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Abstract. Climate change and industrial fishing are having profound effects on marine ecosystems. Numerical models of

fish communities and their interaction with fishing can help assess the biogeochemical and socio-economic dynamics of this

coupled human-natural system, and how it is changing. However, existing models have significant biases and do not include

many processes known to be relevant. Here we describe an updated version of the BiOeconomic mArine Trophic Size-spectrum

(BOATS) model for global fish and fisheries studies. The model incorporates new ecological and economic features designed5

to ameliorate prior biases. Recent improvements include reduction of fish growth rates in iron-limited high-nutrient low-

chlorophyll regions, and the ability to simulate fisheries management. Features added to BOATS here for the first time include

a separation of pelagic and demersal fish communities to provide an expanded representation of ecological diversity, and

spatial variation of fishing costs and catchability for more realistic fishing effort dynamics. We also introduce a new set of

observational diagnostics designed to evaluate the model beyond the boundary of large marine ecosystems (66 commonly10

adopted coastal ocean ecoregions). Following a multi-step parameter selection procedure, the updated BOATSv2 model shows

comparable performance to the original model in coastal ecosystems, accurately simulating catch, biomass and fishing effort,

and markedly improves representation of fisheries in the High Seas, correcting for excessive high-sea and deep-sea catches

in the previous version. Improvements mainly stem from separating pelagic and demersal energy pathways, complemented

by spatially variable catchability of pelagic fish and depth- and distance-dependent fishing costs. The updated model code is15

available for simulating both historical and future scenarios.

1 Introduction

Recent developments have enabled the formulation of size-based fish community models based on fundamental ecological

principles (Heneghan et al., 2021). Instead of resolving linkages between species or functional groups within marine food-

webs, aggregated size-spectrum models are based on properties that emerge at higher levels of organization. These models rely20

on macroecological principles to connect individual growth and metabolism (Brown et al., 2004; Kooijman, 2010; Hatton et al.,

2021) to community-level production and biomass (Gascuel et al., 2011; Blanchard et al., 2012; Maury and Poggiale, 2013;

Jennings and Collingridge, 2015; Petrik et al., 2019; Heneghan et al., 2020). By simplifying complex ecosystems dynamics
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into community-level biodiversity (Maury, 2010; Petrik et al., 2019) and regional variations in trophic efficiency (Du Pontavice

et al., 2020) and other ecological variables, these models can project the response of global marine ecosystems to warming and25

shifts in primary production due to climate change (Lotze et al., 2019; Tittensor et al., 2021).

The BiOeconomic mArine Trophic Size-spectrum (BOATS) model is a size-spectrum model that incorporates an explicit

representation of commercial fishing effort (Carozza et al., 2016, 2017). The model’s integration of ecological and economic

dynamics enables a clear illustration of the profound effects of advances in fishing technology on historical changes in fish

biomass, as compared to the impacts of climate change (Galbraith et al., 2017; Carozza et al., 2019). The ability to simulate how30

fish catches respond to dynamic fishing effort allows optimization of the model’s ecological parameters against observational

reconstructions of fish catches (Carozza et al., 2017). Based on this optimization method, BOATS provided new estimates

of the global biomass and cycling rate of fish, indicating a non-negligible impact of fishing on carbon sequestration and

biogeochemical cycles (Bianchi et al., 2021; Le Mézo et al., 2022). It also offered mechanistic insights into the historical

progression of fisheries (Guiet et al., 2020). While the model was originally designed under the assumption of open-access35

fishing effort, subsequent developments enabled it to investigate the effects of regulatory measures on fish community dynamics

and their response to long-term and abrupt climate perturbations (Scherrer and Galbraith, 2020; Scherrer et al., 2020).

These studies prove the usefulness of BOATS for exploring various aspects of global fisheries. Still, comparisons with ob-

servations have also revealed discrepancies that suggest limitations in the model’s parameterizations and missing mechanisms.

For instance, high-nutrient low-chlorophyll (HNLC) regions are characterized by relatively low primary production despite40

available macronutrients (Moore et al., 2013). These regions represent more than one-quarter of the open ocean surface area,

and include the Southern Ocean, the Eastern Equatorial Pacific, and the Subarctic North Pacific. In HNLC regions, comparison

of simulated effort with global reconstructions suggested excessive fishing activity in BOATS, indirectly pointing to an exces-

sive biomass accumulation in the model (Galbraith et al., 2019). Similarly, while the model provides a realistic representation

of coastal fisheries, catches in the High Seas (here defined as the regions of the ocean beyond Large Marine Ecosystems) ap-45

pear to be much larger than recent observational reconstructions. Note that, Large Marine Ecosystems (LMEs) are 66 coastal

ocean regions defined by ecological criteria (Sherman and Duda, 1999). Specifically, BOATS simulates 40% of global catches

beyond the boundary of LMEs by the 1990s. This is approximately four times larger than the value of 8− 9% from empirical

estimates (Watson, 2017; Pauly et al., 2020). The large High Seas catches coincide with excessive fishing in waters found above

deep seafloor. During the 1990s, the model’s catch-weighted mean depth of waters where fishing occurs is 1698m, contrasting50

significantly with the observational reconstructions range of 154− 372m. This discrepancy limits the model’s applicability to

study the interaction of industrial fishing with High Sea and deep-ocean ecosystems, and suggests potential shortcomings in

the representation of open-ocean food webs.

In parallel, recent studies have shed new light on large-scale aspects of global marine ecosystems and fisheries. Recon-

structions of industrial fishing effort by Global Fishing Watch (GFW, Kroodsma et al. (2018)) highlighted spatial variations55

in fishing costs (Sala et al., 2018) and revealed the importance of seamounts in concentrating fishing activity, especially for

pelagic fisheries in the High Seas (Kerry et al., 2022). New reconstructions of fishing effort that include artisanal and industrial

sectors provide more nuanced insights on the development of regional fisheries (Rousseau et al., 2019, 2024). Regional catch
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reconstructions have revealed the importance of “straddling” species, which forage both within exclusive economic zones and

in the High Seas over the course of a year, thus disconnecting regions of fish biomass production from regions of biomass60

extraction (Sumaila et al., 2015). Analysis of catch data shows how energy inputs at the base of food webs determine the

dominance of pelagic vs. demersal communities across latitudes (van Denderen et al., 2018), suggesting different temperature

sensitivities of growth for these groups (van Denderen et al., 2020). Finally, harmonization and in-depth analysis of fisheries-

independent trawl data has begun to reveal large-scale fish biomass patterns with unprecedented accuracy (Maureaud et al.,

2023).65

Here, motivated by discrepancies between observations and simulations with the original BOATS model (BOATSv1) and

insights from recent large-scale studies, we revise the model formulation to improve its representation of High Sea vs. coastal

fisheries, and of pelagic vs. demersal communities, leading to a significant model update: BOATSv2. The rest of the paper con-

sists of four main Sections. Section 2 summarizes the main principles and formulation of BOATSv1. Section 3 details previous

model developments and new features introduced in BOATSv2. Section 4 describes a revised model optimization procedure.70

Section 5 justifies the selection of an ensemble of 5 optimal parameters, compares the old and new model versions, highlighting

improvements in the representation of global fisheries in BOATSv2, and discusses insights from the new formulation.

2 BOATSv1

The philosophy of BOATS is to ensure global applicability while including sufficient ecological and economic complexity to

represent realistic first-order fishery dynamics. The model is designed to include a relatively small number of parameters and75

to be computationally efficient, facilitating objective parameter optimization. It uses vertically averaged habitat characteristics

on a 2-dimensional spatial grid to simulate the variability of fish communities, from small regions to the global ocean. In the

following, we provide a brief overview of key model principles. We refer the interested reader to Appendix A for all equations,

and to previous publications for detailed explanations (Carozza et al., 2016, 2017). A schematic that illustrates the model

principles (adapted for BOATSv2 from Carozza et al. (2017)) is shown in Figure 1.80

2.1 Ecological module

BOATSv1 simulates the evolution in time (t) of the biomass of commercial fish as a function of size, fk (in g m−2 g−1, where

g are grams of wet biomass; see also Table 1 for a list of variables and parameters), and its propagation along a spectrum of size

classes [m0,mu], where m is the biomass of an individual fish (in g), and m0 and mu the minimum and maximum fish sizes

represented by the model. To include a coarse representation of species diversity, BOATS simulates nk different fish “groups”85

distinguished by their asymptotic mass m∞,k <mu, labeled by the subscript k (see illustration of the small and large groups in

the central panel of Fig. 1). The total biomass density Bk =
∫m∞,k

m0
fk dm is the sum of each group’s biomass across individual

size classes (in g m−2). The propagation of biomass in each size spectrum a function of time t is described by the McKendrick

von Foerster equation:

∂

∂t
fk =− ∂

∂m
γS,kfk +

γS,kfk
m

−Λkfk −hk (1)90

3



Pelagic Demersal
resource (Π)

T75 Tbot

ΠΨ Πβ

Environmental 
forcings

cost per unit effort (c)

catchability (q)

ex-vessel price (p)

Economic
forcings

effort 
(Esmall)
effort 
(Elarge)

R

R

Γ,Λ,R

Γ,
Λ,R

ξVB

ξP

ξP

water temperature (T)

Figure 1. Schematic diagram of the main modules, components, and processes of BOATSv2. Environmental forcings, shown in the left panel

(“pelagic” for BOATSv1; “pelagic” and “demersal” for BOATSv2), drive an ecological module that solves for the evolution in time of fish

biomass as a function of fish size, for multiple groups with different maximum size, shown in the central panel. These fish biomass spectra

interact with the dynamic of fishing, controlled by an economic module and economic forcings, shown in the right panel. Economic forcings

are spatially uniform in BOATSv1, but can be spatially variable in BOATSv2. Environmental forcings include the spatial distribution of

resources at low trophic levels (Πψ or Πβ) and representative habitat temperatures (T75 or Tbot). Fish biomass spectra for multiple groups

emerge from the balance of environmentally controlled growth (Γ, linked with ξP or ξV B), recruitment (R), natural mortality (Λ), and

fishing mortality (H). Economic forcings, which include spatially uniform ex-vessel prices (p) and spatially variable fishing costs (c) and

catchability (q), influence the dynamic of fishing effort (E) for each fish group. Color shadings of forcings illustrate spatial variations, from

low (light) to high (dark) values. This figure is updated from the schematic for BOATSv1 in Carozza et al. (2017).

The first term in Eq. (1) represents the rate of change in time of the fish biomass spectrum for each group. The second term

is the divergence of the growth flux, i.e., the transfer of biomass to increasing size as fish grow. The third term encapsulates

the biomass accumulation due to the increase of individual size as fish grow. The fourth and fifth terms represent losses from

natural mortality and catch respectively.

This first-order partial differential equation in time and size, requires both a boundary condition, here prescribed at the small-95

est size class m0 and representing recruitment, and an initial condition at t= 0, representing the initial biomass distribution for

each group:
γS,kfk =RP,k

Re,k
RP,k +Re,k

form=m0 (boundary condition)

fk = fk,m,0 at t= 0 (initial condition).
(2)

In Eqs. (1-2) the size-dependent growth rate γS,k (in g s−1), Eq. (3), controls the biomass propagation through size (white

arrows in the central panel of Fig. 1), influenced by local water temperature (T in oK) and primary production Πψ (in100

mmol C m−2 s−1). The natural mortality rate Λk (in s−1), Eq. (4), represents the biomass losses within each size class from

predation and natural mortality (gray line in the central panel of Fig. 1). The sink term hk (in g m−2 g−1 s−1) is the biomass
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harvest by fishing that couples the ecological module to the fisheries dynamics module (see Section 2.2). Finally, Re,k and

RP,k, Eq. (5), are respectively the biomass input potential at the recruitment size m0 from egg production (Re) by mature

individuals (see yellow arrows in Fig. 1), and the maximum biomass input potential at the recruit size given the primary pro-105

duction (RP ). Both modulate the total recruitment input, γS,kfk (in g m−2 s−1). Simulations start from an initial biomass

distribution fk,m,0 that approximates an ocean in the absence of fishing (“pristine”), estimated from environmental conditions

(Section 3.3).

In BOATS, the growth rate at a given size occurs either at the maximum physiological rate when food is not limiting (gray

area in the central panel Fig. 1), or proportionally to primary production Πψ when food is limiting (green area in the central110

panel Fig. 1). Accordingly, the growth rate is proportional to the minimum of two quantities: (1) the energy provided by primary

producers that reaches a given size class ξP,k, given trophic transfer across the food-web, divided by the number of fish in that

size class, and (2) the maximum production potential for a fish of that size, based on an individual-level allometric growth rate

that follows a von Bertalanffy formulation ξV B,k (in g s−1):

γS,k = (1−Φk) ξI,k = (1−Φk)min(ξP,k, ξV B,k) = (1−Φk)min

(
ϕC,kπm

fk
,Amb− kam

)
. (3)115

Here, the term (1−Φk) accounts for a reduction of the biomass allocated to somatic growth, with a fraction Φk allocated

to generation of reproductive material, i.e., egg production, Eq. (5). Thus, when food is limiting, individual fish will grow

according to π =Πψ/mψ(m/mψ)
τ−1, which defines a spectrum of available energy from primary production as a function

of size (in g m−2 g−1 s−1). Here, τ is the trophic scaling, and mψ a representative cell size for primary producers (i.e., phy-

toplankton) at the base of the food-web. The trophic scaling parameter determines the efficiency of propagation of production120

through the consumer size spectrum, to increasingly larger sizes and higher trophic levels, following the framework of the

metabolic theory of ecology Brown et al. (2004). The representative size mψ is determined from the empirical phytoplankton

size structure model of Dunne et al. (2005) and depends on temperature (T in oC) and primary production Πψ . To ensure coex-

isting fish groups, and because of the scarcity of data available to constrain resource allocation, primary production is equally

partitioned across the groups, i.e., ϕC,k = 1/nk = 1/3. While this is a first-order assumption that allows realistic simulation125

of catches by group, it should be revised as new observational constraints become available. When food is in excess of what

can be consumed by the standing fish biomass, fish grow as fast as physiologically possible, given an allometric scaling b, a

temperature dependent anabolism Amb =A0 aA(T )m
b and catabolism kam=Aϵa mb−1

∞,km, where A0 is a growth constant

(in g s−1), and ϵa an activity fraction. This formulation is inspired by an empirical allometric framework following the model

of Von Bertalanffy (1949), where growth is determined by food intake after assimilation and standard metabolism, discounted130

from energy used in activity and reproduction. This maximum growth is temperature dependent, based on the factor aA(T ) (T

in oK) which follows a van’t Hoff-Arrhenius curve controlled by a growth activation energy ωa,A (in eV). The fish mortality

is independent of variations of the growth rate.

The natural mortality rate (in units of s−1) depends on both individual and asymptotic mass, and represents biomass losses

due to predation to organisms both within and outside of the resolved community size spectrum, as well as other natural causes.135
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The natural mortality rate is based on an empirical parameterization (Gislason et al., 2010; Charnov et al., 2013):

Λk = eζ1
A0

3
aλ(T )m

−hmh+b−1
∞,k (4)

where h is an allometric scaling, and ζ1 (in g s−1) a mortality rate parameter. As in Gislason et al. (2010), the natural mor-

tality rate is linked to growth by means of the constants A0 and b. To account for separate temperature dependencies between

metabolism aA(T ) and other processes such as predator-prey interactions, mortality varies with a distinct temperature depen-140

dence aλ(T ), following a van’t Hoff-Arrhenius curve controlled by a second activation energy ωa,λ (in eV).

Recruitment provides the boundary condition, setting the flux of biomass at the lower mass boundary m0. Recruitment is a

function of the biomass production by mature individuals Re,k, and a limit to the survival of recruits that depends on resource

availability, proportional to primary production RP,k:Re,k = ϕfse
m0

me

∫m∞,k

m0
γR,k(m) fk(m)

m dm

RP,k = ϕC,kπ(m0)m0

(5)145

Assuming that a fraction Φk of the input energy is allocated to reproduction, γR,k =ΦkξI,k, the recruitment flux is determined

by summing the contributions of all mature individuals across sizes m for a fraction of females ϕf , an egg survival probability

se and a mean egg mass me (in g). Survival of recruits saturates towards a limit set by the energy available from primary pro-

duction at the recruit size m0. In high-biomass regions with large egg production rates, recruitment is thus generally constrained

by π(m0).150

With this formulation, for a given set of parameters (see list Table 1 and more details in Appendix A), the dynamics of

commercial fish biomass in BOATSv1 is determined by two spatially and temporally varying environmental “forcings” (shown

as “pelagic” forcings Fig. 1): local primary production Πψ and epipelagic temperature T = T75 (average temperature in the top

75m, in oC or oK).

2.2 Economic module155

BOATSv1 couples fish biomass and fishing effort Ek (in W m−2) to determine fish catch rates Ck (in g m−2 s−1) for each

species group k (see harvest in the central panel Fig. 1). Fishing effort is typically initialized everywhere at negligible values,

starting from an unfished ocean and evolves independently in each grid cell under an open-access dynamic, proportional to the

local net profit (the difference between revenue and cost) as:
d

dt
Ek = κe

revenuek − costk
Ek

Ek = 0 at t= 0

(6)160

where κe (in W2 m−2 $−1) is a fleet dynamic parameter that sets the effort adjustment timescale for a given change in profit.

This formulation assumes an absence of regulation, so that fishers seek the greatest total catch in each grid cell. When profitable,

revenues Eq. (7) exceed costs Eq. (9), and fishing develops continuously. In the presence of a continuous increase in catchability,
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this eventually leads to a peak of catch, overharvesting, and ultimately biomass collapse (see Carozza et al. (2017) and Galbraith

et al. (2017) for details).165

The rate of revenue for a time interval dt from a given location in the ocean (in $ m−2 s−1) is determined as a spectrum rk (in

$ m−2 s−1 g−1) that is defined separately for each species group fk. This represents the product of catch and the mass-specific

price fishers are paid at port, integrated across size classes within each group:

revenuek =

m∞,k∫
m0

rkdm dt = pkqkEkdt

m∞,k∫
m0

σkfkdm (7)

where pk is the ex-vessel price (in $ g−1) for each group. The catchability qk (in m2 W−1 s−1) per unit of nominal fishing effort170

encapsulates the ability of fishing effort to extract fish biomass from the ocean. This quantity reflects the inherent characteristics

of the fish group, as well as the fishing technology adopted (including gear, navigation instruments, sonars, and communication)

and accrued knowledge (Palomares and Pauly, 2019). This formulation depends on the fraction of the fish biomass σkfk

targeted by fishing, where σk is a size-dependent selectivity of the fishing gear used to target group k. The selectivity plays

a fundamental role by distributing fishing effort across size classes. A variety of functional forms exist, all avoid the smallest175

sizes. These can be generalized as either dome-shaped (e.g. gillnets, longlines) or sigmoidal (e.g. trawls, seines or dredges).

Here, we parameterize the selectivity as a sigmoidal curve around a target threshold mass mΘ,k = dmΘ,k
emΘ,k

mα,k, essentially

reducing the fishing effort targeting the smallest size classes:

σk =

[
1+

(
m

mΘ,k

)−cσ/3
]−1

(8)

with cσ a fishing selectivity slope. The target threshold mass is proportional to the maturity mass for each group mα,k, with180

the parameter emΘ,k
accounting for uncertainty around this mass and dmΘ,k

set to select mainly mature individuals (i.e.,

dmΘ,k
= 1).

Net profits are determined by subtracting costs from revenues. Similar to revenue, the cost is expressed as the average

expenditure rate per time over an area of the ocean (in $ m−2 s−1). In reality, the cost of fishing includes the purchase and

maintenance of capital, fuel costs for transit between fishing grounds and ports as well as during gear operation, and labour. In185

the model, cost is simply proportional to effort:

costk = ckEkdt (9)

where ck is the cost per unit effort ($ W−1 s−1).

When revenue exceeds costs, fishing effort Eq. (6) increases. Any nonzero effort will lead to catches,

hk dt dm= qkσk Ek fk dt dm, (10)190

which couple the economic and biological modules Eq. (1). A catch limit is imposed for numerical stability (i.e., to prevent

harvesting more fish than the biomass available in each grid cell). The total catch rate for each group is then given by Ck =
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∫m∞,k

m0
hkdm (in g m−2 s−1). Note that when computing catches, but also costs and effort change, we set a lower limit on

effort ϵ= 10−50 to allow the development of fishing and prevent division by zero in Eq. (6).

In BOATSv1, the ex-vessel fish price pk is generally assumed to be constant in space and time (1.264 10−3 $ g−1), since195

observations suggest small historical variations (Sumaila et al., 2007; Galbraith et al., 2017). Similarly, cost ck is also assumed

constant (1.852 10−7 $ W−1 s−1). Catchability qk increases annually at a 5% rate that accounts for sustained technological

improvements and is the only temporally-varying economic “forcing”. Empirical studies have estimated an average annual

rate of 2− 8% between fisheries and periods. We select an annual rate of 5% increase as, after testing when other observed

economic parameters are forced, it accurately reproduces the historical development of fisheries with BOATS (Galbraith et al.,200

2017; Scherrer and Galbraith, 2020). A list of economic parameters and quantities is provided in Table 1; additional details are

provided in Appendix A.

3 BOATSv2

Here we describe the features of BOATSv2 that provide an update to the original BOATSv1. Two of these features were

introduced incrementally, in previously-published work, in order to capture iron limitation in regions where iron is known to205

be scarce (Galbraith et al., 2019), and to represent management of fisheries (Scherrer and Galbraith, 2020; Scherrer et al.,

2020). We provide a brief summary of these previous updates, before discussing in detail the novel features added to the model

(see also Table 1 and Appendix A).

3.1 Previously-published features

3.1.1 Reduced growth rates in iron-limited regions210

Iron limitation of phytoplankton growth is widely recognized in the ocean, most prominently in HNLC regions (Tagliabue et al.,

2017). Less is known about iron limitation of higher trophic levels in the ocean, including fish (Le Mézo and Galbraith, 2021).

When satellite-based observational estimates of primary production are used as forcings, BOATSv1 overestimates fishing effort

in HNLC regions, likely by simulating excessive biomass. Evidence of fish lack of adaptation to low iron regions suggests that

low iron availability also significantly limits fish growth and could contribute to reducing fish abundance in large portions of215

the High Seas (Galbraith et al., 2019).

Following Galbraith et al. (2019), we parameterize iron limitation of fish by reducing the trophic efficiency α, which deter-

mines the fraction of biomass incorporated into new tissues at each trophic step in HNLC regions:

αv2 = α

(
kNO−

3

kNO−
3
+NO−

3

)
. (11)

Here the surface concentration of nitrate (NO−
3 , in µM) is taken as a proxy for iron limitation (Moore et al., 2013) and as220

an indicator of regions where fish are expected to be limited by the lack of iron, given the absence of other robust global

estimates of surface iron concentrations or plankton iron contents. Note that here and in the following sections, the super-
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Table 1. List of parameters and quantities of BOATSv2. For a full list and values see Appendix A.

Parameter Name Units

fk and Bk Fish biomass spectrum and cumulative biomass of group k (g m−2 g−1) and (g m−2)

m ∈ [m0,mu] Biomass spectrum size range (g)

me, mα,k and m∞,k Egg, maturity and asymptotic masses of group k (g)

nk and ϕC,k = 1/nk Number of fish species size groups and fraction per group Unitless

γk Size-dependent growth rate of group k (g s−1)

Φk Fraction of input energy allocated to growth of group k Unitless

ξp,k or ξV B,k Biomass input at individual level of group k (g s−1)

A0 Growth constant (g1−b s−1)

ϵa Activity fraction Unitless

b Growth scaling exponent Unitless

π Fish production spectrum (g m−2 g−1 s−1)

τ = ln(α)/ln(β) Trophic scaling (trophic efficiency α; predator prey mass ratio β) Unitless

Λk Natural mortality rate of group k (s−1)

ζ1 Mortality constant Unitless

h Mortality scaling exponent Unitless

Re,k or RP,k Recruitment input of group k, from eggs or primary production (g m−2 s−1)

ϕf Fraction of females Unitless

se Eggs to recruit survival fraction Unitless

aA(T ) and aλ(T ) Growth and mortality van’t Hoff-Arrhenius dependence Unitless

ωa,A and ωa,λ Growth and mortality activation energies (eV)

hk and Ck Fish catch spectrum and cumulative catch of group k (g m−2 g−1 s−1) and (g m−2 s−1)

rk and revenuek Revenue spectrum and cumulative revenue of group k ($ m−2 g−1 s−1) and ($ m−2 s−1)

ck and costk Cost per unit effort and total cost of group k ($ W−1 s−1) and ($ m−2 s−1)

Ek and Etarg,k Fishing effort and effort target per group k (W m−2)

S Effectiveness of regulation enforcement Unitless

κe and κs Fleet dynamics and regulation response parameters (W $−1 s−1) and (m−2 $−1)

pk Fish selling price of group k ($ g−1)

qk Fish catchability of group k (m2 W−1 s−1)

σk , cσ and mΘ,k Fishing selectivity of group k, slope and target threshold Unitless and (g)

dmΘ,k and emΘ,k Parameter of the selectivity target threshold of group k Unitless

T75 or Tbot Temperature, near surface or bottom (oC) or (oK)

Πψ or Πβ Primary production, near surface or bottom (mmolC m−2 s−1)

mψ or mβ Representative mass of primary producers or benthos (g)

NO−
3 and k

NO−
3

Surface nitrate concentration and constant controlling iron limitation (µM)

peratio and ba Export ratio and attenuation coefficient of particle flux Unitless

zeu and zbot Euphotic layer and seafloor depths (m)

dcoast Distance to nearest coast (km)

x∗ and δ Parameters for cost profiles (m or km) or ($ W−1 y−1 m−1or km−1)

qmin, or xmax and xmean Parameters for catchability profiles Unitless or (m)
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script “v2” indicates corrected quantities compared to the initial formulation in BOATSv1. This parameterization smoothly

decreases the trophic efficiency as surface nitrate increases. The constant kNO−
3
= 5 µM controls the strength of this effect,

and is constrained empirically. Nitrate concentrations are taken as the monthly minimum from the World Ocean Atlas (WOA)225

climatology (Locarnini et al., 2006) (see Appendix B). Although uncertainties persist regarding the impact of iron limitation

on marine predators, this parameterization effectively reduces an overestimate in fishing effort in the Southern Ocean, North

Pacific, Equatorial Pacific, and, to some extent, North Atlantic in BOATSv1 (Galbraith et al., 2019).

3.1.2 Management with varying effectiveness

In BOATSv1, effort was generally assumed to follow an open-access dynamic Eq. (6). This was modified to represent the230

influence of regulation by adjusting fishing effort to align with a prescribed target Etarg,k (Scherrer and Galbraith, 2020), as:(
d

dt
Ek

)v2
=

(
d

dt
Ek

)
e−S +

(
1− e−S

)
κs (Etarg,k−Ek) (12)

where S is a non-dimensional parameter representing how effectively the target is enforced. When S = 0 the model follows

open-access dynamics; when S > 0 the nominal effort is nudged towards the target at a rate proportional to the regulation

response parameter κs (m−2 $−1).235

This feature showed that strong fisheries regulation is required to prevent overfishing if technological progress keeps in-

creasing, making management effectiveness a key factor in future scenarios (Scherrer and Galbraith, 2020). For the rest of the

paper, we set S = 0, and focus on simulation of historical fisheries up to the time they reached maximum catches, for which

the open-access dynamic was shown to be adequate (Galbraith et al., 2017; Guiet et al., 2020).

3.2 Newly added features240

3.2.1 Separate pelagic and demersal energy pathways

Variations in energy input at the base of marine food webs significantly affect biomass accumulation and cycling, thereby alter-

ing the sensitivity of different fish communities to climate and environmental factors (Petrik et al., 2019). Pelagic communities

are more tightly tied to surface planktonic production (i.e., net primary production Πψ), whereas benthic communities depend

on the delivery of organic material to the seafloor (i.e., particle flux at bottom Πβ in mmol C m−2 s−1) (Stock et al., 2017; van245

Denderen et al., 2018). The two types of communities also experience different temperatures, with surface temperature (here,

T = T75) controlling the metabolic rates of pelagic fish, and bottom temperature (T = Tbot) that of demersal fish.

To account for these ecological differences, we modified BOATS to resolve separate pelagic and demersal fish communi-

ties. Both communities are described by the same set of equations described above, Eqs. (1-12), but solved separately with

independent sets of environmental forcings (see environmental forcing in Fig. 1). Pelagic fish are forced by surface conditions250

(Πψ and T = T75), while demersal fish are forced by bottom conditions (Πβ and T = Tbot). Whereas the energy supply to the

pelagic community remains dependent on surface NPP, the particle flux to the bottom provides the energy input to the demersal
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community. The particle flux is modeled as a depth-dependent fraction of surface primary production:

Πβ =Πψ ∗ peratio ∗
(
zbot
zeu

)ba
. (13)

This formulation assumes a power-law decrease of the flux of organic material below the euphotic layer, i.e., a typical Martin255

curve (Martin et al., 1987; Buesseler and Boyd, 2009). The attenuation coefficient ba =−0.8 is selected within the range of

plausible values (Gloege et al., 2017), and the euphotic layer depth zeu = 75 m is assumed to be fixed, although both could be

modeled to vary in space and time. Here, similar to prior work (Stock et al., 2017; van Denderen et al., 2018; Petrik et al., 2019),

we focus on first-order variations in fish biomass in increasingly deep habitats, where food becomes progressively scarce. We

calculate the term (zbot/zeu)
ba using the high-resolution bathymetry z′bot from the ETOPO global surface relief at 1/10oth260

(Amante and Eakins, 2009), and taking the average across 1o grid cells (zbot/zeu)ba = (z′bot/zeu)
ba . Note that, when z′bot is

shallower than zeu, export is only determined by the peratio, which is taken as a function of surface temperature T75 (in oC)

and net primary production Πψ , following Dunne et al. (2005).

In the pelagic ocean, the typical size of phytoplankton, mψ , varies markedly between productive and oligotrophic regions.

This variation affects both the length of the food web and the proportion of production accessible to fish communities (Ryther,265

1969). We use an empirical phytoplankton size model to account for this variation (Dunne et al., 2005). In analogy with the

pelagic ecosystem, we assume that the representative size of benthic organisms at the base of the demersal food-web, mβ ,

influences the fraction of energy that reaches demersal fish. For simplicity, we take mβ to be globally uniform. Unlike mψ , for

which empirical parameterizations exist, mβ is poorly constrained. We keep most food-web parameters the same for pelagic

and demersal fish, with the exception of the activation energy for growth ωa,A and mortality ωa,λ, since observations of growth270

rates suggest significant differences between the two communities (van Denderen et al., 2020).

3.2.2 Heterogeneous costs

Simulations with BOATSv1 suggest that variations in the cost per unit effort of fishing ck (in $ W−1 y−1) played only a

secondary role in the development of global fisheries (Galbraith et al., 2017). Yet, heterogeneous costs in the global ocean

could modulate the spatial distribution of fishing effort and its evolution over time (Swartz et al., 2010; Anticamara et al.,275

2011; Lam et al., 2011). Reconstructions of fishing effort in the High Seas suggest more than twofold average cost differences

between distinct fishing gears and regions (see Sala et al. (2018); Kroodsma et al. (2018) and Appendix C).

To simulate the effect of heterogeneous fishing costs on the historical offshore expansion of fisheries, we replaced the

constant costs per unit effort (ck = 5.85 $ W−1 y−1) in BOATSv1 by spatially-varying costs, using a linear function of the

distance to shore for effort targeting pelagic fish, dcoast (in km), and a linear function of seafloor depth zbot (in m) for effort280

targeting demersal fish (see economic forcing Fig. 1):

cv2k (x= dcoast,zbot) =

ck when x≤ x∗

ck + δ(x−x∗) when x > x∗
(14)
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where x∗ is a reference parameter that determines the boundary between coastal and High Seas regions. For pelagic effort, x∗

identifies a coastal band over which transit costs are assumed to be small compared to other costs. Here we adopt x∗ = 370 km

(or 200 nm), the limit of Exclusive Economic Zones separating coastal regions and High Seas. For demersal effort, x∗ identifies285

a depth threshold above which the cost of setting and hauling gears is negligible compared to other costs, and set x∗ = 200 m.

The parameter δ is the proportionality constant for the increase of costs beyond these coastal bands (in $ km−1 W−1 y−1 for

pelagic effort, and $ m−1 W−1 y−1 for demersal effort).

For distance-dependent costs, we select δ = 7.9 10−3 $ km−1 W−1 y−1, such that the average High Seas fishing cost is

9.3 $ W−1 y−1, comparable with an empirical upper mean value of 8.9 $ W−1y−1 (see Appendix C). For depth-dependent290

costs, the depth of the fishing grounds zbot is determined from high resolution (1/10oth) bottom topography (Amante and

Eakins, 2009), taking the shallowest depth in each 1o model grid cell. We set δ = 2.5 10−3 $ m−1 W−1 y−1, such that the

average High Seas fishing cost is 9.9 $ W−1 y−1 for exploitation of deep demersal stocks, comparable with an empirical upper

boundary of mean High Seas trawling costs of 9.2 $ W−1 y−1 (Appendix C). Given the uncertainty over whether distance or

seafloor depth have a greater impact on costs in pelagic and demersal fisheries, we first tested distance and depth-dependent295

costs separately, and then added them to determine their combined impact.

3.2.3 Heterogeneous catchability

In BOATSv1, technological progress, represented by an exponential increase in the catchability qk at a rate of 5% y−1, was

shown to be a dominant driver of the development of fisheries (Galbraith et al., 2017). While a homogeneous increase rate ap-

proximates the first-order effect of technological progress well, heterogeneous technological efficiencies among fisheries could300

modulate this development across regions (Palomares and Pauly, 2019), especially as separate gears target distinct resources

and are deployed in different ecosystems (Kroodsma et al., 2018). Similar to cost, spatially-heterogeneous catchability could

have influenced the spatial expansion of fisheries and or the deepening of catches with time (Watson and Morato, 2013).

To simulate the effect of heterogeneous catchability, the exponential increase is spatially weighted (see economic forcing

Fig. 1):305

qv2k (x= zbot,y = P or D) = qk Pr(x) Of(y) (15)

where Pr(x= zbot) accounts for spatial variations of technological efficiencies with seafloor depth, and Of(y = P or D) is

an offset between the catchability of pelagic and demersal resources.

Commercially exploited fish often aggregate near seamounts and other shallow features, resulting in the local establishment

of fisheries (e.g., 57% of longlining activity, Kerry et al. (2022)). The coarse resolution of BOATS prevents a direct represen-310

tation of seamounts. However, the presence of seamounts could increase both fish biomass density and profitability within a

model’s grid cell, as opposed to the case where resources were more homogeneously distributed across the grid cell. The pro-

file Pr(x= zbot) parameterizes the effect of seamounts, and more generally an increase in the density of resources in shallow

regions:

Pr(x= zbot) = qmin+(1− qmin)
log10(xmax)− log10(x)

log10(xmax)− log10(xmean)
(16)315
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Here, qmin = 0.8 is the minimum efficiency of gears targeting pelagic resources (see Appendix D), and xmean and xmax

respectively 2372 and 5750 m depth, based on the median and deepest depths of seamounts where fishing activity occurs

(Kerry et al., 2022). The depth of the fishing grounds zbot is determined from ETOPO at 1/10th resolution (Amante and

Eakins, 2009), coarsened by taking the shallowest depth in each 1o model grid cell, as described above.

The dominant gears used to target different communities (pelagic vs. demersal) are characterized by different efficiencies320

(see Appendix D). We tested the effect of separate catchabilities for pelagic and demersal communities, setting Of(P ) = 1.4

when Of(D) = 1. This offset was estimated from the technology coefficients of different gear targeting pelagic and demersal

species, weighted by the fraction of global fishing effort for 16 different gears (Kroodsma et al., 2018; Palomares and Pauly,

2019).

3.3 Forcing and initialization325

Forcing BOATSv2 requires surface temperature T75, bottom temperature Tbot and net primary production Πψ . Since we are

interested in the recent ocean state, we use climatological observations, and, to assess improvements between BOATS versions,

we adopt the same forcing as in Carozza et al. (2017). Surface temperature (T75) and temperature at the seafloor (Tbot) are

taken from the World Ocean Atlas 2009 (Locarnini et al., 2006). T75 (in oC) is calculated as the mean temperature over the top

75 m on a 1o grid. Tbot (in oC) is calculated by averaging temperatures at different depths, weighted by the fraction of each330

depth within a model grid cell as reported by the ETOPO 1/10 bathymetry dataset (Amante and Eakins, 2009). Recognizing

that the resolution of observational temperature datasets such as the WOA decreases with depth, we select the layers closest to

the bottom as indicative of the temperature near the seafloor. For Πψ we take the average of three satellite-based estimates at

1o resolution (Behrenfeld and Falkowski, 1997; Carr et al., 2006; Marra et al., 2007). Note that Πψ , and then Πβ , are forced

once converted to g m−2 s−1. Forcing BOATS with 2-dimensional grids does not account for vertical positions along the water335

column but characterizes mean environmental conditions where many harvested fish live.

The model is initialized by a “pristine” ocean biomass distribution determined by spinning-up the model without fishing

for 300 years to reach a steady state. Then, the ecological and economic modules are run together with an increase of the

catchability qk for another 300 years, starting with a small, globally uniform effort. In a given region, fishing begins once

catches becomes profitable (i.e., revenuek > costk in Equation 6). The open-access dynamics generally drives first an increase340

in catch, followed by a peak and decline due to overfishing (Guiet et al., 2020). To align simulations with observations (see

Section 4.1), we estimate the time of the peak catch integrated across LMEs, and align it with the time of the observed peak

catch, which occurs in the 1990s (Pauly and Zeller, 2016).

4 Parameterization procedure

In this Section, we first describe the observations used for the evaluation of BOATSv2, and then detail the procedure used to345

parameterize the model, which is based on the following two steps (Fig. 2). (1) Ecological update: We start by focusing on

coastal regions, where most of the observed catch originates, and where economic parameterizations are more homogeneous.
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2- Demersal:pelagic catch
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6- High Seas variability
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Figure 2. Schematic diagram of the parameterization procedure starting from BOATSv1 (in blue), with two steps. (1) Ecological update (in

green): a Monte Carlo tuning procedure with 5 selection criteria is applied on a modified version of BOATSv1 that allows separate pelagic

and demersal pathways and growth limitation in iron-limited regions. An ensemble of 20000 simulations is carried out only for coastal

regions with various parameter sets, and we identify a set of 5 (or 10 extended) best parameter sets. (2) Economic update (in red): with 3

selection criteria, we identify the best economic parameterizations applied on the optimized intermediate BOATSv2-Bio version to determine

BOATSv2. We use simulations that include the High Seas for 5 best parameter sets. Observations used for the parameterization of both are

shown in gray.

We parameterize separate pelagic and demersal pathways (Πψ & Πβ) and growth limitation in HNLC regions for pelagic

species (αv2), to determine the best parameter sets for 11 undetermined parameters of the ecological module (see Table 2).

(2) Economic update: We then fine-tune the parameters of the economic module using spatially heterogeneous costs and350

catchability, considering the global ocean (i.e., cv2k & qv2k ). Results of this parameterization procedure are described in Section

5.1.

4.1 Observational data and diagnostics for model evaluation

We use multiple empirical data sources, including catch, biomass and fishing effort, to tune and evaluate BOATSv2 (in gray

Fig. 2). Comparisons are made on globally integrated quantities, quantities integrated across LMEs to assess regional variability355

in coastal regions, and quantities integrated beyond the boundary of LMEs, i.e., across High Seas Ecosystems (HSEs, see

Appendix E) to assess variability in the open ocean away from coastal influences. We focus on observations around the peak

catch in the 1990s, but also include observations in the 1950s and 2000s for additional insight.

For fish catch, we use two catch reconstruction datasets: (1) The Sea Around Us project (Pauly et al. (2020), SAU), corrected

for under-reported catch. For the SAU, catches by functional type allow to separate pelagic (P) and demersal (D) species360

(see Appendix F). (2) The database from Watson (2017) (hereafter WAT), including wild catch and corrected for illegal and

unreported fisheries. When comparing catches by LME, we focus on 55 LME (out of 66) and ignore the Black Sea and a
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number of high-latitude regions to avoid errors caused by biases in satellite-based chlorophyll and the lack of representation

of the effects of sea ice on the marine ecosystem (as in Carozza et al. (2017)). We define two diagnostics to help correct for

biases in BOATSv1: the fraction of catch in the High Seas, RC = CHS/(CHS +CCS), and the catch-weighted mean depth of365

fishing ZC = (
∑
lat,lonCzbot)/(

∑
lat,lonC) (in m).

For biomass observations, we use the RAM Legacy stock assessment database (Ricard et al., 2012). Stock assessment

data are used to estimate mean catch to biomass ratios (C:B hereafter) in 25 LMEs where enough stock assessments are

available, following Bianchi et al. (2021). We also compare historical changes in fish biomass to a global reconstruction based

on stock assessments (Worm and Branch, 2012). Furthermore, we compare the model with two biomass databases derived370

from fisheries-independent surveys: the first, encompassing demersal species across 14 Large Marine Ecosystems (LMEs) in

the Northern Hemisphere, ranging from the Bering Sea to Northern Europe, is based on a recent synthesis of bottom trawl data

(van Denderen et al., 2023; Maureaud et al., 2023). The second, focusing on pelagic species, is built on standardized trawls of

coastal pelagic species in 2 LMEs along the North American West Coast (Zwolinski et al., 2012).

Finally, we include a comparison with reconstructions of nominal effort for the global fishing fleet in both artisanal and375

industrial sectors, to shed light on the regional development of fisheries (Rousseau et al., 2019, 2024). Similar to catch, we

focus on a subset of 55 LMEs where model forcings are more suitable.

4.2 Ecological update: Monte Carlo ensemble

To calibrate the revised model based on BOATSv1 (in blue Fig. 2), we must specify the value of 11 poorly determined param-

eters (Table 2). (Note that the trophic scaling is a function of two free parameters, and thus is completely determined by their380

values.) These parameters are not well constrained by the literature: the activation energies ωa,A−λ; the scaling exponents b

and h; the constants A0 and ζ1; the trophic scaling τ = ln(α)/ln(β) (Brown et al., 2004), itself a function of trophic efficiency

α and predator-prey mass ratio β (Barnes et al., 2010); the egg survival fraction se; and emΘ,k
the threshold mass for fishing

selectivity; and the representative size of benthic organisms mβ . Following previous work (Carozza et al., 2017; Bianchi et al.,

2021), we adopt an ensemble Monte Carlo approach, running replicates with parameter sets randomly chosen from plausible385

ranges of values (see Table 2). Note that compared to the calibration of BOATSv1 (Carozza et al., 2017), we assume a subset of

parameters (kE , Π∗ and cσ) to be relatively well constrained, since previous analysis showed that variation in these parameters

had no significant effect. We also updated a few prior parameter ranges based on recent analyses, α (Stock et al., 2017; Eddy

et al., 2020), and because previously optimized values were close to the boundaries of the ranges (b, se). We keep the same

parameters for both pelagic and demersal communities, except for the temperature dependence of growth and mortality.390

We run 20,000 simulations, each with a distinct combination of parameters, integrated with gradually increasing catchability

over time, and select the best simulations according to global and local criteria. These criteria are updated from Carozza et al.

(2017) to provide an evaluation of the model performance in reproducing the following features of pelagic and demersal

communities:
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– (1) Global catch. Best simulations must predict observed global fish catch, when integrated over the 55 LMEs, for the395

years of maximum catch in the 1990s, i.e., CSAU−WAT
Globmax ≃ 100× 106 ton y−1 (using ton of wet biomass). There are

significant uncertainties around these reconstructions; furthermore, migratory species not represented in BOATS can

influence the model’s maximum yields. Therefore, we allow catches to be within the range CGlobmax ∈ [70,150]× 106

ton y−1.

– (2) Demersal:pelagic catch. At the global catch peak, simulations must capture the fraction of pelagic and demersal catch.400

Integrated over all 55 LMEs, pelagic and demersal catch account respectively for 45% and 55% of catches in SAU, that is,

the ratio between demersal and pelagic catch at peak is RSAUGlobmax,D/P ≃ 1.2. Because of uncertainties around the SAU

reconstructions, the presence of migratory species, and additional uncertainty in the allocation of pelagic vs. demersal

catch (Appendix F) we allow this ratio to vary within the range RGlobmax,D/P ∈ [0.8,1.8].

– (3) Catch:biomass. To ensure that global catches are supported by realistic rates of fish biomass production, we compare405

the model catch to biomass ratio (C:B) averaged over 25 LMEs to the observational estimate from the RAM Legacy

database (see Bianchi et al. (2021)). We retain simulations for which a Kolmogorov-Smirnoff test indicates that the

modeled C:B ratios follow the same distribution as the stock assessment data, rejecting cases where distributions are

found different at the 1% significance level.

– (4) Size abundance. To preserve a realistic partitioning of fish catches by size groups, for best simulations we constrain410

the catch of medium and large sizes to be in the observed range relative to fish in the small group, i.e., 0.3Csmall <Cmed

and 0.1 Csmall <Clrg < 0.8 Csmall.

– (5) Spatial variability near the coast: Finally, we assess the regional variability of catch at the time of the global

peak by computing Pearson correlation coefficients of simulated catch densities compared to observations (rSAULME90s

or rWAT
LME90s). We also compare simulated and observed maximum catch per functional type and LME, independently of415

the peak year, to estimate the model capability to reproduce maximum yields per group (rSAU P
LMEmax or rSAU D

LMEmax).

Criteria (1) to (5) identify parameter sets (Table 2 and results Section 5.1.1) that best capture global properties of catches and of

fish production per unit biomass, for both pelagic and demersal species, focusing on well-sampled coastal regions, completing

the ecological update BOATSv2-Bio (in green Fig. 2).

4.3 Economic update: sensitivity to cost and catchability420

After improving the ecological realism of the simulations by tuning selected parameters with a Monte Carlo approach, we

improve the economic realism by incorporating heterogeneous costs (cv2k ) and catchability (qv2k ) (in red Fig. 2). We further

evaluated the effect of considering different economic parameterizations and selected the best combination based on regional

and global criteria. This evaluation compares:
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Table 2. Model parameters and summary results for the Monte Carlo ensemble (update of Table 3 in Carozza et al. (2017)). The sampling

distribution of each parameter used in the Monte Carlo simulation are shown, where X(p1,p2) represents the probability distribution (N for

normal, U for uniform), and p1 and p2 are the mean and standard deviation of each parameter, respectively, for the pelagic P and demersal D

communities when it applies. Opt. refers to the subset of optimized Monte Carlo simulations, N.O. to the subset of non-optimized simulations.

SD is the standard deviation, and KS p-value is the p-value of the 2-sample Kolmogorov-Smirnov test applied to the optimized and non-

optimized sets. The three last variables are fixed compared to previous optimizations.

Parameter Name Sampling Distribution Mean Opt. Mean N.O. SD Opt. SD N.O. KS-pvalue

ωa,A Growth activation energy
UP (0.45,0.09) 0.50 0.45 0.088 0.089 4.7 10−3

UD(< UP ,0.09) 0.37 0.30 0.14 0.13 2.6 10−3

ωa,λ Mortality activation energy
UP (0.45,0.09) 0.45 0.45 0.079 0.090 0.59

UD(0.45,0.09) 0.45 0.45 0.096 0.090 0.57

b Allometric scaling exponent N(0.55,0.12) &N(0.70,0.12)∗ 0.72 0.63 0.06 0.15 1.4 10−9

A0 Allometric growth constant N(4.46,0.50) 4.7 4.46 0.47 0.50 0.053

h Allometric mortality scaling N(0.54,0.09) 0.51 0.54 0.064 0.089 1.1 10−3

ζ1 Mortality constant N(0.55,0.57) −0.072 0.54 0.38 0.57 3.6 10−10

α Trophic efficiency U(0.23,0.10) 0.14 0.23 0.027 0.098 6.9 10−14

β Predator to prey mass ratio U(5000,2500) 4970 5000 2580 2510 0.94

τ Trophic scaling ln(α)/ln(β) −0.24 −0.19 0.016 0.063 3.5 10−17

se Egg survival fraction U(0.05,0.028) 0.052 0.050 0.025 0.028 0.49

emΘ,k Selectivity position scaling U(0.75,0.2) 0.77 0.75 0.20 0.20 0.54

log10(mβ) Mean benthic size N(−6.5,0.67) −6.4 −6.51 0.47 0.67 0.064

kE Eppley constant - 0.06 - - - -

Π∗ Nutrient concentration - 0.35 - - - -

cσ Selectivity slope - 17.8 - - - -

∗We merge 2 ensembles of 10000 simulations each, with slightly different distributions for b. The first ensemble prompted re-selection of the parameter range for the second.

– (6) High Seas variability: Beyond LMEs, in HSEs, once heterogeneous costs or catchability are activated we compute425

Pearson correlation coefficients at peak rHSE90s to weigh improvements for predicted catch, similarly to step (5) in

coastal regions.

– (7) High Seas catch fraction: this constraint determines how costs and catchability influence the catches in the High

Seas, and indirectly the historical offshore expansion of fisheries. We computed the High Sea catch fraction in the 1950s

(RC50s), and near the global catch peak of the 1990s (RC90s). We expect RC50s ≃ 0.06 to increase to only RC90s ≃ 0.09430

at global peak, while catch fractions for pelagic and demersal fish increase from RC50s = 0.10 to RC90s = 0.11, and

RC50s = 0.05 to RC90s = 0.07, respectively.

– (8) Mean fishing depth: Finally, to better characterize the offshore expansion of fisheries, we computed the catch-

weighted mean depth over which fishing occurs, in the 1950s and 1990s, ZC50s−90s. For demersal catch (ZC50s,D < 136

m and ZC90s,D < 206 m), the mean fishing depth reflects the historical deepening of fishing grounds (Watson and435
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Morato, 2013). For pelagic catch (ZC50s,P < 266 m and ZC90s,P < 546 m), it reflects an offshore expansion of fishing

effort towards High Seas regions with deeper seafloor.

Criteria (6) to (8) allow refining our understanding of the regional variability of catch and their sensitivity to economic param-

eterizations (see results Section 5.1.2). They are applied to simulation sets with optimum parameter sets, for multiple cost and

catchability profiles, to best capture regional properties of catches, ultimately determining BOATSv2 (Fig. 2).440

5 Results and discussion

5.1 Parameterization

5.1.1 Ecological parameters

The Monte Carlo ensemble allows the identification of optimum ecological parameter sets (upper Fig. 2). All simulations span

a total catch range of more than 6 orders of magnitude (see Fig. 3). We find that 12% of simulations satisfy the first criterion445

of global catch (see Section 4.2). Then, for criterion (2), the ratio demersal:pelagic catch varies on more than 3 orders of

magnitude, with 20% of the simulations with realistic ratios, leaving us with 3.0% when combined with criterion (1) (Fig. 3).

Among these, simulation capturing observed catch:biomass ratio leaves us with 0.8% of all simulations, and acceptable size

distributions ultimately lead to 0.2% (42 simulations) of all simulations satisfying criteria (1) to (4).

Figure 4 shows the timeseries of catch, nominal effort, and biomass, over all 55 LMEs from 1900 to 2050 for the 42 sim-450

ulations that meet criteria (1) to (4). In each simulation, global catch increases until reaching a peak, beyond which biomass

depletion limits recruitment and drives a fall in catch. Effort follows a comparable pattern, but with a consistent time lag.

Biomass monotonically decreases from an initial, near pristine state. These features are comparable to observational recon-

structions (Fig. 4a, CSAU and CWAT ). A delayed response of nominal effort is also consistent with observations (Fig. 4b),

while the consistent decrease in biomass compares well with aggregated stock assessment data normalized to the pristine period455

(Fig. 4c,d).

Similar to prior work with BOATSv1, we focus next analysis on 5 best ensemble members selected to capture parameter

uncertainty, while maintaining reasonable computational costs. These 5 parameter sets are selected out of the 10 best of the

42 simulations, based on their ability to reproduce regional variability in peak catches by LMEs, criterion (5). The peak catch

is determined almost exclusively by ecological parameters, making it a valuable way to discriminate amongst them (Carozza460

et al., 2017). Accordingly, we rank the 42 simulations by the Pearson correlation coefficient of simulated vs. observed catch in

the 55 LMEs (rSAULMEmax, see Fig. 3) and select 5 ensemble members out of the top 10. These 5 chosen parameter sets comprise

diverse shapes of catch, effort and biomass histories, but, once averaged together, they provide an ensemble mean that matches

the observed historical development of these quantities across LMEs (rSAULMEmax ∈ [0.63,0.69], see Table 3 and Fig. 4, dark red

lines).465

Note that the Pearson correlation coefficients rLME90s between observed and simulated catch by LME at global peak

are comparable with and without updated ecological features (see BOATSv1 compared to other model variants, Table 4,
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Figure 3. Simulations of global catch features from the BOATSv2 Monte Carlo ensemble. The total catch at the global peak of the 1990s

CGlobmax is shown as a function of the ratio between demersal and pelagic catch at the global catch peak, RGlobmax,D/P , for the 20,000

simulations in the ensemble. Colors show the Pearson correlation coefficient rSAULMEmax of simulated vs. observed (SAU) maximum catch in

55 LMEs CLMEmax, for each simulation. The dotted black horizontal line shows the reference global harvest, CSAU−WAT
Globmax = 100× 1012

g y−1. The dotted black vertical line the observed ratio of demersal to pelagic catch at the global peak, RSAUGlobmax,D/P = 1.2. The horizontal

and vertical grey lines indicate the ranges within which best simulations are selected.

rSAULME90s ≃ 0.69 and rWAT
LME90s ≃ 0.73). However, the updated ecological features provide large improvements in the High Seas

(e.g., rSAUHSE90s increases from 0.22 in v1 to 0.58). This improvement in the High Seas is partly explained by the representation

of iron limitation on fish growth (rSAUHSE90s increases to 0.81 from 0.22 in v1), while along coastal regions, iron limitation alone470

is insufficient to explain catch (Table 4).

5.1.2 Economic parameters

As summarized in Table 4, increased ecological realism improves the model’s ability to reproduce High Seas fisheries, in

particular the fraction of High Seas catch (RC90s down to 0.16 from 0.40 in BOATSv1), and the catch-weighted mean depth of

fishing (ZC90s down to 694 from 1698 m). These improvements reflect growth limitation in HNLC regions (αv2) (Galbraith475

et al., 2019), and, to a greater extent, explicit separation of pelagic and demersal energy pathways (Πψ & Πβ+αv2, hereafter

BOATSv2-Bio, green line Fig. 5a,b).

Since economic drivers could explain additional spatial variability, we test plausible heterogeneous economic parameteriza-

tions (lower Fig. 2). The heterogeneous costs and catchabilities have little impact on the coastal variability of catch at the time

of the global peak (rSAULME90s ≃ 0.69 and rWAT
LME90s ≃ 0.73, Table 4). Note that the comparison reveals better correlations when480
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Figure 4. Historical simulations of catch, effort and biomass for the best 42 simulations in the BOATSv2 Monte Carlo ensemble, forced

only with exponentially increasing catchability over time. (a) Catch, (b) nominal effort, (c) biomass, and (d) biomass normalized to initial

biomass in the selected 55 LMEs, for the 42 best parameter sets, from 1900 through 2050. Ensembles are aligned at the catch peak of the

1990s. The light blue lines show each parameter set; the dark blue lines show the 10 best simulations out of which the 5 purple lines show

the final best ensemble. The thick red line is the mean of the 5 best-ensemble simulations. Black lines in panels (a, b, d) show observational

reconstructions, consisting of catch from SAU (black line in panel a, CSAU ) and the WAT database (black dotted line in panel a, CWAT ),

effort (black line in panel b), and biomass from fish stock assessments normalized to the initial state (black line in panel d). Note that the

simulations do not include the effects of climate change, environmental variability other than the seasonal cycle, and management.
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Table 3. List of parameter values for the selected 5 best simulations with updated ecological features.

211 3773 14028 14349 15436

rSAULMEmax 0.66 0.63 0.69 0.68 0.64

ωa,A 0.30/0.16 0.42/0.33 0.42/0.17 0.43/0.12 0.47/0.25

ωa,λ 0.53/0.61 0.47/0.49 0.39/0.61 0.43/0.57 0.42/0.51

b 0.73 0.75 0.75 0.80 0.70

A0 4.35 4.49 4.35 5.04 4.49

h 0.49 0.55 0.46 0.46 0.55

ζ1 −0.10 −0.68 −0.07 −0.25 −0.33

α 0.14 0.09 0.10 0.12 0.12

β 2830 5890 8890 8510 6330

τ −0.24 −0.27 −0.25 −0.23 −0.24

emΘ,k 0.44 0.76 0.97 0.75 0.67

se 9.3 10−2 5.0 10−2 4.8 10−2 2.7 10−2 2.4 10−2

log10(mβ) −6.6 −6.0 −6.1 −6.6 −6.0

comparing models with WAT catch reconstructions instead of SAU reconstructions. Most of the improvement is explained by

higher mean catches in Australian LMEs (compare Fig. 5c and d), but the explanation for such discrepancy in the observational

reconstructions remains unclear. We also compare the Pearson correlation coefficients of maximum catch by LME for pelagic

and demersal catch separately. Heterogeneous costs or catchability show no effect on the variability of maximum pelagic and

demersal catch yields, rSAUPLMEmax ≃ 0.46 vs. rSAUDLMEmax ≃ 0.69 (Table 4); these should instead influence the timing of the de-485

velopment of fisheries. Both correlations suggest that, along the coast, catches are independent of economic parameterizations

and are instead controlled mainly by the environment.

To select economic parameterizations, criterion (6) and the catch variability in the High Seas indicate only minor variations;

economic parameters do not significantly enhance the accuracy of catches in the HSEs, compared to the improvement from

BOATSv1 to BOATSv2-Bio (see Table 4). However, for criterion (7), economic parameterizations further reduce the High Seas490

catch fraction (down to RC90s = 0.10 compared to ≃ 0.09 Table 4), and criterion (8) significantly reduces the mean fishing

depth (down to ZC90s = 315 m Table 4).

Heterogeneous costs and catchability parameterizations have unequal effects. Depth and distance dependent costs respec-

tively reduce the offshore expansion of demersal (ZC90s,D down to 148 m) and pelagic (ZC90s,P down to 873 m) catches.

Since both slightly improve aspects of the simulations, we retain both parameterizations in the final BOATSv2 update. Re-495

garding catchability, accounting for the effect of seamounts also reduces the development of fishing over deep seafloor. When

applied to pelagic catches only, ZC90s decreases to 526 m, Table 4). When this correction is applied both to pelagic and dem-

ersal communities, this is further reduced to ZC90s = 315 m, close to observational estimates. However, the maximum depth

of the demersal catch becomes excessively shallow, (ZC90s,D = 103 m). Therefore, we retain the heterogeneous catchability

parameterization only for pelagic fishing effort in the final BOATSv2 update.500
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For the final reference simulations with BOATSv2, the inclusion of costs that increase with the distance from shore, costs

that increase with seafloor depth for demersal fishing, and catchabilities that decrease with seafloor depth for the pelagic

community, leads to an improvement of the model’s ability to reproduce the delayed development of High Seas fisheries, and

the progressive deepening of catch (Table 4 and see red lines in Fig. 5a,b).

In summary, at the LME-level, BOATSv2 and BOATSv1 have similar accuracy in their representation of regional catches505

(see rLME90s = 0.69/0.73 when compared to SAU or WAT, Table 4 and Fig. 5c,d). This lack of improvement in the new

model version is explained by a limited accuracy in predicting pelagic catches across LMEs (see rLMEmax,P = 0.46 vs.

rLMEmax,D = 0.69, Table 4, and Fig. 5e,f). Nevertheless, BOATSv2 better captures the large scale variability of catches in the

HSEs, which are approximately one order of magnitude smaller than in LMEs (see rHSE90s = 0.51/0.64 compared to SAU

or WAT, Table 4, and Fig. 5g,h), and better reproduces their historical offshore expansion (RC90s = 0.11 and ZC90s = 420 m,510

Table 4).

5.1.3 Model sensitivity

The best parameter sets selected by the Monte Carlo approach (Section 4.2) provide insights on the functioning of ecological

communities. Of the 11 parameters that were optimized for, 6 have posterior distributions significantly different from the prior

distributions (p-values< 10−2, Table 2). The posterior distributions for these 6 parameters were also different when optimizing515

BOATSv1 (see Carozza et al. (2017)), confirming their essential role in influencing the sensitivity of the model.

First, the ensemble mean allometric scaling exponent, b= 0.72 (range [0.70− 0.80] for the 5 best ensemble, see Table 3),

is larger than the BOATSv1 value of 0.65 (Carozza et al., 2017), but in the middle of the expected range 0.66− 0.75 (Brown

et al., 2004; Kooijman, 2010; Hatton et al., 2019). Second, the mortality rate parameter ζ1 was selected to be slightly negative

(−0.07), different from the initial distribution (mean 0.54). Note that the negative value for ζ1 does not indicate a negative mor-520

tality, since Λk ∝ eζ1 , Eq. (4). The mortality scaling (0.51) was also smaller than the mean value (0.54). To account for a large

uncertainty in the trophic efficiency (α) (Eddy et al., 2020), we expanded its prior range to [0.06,0.4] (compared to previous

estimates in Carozza et al. (2017)). However, the optimization persistently selected for values comparable to BOATSv1, with a

mean of 0.14 (range [0.09−0.14], Table 3). Although separate pelagic and demersal communities could have different trophic

efficiencies (Stock et al., 2017; Du Pontavice et al., 2020), here for simplicity we adopt the same value. The robustness of525

the optimized trophic efficiency suggests that sources of variability could be captured by other model parameterizations, e.g.,

the representative size of primary producers, or the temperature dependence of growth and mortality. Lastly, growth activation

energies (ωa,A) for pelagic (0.50) and demersal (0.37) communities are larger than the prior values. Although the temperature

dependence of mortality (ωa,λ) is not significantly different from the initial values, the optimized values suggest a stronger

sensitivity of growth compared to mortality for the pelagic community (ωa,A−ωa,λ =+0.047 eV), and a stronger sensitivity530

of mortality for the demersal community (−0.082 eV).

Covariations between parameters in the 42-member optimized ensemble reveal compensations between parameter pairs (see

Fig. 6a). The most significant compensations are between parameters controlling the biomass flow through the size spectrum

and biomass losses (see Fig. 6b-d). For instance, an increase in the trophic efficiency (α) can be compensated by a smaller
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Figure 5. Evaluation of BOATSv2. (a) Observed and simulated historical development of High Seas vs. coastal seas catch RC . (b) Observed

and simulated historical deepening of global catches ZC . (c,d) Scatter plot of the observed vs. simulated catch at global peak in 55 LMEs, for

SAU reconstructions CSAULME90s in (c), and WAT reconstructions CWAT
LME90s in (d). (e,f) Scatter plot of the observed vs. simulated maximum

catch in LMEs, for pelagic CSAUPLMEmax in (e), and demersal catch CSAUDLMEmax in (f). (g,h) Scatter plot of the observed vs. simulated catch

at global peak in HSEs, for SAU reconstructions CSAUHSE90s in (g), and WAT reconstructions CWAT
HSE90s in (h). In panels (a) and (b), SAU

and WAT reconstructions are indicated by solid and dotted lines respectively, BOATSv1 by the blue line, BOATSv2-Bio by the green and

BOATSv2 in red. In panels (c-h) blue dots and lines show BOATSv1, red dots and lines BOATSv2. Numbers next to each dot indicate the

LMEs or HSEs (see regions in Appendix E).
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predator-prey biomass ratio (β), which lengthens the food-web (Fig. 6b, r =−0.66). When more biomass flows across trophic535

levels, longer food chains ultimately lead to greater losses over the food-web, and thus similar fish biomass production. Alterna-

tively, an increase in the trophic efficiency can be compensated by an increase of the mortality parameter (ζ1, Fig. 6c, r = 0.42).

Conversely, the mortality parameter ζ1 decreases when the growth scaling exponent (b) increases (Fig. 6d, r =−0.49), instead

of decreasing, because of indirect impacts on the asymptotic size (m∞).

Correlations between parameters that differ between pelagic and demersal food webs can also reveal trade-offs, particularly540

in how activation energies collectively affect the two communities (see Fig. 6e-g). For instance, an increased temperature sen-

sitivity of growth for the pelagic community ωPa,A is matched by an increased sensitivity of growth for the demersal community

ωDa,A (Fig. 6e, r = 0.74), and a shift of the sensitivity of demersal mortality compared to demersal growth ωDa,A−λ (Fig. 6f,

r = 0.65). Another relationship between communities is observed for losses. As the temperature dependence of mortality for

the pelagic community (ωPa,λ) increases, increasing losses, there is a concurrent decrease in the representative size at the base of545

the benthic food chain (log10(mβ). This extends the food chain length, increasing losses in the demersal community (Fig. 6g,

r =−0.40).

While not exhaustive, this parameter analysis suggests trade-offs between biomass production and dissipation in pelagic and

demersal communities (see Fig. 6a for further detail).

5.2 Features of the simulated catch550

5.2.1 Global catch

Relative to BOATSv1, BOATSv2 corrects for the overestimate of High Seas catch (see Fig. 5) while maintaining a similar

skill in reproducing historical variations of LME fish catch (see comparison of model ensemble means with SAU and WAT

reconstructions, Fig. 4). BOATSv2 also shows improved skill in hindcasting the spatial evolution of catch (see Fig. 7), and

the offshore and equatorward expansion of fisheries (Swartz et al., 2010; Guiet et al., 2020). In the 1950s (Fig. 7a-c), higher555

latitude shelf regions and productive upwelling regions contributed the most to global catch. In the 1990s (Fig. 7d-f), while

high latitudes still produced large catches, subtropical regions were also significantly exploited, especially in shallow regions.

Productive High Seas areas also supported significant fishing. The expanded representation of ecological processes accounts

for most improvements in the High Seas, while updating economic processes only yields minor improvements (see Appendix

G).560

Despite the closer fit to observations, model biases remain, in particular low offshore catches in the Western Equatorial Pa-

cific, and excessive catches in the Northern and Southern Atlantic (see Fig. 7d). These biases are not improved by the economic

update, and are likely related to ecological factors (see Appendix G panels b vs. c). However, it remains unclear if biases could

also result from historical interactions between ecosystems and fishing effort, or from changing environmental conditions. Pro-

cesses not included in the model, such as habitat alteration by bottom-trawling gear, additional constraints on habitats such as565

dissolved oxygen (Deutsch et al., 2020), fish migrations and movement (Barrier et al., 2023; Guiet et al., 2022; Lehodey et al.,

2008; Watson et al., 2015), or management and regulation, likely play a role in these biases. While the two observational catch
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Figure 6. Emergent relationships between model parameters. (a) Pairwise correlations between model parameters for the 42-member op-

timized ensemble. (b-g) Scatter plots illustrating the relationships between the most strongly correlated parameters: (b) trophic efficiency

(α) and predator-prey mass ratio (β); (c) trophic efficiency (α) and mortality parameter (ζ1); (d) growth scaling exponent (b) and mortality

parameter (ζ1); (e) growth activation energy for the pelagic community (ωPa,A) and demersal community (ωDa,A); (f) growth activation energy

for the pelagic community (ωPa,A) and difference between growth and mortality activation energies (ωDa,A−λ) for the demersal community;

(g) mortality activation energy for the pelagic community (ωPa,λ) and representative size of organisms at the base of the demersal food web

(mβ). In panel (a), circles indicate p-values<0.05 and stars p-values<0.01. In panels (b-g), the lines show linear regressions for the 42 pa-

rameter values of the ensemble; Pearson correlation r and p-values are reported on each plots. In panels (b-g), red dots indicate the 5 final

best parameter values for BOATSv2, while the black dots show the remaining 5 parameter values among the 10 best; gray dots indicate all

other parameter values.

reconstructions used to calibrate the model show differences, likely related to different approaches (e.g., using bathymetry or

not, compare Fig. 7e,f), biases in simulated catches are apparent when comparing with either reconstruction.

Figure 8 shows the differences (residuals) between maximum simulated and observed peak catches in each LME. While570

there is an overall improvement from BOATSv1 to BOATSv2 (compare Fig. 8a,b to c,d), areas of over- (e.g., Indian Ocean)

or under-estimated catches (e.g., North-West Pacific) are correlated between the two model versions, suggesting structural

biases in the model. It is possible that accounting for features of coastal habitats such as coral reefs and mangrove forests

could reduce regional biases, especially in South East Asia (Tittensor et al., 2010). Representation of biodiversity also remains

crude, and additional functional types with life histories that differ from those of fish, such as cephalopods, could be considered575

(Denéchère et al., 2024). Finally, some larger predators that dive to feed on the deep scattering layer experience environmental

conditions that differ from those at the surface (Nuno et al., 2022; Braun et al., 2023). Accounting for this effect could help

reducing model biases.
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90s+CD90s) (in %). (a) BOATSv2 simulated fraction compared to (b) SAU

observation. Very low catch levels are masked (i.e., below 10−3 g m−2 y−1).

5.2.2 Pelagic vs. demersal catch

Separate pelagic and demersal energy pathways allow simulation of higher taxonomic diversity. At the global peak of the 1990s,580

a large fraction of simulated demersal catch is derived from high latitudes (Fig. 9), in general agreement with observations (van

Denderen et al., 2018). At lower latitudes, modeled demersal catches are as abundant as pelagic catches in shallow regions or

near seamounts, also consistent with observations. Significant biases remain, however, such as in the North Atlantic, where

the simulated demersal catch fraction is lower than observed, and the Eastern Tropical Pacific, where the demersal fraction

is overestimated. The latter bias could reflect the parameterization of iron limitation, which reduces accumulation of pelagic585

biomass in the Eastern Topical Pacific, an HNLC region (see Appendix B).

5.2.3 Deepening of the catch

The historical expansion of fisheries is associated with fishing in increasingly deep waters, i.e., a deepening of the catch

(Morato et al., 2006; Watson and Morato, 2013). This can be attributed to the need to find new profitable fishing grounds

beyond more accessible coastal regions, as well as improvements in fishing technology. The catch density per depth stratum590

from observational reconstructions reflects such expansion (see Fig. 10a,b for pelagic and demersal catch in SAU data). The
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Figure 10. Fishing over increasingly deep seafloors. (a,b) Observed mean catch density (in log10(ton km−2 y−1)) over depth strata for

pelagic (a) and demersal (b) catch from SAU. (c,d) Simulated mean catch density over depth strata for pelagic (c) and demersal (d) catch in

BOATSv2 (see Appendix H for comparison with BOATSv1).

deepening of demersal catches is consistent with increasingly deep fishing grounds, while the deepening of pelagic catches

indicates an expansion of fishing effort towards deeper regions offshore.

In the model, decreasing biomass with depth slows the historical deepening of demersal catches (Fig. 10d). Similarly, higher

costs and reduced catchability at greater depths delay the offshore expansion and deepening of pelagic catches (Fig. 10c).595

These factors collectively contribute to the slower development of fisheries in deep waters and the reduced catch fraction from

the High Seas, consistent with observational reconstructions (compare with BOATSv1 in Appendix H).

5.3 Features of simulated fishing effort

The modeled nominal fishing effort aggregated across the 55 LMEs broadly matches observations (see observations in Fig. 4b),

with a slightly earlier decline that falls within the uncertainty range. This could indicate that the model’s effort responds to600

biomass depletion faster than observed, or that the model underestimates the resilience of exploited stocks. It could also reflect

the lack of management and subsidies in the model, which influence profitability and the progression of fishing effort.

The significant correlation between modeled and observed effort at peak catch across LMEs (see Fig. 11a, rLME90s = 0.57)

lends support to the model’s assumption of open-access dynamics. However, significant deviations remain (Figure 11b). For

instance, the model overestimates effort in highly productive shelf regions near the mouth of major rivers such as the Patag-605

onian Shelf or North Brazil shelf, suggesting too rapid development of fisheries compared to neighboring regions. Biomass

redistribution by currents, or fish stock migrations, could correct this bias. At larger scales, the model underestimates effort
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show BOATSv2 output, blue dots and lines BOATSv1 output; numbers indicate the LMEs (see Appendix E).

across South-East Asia, consistent with the underestimated peak catch. However, effort around Australia is also lower than

observed, while the model overestimates catches there (see Fig. 8). This mismatch suggests regional differences in economic

drivers, or missing key habitats such as mangroves or reefs. Efficient management might also play a role, although it is unlikely610

to be the sole driver across the entire region.

5.4 Features of simulated biomass

5.4.1 Global biomass

In the absence of fishing, BOATSv2 estimates a commercial fish biomass of 1.9 Gton aggregated over LMEs, slightly larger

than previous estimates from BOATSv1 (1.6 Gton in Bianchi et al. (2021)). However, because the biomass in the High Seas615

is lower, the biomass in LMEs accounts for 68% of the global biomass (2.8 Gton). This is significantly larger than the 50% of

BOATSv1 (3.3 Gton in Bianchi et al. (2021)). Thus, BOATSv2 suggests a 10−15% smaller “pristine” biomass than BOATSv1.

When fishing is included and forced by the historical catchability increase, the BOATSv2 commercial fish biomass aggregated

across LMEs declines by about 50% from 1950 to 2000. This is consistent with both BOATSv1 simulations and global obser-

vational estimates (Fig. 4d, also compare with Worm and Branch (2012)). Interestingly, at peak catch, the LME:HSE difference620

between model versions is compensated by differences in fishing effort, so that both LMEs and HSEs hold approximately 50%

of the global biomass at this point (0.9 Gton within LMEs and 0.8 Gton in HSEs with BOATSv2, similar to respectively

0.6 and 0.5 Gton with BOATSv1 (Bianchi et al., 2021)). The optimized parameters of BOATSv2 suggest that the global fish

biomass is about 40% pelagic and 60% demersal, a partitioning which could be relevant for the biogeochemical cycling and

carbon export effects of fish. Comparing BOATSv1 and BOATSv2, the similar relative biomass distribution at peak harvest,625

and the similar magnitude of pelagic biomass would suggest comparable estimates of export and sequestration by sinking fecal

pellets (Bianchi et al., 2021). However, further analyses is needed to differentiate the roles of pelagic and demersal communities

and their historical depletion in carbon and nutrient sequestration (Cavan and Hill, 2022).
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5.4.2 Regional biomass distributions

In the model, shallow shelves and upwelling systems sustain on average three times more biomass per unit area than the High630

Seas (10. vs. 2.9 g m−2 within and outside the LMEs respectively; see also Fig. 12a for local biomass gradients). Validating

these predictions is challenging because of observational limitations; however recent compilations provide a new way to assess

them.

For demersal fish, scientific trawl compilations are now available from the Northern Hemisphere, at locations ranging from

Alaska to Europe (Maureaud et al., 2023; van Denderen et al., 2023). Fig. 12 shows that BOATSv2 accurately simulates the635

average biomass across these LMEs, and captures the biomass increase from the Gulf of Mexico - Florida (GM-FL) to Europe

(EU) and North America West coast (NA-W) (see circles Fig. 12b). However, the model underestimates the observed range

of variability: while observations vary over almost two orders of magnitude, simulated biomasses vary only over one order of

magnitude. The model also overestimates biomass in the North America East coast (NA-E).

These biases might reflect temporal offsets in the depletion of fish biomass over time due to exploitation (see also Fig. 4d),640

with the model failing to capture relative differences across LMEs. Indeed, regions where the model overestimates fish biomass

still have relatively high simulated rates of biomass decline in the 2000s (e.g., LMEs 1, 5, 12). This can eventually deplete

biomass to the observed levels. Conversely, regions where the model underestimates fish biomass (e.g. LMEs 10, 14, 60) are

areas in which simulated fishing effort caused an early biomass decline (see Appendix I). These temporal mismatches could

reflect regional differences in the rate of development of fisheries that are not captured by the simple, globally homogeneous645

exponential increase of technology, and by the open access assumption and lack of management. For example, effective man-

agement in Alaskan fisheries has prevented the phase of overfishing that has been common in industrial fisheries worldwide

(Worm et al., 2009). Alternatively, considering biodiversity could help explain these differences. For instance, in NA-W, the

dominance of semi-pelagic Alaska pollock may lead to an underestimation of our exclusively demersal biomass. Conversely,

in NA-E, shifts from demersal to pelagic communities due to fishing can explain the overestimation of demersal biomass (Choi650

et al., 2004). Our approach does not capture these interactions between pelagic and demersal communities. Finally, discrep-

ancies may be exacerbated because observations cover only a portion of each LME (compare mean biomass densities at LME

level vs. grid cells where simulations overlap with observations in Appendix I).

Aggregated biomass observations for pelagic stocks are scarcer than for demersal stocks. We compare model output with

scientific trawl data for coastal pelagic species in the California Current and Gulf of Alaska (shown by squares in Fig. 12b)655

(Zwolinski et al., 2012). The model simulates overall higher biomass densities than observed, showing a wider ranges of

values. Similar to observations, simulated pelagic biomass densities are lower compared to demersal biomass. A caveat to

this comparison is that estimates of pelagic biomass remain significantly uncertain due to challenges in sampling the three-

dimensional oceanic environment, variability and aggregation in fish populations, uncertainty in sampled depth ranges, net

avoidance by pelagic fish, and the limited selectivity of pelagic trawls (Kaartvedt et al., 2012; Zwolinski et al., 2012). In660

addition, fish migrations can redistribute fish biomass across life stages in ways not captured by the model.
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Figure 12. Observed and simulated biomass density. (a) BOATSv2 global mean biomass density in the 1990s, B90s. (b) Demersal biomass

density from bottom trawl surveys (circles) versus simulations, and pelagic biomass density from surface coastal pelagic species trawl data

(squares) versus simulations. Biomass densities are averaged across LMEs for the reference decade of the 2000s. In panel (b), colors indicate

the four different regions shown by the LME boundaries in panel (a) and numbers the specific LMEs (see Appendix E). In panel (b), the

dots indicate median values, and horizontal or vertical lines the 25-75th percentile range; the size of the dots indicates the relative size of the

surface area sampled. Appendix I provides a further comparison of biomass time-series by LME.

5.5 Implications of the model update

The inclusion of distinct energy pathways and spatially variable economic drivers in BOATSv2 has a limited impact on the

evolution of coastal fisheries over time, but has a large impact on simulated High Seas fisheries. All else being equal, BOATSv1

and BOATSv2 ensembles show very similar LME-level catch at global peak (see CSAU−WAT
LME90s Fig. 5c,d) and comparable pro-665

gression across LMEs from 1950 through 2000. Both are in good agreement with observations (Fig. 13). The key improvement

of BOATSv2 is the representation of High Seas fisheries, where catches are delayed and greatly reduced during the historical

period, bringing the model closer to observations (see dashed lines Fig. 13). However, as fisheries keep developing, BOATSv2

still overestimates fishing in the High Seas (compare red dashed line with observations in Fig. 13, or the increasing trend in

simulations in Fig. 5a). This discrepancy suggests either an improper representation of the historical rate of catchability in-670

crease in the simulations, or missing mechanisms, such as horizontal migrations that redistribute biomass from the High Seas

to the coast.

Finally, the separation between pelagic and demersal communities influences fish production rates, because these commu-

nities respond to different environmental drivers (van Denderen et al., 2021; Fredston et al., 2023). Compared to BOATSv1,

this change could influence the resilience of fisheries to fishing and/or climate change. It could also alter the response to reg-675

ulation, although we anticipate similar dynamics as in previous work (Scherrer and Galbraith, 2020; Scherrer et al., 2020). A

separation of pelagic and demersal energy pathways is likely to impact the effects of fish on biogeochemistry (Bianchi et al.,

2021; Le Mézo et al., 2022).
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BOATSv1, and red lines from BOATSv2, forced only with exponentially increasing catchability over time. Coastal (solid lines) and High

Seas (dotted lines) catches are shown separately.

6 Conclusions

We introduce BOATSv2, an expanded version of the BOATS model that includes multiple added features, including separation680

of demersal from pelagic communities, and improves simulation of High Sea fisheries. New model features have limited

impact in coastal regions, so that BOATSv2 simulates dynamics and variability in catch and biomass over LMEs that are

similar to BOATSv1. The expanded representation of functional and taxonomic diversity allows more detailed comparisons

with observations. In some cases, this reveals new model biases, such as in the simulation of demersal catches and biomass in

the Western North Atlantic.685

We attribute improvements in the simulation of High Seas fisheries to the separation of pelagic and demersal energy path-

ways, supporting the importance of distinguishing these communities (Blanchard et al., 2012; Petrik et al., 2019; Du Pontavice

et al., 2020). We also introduced parameterizations of spatially heterogeneous economic drivers, i.e., fishing costs and catcha-

bility, which further improves the match with observations in the High Seas. However, choosing between different formulations

for these drivers (i.e., depending on distance from the coast, dcoast, or depth of the seafloor, zbot) was only possible by testing690

plausible functional forms and retaining those leading to the largest improvements against empirical data. While this selection

was not exhaustive, our final formulation is consistent with a variety of new observational constraints, such as the increase of
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fishing effort over seamounts(Kerry et al., 2022), and the historical deepening of fishing as technology progresses (Watson and

Morato, 2013). We acknowledge that the specific choice of functional forms for these parameterizations is not well constrained,

and will likely require future refinement against observational diagnostics.695

Because of the more accurate representation of High Sea fisheries in BOATSv2 relative to BOATSv1, the fraction of catch

that takes place in the High Seas at the time of the global catch peak is reduced from 31% to 11%, bringing it closer to the

observed 8− 9%. Similarly, the mean depth of the catch shoals from 1698 m in BOATSv1 to 420 in BOATSv2, aligning

it more closely with the empirical estimate of 154− 372 m. This update should help reduce model uncertainties in future

projections (Galbraith et al., 2017; Lotze et al., 2019; Tittensor et al., 2021), and provide a more accurate representation of the700

role of fish in global biogeochemical cycles (Bianchi et al., 2021; Le Mézo et al., 2022). Future model improvements could

include a representation of the migration of fish stocks (Sumaila et al., 2015), the role of diverse coastal environments such

as mangroves, reefs, and lagoons (Tittensor et al., 2010), and a representation of distinct mesopelagic communities (Irigoien

et al., 2014; St. John et al., 2016; Hidalgo and Browman, 2019).

Code availability. The code of the model, forcing to complete reference simulations, and observations to assess the model are available705

through Zenodo (DOI: https://doi.org/10.5281/zenodo.11043334).
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Appendix A: BOATSv2 governing equations and parameters
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Table A1. List of ecological and economic parameters in BOATSv2, for pelagic (P), demersal (D), or both communities. Parameters selected

by the Monte Carlo procedure are reported by the range of best selected values. See more details in Carozza et al. (2016, 2017).

Parameter Name Value [Range] Unit

m0 Lower bound of smallest mass class 10 g

mu Upper bound of largest mass class 100000 g

nk Number of fish size groups 3 Unitless

m∞,k Asymptotic mass of group k (0.3, 8.5, 100) kg

Tr Reference temperature of a(T ) 10 + 273.15 oK

kB Boltzmann’s constant 8.617 × 10−5 eV K−1

ωa,A Growth activation energy of metabolism P: [0.30,0.47]; D: [0.12,0.33]] eV

ωa,λ Mortality activation energy of metabolism P: [0.39,0.53]; D: [0.49,0.61]] eV

b Allometric scaling exponent [0.70,0.80] Unitless

A0 Allometric growth constant [4.35,5.04] g1−b s−1

ϵa Activity fraction 0.8 Unitless

cs Slope parameter of sk 5 Unitless

η Ratio of mature to asymptotic mass 0.25 Unitless

α Trophic efficiency [0.09,0.14] Unitless

β Predator to prey mass ratio [2830,8890] Unitless

τ Trophic scaling [-0.27,-0.23] Unitless

mL Mass of large phytoplankton 4 × 10−6 g

mS Mass of small phytoplankton 4 × 10−15 g

kE Eppley constant for phytoplankton growth1 0.06 o C−1

Π∗ Nutrient concentration1 0.35 mmol C m−3 d−1

mβ Representative mass of benthos [8.3 × 10−7,1.6 × 10−6] g

ba Martin curve attenuation coefficient -0.8 Unitless

zeu Reference euphotic layer depth 75 m

k
NO−

3
Nitrate concentration constant 5 µM

ζ1 Mortality constant [-0.68,-0.07] Unitless

h Allometric mortality scaling [0.46,0.55] Unitless

ϕf Fraction of females 0.5 Unitless

ϕC,k Fraction of NPP allocated to a group k 1/3 Unitless

se Eggs to recruit survival fraction [0.024,0.093] Unitless

me Egg mass 5.2 × 10−4 g

κe Fleet dynamics parameter 10−6 W $−1 s−1

κs Regulation response parameter 4 × 108 m2 s−1

S Societal enforcement strength (here deactivated) 0 Unitless

cσ Fishing selectivity slope 17.8 Unitless

dmΘ,k Selectivity mass adjustment (1, 1, 1) Unitless

emΘ,k Selectivity mass scaling [0.44,0.97] Unitless

(δz , δd) Rate of cost increase with depth - distance (2.5 × 10−3, 7.9 × 10−3) ($ m−1 W−1 y−1, $ km−1 W−1 y−1)

(zref ,dref ) Reference variables for cost profiles (200,370) (m,km)

qmin Minimum gear efficiency 0.8 Unitless

(zmean,zmax) Reference depths for catchability profile (2372,5750) m

1For estimation of the fraction of large phytoplankton production following Dunne et al. (2005).36



Table A2. Variables and governing equations for the ecological module of BOATSv2, for pelagic (P), demersal (D), or both communities.

See more details in Carozza et al. (2016, 2017).

Variable and functions Formulation Unit

Size (mass) of fish m g

Time t s

Temperature T (t)

P : T75

D : Tbot

K or oC

Surface nitrate concentration NO3(t) µM

Net primary production Πψ(t) mmol C m−2 s−1

Bathymetry zbot m

Fraction of large phytoplankton production1 ΦL(t) -

Particle export ratio1 peratio(t) -

Fish biomass spectrum of group k fk(m,t) g m−2 g−1

Cumulative biomass of group k Bk(t) =
∫m∞,k
m0

fkdm g m−2

Fish catch spectrum of group k hk(m,t) g m−2 g−1 s−1

McKendrick von Foerster model ∂fk
∂t

=− ∂γS,kfk
∂m

+
γS,kfk
m

−Λkfk −hk -

Recruitment at m=m0 γS,kfk =RP,k
Re,k

RP,k+Re,k
g m−2 s−1

Individual growth rate γS,k = (1−Φk)ξI,k g s−1

Fraction of input energy allocated to growth Φk = sk
1−ϵa

(m/m∞,k)
(b−1)−ϵa

-

Individual level total energy input ξI,k =min
[
ϕC,kπm

fk
,Amb− kam

]
g s−1

Growth constant A=A0aA(T ) g1−b s−1

Mass specific investment in activity ka =Aϵam
b−1
∞,k s−1

Fish production spectrum π =


P :

Πψ
mψ

(
m
mψ

)τ−1

D :
Πβ
mβ

(
m
mβ

)τ−1 g m−2 g−1 s−1

Representative mass of phytoplankton mψ =m
ΦL
L m

1−ΦL
S g

Particle flux at bottom Πβ =Πψ peratio

(
zbot
zeu

)ba
mmol C m−2 s−1

Mass structure of energy to reproduction sk =

[
1+

(
m

mα,k

)−cs
]−1

-

Mass of maturity mα,k = η m∞,k g

Natural mortality rate Λk = λm−hmh+b−1
∞,k s−1

Mortality constant λ= eζ1
(
A0
3

)
aλ(T ) g1−b s−1

Primary production determined recruitment RP,k = ϕC,kπ(m0)m0 g m−2 s−1

Eggs production determined recruitment Re,k = ϕf se
m0
me

∫m∞,k
m0

γR,k(m)
fk(m)
m

dm g m−2 s−1

Energy allocated to reproduction γR,k =ΦkξI,k g s−1

van’t Hoff-Arrhenius equation aa,λ(T ) = exp
[
ωa,λ
kB

( 1
Tr

− 1
T
)
]

-

Corrected trophic scaling2 τ =

ln

α k
NO

−
3

k
NO

−
3

+NO
−
3


ln(β)

-

1Estimated from net primary production and surface temperature (in oC) following Dunne et al. (2005).
2Correction of trophic scaling when reduced growth in iron limited regions is activated.
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Table A3. Variables and governing equations for the economic module of BOATSv2, for pelagic (P), demersal (D), or both communities.

See more details in Carozza et al. (2016, 2017).

Variable and functions Formulation Unit

Fish catchability of group k qk(t) m2 Ws−1

Ex-vessel fish price for group k pk(t) $ g−1

Cost per unit effort for group k ck(t) $ W−1 s−1

Bathymetry zbot m

Distance to shore dcoast km

Societal target for fishing effort1 Etarg,k(t) W m−2

Fish catch spectrum of group k hk(m,t) g m−2 g−1 s−1

Cumulative catch of group k Ck(t) =
∫m∞,k
m0

hkdm g m−2 s−1

Fishing effort of group k Ek(t) W m−2

Fishing effort model dEk
dt

=
(
κe

revenuek−costk
Ek

)
e−S +(1− e−S)κs(Etarget,k −Ek) -

Revenue from fishing revenuek = qk Ek dt
∫m∞,k
m0

pkσk(m)fk(m)dm $ m−2 s−1

Size dependent selectivity of catch σk =

[
1+

(
m

mΘ,k

)−cσ/3
]−1

-

Threshold mass for catch mΘ,k = dmΘ,k emΘ,k mα,k g

Cost of fishing costk = ck Ek dt $ m−2 s−1

Corrected depth dependent cost profile2 ck(zbot) = ck + δz(zbot− zref ) $ W−1 s−1

Corrected distance dependent cost profile2 ck(zdist) = ck + δd(dcoast− dref ) $ W−1 s−1

Corrected depth dependent catchability profile2 qk(zbot) = qk Pr(zbot) Of(P,D) m2 Ws−1

Depth dependent catchability weight Pr(zbot) = qmin+(1− qmin)
log10(zmax)−log10(zbot)
log10(zmax)−log10(zmean)

-

Catchability offset between communities Of(P ) = 1.4 Of(D) -

1Not detailed in the present model description, see Scherrer and Galbraith (2020).
2Correction of catchability or cost when spatial economic parameterization is activated.
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Appendix B: Global variability in surface nitrate

In μM

10

5

0

Figure B1. Minimum monthly sea surface nitrate concentration (in µM) from the World Ocean Atlas (Locarnini et al., 2006).
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Appendix C: Spatial variation of costs

The cost of fishing varies by fishing gear and by targeted fish community (Lam et al., 2011). To best constrain spatially variable710

costs we use estimates of these separate fishing costs in the High Seas for the main gear types (98% of total effort) following

data reported by Sala et al. (2018). Table C1 summarizes these estimated costs. These compare with BOATS’s default fishing

cost of 5.85 $ W−1 y−1 (Carozza et al., 2017; Galbraith et al., 2017). We defined spatially variable costs as a function of

distance to coast dcoast, and depth of the seafloor zbot. Figure C1a illustrates the profile of distance dependent costs and

figure C1b the profile of depth dependent costs (in $ W−1 y−1).715

Table C1. Cost of fishing the high-seas based on estimates from Sala et al. (2018) for year 2016.

Gear type Effort in kWh (fraction of total) Cost range in $ Cost per unit effort in $ W−1 y−1

Trawlers 979 106 (15%) [750 106-1030 106] [6.7-9.2]

Long liners 3719 106 (55%) [2523 106-3023 106] [6.0-7.1]

Purse seiners 394 106s (6%) [702 106-1188 106] [15.7-26.0]

Squid jiggers 1490 106 (22%) [1308 106-1616 106] [7.7-9.5]

Range all gears (98%) - [6.94-8.87]

BOATS default - - 5.85

(b)(a)

Figure C1. Cost per unit effort profiles ccoork in the global ocean (in $ W−1 y−1). (a) As a function of distance to the nearest coast ccoork =

cdistk . (b) As a function of depth of the seafloor ccoork = cdepthk .

40



Appendix D: Spatial variation of catchability

Technology coefficients varies between gears (Palomares and Pauly, 2019), and gears are predominantly used in separate

regions of the global ocean (Kroodsma et al., 2018; Kerry et al., 2022). Ultimately this can lead to spatially heterogeneous

catchability of fish resource.

In order to better constrain the catchability, we use the reported difference of technology coefficients by gear estimated720

in 1995, and a coarse estimation of the contribution of each gear to the global fishing effort from 2015 through 2020 as

reconstructed by Global Fishing Watch (GFW, see Kroodsma et al. (2018)). Depending on the functional type predominantly

targeted by a gear, pelagic vs. demersal, we estimate the mean technology coefficients for pelagic species to be Of(P ) = 1.3

compared to Of(D) = 0.9 for demersal species (see Table D1).

Based on the observation that a dominant part of fishing effort on pelagic species by longliners occurs near seamounts (Kerry725

et al., 2022), we adjust the spatial catchability as a function of the depth of the seafloor such that it varies from a minimum of

Pr(zbot) = 0.8 over deep seafloors (e.g., for tuna seiners, Table D1) to Pr(zbot) = 2.4 in shallow regions (such that the global

mean is 1.3). Figure D1 illustrates the reference profile of technology coefficients Pr(zbot) used for the analysis.

Table D1. Technology coefficient per fish community. The coefficients per gear are based on reported values in Palomares and Pauly (2019).

Each gear is linked to the dominant resource it targets, pelagic (Pel) or demersal (Dem), and associated to the fraction of global fishing effort

from 2015 through 2020, as reported by Global Fishing Watch. We reported the mean technological coefficient weighted with effort by gear,

when available.

Gear type (fraction of GFW effort) Dominant target (Pel vs. Dem) Technology coefficient 1995 (normalized)

Super trawlers (-) Pel 1.3

Tuna seiner (1.1%) Pel 0.8

Freeze trawler (-) Pel 1.0

Tuna longliner (-) Pel 1.2

Purse seiner (2.2%) Pel 1.0

Stern trawler (-) Pel/Dem 1.0

Longliner (19%) Pel 1.4

Multipurpose vessel (-) Pel/Dem 1.3

Shrimp trawler (-) Dem 1.1

Trawler (48%) Dem 0.9

Gillnetter (6%) Dem 0.8

Fast potter (0.7%) Dem 0.7

Other (23%) Pel/Dem −

Mean pelagic (22%) Pel 1.3

Mean demersal (55%) Dem 0.9
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P(zbot)

Figure D1. Relative technology coefficient profiles Pr(zbot) in the global ocean.
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Appendix E: Large Marine Ecosystems and High Seas Ecosystems

(b)(a) LMEs mask HSEs mask

Figure E1. Regional masks used to compare observations and simulations. (a) Large Marine Ecosystems. (b) High Seas Ecosystems adapted

from Weber et al. (2016).
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Appendix F: Pelagic and Demersal catches730

Table F1. Association of Sea Around Us (Pauly et al., 2020) functional types to pelagic and demersal catches.

Catch type SAU functional types

Pelagic pelagic s/m/l

bathypelagic s/m/l

cephalopods

Demersal demersal s/m/l

reef-associated s/m/l

benthopelagic s/m/l

bathydemersal s/l

shark s/l

flatfish s/l

ray s/l

shrimp

lobster and crab

other demersal invertebrates
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Appendix G: Global catch distribution between BOATS versions
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Figure G1. Simulated catch in the 1990s C90s (in log10(ton km−2 y−1)). (a) BOATSv1. (b) Updated version with improved ecology

BOATSv2-Bio. (c) Final update including improved economics BOATSv2.
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Appendix H: Historical catch deepening

(b)
(a) SAU (b) BOATSv1 (c) BOATSv2

Log
10 (ton/km

2/y)

Figure H1. Fishing over increasingly deep seafloors. (a) Observed and (b,c) simulated mean total catch density (in log10(ton km−2 y−1))

over depth strata. Compared to observations (a), BOATSv1 (b) fail to capture the deepening while BOATSv2 corrects it.
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Appendix I: Historical biomass variation in selected LMEs
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Figure I1. Observed and simulated biomass decline in LMEs, for demersal and pelagic biomass. Each panel shows the simulated historical

fish biomass density (in g m−2) decline, averaged across the selected LME (dotted line), or averaged over 1o grid cells where observations

are available (plain line). These are compared to the range of observed biomass density per LME over years 2000s, indicated by the median

value (black plain lines) and the 25th and 75th percentiles (dotted black lines). Colors indicate neighboring LMEs, North American LMEs

along the East coast (green), North American LMEs along the West coast (light blue), Gulf of Mexico and Florida LMEs (in orange),

European LMEs (dark blue).
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