

-

Corrected trophic scaling2 τ =

log

α k
NO

−
3

k
NO

−
3

+NO−3


log(β)

-

1Estimated from net primary production and surface temperature following Dunne et al. (2005).
2Correction of trophic scaling when reduced growth in iron limited regions is activated.
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Table A3. Variables and governing equations for the economic module of BOATSv2, for pelagic (P), demersal (D), or both communities.

See more details in Carozza et al. (2016, 2017).

Variable and functions Formulation Unit

Fish catchability of group k qk(t) m2 Ws−1

Ex-vessel fish price for group k pk(t) $ g−1

Cost per unit effort for group k ck(t) $ W−1 s−1

Bathymetry zbot m

Distance to shore dcoast km

Societal target for fishing effort1 Etarg,k(t) W m−2

Fish catch spectrum of group k hk(m,t) g m−2 g−1 s−1

Cumulative catch of group k Ck(t) =
∫m∞,k
m0

hkdm g m−2 s−1

Fishing effort of group k Ek(t) W m−2

Fishing effort model dEk
dt

=
(
κe

revenuek−costk
Ek

)
e−S +(1− e−S)κs(Etarget,k −Ek) -

Revenue from fishing revenuek = qk Ek dt
∫m∞,k
m0

pkσk(m)fk(m)dm $ m−2 s−1

Size dependent selectivity of catch σk =

[
1+

(
m

mΘ,k

)−cσ/3]−1

-

Threshold mass for catch mΘ,k = dmΘ,k emΘ,k mα,k g

Cost of fishing costk = ck Ek dt $ m−2 s−1

Corrected depth dependent cost profile2 ck(zbot) = ck + δz(zbot− zref ) $ W−1 s−1

Corrected distance dependent cost profile2 ck(zdist) = ck + δd(dcoast− dref ) $ W−1 s−1

Corrected depth dependent catchability profile2 qk(zbot) = qk Pr(zbot) Of(P,D) m2 Ws−1

Depth dependent catchability weight Pr(zbot) = qmin+(1− qmin)
log10(zmax)−log10(zbot)
log10(zmax)−log10(zmean)

-

Catchability offset between communities Of(P ) = 1.4 Of(D) -

1Not detailed in the present model description, see Scherrer and Galbraith (2020).
2Correction of catchability or cost when spatial economic parameterization is activated.
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Appendix B: Global variability in surface nitrate

In μM
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0

Figure B1. Minimum monthly sea surface nitrate concentration (in µM) from the World Ocean Atlas (Locarnini et al., 2006).
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Appendix C: Spatial variation of costs615

The cost of fishing varies by fishing gear and by targeted fish community (Lam et al., 2011). To best constrain spatially variable

costs we use estimates of these separate fishing costs in the High Seas for the main gear types (98% of total effort) following

data reported by Sala et al. (2018). Table C1 summarizes these estimated costs. These compare with BOATS’s default fishing

cost of 5.85 $ W−1 y−1 (Carozza et al., 2017; Galbraith et al., 2017). We defined spatially variable costs as a function of

distance to coast dcoast, and depth of the seafloor zbot. Figure C1a illustrates the profile of distance dependent costs and620

figure C1b the profile of depth dependent costs (in $ W−1 y−1).

Table C1. Cost of fishing the high-seas based on estimates from Sala et al. (2018) for year 2016.

Gear type Effort in kWh (fraction of total) Cost range in $ Cost per unit effort in $ W−1 y−1

Trawlers 979 106 (15%) [750 106-1030 106] [6.7-9.2]

Long liners 3719 106 (55%) [2523 106-3023 106] [6.0-7.1]

Purse seiners 394 106s (6%) [702 106-1188 106] [15.7-26.0]

Squid jiggers 1490 106 (22%) [1308 106-1616 106] [7.7-9.5]

Range all gears (98%) - [6.94-8.87]

BOATS default - - 5.85

(b)(a)

Figure C1. Cost per unit effort profiles ccoork in the global ocean (in $ W−1 y−1). (a) As a function of distance to the nearest coast ccoork =

cdistk . (b) As a function of depth of the seafloor ccoork = cdepthk .
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Appendix D: Spatial variation of catchability

Technology coefficients varies between gears (Palomares and Pauly, 2019), and gears are predominantly used in separate

regions of the global ocean (Kroodsma et al., 2018; Kerry et al., 2022). Ultimately this can lead to spatially heterogeneous

catchability of fish resource.625

In order to better constrain the catchability, we use the reported difference of technology coefficients by gear estimated

in 1995, and a coarse estimation of the contribution of each gear to the global fishing effort from 2015 through 2020 as

reconstructed by Global Fishing Watch (GFW, see Kroodsma et al. (2018)). Depending on the functional type predominantly

targeted by a gear, pelagic vs. demersal, we estimate the mean technology coefficients for pelagic species to be Of(P ) = 1.3

compared to Of(D) = 0.9 for demersal species (see Table D1).630

Based on the observation that a dominant part of fishing effort on pelagic species by longliners occurs near seamounts (Kerry

et al., 2022), we adjust the spatial catchability as a function of the depth of the seafloor such that it varies from a minimum of

Pr(zbot) = 0.8 over deep seafloors (e.g., for tuna seiners, Table D1) to Pr(zbot) = 2.4 in shallow regions (such that the global

mean is 1.3). Figure D1 illustrates the reference profile of technology coefficients Pr(zbot) used for the analysis.

Table D1. Technology coefficient per fish community. The coefficients per gear are based on reported values in Palomares and Pauly (2019).

Each gear is linked to the dominant resource it targets, pelagic (Pel) or demersal (Dem), and associated to the fraction of global fishing effort

from 2015 through 2020, as reported by Global Fishing Watch. We reported the mean technological coefficient weighted with effort by gear,

when available.

Gear type (fraction of GFW effort) Dominant target (Pel vs. Dem) Technology coefficient 1995 (normalized)

Super trawlers (-) Pel 1.3

Tuna seiner (1.1%) Pel 0.8

Freeze trawler (-) Pel 1.0

Tuna longliner (-) Pel 1.2

Purse seiner (2.2%) Pel 1.0

Stern trawler (-) Pel/Dem 1.0

Longliner (19%) Pel 1.4

Multipurpose vessel (-) Pel/Dem 1.3

Shrimp trawler (-) Dem 1.1

Trawler (48%) Dem 0.9

Gillnetter (6%) Dem 0.8

Fast potter (0.7%) Dem 0.7

Other (23%) Pel/Dem −
Mean pelagic (22%) Pel 1.3

Mean demersal (55%) Dem 0.9
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P(zbot)

Figure D1. Relative technology coefficient profiles Pr(zbot) in the global ocean.

38

https://doi.org/10.5194/gmd-2024-26
Preprint. Discussion started: 2 May 2024
c© Author(s) 2024. CC BY 4.0 License.



Appendix E: Large Marine Ecosystems and High Seas Ecosystems635

(b)(a) LMEs mask HSEs mask

Figure E1. Regional masks used to compare observations and simulations. (a) Large Marine Ecosystems. (b) High Seas Ecosystems adapted

from Weber et al. (2016).
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Appendix F: Pelagic and Demersal catches

Table F1. Association of Sea Around Us (Pauly et al., 2020) functional types to pelagic and demersal catches.

Catch type SAU functional types

Pelagic pelagic s/m/l

bathypelagic s/m/l

cephalopods

Demersal demersal s/m/l

reef-associated s/m/l

benthopelagic s/m/l

bathydemersal s/l

shark s/l

flatfish s/l

ray s/l

shrimp

lobster and crab

other demersal invertebrates
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Appendix G: Global catch distribution between BOATS versions
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Figure G1. Simulated catch in the 1990s C90s (in log10(ton km−2 y−1)). (a) BOATSv1. (b) Updated version with improved ecology

BOATSv2-Bio. (c) Final update including improved economics BOATSv2.
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Appendix H: Historical catch deepening

(b)
(a) SAU (b) BOATSv1 (c) BOATSv2

Log
10 (ton/km

2/y)

Figure H1. Fishing over increasingly deep seafloors. (a) Observed and (b,c) simulated mean total catch density (in log10(ton km−2 y−1))

over depth strata. Compared to observation (a), BOATSv1 (b) fail to capture the deepening while BOATSv2 corrects it.
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Appendix I: Historical biomass variation in selected LMEs
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Figure I1. Observed and simulated biomass decline in LMEs, for demersal and pelagic biomass. Each panel shows the simulated historical

fish biomass density (in g m−2) decline, averaged across the selected LME (dotted line), or averaged over 1o grid cells where observation are

available (plain line). These are compared to the range of observed biomass density per LME over years 2000s, indicated by the median value

(black plain lines) and the 25th and 75th percentiles (dotted black lines). Colors indicate neighboring LMEs, North American LMEs along

the East coast (green), North American LMEs along the West coast (light blue), Gulf of Mexico and Florida LMEs (in orange), European

LMEs (dark blue).
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