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Abstract. Climate change and industrial fishing are having
profound effects on marine ecosystems. Numerical models
of fish communities and their interaction with fishing can
help assess the biogeochemical and socioeconomic dynamics
of this coupled human–natural system and how it is chang-
ing. However, existing models have significant biases and
do not include many processes known to be relevant. Here
we describe an updated version of the BiOeconomic mA-
rine Trophic Size-spectrum (BOATS) model for global fish
and fishery studies. The model incorporates new ecological
and economic features designed to ameliorate prior biases.
Recent improvements include reduction of fish growth rates
in iron-limited high-nutrient low-chlorophyll regions and the
ability to simulate fishery management. Features added to
BOATS here for the first time include (1) a separation of
pelagic and demersal fish communities to provide an ex-
panded representation of ecological diversity and (2) spatial
CE1 variation of fishing costs and catchability for more re-
alistic fishing effort dynamics. We also introduce a new set
of observational diagnostics designed to evaluate the model
beyond the boundary of large marine ecosystems (66 com-
monly adopted coastal ocean ecoregions). Following a multi-
step parameter selection procedure, the updated BOATSv2
model shows comparable performance to the original model
in coastal ecosystems, accurately simulating catch, biomass,
and fishing effort, and markedly improves the representation
of fisheries in the high seas, correcting for excessive high
seas and deep-sea catches in the previous version. Improve-

ments mainly stem from separating pelagic and demersal en-
ergy pathways, complemented by spatially variable catcha-
bility of pelagic fish and depth- and distance-dependent fish-
ing costs. The updated model code is available for simulating
both historical and future scenarios.

1 Introduction

Recent developments have enabled the formulation of size-
based fish community models based on fundamental ecolog-
ical principles (Heneghan et al., 2021). Instead of resolving
linkages between species or functional groups within marine
food webs, aggregated size spectrum models are based on
properties that emerge at higher levels of organization. These
models rely on macroecological principles to connect indi-
vidual growth and metabolism (Brown et al., 2004; Kooi-
jman, 2010; Hatton et al., 2021) to community-level pro-
duction and biomass (Gascuel et al., 2011; Blanchard et al.,
2012; Maury and Poggiale, 2013; Jennings and Collingridge,
2015; Petrik et al., 2019; Heneghan et al., 2020). By sim-
plifying complex ecosystem dynamics into community-level
biodiversity (Maury, 2010; Petrik et al., 2019) and regional
variations in trophic efficiency (Du Pontavice et al., 2020)
and other ecological variables, these models can project the
response of global marine ecosystems to warming and shifts
in primary production due to climate change (Lotze et al.,
2019; Tittensor et al., 2021).
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The BiOeconomic mArine Trophic Size-spectrum
(BOATS) model is a size spectrum model that incorporates
an explicit representation of commercial fishing effort
(Carozza et al., 2016, 2017). The model’s integration of eco-
logical and economic dynamics enables a clear illustration
of the profound effects of advances in fishing technology on
historical changes in fish biomass compared to the impacts
of climate change (Galbraith et al., 2017; Carozza et al.,
2019). The ability to simulate how fish catches respond to
dynamic fishing effort allows optimization of the model’s
ecological parameters against observational reconstruc-
tions of fish catches (Carozza et al., 2017). Based on this
optimization method, BOATS provided new estimates of
the global biomass and cycling rate of fish, indicating a
non-negligible impact of fishing on carbon sequestration
and biogeochemical cycles (Bianchi et al., 2021; Le Mézo
et al., 2022). It also offered mechanistic insights into the
historical progression of fisheries (Guiet et al., 2020). While
the model was originally designed under the assumption of
open-access fishing effort, subsequent developments enabled
it to investigate the effects of regulatory measures on fish
community dynamics and their response to long-term and
abrupt climate perturbations (Scherrer and Galbraith, 2020;
Scherrer et al., 2020).

These studies prove the usefulness of BOATS for explor-
ing various aspects of global fisheries. Still, comparisons
with observations have also revealed discrepancies that sug-
gest limitations in the model’s parameterizations and miss-
ing mechanisms. For instance, high-nutrient low-chlorophyll
(HNLC) regions are characterized by relatively low primary
production despite available macronutrients (Moore et al.,
2013). These regions represent more than one-quarter of the
open-ocean surface area and include the Southern Ocean,
the eastern equatorial Pacific, and the subarctic North Pa-
cific. In HNLC regions, comparison of simulated effort with
global reconstructions suggested excessive fishing activity in
BOATS, indirectly pointing to excessive biomass accumula-
tion in the model (Galbraith et al., 2019). Similarly, while
the model provides a realistic representation of coastal fish-
eries, catches in the high seas (here defined as the regions
of the ocean beyond large marine ecosystems) appear to be
much larger than recent observational reconstructions. Note
that large marine ecosystems (LMEs) are 66 coastal ocean
regions defined by ecological criteria (Sherman and Duda,
1999). Specifically, BOATS simulates 40 % of global catches
beyond the boundary of LMEs by the 1990s. This is ap-
proximately 4 times larger than the value of 8 %–9 % from
empirical estimates (Watson, 2017; Pauly et al., 2020). The
large high seas catches coincide with excessive fishing in wa-
ters found above the deep seafloor. During the 1990s, the
model’s catch-weighted mean depth of waters where fishing
occurs is 1698 m, contrasting significantly with the observa-
tional reconstruction range of 154–372 m. This discrepancy
limits the model’s applicability to study the interaction of in-
dustrial fishing with high seas and deep-ocean ecosystems

and suggests potential shortcomings in the representation of
open-ocean food webs.

In parallel, recent studies have shed new light on large-
scale aspects of global marine ecosystems and fisheries. Re-
constructions of industrial fishing effort by Global Fishing
Watch (GFW; Kroodsma et al., 2018) highlighted spatial
variations in fishing costs (Sala et al., 2018) and revealed
the importance of seamounts in concentrating fishing activ-
ity, especially for pelagic fisheries in the high seas (Kerry
et al., 2022). New reconstructions of fishing effort that in-
clude artisanal and industrial sectors provide more nuanced
insights on the development of regional fisheries (Rousseau
et al., 2019, 2024). Regional catch reconstructions have re-
vealed the importance of “straddling” species, which for-
age both within exclusive economic zones and in the high
seas over the course of a year, thus disconnecting regions
of fish biomass production from regions of biomass extrac-
tion (Sumaila et al., 2015). Analysis of catch data shows
how energy inputs at the base of food webs determine the
dominance of pelagic vs. demersal communities across lati-
tudes (van Denderen et al., 2018), suggesting different tem-
perature sensitivities of growth for these groups (van Den-
deren et al., 2020). Finally, harmonization and in-depth anal-
ysis of fishery-independent trawl data have begun to reveal
large-scale fish biomass patterns with unprecedented accu-
racy (Maureaud et al., 2024).

Here, motivated by discrepancies between observations
and simulations with the original BOATS model (BOATSv1)
and insights from recent large-scale studies, we revise the
model formulation to improve its representation of high seas
vs. coastal fisheries and of pelagic vs. demersal communities,
leading to a significant model update: BOATSv2. The rest of
the paper consists of four main sections. Section 2 summa-
rizes the main principles and formulation of BOATSv1. Sec-
tion 3 details previous model developments and new features
introduced in BOATSv2. Section 4 describes a revised model
optimization procedure. Section 5 justifies the selection of an
ensemble of five optimal parameters, compares the old and
new model versions (highlighting improvements in the rep-
resentation of global fisheries in BOATSv2), and discusses
insights from the new formulation.

2 BOATSv1

The philosophy of BOATS is to ensure global applicabil-
ity while including sufficient ecological and economic com-
plexity to represent realistic first-order fishery dynamics. The
model is designed to include a relatively small number of
parameters and to be computationally efficient, facilitating
objective parameter optimization. It uses vertically averaged
habitat characteristics on a two-dimensional spatial grid to
simulate the variability of fish communities, from small re-
gions to the global ocean. In the following, we provide a brief
overview of key model principles. We refer the interested
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reader to Appendix A for all equations and to previous publi-
cations for detailed explanations (Carozza et al., 2016, 2017).
A schematic that illustrates the model principles (adapted for
BOATSv2 from Carozza et al., 2017) is shown in Fig. 1.

2.1 Ecological module

BOATSv1 simulates the evolution in time (t) of the biomass
of commercial fish as a function of size, fk (in gm−2 g−1,
where g represents grams of wet biomass; see also Table 1 for
a list of variables and parameters), and its propagation along
a spectrum of size classes [m0,mu], where m is the biomass
of an individual fish (in g), and m0 and mu are the minimum
and maximum fish sizes represented by the model. To include
a coarse representation of species diversity, BOATS simu-
lates nk different fish “groups” distinguished by their asymp-
totic mass m∞,k <mu, labeled by the subscript k (see an il-
lustration of the small and large groups in the central panel of
Fig. 1). The total biomass density, Bk =

∫ m∞,k
m0

fk dm, is the
sum of each group’s biomass across individual size classes
(in gm−2). The propagation of biomass in each size spec-
trum as a function of time t is described by the McKendrick
von Foerster equation:

∂

∂t
fk =−

∂

∂m
γS,kfk +

γS,kfk

m
−3kfk −hk. (1)

The first term in Eq. (1) represents the rate of change in time
of the fish biomass spectrum for each group. The second
term is the divergence of the growth flux, i.e., the transfer
of biomass to increasing size as fish grow. The third term en-
capsulates the biomass accumulation due to the increase in
individual size as fish grow. The fourth and fifth terms repre-
sent losses from natural mortality and catch, respectively.

This first-order partial differential equation in time and
size requires both a boundary condition, here prescribed at
the smallest size class m0 and representing recruitment, and
an initial condition at t = 0, representing the initial biomass
distribution for each group:{
γS,kfk = RP,k

Re,k
RP,k+Re,k

for m=m0 (boundary condition)

fk = fk,m,0 at t = 0 (initial condition).
(2)

In Eqs. (1)–(2) the size-dependent growth rate γS,k (in
gs−1; Eq. 3) controls the biomass propagation through size
(white arrows in the central panel of Fig. 1), influenced by
local water temperature (T in Kelvin) and primary produc-
tion 5ψ (in mmol Cm−2 s−1). The natural mortality rate 3k
(in s−1; Eq. 4) represents the biomass losses within each size
class from predation and natural mortality (gray line in the
central panel of Fig. 1). The sink term hk (in gm−2 g−1 s−1)
is the biomass harvest by fishing that couples the ecological
module to the fishery dynamics module (see Sect. 2.2). Fi-
nally,Re,k andRP,k in Eq. (5) are respectively the biomass in-
put potential at the recruitment size m0 from egg production
(Re) by mature individuals (see yellow arrows in Fig. 1) and
the maximum biomass input potential at the recruit size given

the primary production (RP). Both modulate the total recruit-
ment input, γS,kfk (in gm−2 s−1). Simulations start from an
initial biomass distribution fk,m,0 that approximates an ocean
in the absence of fishing (“pristine”), estimated from environ-
mental conditions (Sect. 3.3).

In BOATS, the growth rate at a given size occurs either
at the maximum physiological rate when food is not limit-
ing (gray area in the central panel Fig. 1) or proportionally
to primary production 5ψ when food is limiting (green area
in the central panel Fig. 1). Accordingly, the growth rate is
proportional to the minimum of two quantities: (1) the en-
ergy provided by primary producers that reaches a given size
class ξP,k , given trophic transfer across the food web, divided
by the number of fish in that size class, and (2) the max-
imum production potential for a fish of that size based on
an individual-level allometric growth rate that follows a von
Bertalanffy formulation ξVB,k (in gs−1):

γS,k = (1−8k) ξI,k = (1−8k) min
(
ξP,k,ξVB,k

)
= (1−8k) min

(
φC,kπm

fk
,Amb

− kam

)
. (3)

Here, the term (1−8k) accounts for a reduction of the
biomass allocated to somatic growth, with a fraction 8k al-
located to the generation of reproductive material, i.e., egg
production (Eq. 5). Thus, when food is limiting, individual
fish will grow according to π =5ψ/mψ (m/mψ )τ−1, which
defines a spectrum of available energy from primary produc-
tion as a function of size (in gm−2 g−1 s−1). Here, τ is the
trophic scaling, and mψ is a representative cell size for pri-
mary producers (i.e., phytoplankton) at the base of the food
web. The trophic scaling parameter determines the efficiency
of the propagation of production through the consumer size
spectrum to increasingly larger sizes and higher trophic lev-
els, following the framework of the metabolic theory of ecol-
ogy Brown et al. (2004). The representative sizemψ is deter-
mined from the empirical phytoplankton size structure model
of Dunne et al. (2005) and depends on temperature (T in
°C) and primary production 5ψ . To ensure coexisting fish
groups and because of the scarcity of data available to con-
strain resource allocation, primary production is equally par-
titioned across the groups, i.e., φC,k = 1/nk = 1/3. While
this is a first-order assumption that allows realistic simulation
of catches by group, it should be revised as new observational
constraints become available. When food is in excess of what
can be consumed by the standing fish biomass, fish grow as
fast as physiologically possible, given an allometric scaling
b, a temperature-dependent anabolism Amb

= A0 aA(T )m
b,

and catabolism kam= Aεa m
b−1
∞,km, where A0 is a growth

constant (in gs−1) and εa an activity fraction. This formu-
lation is inspired by an empirical allometric framework fol-
lowing the model of Von Bertalanffy (1949), where growth
is determined by food intake after assimilation and standard
metabolism, discounted from energy used in activity and re-
production. This maximum growth is temperature-dependent
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Figure 1. Schematic diagram of the main modules, components, and processes of BOATSv2. Environmental forcings, shown in the left
panel (“pelagic” for BOATSv1; “pelagic” and “demersal” for BOATSv2), drive an ecological module that solves for the evolution in time
of fish biomass as a function of fish size for multiple groups with different maximum size, shown in the central panel. These fish biomass
spectra interact with the dynamic of fishing, controlled by an economic module and economic forcings, shown in the right panel. Economic
forcings are spatially uniform in BOATSv1 but can be spatially variable in BOATSv2. Environmental forcings include the spatial distribution
of resources at low trophic levels (5ψ or 5β ) and representative habitat temperatures (T75 or Tbot). Fish biomass spectra for multiple
groups emerge from the balance of environmentally controlled growth (0, linked with ξP or ξVB), recruitment (R), natural mortality (3), and
fishing mortality (H ). Economic forcings, which include spatially uniform ex-vessel prices (p) and spatially variable fishing costs (c) and
catchability (q), influence the dynamic of fishing effort (E) for each fish group. Color shades of forcings illustrate spatial variations, from
low (light) to high (dark) values. This figure is updated from the schematic for BOATSv1 in Carozza et al. (2017).

based on the factor aA(T ) (T in Kelvin), which follows a
van’t Hoff–Arrhenius curve controlled by a growth activa-
tion energy ωa,A (in eV). The fish mortality is independent
of variations in the growth rate.

The natural mortality rate (in units of s−1) depends on
both individual and asymptotic mass and represents biomass
losses due to predation to organisms both within and out-
side of the resolved community size spectrum, as well as
other natural causes. The natural mortality rate is based on an
empirical parameterization (Gislason et al., 2010; Charnov
et al., 2013):

3k = e
ζ1
A0

3
aλ(T )m

−hmh+b−1
∞,k , (4)

where h is an allometric scaling, and ζ1 (in gs−1) a mor-
tality rate parameter. As in Gislason et al. (2010), the natu-
ral mortality rate is linked to growth by means of the con-
stants A0 and b. To account for separate temperature de-
pendencies between metabolism aA(T ) and other processes
such as predator–prey interactions, mortality varies with a
distinct temperature dependence aλ(T ), following a van’t
Hoff–Arrhenius curve controlled by a second activation en-
ergy ωa,λ (in eV).

Recruitment provides the boundary condition, setting the
flux of biomass at the lower mass boundary m0. Recruitment
is a function of the biomass production by mature individu-

als Re,k and a limit to the survival of recruits that depends
on resource availability, proportional to primary production
RP,k:{
Re,k = φfse

m0
me

∫ m∞,k
m0

γR,k(m)
fk(m)
m

dm

RP,k = φC,kπ(m0)m0.
(5)

Assuming that a fraction 8k of the input energy is allocated
to reproduction, γR,k =8kξI,k , the recruitment flux is deter-
mined by summing the contributions of all mature individ-
uals across sizes m for a fraction of females φf, an egg sur-
vival probability se, and a mean egg mass me (in g). Survival
of recruits saturates towards a limit set by the energy avail-
able from primary production at the recruit size m0. In high-
biomass regions with large egg production rates, recruitment
is thus generally constrained by π(m0).

With this formulation, for a given set of parameters (see
the list in Table 1 and more details in Appendix A), the
dynamics of commercial fish biomass in BOATSv1 are de-
termined by two spatially and temporally varying environ-
mental “forcings” (shown as “pelagic” forcings Fig. 1): local
primary production 5ψ and epipelagic temperature T = T75
(average temperature in the top 75 m in °C or K).
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2.2 Economic module

BOATSv1 couples fish biomass and fishing effort Ek (in
Wm−2) to determine fish catch rates Ck (in gm−2 s−1) for
each species group k (see harvest in the central panel of
Fig. 1). Fishing effort is typically initialized everywhere
at negligible values, starting from an unfished ocean, and
evolves independently in each grid cell under an open-access
dynamic, proportional to the local net profit (the difference
between revenue and cost) as{

d
dtEk = κe

revenuek−costk
Ek

Ek = 0 at t = 0,
(6)

where κe (in W2 m−2 USD−1) is a fleet dynamic parameter
that sets the effort adjustment timescale for a given change
in profit. This formulation assumes an absence of regulation
so that fishers seek the greatest total catch in each grid cell.
When profitable, revenues in Eq. (7) exceed costs in Eq. (9),
and fishing develops continuously. In the presence of a con-
tinuous increase in catchability, this eventually leads to a
peak in catch, overharvesting, and ultimately biomass col-
lapse (see Carozza et al., 2017, and Galbraith et al., 2017, for
details).

The rate of revenue for a time interval dt from a given lo-
cation in the ocean (in USDm−2 s−1) is determined as a spec-
trum rk (in USDm−2 s−1 g−1) that is defined separately for
each species group fk . This represents the product of catch
and the mass-specific price fishers are paid at port, integrated
across size classes within each group:

revenuek =

m∞,k∫
m0

rkdm dt = pkqkEkdt

m∞,k∫
m0

σkfkdm, (7)

where pk is the ex-vessel price (in USDg−1) for each group.
The catchability qk (in m2 W−1 s−1) per unit of nominal fish-
ing effort encapsulates the ability of fishing effort to extract
fish biomass from the ocean. This quantity reflects the in-
herent characteristics of the fish group, as well as the fishing
technology adopted (including gear, navigation instruments,
sonars, and communication) and accrued knowledge (Palo-
mares and Pauly, 2019). This formulation depends on the
fraction of the fish biomass σkfk targeted by fishing, where
σk is a size-dependent selectivity of the fishing gear used
to target group k. The selectivity plays a fundamental role
by distributing fishing effort across size classes. A variety
of functional forms exist, and all avoid the smallest sizes.
These can be generalized as either dome-shaped (e.g., gill
nets, longlines) or sigmoidal (e.g., trawls, seines, or dredges).
Here, we parameterize the selectivity as a sigmoidal curve
around a target threshold mass m2,k = dm2,kem2,kmα,k , es-
sentially reducing the fishing effort targeting the smallest size

classes:

σk =

[
1+

(
m

m2,k

)−cσ /3]−1

, (8)

with cσ a fishing selectivity slope. The target threshold mass
is proportional to the maturity mass for each groupmα,k , with
the parameter em2,k accounting for uncertainty around this
mass and dm2,k set to select mainly mature individuals (i.e.,
dm2,k = 1).

Net profits are determined by subtracting costs from rev-
enues. Similar to revenue, the cost is expressed as the av-
erage expenditure rate per time over an area of the ocean
(in USDm−2 s−1). In reality, the cost of fishing includes the
purchase and maintenance of capital, fuel costs for transit
between fishing grounds and ports as well as during gear op-
eration, and labor. In the model, cost is simply proportional
to effort:

costk = ckEkdt, (9)

where ck is the cost per unit effort (USDW−1 s−1).
When revenue exceeds costs, fishing effort in Eq. (6) in-

creases. Any nonzero effort will lead to catches,

hk dt dm= qkσk Ek fk dt dm, (10)

which couple the economic and biological modules in
Eq. (1). A catch limit is imposed for numerical stability (i.e.,
to prevent harvesting more fish than the biomass available in
each grid cell). The total catch rate for each group is then
given by Ck =

∫ m∞,k
m0

hkdm (in gm−2 s−1). Note that when
computing catches, but also costs and effort change, we set a
lower limit on effort ε = 10−50 to allow the development of
fishing and prevent division by zero in Eq. (6).

In BOATSv1, the ex-vessel fish price pk is gener-
ally assumed to be constant in space and time (1.264×
10−3 USDg−1), since observations suggest small historical
variations (Sumaila et al., 2007; Galbraith et al., 2017).
Similarly, cost ck is also assumed to be constant (1.852×
10−7 USDW−1 s−1). Catchability qk increases annually at a
5 % rate that accounts for sustained technological improve-
ments and is the only temporally varying economic “forc-
ing”. Empirical studies have estimated an average annual rate
of 2 %–8 % between fisheries and periods. We select an an-
nual rate of 5 % increase as, after testing when other observed
economic parameters are forced, it accurately reproduces the
historical development of fisheries with BOATS (Galbraith
et al., 2017; Scherrer and Galbraith, 2020). A list of eco-
nomic parameters and quantities is provided in Table 1TS2 ;
additional details are provided in Appendix A.

3 BOATSv2

Here we describe the features of BOATSv2 that provide an
update to the original BOATSv1. Two of these features were
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Table 1. List of parameters and quantities of BOATSv2. For a full list and values see Appendix A.

Parameter Name Units

fk and Bk Fish biomass spectrum and cumulative biomass of group k (gm−2 g−1) and (gm−2)
m ∈ [m0,mu] Biomass spectrum size range (g)
me, mα,k , and m∞,k Egg, maturity, and asymptotic masses of group k (g)
nk and φC,k = 1/nk Number of fish species size groups and fraction per group Unitless
γk Size-dependent growth rate of group k (g s−1)
8k Fraction of input energy allocated to growth of group k Unitless
ξp,k or ξVB,k Biomass input at individual level of group k (g s−1)
A0 Growth constant (g1−b s−1)
εa Activity fraction Unitless
b Growth scaling exponent Unitless
π Fish production spectrum (gm−2 g−1 s−1)
τ = ln(α)/ ln(β) Trophic scaling (trophic efficiency α; predator–prey mass ratio β) Unitless
3k Natural mortality rate of group k (s−1)
ζ1 Mortality constant Unitless
h Mortality scaling exponent Unitless
Re,k or RP,k Recruitment input of group k, from eggs or primary production (gm−2 s−1)
φf Fraction of females Unitless
se Eggs to recruit survival fraction Unitless
aA(T ) and aλ(T ) Growth and mortality van’t Hoff–Arrhenius dependence Unitless
ωa,A and ωa,λ Growth and mortality activation energies (eV)

hk and Ck Fish catch spectrum and cumulative catch of group k (gm−2 g−1 s−1) and (gm−2 s−1)
rk and revenuek Revenue spectrum and cumulative revenue of group k (USDm−2 g−1 s−1) and (USDm−2 s−1)
ck and costk Cost per unit effort and total cost of group k (USDW−1 s−1) and (USDm−2 s−1)
Ek and Etarg,k Fishing effort and effort target per group k (Wm−2)
S Effectiveness of regulation enforcement Unitless
κe and κs Fleet dynamics and regulation response parameters (WUSD−1 s−1) and (m−2 USD−1)
pk Fish selling price of group k (USDg−1)
qk Fish catchability of group k (m2 W−1 s−1)
σk , cσ , and m2,k Fishing selectivity of group k, slope, and target threshold Unitless and (g)
dm2,k and em2,k Parameter of the selectivity target threshold of group k Unitless

T75 or Tbot Temperature, near surface or bottom (°C) or (K)
5ψ or 5β Primary production, near surface or bottom (mmolC m−2 s−1)
mψ or mβ Representative mass of primary producers or benthos (g)
NO−3 and kNO−3

Surface nitrate concentration and constant controlling iron limitation (µM)

peratio and ba Export ratio and attenuation coefficient of particle flux Unitless
zeu and zbot Euphotic layer and seafloor depths (m)
dcoast Distance to nearest coast (km)
x∗ and δ Parameters for cost profiles (m or km) or (USDW−1 yr−1 m−1 or km−1)
qmin, or xmax and xmean Parameters for catchability profiles Unitless or (m)

introduced incrementally, in previously published work, in
order to capture iron limitation in regions where iron is
known to be scarce (Galbraith et al., 2019) and to repre-
sent management of fisheries (Scherrer and Galbraith, 2020;
Scherrer et al., 2020). We provide a brief summary of these
previous updates, before discussing the novel features added
to the model in detail (see also Table 1TS3 and Appendix A).

3.1 Previously published features

3.1.1 Reduced growth rates in iron-limited regions

Iron limitation of phytoplankton growth is widely recognized
in the ocean, most prominently in HNLC regions (Tagliabue
et al., 2017). Less is known about iron limitation of higher

trophic levels in the ocean, including fish (Le Mézo and Gal-
braith, 2021). When satellite-based observational estimates
of primary production are used as forcings, BOATSv1 over-
estimates fishing effort in HNLC regions, likely by simulat-
ing excessive biomass. Evidence of lack of adaptation by
fish to low-iron regions suggests that low iron availability
also significantly limits fish growth and could contribute to
reducing fish abundance in large portions of the high seas
(Galbraith et al., 2019).

Following Galbraith et al. (2019), we parameterize iron
limitation of fish by reducing the trophic efficiency α, which
determines the fraction of biomass incorporated into new tis-
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sues at each trophic step in HNLC regions:

αv2
= α

(
kNO−3

kNO−3
+NO−3

)
. (11)

Here, the surface concentration of nitrate (NO−3 , in µM) is
taken as a proxy for iron limitation (Moore et al., 2013) and
as an indicator of regions where fish are expected to be lim-
ited by the lack of iron, given the absence of other robust
global estimates of surface iron concentrations or plankton
iron contents. Note that here and in the following sections,
the superscript “v2” indicates corrected quantities compared
to the initial formulation in BOATSv1. This parameterization
smoothly decreases the trophic efficiency as surface nitrate
increases. The constant kNO−3

= 5 µM controls the strength
of this effect and is constrained empirically. Nitrate concen-
trations are taken as the monthly minimum from the World
Ocean Atlas (WOA) climatology (Locarnini et al., 2006) (see
Appendix B). Although uncertainties persist regarding the
impact of iron limitation on marine predators, this parame-
terization effectively reduces an overestimate in fishing effort
in the Southern Ocean, North Pacific, equatorial Pacific, and,
to some extent, North Atlantic in BOATSv1 (Galbraith et al.,
2019).

3.1.2 Management with varying effectiveness

In BOATSv1, effort was generally assumed to follow an
open-access dynamic equation (Eq. 6). This was modified
to represent the influence of regulation by adjusting fishing
effort to align with a prescribed target Etarg,k (Scherrer and
Galbraith, 2020) as(

d
dt
Ek

)v2

=

(
d
dt
Ek

)
e−S +

(
1− e−S

)
κs
(
Etarg,k −Ek

)
,

(12)

where S is a non-dimensional parameter representing how
effectively the target is enforced. When S = 0 the model fol-
lows open-access dynamics; when S > 0 the nominal effort
is nudged towards the target at a rate proportional to the reg-
ulation response parameter κs (m−2 USD−1).

This feature showed that strong fishery regulation is re-
quired to prevent overfishing if technological progress keeps
increasing, making management effectiveness a key factor in
future scenarios (Scherrer and Galbraith, 2020). For the rest
of the paper, we set S = 0 and focus on simulation of histor-
ical fisheries up to the time they reached maximum catches,
for which the open-access dynamic was shown to be ade-
quate (Galbraith et al., 2017; Guiet et al., 2020).

3.2 Newly added features

3.2.1 Separate pelagic and demersal energy pathways

Variations in energy input at the base of marine food
webs significantly affect biomass accumulation and cycling,

thereby altering the sensitivity of different fish communities
to climate and environmental factors (Petrik et al., 2019).
Pelagic communities are more tightly tied to surface plank-
tonic production (i.e., net primary production 5ψ ), whereas
benthic communities depend on the delivery of organic ma-
terial to the seafloor (i.e., particle flux at bottom 5β in
mmolCm−2 s−1) (Stock et al., 2017; van Denderen et al.,
2018). The two types of communities also experience differ-
ent temperatures, with surface temperature (here, T = T75)
controlling the metabolic rates of pelagic fish and bottom
temperature (T = Tbot) that of demersal fish.

To account for these ecological differences, we modified
BOATS to resolve separate pelagic and demersal fish com-
munities. Both communities are described by the same set
of equations described above, Eqs. (1)–(12), but solved sep-
arately with independent sets of environmental forcings (see
environmental forcing in Fig. 1). Pelagic fish are forced by
surface conditions (5ψ and T = T75), while demersal fish
are forced by bottom conditions (5β and T = Tbot). Whereas
the energy supply to the pelagic community remains depen-
dent on surface net primary production (NPP), the particle
flux to the bottom provides the energy input to the dem-
ersal community. The particle flux is modeled as a depth-
dependent fraction of surface primary production:

5β =5ψ × peratio×

(
zbot

zeu

)ba

. (13)

This formulation assumes a power-law decrease in the flux of
organic material below the euphotic layer, i.e., a typical Mar-
tin curve (Martin et al., 1987; Buesseler and Boyd, 2009).
The attenuation coefficient ba =−0.8 is selected within the
range of plausible values (Gloege et al., 2017), and the eu-
photic layer depth zeu = 75 m is assumed to be fixed, al-
though both could be modeled to vary in space and time.
Here, similar to prior work (Stock et al., 2017; van Den-
deren et al., 2018; Petrik et al., 2019), we focus on first-
order variations in fish biomass in increasingly deep habitats,
where food becomes progressively scarce. We calculate the
term (zbot/zeu)

ba using the high-resolution bathymetry z′bot
from the ETOPO global surface relief at 1/10th degreeTS4

(Amante and Eakins, 2009), taking the average across 1° grid
cells (zbot/zeu)

ba = (z′bot/zeu)ba . Note that when z′bot is shal-
lower than zeu, export is only determined by peratio, which is
taken as a function of surface temperature T75 (in °C) and net
primary production 5ψ , following Dunne et al. (2005).

In the pelagic ocean, the typical size of phytoplankton,
mψ , varies markedly between productive and oligotrophic re-
gions. This variation affects both the length of the food web
and the proportion of production accessible to fish communi-
ties (Ryther, 1969). We use an empirical phytoplankton size
model to account for this variation (Dunne et al., 2005). In
analogy with the pelagic ecosystem, we assume that the rep-
resentative size of benthic organisms at the base of the de-
mersal food web, mβ , influences the fraction of energy that
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reaches demersal fish. For simplicity, we take mβ to be glob-
ally uniform. Unlike mψ , for which empirical parameteriza-
tions exist,mβ is poorly constrained. We keep most food web
parameters the same for pelagic and demersal fish, with the
exception of the activation energy for growth ωa,A and mor-
tality ωa,λ, since observations of growth rates suggest sig-
nificant differences between the two communities (van Den-
deren et al., 2020).

3.2.2 Heterogeneous costs

Simulations with BOATSv1 suggest that variations in the
cost per unit effort of fishing ck (in USDW−1 yr−1) played
only a secondary role in the development of global fish-
eries (Galbraith et al., 2017). Yet, heterogeneous costs in the
global ocean could modulate the spatial distribution of fish-
ing effort and its evolution over time (Swartz et al., 2010;
Anticamara et al., 2011; Lam et al., 2011). Reconstructions
of fishing effort in the high seas suggest more than 2-fold
average cost differences between distinct fishing gears and
regions (see Sala et al., 2018, Kroodsma et al., 2018, and
Appendix C).

To simulate the effect of heterogeneous fishing costs on
the historical offshore expansion of fisheries, we replaced the
constant costs per unit effort (ck = 5.85 USDW−1 yr−1) in
BOATSv1 by spatially varying costs using a linear function
of the distance to shore for effort targeting pelagic fish, dcoast
(in km), and a linear function of seafloor depth zbot (in m) for
effort targeting demersal fish (see economic forcing Fig. 1):

cv2
k (x = dcoast,zbot)=

{
ck when x ≤ x∗

ck + δ(x− x
∗) when x > x∗,

(14)

where x∗ is a reference parameter that determines the bound-
ary between coastal and high seas regions. For pelagic effort,
x∗ identifies a coastal band over which transit costs are as-
sumed to be small compared to other costs. Here we adopt
x∗ = 370 km (or 200 nm), the limit of exclusive economic
zones separating coastal regions and high seas. For demersal
effort, x∗ identifies a depth threshold above which the cost
of setting and hauling gears is negligible compared to other
costs, and we set x∗ = 200 m. The parameter δ is the pro-
portionality constant for the increase in costs beyond these
coastal bands (in USDkm−1 W−1 yr−1 for pelagic effort and
USDm−1 W−1 yr−1 for demersal effort).

For distance-dependent costs, we select δ = 7.9×
10−3 USDkm−1 W−1 yr−1 such that the average high seas
fishing cost is 9.3 USDW−1 yr−1, comparable with an em-
pirical upper mean value of 8.9 USDW−1 yr−1 (see Ap-
pendix C). For depth-dependent costs, the depth of the fish-
ing grounds zbot is determined from high-resolution (1/10th
degreeTS5 ) bottom topography (Amante and Eakins, 2009),
taking the shallowest depth in each 1° model grid cell. We
set δ = 2.5× 10−3 USDm−1 W−1 yr−1 such that the aver-
age high seas fishing cost is 9.9 USDW−1 yr−1 for exploita-
tion of deep demersal stocks, comparable with an empir-

ical upper boundary of mean high seas trawling costs of
9.2 USDW−1 yr−1 (Appendix C). Given the uncertainty re-
garding whether distance or seafloor depth has a greater
impact on costs in pelagic and demersal fisheries, we first
tested distance- and depth-dependent costs separately and
then added them to determine their combined impact.

3.2.3 Heterogeneous catchability

In BOATSv1, technological progress, represented by an ex-
ponential increase in the catchability qk at a rate of 5 % yr−1,
was shown to be a dominant driver of the development of
fisheries (Galbraith et al., 2017). While a homogeneous in-
crease rate approximates the first-order effect of technolog-
ical progress well, heterogeneous technological efficiencies
among fisheries could modulate this development across re-
gions (Palomares and Pauly, 2019), especially as separate
gears target distinct resources and are deployed in different
ecosystems (Kroodsma et al., 2018). Similar to cost, spatially
heterogeneous catchability could have influenced the spatial
expansion of fisheries and/or the deepening of catches with
time (Watson and Morato, 2013).

To simulate the effect of heterogeneous catchability, the
exponential increase is spatially weighted (see economic
forcing in Fig. 1):

qv2
k (x = zbot,y = P or D)= qk Pr(x) Of(y), (15)

where Pr(x = zbot) accounts for spatial variations in techno-
logical efficiencies with seafloor depth, and Of(y = P or D)
is an offset between the catchability of pelagic and demersal
resources.

Commercially exploited fish often aggregate near
seamounts and other shallow features, resulting in the local
establishment of fisheries (e.g., 57 % of longlining activity;
Kerry et al., 2022). The coarse resolution of BOATS prevents
a direct representation of seamounts. However, the presence
of seamounts could increase both fish biomass density and
profitability within a model’s grid cell, as opposed to the
case where resources were more homogeneously distributed
across the grid cell. The profile Pr(x = zbot) parameterizes
the effect of seamounts and more generally an increase in
the density of resources in shallow regions:

Pr(x = zbot)= qmin+ (1− qmin)
log10(xmax)− log10(x)

log10(xmax)− log10(xmean)
. (16)

Here, qmin = 0.8 is the minimum efficiency of gears target-
ing pelagic resources (see Appendix D), and xmean and xmax
at 2372 and 5750 m depth, respectively, are based on the
median and deepest depths of seamounts where fishing ac-
tivity occurs (Kerry et al., 2022). The depth of the fishing
grounds zbot is determined from ETOPO at 1/10th resolution
(Amante and Eakins, 2009), coarsened by taking the shallow-
est depth in each 1° model grid cell, as described above.

The dominant gears used to target different communities
(pelagic vs. demersal) are characterized by different effi-
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ciencies (see Appendix D). We tested the effect of sepa-
rate catchabilities for pelagic and demersal communities, set-
ting Of(P)= 1.4 when Of(D)= 1. This offset was estimated
from the technology coefficients of different gear targeting
pelagic and demersal species, weighted by the fraction of
global fishing effort for 16 different gears (Kroodsma et al.,
2018; Palomares and Pauly, 2019).

3.3 Forcing and initialization

Forcing BOATSv2 requires surface temperature T75, bot-
tom temperature Tbot, and net primary production 5ψ . Since
we are interested in the recent ocean state, we use climato-
logical observations, and, to assess improvements between
BOATS versions, we adopt the same forcing as in Carozza
et al. (2017). Surface temperature (T75) and temperature at
the seafloor (Tbot) are taken from the World Ocean Atlas
2009 (Locarnini et al., 2006). T75 (in °C) is calculated as
the mean temperature over the top 75 m on a 1° grid. Tbot
(in °C) is calculated by averaging temperatures at different
depths, weighted by the fraction of each depth within a model
grid cell as reported by the ETOPO 1/10 bathymetry dataset
(Amante and Eakins, 2009). Recognizing that the resolution
of observational temperature datasets such as the WOA de-
creases with depth, we select the layers closest to the bot-
tom as indicative of the temperature near the seafloor. For
5ψ we take the average of three satellite-based estimates at
1° resolution (Behrenfeld and Falkowski, 1997; Carr et al.,
2006; Marra et al., 2007). Note that 5ψ and then 5β are
forced once converted to gm−2 s−1. Forcing BOATS with
two-dimensional grids does not account for vertical positions
along the water column but characterizes mean environmen-
tal conditions where many harvested fish live.

The model is initialized by a “pristine” ocean biomass dis-
tribution determined by spinning up the model without fish-
ing for 300 years to reach a steady state. Then, the ecologi-
cal and economic modules are run together with an increase
in the catchability qk for another 300 years, starting with a
small, globally uniform effort. In a given region, fishing be-
gins once catches become profitable (i.e., revenuek > costk
in Eq. 6). The open-access dynamics generally first drive an
increase in catch, followed by a peak and decline due to over-
fishing (Guiet et al., 2020). To align simulations with ob-
servations (see Sect. 4.1), we estimate the time of the peak
catch integrated across LMEs and align it with the time of
the observed peak catch, which occurs in the 1990s (Pauly
and Zeller, 2016).

4 Parameterization procedure

In this section, we first describe the observations used for the
evaluation of BOATSv2 and then detail the procedure used to
parameterize the model, which is based on the following two
steps (Fig. 2). (1) Ecological update: we start by focusing

on coastal regions, where most of the observed catch orig-
inates and where economic parameterizations are more ho-
mogeneous. We parameterize separate pelagic and demersal
pathways (5ψ and 5β ) and growth limitation in HNLC re-
gions for pelagic species (αv2), to determine the best param-
eter sets for 11 undetermined parameters of the ecological
module (see Table 2). (2) Economic update: we then fine-
tune the parameters of the economic module using spatially
heterogeneous costs and catchability, considering the global
ocean (i.e., cv2

k and qv2
k ). Results of this parameterization pro-

cedure are described in Sect. 5.1.

4.1 Observational data and diagnostics for model
evaluation

We use multiple empirical data sources, including catch,
biomass, and fishing effort, to tune and evaluate BOATSv2
(in gray Fig. 2). Comparisons are made on globally inte-
grated quantities, quantities integrated across LMEs to as-
sess regional variability in coastal regions, and quantities in-
tegrated beyond the boundary of LMEs, i.e., across high seas
ecosystems (HSEs; see Appendix E), to assess variability in
the open ocean away from coastal influences. We focus on
observations around the peak catch in the 1990s but also in-
clude observations in the 1950s and 2000s for additional in-
sight.

For fish catch, we use two catch reconstruction datasets:
(1) the first is from The Sea Around Us project (SAU; Pauly
et al., 2020), corrected for under-reported catch. For the
SAU, catches by functional type allow separating pelagic (P)
and demersal (D) species (see Appendix F). (2) The second
is the database from Watson (2017) (hereafter WAT), includ-
ing wild catch and corrected for illegal and unreported fish-
eries. When comparing catches by LME, we focus on 55
LMEs (out of 66) and ignore the Black Sea and a number
of high-latitude regions to avoid errors caused by biases in
satellite-based chlorophyll and the lack of representation of
the effects of sea ice on the marine ecosystem (as in Carozza
et al., 2017). We define two diagnostics to help correct for
biases in BOATSv1: the fraction of catch in the high seas,
RC = CHS/(CHS+CCS), and the catch-weighted mean depth
of fishing ZC = (

∑
lat,lonCzbot)/(

∑
lat,lonC) (in m).

For biomass observations, we use the RAM Legacy Stock
Assessment Database (Ricard et al., 2012). Stock assessment
data are used to estimate mean catch to biomass ratios (C : B
hereafter) in 25 LMEs where enough stock assessments are
available, following Bianchi et al. (2021). We also compare
historical changes in fish biomass to a global reconstruction
based on stock assessments (Worm and Branch, 2012). Fur-
thermore, we compare the model with two biomass databases
derived from fishery-independent surveys: the first, encom-
passing demersal species across 14 large marine ecosys-
tems (LMEs) in the Northern Hemisphere, ranging from the
Bering Sea to northern Europe, is based on a recent synthe-
sis of bottom trawl data (van Denderen et al., 2023; Mau-
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Figure 2. Schematic diagram of the parameterization procedure starting from BOATSv1 (in blue), with two steps. (1) Ecological update (in
green): a Monte Carlo tuning procedure with five selection criteria is applied to a modified version of BOATSv1 that allows separate pelagic
and demersal pathways and growth limitation in iron-limited regions. An ensemble of 20000 simulations is carried out only for coastal
regions with various parameter sets, and we identify a set of 5 (or 10 extended) best parameter sets. (2) Economic update (in red): with three
selection criteria, we identify the best economic parameterizations applied to the optimized intermediate BOATSv2-Bio version to determine
BOATSv2. We use simulations that include the high seas for the five best parameter sets. Observations used for the parameterization of both
are shown in gray.

reaud et al., 2024). The second, focusing on pelagic species,
is built on standardized trawls of coastal pelagic species in
two LMEs along the North American west coast (Zwolinski
et al., 2012).

Finally, we include a comparison with reconstructions of
nominal effort for the global fishing fleet in both artisanal and
industrial sectors to shed light on the regional development
of fisheries (Rousseau et al., 2019, 2024). Similar to catch,
we focus on a subset of 55 LMEs where model forcings are
more suitable.

4.2 Ecological update: Monte Carlo ensemble

To calibrate the revised model based on BOATSv1 (in blue
Fig. 2), we must specify the value of 11 poorly determined
parameters (Table 2). (Note that the trophic scaling is a func-
tion of two free parameters and is thus completely deter-
mined by their values.) These parameters are not well con-
strained by the literature: the activation energies ωa,A−λ; the
scaling exponents b and h; the constants A0 and ζ1; the
trophic scaling τ = ln(α)/ ln(β) (Brown et al., 2004), itself
a function of trophic efficiency α and predator–prey mass ra-
tio β (Barnes et al., 2010); the egg survival fraction se; the
threshold mass for fishing selectivity em2,k ; and the repre-
sentative size of benthic organisms mβ . Following previous

work (Carozza et al., 2017; Bianchi et al., 2021), we adopt an
ensemble Monte Carlo approach, running replicates with pa-
rameter sets randomly chosen from plausible ranges of val-
ues (see Table 2). Note that compared to the calibration of
BOATSv1 (Carozza et al., 2017), we assume a subset of pa-
rameters (kE, 5∗, and cσ ) to be relatively well constrained,
since previous analysis showed that variation in these pa-
rameters had no significant effect. We also updated a few
prior parameter ranges based on recent analyses like α (Stock
et al., 2017; Eddy et al., 2020) and because previously opti-
mized values were close to the boundaries of the ranges (b,
se). We keep the same parameters for both pelagic and dem-
ersal communities, except for the temperature dependence of
growth and mortality.

We run 20000 simulations, each with a distinct combi-
nation of parameters, integrated with gradually increasing
catchability over time, and select the best simulations accord-
ing to global and local criteria. These criteria are updated
from Carozza et al. (2017) to provide an evaluation of the
model performance in reproducing the following features of
pelagic and demersal communities.

1. Global catch. The best simulations must predict ob-
served global fish catch, when integrated over the 55
LMEs, for the years of maximum catch in the 1990s,
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i.e., CSAU-WAT
Globmax ' 100× 106 t yr−1 (using tons of wet

biomass). There are significant uncertainties around
these reconstructions; furthermore, migratory species
not represented in BOATS can influence the model’s
maximum yields. Therefore, we allow catches to be
within the range CGlobmax ∈ [70,150]× 106 t yr−1.

2. Demersal to pelagic catch. At the global catch peak,
simulations must capture the fraction of pelagic and de-
mersal catch. Integrated over all 55 LMEs, pelagic catch
and demersal catch respectively account for 45 % and
55 % of catches in SAU – that is, the ratio between de-
mersal and pelagic catch at the peak is RSAU

Globmax,D/P '

1.2. Because of uncertainties around the SAU recon-
structions, the presence of migratory species, and ad-
ditional uncertainty in the allocation of pelagic vs. de-
mersal catch (Appendix F) we allow this ratio to vary
within the range RGlobmax,D/P ∈ [0.8,1.8].

3. Catch to biomass. To ensure that global catches are sup-
ported by realistic rates of fish biomass production, we
compare the model catch to biomass ratio (C : B) aver-
aged over 25 LMEs to the observational estimate from
the RAM database (see Bianchi et al., 2021). We re-
tain simulations for which a Kolmogorov–Smirnov test
indicates that the modeled C : B ratios follow the same
distribution as the stock assessment data, rejecting cases
where distributions are found to be different at the 1 %
significance level.

4. Size abundance. To preserve a realistic partitioning of
fish catches by size groups, for the best simulations
we constrain the catch of medium and large sizes to
be in the observed range relative to fish in the small
group, i.e., 0.3 Csmall < Cmed and 0.1 Csmall < Clrg <

0.8 Csmall.

5. Spatial variability near the coast. Finally, we assess
the regional variability of catch at the time of the
global peak by computing Pearson correlation coeffi-
cients of simulated catch densities compared to obser-
vations (rSAU

LME90s or rWAT
LME90s). We also compare simu-

lated and observed maximum catch per functional type
and LME, independently of the peak year, to estimate
the model capability to reproduce maximum yields per
group (rSAU P

LMEmax or rSAU D
LMEmax).

Criteria (1) to (5) identify parameter sets (Table 2 and re-
sults Sect. 5.1.1) that best capture global properties of catches
and of fish production per unit biomass for both pelagic and
demersal species, focusing on well-sampled coastal regions,
completing the ecological update to BOATSv2-Bio (in green
in Fig. 2).

4.3 Economic update: sensitivity to cost and
catchability

After improving the ecological realism of the simulations
by tuning selected parameters with a Monte Carlo approach,
we improve the economic realism by incorporating hetero-
geneous costs (cv2

k ) and catchability (qv2
k ) (in red in Fig. 2).

We further evaluated the effect of considering different eco-
nomic parameterizations and selected the best combination
based on regional and global criteria. This evaluation com-
pares the following.

6. High seas variability. Beyond LMEs, in HSEs, once
heterogeneous costs or catchability are activated we
compute Pearson correlation coefficients at peak
rHSE90s to weigh improvements for predicted catch,
similarly to step (5) in coastal regions.

7. High seas catch fraction. This constraint determines
how costs and catchability influence the catches in the
high seas and indirectly the historical offshore expan-
sion of fisheries. We computed the high seas catch frac-
tion in the 1950s (RC50s) and near the global catch peak
of the 1990s (RC90s). We expect RC50s ' 0.06 to in-
crease to only RC90s ' 0.09 at the global peak, while
catch fractions for pelagic and demersal fish increase
from RC50s = 0.10 to RC90s = 0.11 and RC50s = 0.05
to RC90s = 0.07, respectively.

8. Mean fishing depth. Finally, to better characterize the
offshore expansion of fisheries, we computed the catch-
weighted mean depth over which fishing occurs in
the 1950s and 1990s, ZC50s–90s. For demersal catch
(ZC50s,D < 136 m andZC90s,D < 206 m), the mean fish-
ing depth reflects the historical deepening of fishing
grounds (Watson and Morato, 2013). For pelagic catch
(ZC50s,P < 266 m and ZC90s,P < 546 m), it reflects an
offshore expansion of fishing effort towards high seas
regions with a deeper seafloor.

Criteria (6) to (8) allow refining our understanding of the
regional variability of catch and their sensitivity to eco-
nomic parameterizations (see results in Sect. 5.1.2). They
are applied to simulation sets with optimum parameter sets,
for multiple cost and catchability profiles, to best cap-
ture regional properties of catches, ultimately determining
BOATSv2 (Fig. 2).

5 Results and discussion

5.1 Parameterization

5.1.1 Ecological parameters

The Monte Carlo ensemble allows the identification of opti-
mum ecological parameter sets (Fig. 2). All simulations span
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Table 2. Model parameters and summary results for the Monte Carlo ensemble (update of Table 3 in Carozza et al., 2017). The sampling
distribution of each parameter used in the Monte Carlo simulation are shown, where X(p1,p2) represents the probability distribution (N for
normal, U for uniform), and p1 and p2 are the mean and standard deviation of each parameter, respectively, for the pelagic P and demersal D
communities when it applies. Opt. refers to the subset of optimized Monte Carlo simulations, N.O. to the subset of non-optimized simulations.
SD is the standard deviation, and KS p value is the p value of the two-sample Kolmogorov–Smirnov test applied to the optimized and non-
optimized sets. The three last variables are fixed compared to previous optimizations.

Parameter Name Sampling distribution Mean opt. Mean NO SD opt. SD NO KS p value

ωa,A Growth activation energy
UP(0.45,0.09) 0.50 0.45 0.088 0.089 4.7 10−3

UD(< UP,0.09) 0.37 0.30 0.14 0.13 2.6 10−3

ωa,λ Mortality activation energy
UP(0.45,0.09) 0.45 0.45 0.079 0.090 0.59
UD(0.45,0.09) 0.45 0.45 0.096 0.090 0.57

b Allometric scaling exponent N(0.55,0.12) & N(0.70,0.12)∗ 0.72 0.63 0.06 0.15 1.4 10−9

A0 Allometric growth constant N(4.46,0.50) 4.7 4.46 0.47 0.50 0.053
h Allometric mortality scaling N(0.54,0.09) 0.51 0.54 0.064 0.089 1.1 10−3

ζ1 Mortality constant N(0.55,0.57) −0.072 0.54 0.38 0.57 3.6 10−10

α Trophic efficiency U(0.23,0.10) 0.14 0.23 0.027 0.098 6.9 10−14

β Predator to prey mass ratio U(5000,2500) 4970 5000 2580 2510 0.94
τ Trophic scaling ln(α)/ ln(β) −0.24 −0.19 0.016 0.063 3.5 10−17

se Egg survival fraction U(0.05,0.028) 0.052 0.050 0.025 0.028 0.49
em2,k Selectivity position scaling U(0.75,0.2) 0.77 0.75 0.20 0.20 0.54
log10(mβ ) Mean benthic size N(−6.5,0.67) −6.4 −6.51 0.47 0.67 0.064

kE Eppley constant – 0.06 – – – –
5∗ Nutrient concentration – 0.35 – – – –
cσ Selectivity slope – 17.8 – – – –
∗ We merge two ensembles of 10 000 simulations each, with slightly different distributions for b. The first ensemble prompted re-selection of the parameter range for the second.

a total catch range of more than 6 orders of magnitude (see
Fig. 3). We find that 12 % of simulations satisfy the first cri-
terion of global catch (see Sect. 4.2). Then, for criterion (2),
the ratio of demersal to pelagic catch varies by more than 3
orders of magnitude, with 20 % of the simulations with real-
istic ratios, leaving us with 3.0 % when combined with cri-
terion (1) (Fig. 3). Among these, simulations capturing the
observed catch to biomass ratio leave us with 0.8 % of all
simulations, and acceptable size distributions ultimately lead
to 0.2 % (42 simulations) of all simulations satisfying criteria
(1) to (4).

Figure 4 shows the time series of catch, nominal effort,
and biomass over all 55 LMEs from 1900 to 2050 for the
42 simulations that meet criteria (1) to (4). In each simu-
lation, global catch increases until reaching a peak, beyond
which biomass depletion limits recruitment and drives a fall
in catch. Effort follows a comparable pattern, but with a con-
sistent time lag. Biomass monotonically decreases from an
initial, nearly pristine state. These features are comparable to
observational reconstructions (Fig. 4a, CSAU and CWAT). A
delayed response of nominal effort is also consistent with ob-
servations (Fig. 4b), while the consistent decrease in biomass
compares well with aggregated stock assessment data nor-
malized to the pristine period (Fig. 4c, d).

Similar to prior work with BOATSv1, we focus the next
analysis on the five best ensemble members selected to
capture parameter uncertainty, while maintaining reasonable
computational costs. These five parameter sets are selected

out of the 10 best of the 42 simulations based on their ability
to reproduce regional variability in peak catches by LMEs
– criterion (5). The peak catch is determined almost exclu-
sively by ecological parameters, making it a valuable way to
discriminate amongst them (Carozza et al., 2017). Accord-
ingly, we rank the 42 simulations by the Pearson correlation
coefficient of simulated vs. observed catch in the 55 LMEs
(rSAU

LMEmax; see Fig. 3) and select 5 ensemble members out
of the top 10. These five chosen parameter sets comprise
diverse shapes of catch, effort, and biomass histories, but,
once averaged together, they provide an ensemble mean that
matches the observed historical development of these quan-
tities across LMEs (rSAU

LMEmax ∈ [0.63,0.69]; see Table 3 and
Fig. 4, dark red lines).

Note that the Pearson correlation coefficients rLME90s be-
tween observed and simulated catch by LME at global peak
are comparable with and without updated ecological features
(see BOATSv1 compared to other model variants; Table 4;
rSAU

LME90s ' 0.69 and rWAT
LME90s ' 0.73). However, the updated

ecological features provide large improvements in the high
seas (e.g., rSAU

HSE90s increases from 0.22 in v1 to 0.58). This
improvement in the high seas is partly explained by the repre-
sentation of iron limitation on fish growth (rSAU

HSE90s increases
to 0.81 from 0.22 in v1), while along coastal regions, iron
limitation alone is insufficient to explain catch (Table 4).
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Table 3. List of parameter values for the selected five best simulations with updated ecological features.

211 3773 14028 14349 15436

rSAU
LMEmax 0.66 0.63 0.69 0.68 0.64

ωa,A 0.30/0.16 0.42/0.33 0.42/0.17 0.43/0.12 0.47/0.25
ωa,λ 0.53/0.61 0.47/0.49 0.39/0.61 0.43/0.57 0.42/0.51
b 0.73 0.75 0.75 0.80 0.70
A0 4.35 4.49 4.35 5.04 4.49
h 0.49 0.55 0.46 0.46 0.55
ζ1 −0.10 −0.68 −0.07 −0.25 −0.33
α 0.14 0.09 0.10 0.12 0.12
β 2830 5890 8890 8510 6330
τ −0.24 −0.27 −0.25 −0.23 −0.24
em2,k 0.44 0.76 0.97 0.75 0.67
se 9.3 10−2 5.0 10−2 4.8 10−2 2.7 10−2 2.4 10−2

log10(mβ ) −6.6 −6.0 −6.1 −6.6 −6.0

Figure 3. Simulations of global catch features from the BOATSv2
Monte Carlo ensemble. The total catch at the global peak of the
1990s CGlobmax is shown as a function of the ratio between de-
mersal and pelagic catch at the global catch peak, RGlobmax,D/P,
for the 20000 simulations in the ensemble. Colors show the Pear-
son correlation coefficient rSAU

LMEmax of simulated vs. observed
(SAU) maximum catch in 55 LMEs, CLMEmax, for each simula-
tion. The dotted black horizontal line shows the reference global
harvest, CSAU-WAT

Globmax = 100× 1012 gyr−1. The dotted black vertical
line shows the observed ratio of demersal to pelagic catch at the
global peak, RSAU

Globmax,D/P = 1.2. The horizontal and vertical gray
lines indicate the ranges within which the best simulations are se-
lected.

5.1.2 Economic parameters

As summarized in Table 4, increased ecological realism im-
proves the model’s ability to reproduce high seas fisheries,
in particular the fraction of high seas catch (RC90s down to
0.16 from 0.40 in BOATSv1) and the catch-weighted mean
depth of fishing (ZC90s down to 694 from 1698 m). These im-
provements reflect growth limitation in HNLC regions (αv2)
(Galbraith et al., 2019) and, to a greater extent, explicit sep-
aration of pelagic and demersal energy pathways (5ψ and
5β+αv2; hereafter BOATSv2-Bio; green line in Fig. 5a, b).

Since economic drivers could explain additional spatial
variability, we test plausible heterogeneous economic param-
eterizations (Fig. 2). The heterogeneous costs and catchabili-
ties have little impact on the coastal variability of catch at the
time of the global peak (rSAU

LME90s ' 0.69 and rWAT
LME90s ' 0.73;

Table 4). Note that the comparison reveals better correlations
when comparing models with WAT catch reconstructions in-
stead of SAU reconstructions. Most of the improvement is
explained by higher mean catches in Australian LMEs (com-
pare Fig. 5c and d), but the explanation for such discrepancy
in the observational reconstructions remains unclear. We also
compare the Pearson correlation coefficients of maximum
catch by LME for pelagic and demersal catch separately.
Heterogeneous costs or catchability show no effect on the
variability of maximum pelagic and demersal catch yields:
rSAUP

LMEmax ' 0.46 vs. rSAUD
LMEmax ' 0.69 (Table 4); these should

instead influence the timing of the development of fisheries.
Both correlations suggest that, along the coast, catches are
independent of economic parameterizations and are instead
controlled mainly by the environment.

To select economic parameterizations, criterion (6) and the
catch variability in the high seas indicate only minor varia-
tions; economic parameters do not significantly enhance the
accuracy of catches in the HSEs compared to the improve-
ment from BOATSv1 to BOATSv2-Bio (see Table 4). How-
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Figure 4. Historical simulations of catch, effort, and biomass for
the best 42 simulations in the BOATSv2 Monte Carlo ensemble,
forced only with exponentially increasing catchability over time.
(a) Catch, (b) nominal effort, (c) biomass, and (d) biomass normal-
ized to initial biomass in the selected 55 LMEs for the 42 best pa-
rameter sets from 1900 through 2050. Ensembles are aligned at the
catch peak of the 1990s. The light blue lines show each parameter
set; the dark blue lines show the 10 best simulations, out of which
the 5 purple lines show the final best ensemble. The thick red line
is the mean of the five best ensemble simulations. Black lines in
panels (a), (b), and (d) show observational reconstructions, consist-
ing of catch from SAU (black line in panel a, CSAU) and the WAT
database (dotted black line in panel a, CWAT), effort (black line in
panel b), and biomass from fish stock assessments normalized to
the initial state (black line in panel d). Note that the simulations do
not include the effects of climate change, environmental variability
other than the seasonal cycle, and management.

ever, for criterion (7), economic parameterizations further
reduce the high seas catch fraction (down to RC90s = 0.10
compared to ' 0.09; Table 4), and criterion (8) significantly
reduces the mean fishing depth (down to ZC90s = 315 m; Ta-
ble 4).

Heterogeneous costs and catchability parameterizations
have unequal effects. Depth- and distance-dependent costs
respectively reduce the offshore expansion of demersal
(ZC90s,D down to 148 m) and pelagic (ZC90s,P down to
873 m) catches. Since both slightly improve aspects of the
simulations, we retain both parameterizations in the final
BOATSv2 update. Regarding catchability, accounting for the
effect of seamounts also reduces the development of fish-
ing over a deep seafloor. When applied to pelagic catches
only, ZC90s decreases to 526 m (Table 4). When this correc-
tion is applied both to pelagic and demersal communities,
this is further reduced to ZC90s = 315 m, close to observa-
tional estimates. However, the maximum depth of the dem-
ersal catch becomes excessively shallow (ZC90s,D = 103 m).
Therefore, we retain the heterogeneous catchability parame-
terization only for pelagic fishing effort in the final BOATSv2
update.

For the final reference simulations with BOATSv2, the in-
clusion of costs that increase with the distance from shore,
costs that increase with seafloor depth for demersal fishing,
and catchabilities that decrease with seafloor depth for the
pelagic community leads to an improvement of the model’s
ability to reproduce the delayed development of high seas
fisheries and the progressive deepening of catch (Table 4 and
see red lines in Fig. 5a, b).

In summary, at the LME level, BOATSv2 and BOATSv1
have similar accuracy in their representation of regional
catches (see rLME90s = 0.69 or 0.73 when compared to SAU
or WAT; Table 4 and Fig. 5c, d). This lack of improvement
in the new model version is explained by limited accuracy
in predicting pelagic catches across LMEs (see rLMEmax,P =

0.46 vs. rLMEmax,D = 0.69; Table 4 and Fig. 5e, f). Never-
theless, BOATSv2 better captures the large-scale variability
of catches in the HSEs, which are approximately 1 order of
magnitude smaller than in LMEs (see rHSE90s = 0.51 or 0.64
compared to SAU or WAT; Table 4 and Fig. 5g, h), and better
reproduces their historical offshore expansion (RC90s = 0.11
and ZC90s = 420 m; Table 4).

5.1.3 Model sensitivity

The best parameter sets selected by the Monte Carlo ap-
proach (Sect. 4.2) provide insights on the functioning of eco-
logical communities. Of the 11 parameters that were opti-
mized for, 6 have posterior distributions significantly differ-
ent from the prior distributions (p values< 10−2; Table 2).
The posterior distributions for these six parameters were also
different when optimizing BOATSv1 (see Carozza et al.,
2017), confirming their essential role in influencing the sen-
sitivity of the model.
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Figure 5. Evaluation of BOATSv2. (a) Observed and simulated his-
torical development of high seas vs. coastal seas catch RC. (b) Ob-
served and simulated historical deepening of global catches ZC. (c,
d) Scatter plot of the observed vs. simulated catch at the global peak
in 55 LMEs for SAU reconstructions CSAU

LME90s in (c) and WAT re-
constructions CWAT

LME90s in (d). (e, f) Scatter plot of the observed vs.
simulated maximum catch in LMEs for pelagic CSAUP

LMEmax in (e) and
demersal catch CSAUD

LMEmax in (f). (g, h) Scatter plot of the observed
vs. simulated catch at the global peak in HSEs for SAU reconstruc-
tions CSAU

HSE90s in (g) and WAT reconstructions CWAT
HSE90s in (h). In

panels (a) and (b), SAU and WAT reconstructions are indicated by
solid and dotted lines, respectively; BOATSv1 is indicated by the
blue line, BOATSv2-Bio by green, and BOATSv2 by red. In panels
(c)–(h) blue dots and lines show BOATSv1 and red dots and lines
BOATSv2. Numbers next to each dot indicate the LMEs or HSEs
(see regions in Appendix E).

First, the ensemble mean allometric scaling exponent of
b = 0.72 (the range is 0.70–0.80 for the five best ensem-
bles; see Table 3) is larger than the BOATSv1 value of 0.65
(Carozza et al., 2017) but in the middle of the expected range
of 0.66–0.75 (Brown et al., 2004; Kooijman, 2010; Hatton
et al., 2019). Second, the mortality rate parameter ζ1 was se-
lected to be slightly negative (−0.07), different from the ini-
tial distribution (mean 0.54). Note that the negative value for
ζ1 does not indicate a negative mortality, since 3k ∝ eζ1 in
Eq. (4). The mortality scaling (0.51) was also smaller than
the mean value (0.54). To account for a large uncertainty in
the trophic efficiency (α) (Eddy et al., 2020), we expanded
its prior range to [0.06,0.4] (compared to previous estimates
in Carozza et al., 2017). However, the optimization persis-
tently selected values comparable to BOATSv1, with a mean
of 0.14 (range 0.09–0.14; Table 3). Although separate pelagic
and demersal communities could have different trophic effi-
ciencies (Stock et al., 2017; Du Pontavice et al., 2020), for
simplicity we adopt the same value here. The robustness of
the optimized trophic efficiency suggests that sources of vari-
ability could be captured by other model parameterizations,
e.g., the representative size of primary producers or the tem-
perature dependence of growth and mortality. Lastly, growth
activation energies (ωa,A) for pelagic (0.50) and demersal
(0.37) communities are larger than the prior values. Although
the temperature dependence of mortality (ωa,λ) is not signif-
icantly different from the initial values, the optimized values
suggest a stronger sensitivity of growth compared to mortal-
ity for the pelagic community (ωa,A−ωa,λ =+0.047 eV) and
a stronger sensitivity of mortality for the demersal commu-
nity (−0.082 eV).

Covariations between parameters in the 42-member op-
timized ensemble reveal compensations between parameter
pairs (see Fig. 6a). The most significant compensations are
between parameters controlling the biomass flow through the
size spectrum and biomass losses (see Fig. 6b–d). For in-
stance, an increase in the trophic efficiency (α) can be com-
pensated for by a smaller predator–prey biomass ratio (β),
which lengthens the food web (Fig. 6b; r =−0.66). When
more biomass flows across trophic levels, longer food chains
ultimately lead to greater losses over the food web and thus
similar fish biomass production. Alternatively, an increase
in the trophic efficiency can be compensated for by an in-
crease in the mortality parameter (ζ1; Fig. 6c; r = 0.42).
Conversely, the mortality parameter ζ1 decreases when the
growth scaling exponent (b) increases (Fig. 6d; r =−0.49),
instead of decreasing, because of indirect impacts on the
asymptotic size (m∞).

Correlations between parameters that differ between
pelagic and demersal food webs can also reveal trade-offs,
particularly in how activation energies collectively affect the
two communities (see Fig. 6e–g). For instance, an increased
temperature sensitivity of growth for the pelagic commu-
nity ωP

a,A is matched by an increased sensitivity of growth
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for the demersal community ωD
a,A (Fig. 6e; r = 0.74) and

a shift of the sensitivity of demersal mortality compared to
demersal growth ωD

a,A−λ (Fig. 6f; r = 0.65). Another rela-
tionship between communities is observed for losses. As the
temperature dependence of mortality for the pelagic com-
munity (ωP

a,λ) increases, increasing losses, there is a con-
current decrease in the representative size at the base of the
benthic food chain (log10(mβ). This extends the food chain
length, increasing losses in the demersal community (Fig. 6g;
r =−0.40).

While not exhaustive, this parameter analysis suggests
trade-offs between biomass production and dissipation in
pelagic and demersal communities (see Fig. 6a for further
details).

5.2 Features of the simulated catch

5.2.1 Global catch

Relative to BOATSv1, BOATSv2 corrects for the overesti-
mate of high seas catch (see Fig. 5) while maintaining sim-
ilar skill in reproducing historical variations of LME fish
catch (see comparison of model ensemble means with SAU
and WAT reconstructions; Fig. 4). BOATSv2 also shows im-
proved skill in hindcasting the spatial evolution of catch (see
Fig. 7) and the offshore and equatorward expansion of fish-
eries (Swartz et al., 2010; Guiet et al., 2020). In the 1950s
(Fig. 7a–c), higher-latitude shelf regions and productive up-
welling regions contributed the most to global catch. In the
1990s (Fig. 7d–f), while high latitudes still produced large
catches, subtropical regions were also significantly exploited,
especially in shallow regions. Productive high seas areas also
supported significant fishing. The expanded representation of
ecological processes accounts for most improvements in the
high seas, while updating economic processes only yields
minor improvements (see Appendix G).

Despite the closer fit to observations, model biases remain,
in particular low offshore catches in the western equatorial
Pacific and excessive catches in the northern and southern
Atlantic (see Fig. 7d). These biases are not improved by the
economic update and are likely related to ecological factors
(see Fig. G1 panel b vs. c). However, it remains unclear if
biases could also result from historical interactions between
ecosystems and fishing effort or from changing environmen-
tal conditions. Processes not included in the model, such as
habitat alteration by bottom-trawling gear, additional con-
straints on habitats such as dissolved oxygen (Deutsch et al.,
2020), fish migrations and movement (Barrier et al., 2023;
Guiet et al., 2022; Lehodey et al., 2008; Watson et al., 2015),
or management and regulation, likely play a role in these bi-
ases. While the two observational catch reconstructions used
to calibrate the model show differences, likely related to dif-
ferent approaches (e.g., using bathymetry or not; compare
Fig. 7e, f), biases in simulated catches are apparent when
comparing with either reconstruction.

Figure 8 shows the differences (residuals) between max-
imum simulated and observed peak catches in each LME.
While there is an overall improvement from BOATSv1 to
BOATSv2 (compare Fig. 8a, b to c, d), areas of overestimated
(e.g., Indian Ocean) or underestimated catches (e.g., north-
western Pacific) are correlated between the two model ver-
sions, suggesting structural biases in the model. It is possible
that accounting for features of coastal habitats such as coral
reefs and mangrove forests could reduce regional biases, es-
pecially in Southeast Asia (Tittensor et al., 2010). Repre-
sentation of biodiversity also remains crude, and additional
functional types with life histories that differ from those of
fish, such as cephalopods, could be considered (Denéchère
et al., 2024). Finally, some larger predators that dive to feed
on the deep scattering layer experience environmental condi-
tions that differ from those at the surface (Nuno et al., 2022;
Braun et al., 2023). Accounting for this effect could help re-
duce model biases.

5.2.2 Pelagic vs. demersal catch

Separate pelagic and demersal energy pathways allow sim-
ulation of higher taxonomic diversity. At the global peak of
the 1990s, a large fraction of simulated demersal catch is de-
rived from high latitudes (Fig. 9), in general agreement with
observations (van Denderen et al., 2018). At lower latitudes,
modeled demersal catches are as abundant as pelagic catches
in shallow regions or near seamounts, also consistent with
observations. Significant biases remain, however, such as in
the North Atlantic, where the simulated demersal catch frac-
tion is lower than observed, and the eastern tropical Pacific,
where the demersal fraction is overestimated. The latter bias
could reflect the parameterization of iron limitation, which
reduces accumulation of pelagic biomass in the eastern topi-
cal Pacific, an HNLC region (see Appendix B).

5.2.3 Deepening of the catch

The historical expansion of fisheries is associated with fish-
ing in increasingly deep waters, i.e., a deepening of the catch
(Morato et al., 2006; Watson and Morato, 2013). This can be
attributed to the need to find new profitable fishing grounds
beyond more accessible coastal regions, as well as improve-
ments in fishing technology. The catch density per depth stra-
tum from observational reconstructions reflects such expan-
sion (see Fig. 10a and b for pelagic and demersal catch in
SAU data). The deepening of demersal catches is consistent
with increasingly deep fishing grounds, while the deepening
of pelagic catches indicates an expansion of fishing effort to-
wards deeper regions offshore.

In the model, decreasing biomass with depth slows the his-
torical deepening of demersal catches (Fig. 10d). Similarly,
higher costs and reduced catchability at greater depths de-
lay the offshore expansion and deepening of pelagic catches
(Fig. 10c). These factors collectively contribute to the slower
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Figure 6. Emergent relationships between model parameters. (a) Pairwise correlations between model parameters for the 42-member op-
timized ensemble. (b–g) Scatter plots illustrating the relationships between the most strongly correlated parameters: (b) trophic efficiency
(α) and predator–prey mass ratio (β); (c) trophic efficiency (α) and mortality parameter (ζ1); (d) growth scaling exponent (b) and mortality
parameter (ζ1); (e) growth activation energy for the pelagic community (ωP

a,A) and demersal community (ωD
a,A); (f) growth activation energy

for the pelagic community (ωP
a,A) and difference between growth and mortality activation energies (ωD

a,A−λ) for the demersal community;

(g) mortality activation energy for the pelagic community (ωP
a,λ) and representative size of organisms at the base of the demersal food web

(mβ ). In panel (a), circles indicate p values < 0.05 and stars p values < 0.01. In panels (b)–(g), the lines show linear regressions for the 42
parameter values of the ensemble; Pearson correlation r and p values are reported in each plot. In panels (b)–(g), red dots indicate the 5 final
best parameter values for BOATSv2, while the black dots show the remaining 5 parameter values among the 10 best; gray dots indicate all
other parameter values.

development of fisheries in deep waters and the reduced
catch fraction from the high seas, consistent with obser-
vational reconstructions (compare with BOATSv1 in Ap-
pendix H).

5.3 Features of simulated fishing effort

The modeled nominal fishing effort aggregated across the
55 LMEs broadly matches observations (see observations in
Fig. 4b), with a slightly earlier decline that falls within the
uncertainty range. This could indicate that the model’s effort
responds to biomass depletion faster than observed or that
the model underestimates the resilience of exploited stocks.
It could also reflect the lack of management and subsidies in
the model, which influence profitability and the progression
of fishing effort.

The significant correlation between modeled and observed
effort at peak catch across LMEs (see Fig. 11a; rLME90s =

0.57) lends support to the model’s assumption of open-access
dynamics. However, significant deviations remain (Fig. 11b).

For instance, the model overestimates effort in highly pro-
ductive shelf regions near the mouth of major rivers such as
the Patagonian Shelf or North Brazil Shelf, suggesting devel-
opment of fisheries that is too rapid compared to neighboring
regions. Biomass redistribution by currents, or fish stock mi-
grations, could correct this bias. At larger scales, the model
underestimates effort across Southeast Asia, consistent with
the underestimated peak catch. However, effort around Aus-
tralia is also lower than observed, while the model overes-
timates catches there (see Fig. 8). This mismatch suggests
regional differences in economic drivers or missing key habi-
tats such as mangroves or reefs. Efficient management might
also play a role, although it is unlikely to be the sole driver
across the entire region.
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Figure 7. Observed and simulated catch in the 1950s and 1990s, C50s–90s (in log10; t km−2 yr−1). (a, d) BOATSv2 simulation forced with
exponentially increasing catchability over time compared to (b, e) SAU and (c, f) WAT observations.

Figure 8. Residuals of observed vs. simulated maximum catch per LME, CLMEmax (log10(C
sim/Cobs)TS6 ). (a, b) BOATSv1 simulation

compared to SAU and WAT observations. (c, d) BOATSv2 simulation compared to SAU and WAT observations.

5.4 Features of simulated biomass

5.4.1 Global biomass

In the absence of fishing, BOATSv2 estimates a commercial
fish biomass of 1.9 Gt aggregated over LMEs, slightly larger
than previous estimates from BOATSv1 (1.6 Gt in Bianchi
et al., 2021). However, because the biomass in the high seas

is lower, the biomass in LMEs accounts for 68 % of the
global biomass (2.8 Gt). This is significantly larger than the
50 % of BOATSv1 (3.3 Gt in Bianchi et al., 2021). Thus,
BOATSv2 suggests a 10 %–15 % smaller pristine biomass
than BOATSv1. When fishing is included and forced by the
historical catchability increase, the BOATSv2 commercial
fish biomass aggregated across LMEs declines by about 50 %
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Figure 9. Observed and simulated pelagic catch fraction
CP

90s/(C
P
90s+C

D
90s) (in %). (a) BOATSv2-simulated fraction com-

pared to (b) SAU observations. Very low catch levels are masked
(i.e., below 10−3 gm−2 yr−1).

Figure 10. Fishing over increasingly deep seafloors. (a, b) Ob-
served mean catch density (in log10; t km−2 yr−1) over depth strata
for pelagic (a) and demersal (b) catch from SAU. (c, d) Simulated
mean catch density over depth strata for pelagic (c) and demer-
sal (d) catch in BOATSv2 (see Appendix H for comparison with
BOATSv1).

from 1950 to 2000. This is consistent with both BOATSv1
simulations and global observational estimates (Fig. 4d; also
compare with Worm and Branch, 2012). Interestingly, at
peak catch, the LME–HSE difference between model ver-
sions is compensated for by differences in fishing effort
so that both LMEs and HSEs hold approximately 50 % of
the global biomass at this point (0.9 Gt within LMEs and
0.8 Gt in HSEs with BOATSv2, similar to 0.6 and 0.5 Gt,
respectively, with BOATSv1; Bianchi et al., 2021). The op-
timized parameters of BOATSv2 suggest that the global fish
biomass is about 40 % pelagic and 60 % demersal, a parti-
tioning which could be relevant for the biogeochemical cy-
cling and carbon export effects of fish. Comparing BOATSv1
and BOATSv2, the similar relative biomass distribution at
peak harvest and the similar magnitude of pelagic biomass
would suggest comparable estimates of export and sequestra-
tion by sinking fecal pellets (Bianchi et al., 2021). However,
further analyses is needed to differentiate the roles of pelagic
and demersal communities and their historical depletion in
carbon and nutrient sequestration (Cavan and Hill, 2022).

5.4.2 Regional biomass distributions

In the model, shallow shelves and upwelling systems sustain
on average 3 times more biomass per unit area than the high
seas (10. vs. 2.9 gm−2 within and outside the LMEs, respec-
tively; see also Fig. 12a for local biomass gradients). Validat-
ing these predictions is challenging because of observational
limitations; however, recent compilations provide a new way
to assess them.

For demersal fish, scientific trawl compilations are now
available from the Northern Hemisphere at locations ranging
from Alaska to Europe (Maureaud et al., 2024; van Denderen
et al., 2023). Figure 12 shows that BOATSv2 accurately sim-
ulates the average biomass across these LMEs and captures
the biomass increase from the Gulf of Mexico–Florida (GM–
FL) to Europe (EU) and the North American west coast (NA–
W) (see circles Fig. 12b). However, the model underesti-
mates the observed range of variability: while observations
vary over almost 2 orders of magnitude, simulated biomasses
vary only over 1 order of magnitude. The model also overes-
timates biomass for the North American east coast (NA–E).

These biases might reflect temporal offsets in the deple-
tion of fish biomass over time due to exploitation (see also
Fig. 4d), with the model failing to capture relative differ-
ences across LMEs. Indeed, regions where the model over-
estimates fish biomass still have relatively high simulated
rates of biomass decline in the 2000s (e.g., LMEs 1, 5, 12).
This can eventually deplete biomass to the observed lev-
els. Conversely, regions where the model underestimates fish
biomass (e.g., LMEs 10, 14, 60) are areas in which simu-
lated fishing effort caused an early biomass decline (see Ap-
pendix I). These temporal mismatches could reflect regional
differences in the rate of development of fisheries that are not
captured by the simple globally homogeneous exponential
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Figure 11. Observed and simulated nominal effort in the 1990s, E90s. (a) Simulated effort density per LME compared to observations,
ELME90s. (b) Ratio between modeled and observed effort by LME at the global catch peak in the 1990s. In panel (a), red dots and lines show
BOATSv2 output, and blue dots and lines show BOATSv1 output; numbers indicate the LMEs (see Appendix E).

increase in technology or by the open-access assumption and
lack of management. For example, effective management in
Alaskan fisheries has prevented the phase of overfishing that
has been common in industrial fisheries worldwide (Worm
et al., 2009). Alternatively, considering biodiversity could
help explain these differences. For instance, in NA–W, the
dominance of semi-pelagic Alaskan pollock may lead to an
underestimation of our exclusively demersal biomass. Con-
versely, in NA–E, shifts from demersal to pelagic communi-
ties due to fishing can explain the overestimation of demersal
biomass (Choi et al., 2004). Our approach does not capture
these interactions between pelagic and demersal communi-
ties. Finally, discrepancies may be exacerbated because ob-
servations cover only a portion of each LME (compare mean
biomass densities at LME level vs. grid cells where simula-
tions overlap with observations in Appendix I).

Aggregated biomass observations for pelagic stocks are
scarcer than for demersal stocks. We compare model out-
put with scientific trawl data for coastal pelagic species in
the California Current and Gulf of Alaska (shown by squares
in Fig. 12b) (Zwolinski et al., 2012). The model simulates
overall higher biomass densities than observed, showing a
wider ranges of values. Similar to observations, simulated
pelagic biomass densities are lower compared to demersal
biomass. A caveat to this comparison is that estimates of
pelagic biomass remain significantly uncertain due to chal-
lenges in sampling the three-dimensional oceanic environ-
ment, variability and aggregation in fish populations, uncer-
tainty in sampled depth ranges, net avoidance by pelagic fish,
and the limited selectivity of pelagic trawls (Kaartvedt et al.,
2012; Zwolinski et al., 2012). In addition, fish migrations can
redistribute fish biomass across life stages in ways not cap-
tured by the model.

5.5 Implications of the model update

The inclusion of distinct energy pathways and spatially vari-
able economic drivers in BOATSv2 has a limited impact
on the evolution of coastal fisheries over time but has a

large impact on simulated high seas fisheries. All else be-
ing equal, BOATSv1 and BOATSv2 ensembles show very
similar LME-level catch at the global peak (see CSAU-WAT

LME90s
Fig. 5c, d) and comparable progression across LMEs from
1950 through 2000. Both are in good agreement with obser-
vations (Fig. 13). The key improvement of BOATSv2 is the
representation of high seas fisheries, where catches are de-
layed and greatly reduced during the historical period, bring-
ing the model closer to observations (see dashed lines in
Fig. 13). However, as fisheries keep developing, BOATSv2
still overestimates fishing in the high seas (compare the
dashed red line with observations in Fig. 13 or the increasing
trend in simulations in Fig. 5a). This discrepancy suggests ei-
ther an improper representation of the historical rate of catch-
ability increase in the simulations or missing mechanisms,
such as horizontal migrations that redistribute biomass from
the high seas to the coast.

Finally, the separation between pelagic and demersal com-
munities influences fish production rates because these com-
munities respond to different environmental drivers (van
Denderen et al., 2021; Fredston et al., 2023). Compared to
BOATSv1, this change could influence the resilience of fish-
eries to fishing and/or climate change. It could also alter the
response to regulation, although we anticipate similar dy-
namics as in previous work (Scherrer and Galbraith, 2020;
Scherrer et al., 2020). A separation of pelagic and demersal
energy pathways is likely to impact the effects of fish on bio-
geochemistry (Bianchi et al., 2021; Le Mézo et al., 2022).

6 Conclusions

We introduce BOATSv2, an expanded version of the BOATS
model that includes multiple added features, including sepa-
ration of demersal from pelagic communities, and improves
simulation of high seas fisheries. New model features have
a limited impact in coastal regions so that BOATSv2 sim-
ulates dynamics and variability in catch and biomass over
LMEs that are similar to BOATSv1. The expanded represen-
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Figure 12. Observed and simulated biomass density. (a) BOATSv2 global mean biomass density in the 1990s, B90s. (b) Demersal biomass
density from bottom trawl surveys (circles) versus simulations and pelagic biomass density from surface coastal pelagic species trawl data
(squares) versus simulations. Biomass densities are averaged across LMEs for the reference decade of the 2000s. In panel (b), colors indicate
the four different regions shown by the LME boundaries in panel (a) and numbers the specific LMEs (see Appendix E). In panel (b), the
dots indicate median values, and horizontal or vertical lines the 25–75th percentile range; the size of the dots indicates the relative size of the
surface area sampled. Appendix I provides a further comparison of biomass time series by LME.

Figure 13. Time series of catch in the global ocean. Historical an-
nual catch in the high seas (HS) vs. coastal seas (CS). Gray lines
show observational reconstructions from Pauly et al. (2020) (SAU,
dark gray) and Watson (2017) (WAT, light gray). Blue lines show
output from BOATSv1 and red lines from BOATSv2, forced only
with exponentially increasing catchability over time. Coastal (solid
lines) and high seas (dotted lines) catches are shown separately.

tation of functional and taxonomic diversity allows more de-
tailed comparisons with observations. In some cases, this re-
veals new model biases, such as in the simulation of demersal
catches and biomass in the western North Atlantic.

We attribute improvements in the simulation of high seas
fisheries to the separation of pelagic and demersal energy
pathways, supporting the importance of distinguishing these
communities (Blanchard et al., 2012; Petrik et al., 2019;
Du Pontavice et al., 2020). We also introduced parameteriza-
tions of spatially heterogeneous economic drivers, i.e., fish-
ing costs and catchability, which further improves the match
to observations in the high seas. However, choosing between

different formulations for these drivers (i.e., depending on
distance from the coast, dcoast, or depth of the seafloor, zbot)
was only possible by testing plausible functional forms and
retaining those leading to the largest improvements against
empirical data. While this selection was not exhaustive, our
final formulation is consistent with a variety of new observa-
tional constraints, such as the increase in fishing effort over
seamounts (Kerry et al., 2022) and the historical deepening of
fishing as technology progresses (Watson and Morato, 2013).
We acknowledge that the specific choice of functional forms
for these parameterizations is not well constrained and will
likely require future refinement against observational diag-
nostics.

Because of the more accurate representation of high seas
fisheries in BOATSv2 relative to BOATSv1, the fraction of
catch that takes place in the High Seas at the time of the
global catch peak is reduced from 31 % to 11 %, bringing
it closer to the observed 8 %–9 %. Similarly, the mean depth
of the catch declines from 1698 m in BOATSv1 to 420 m in
BOATSv2, aligning it more closely with the empirical esti-
mate of 154–372 m. This update should help reduce model
uncertainties in future projections (Galbraith et al., 2017;
Lotze et al., 2019; Tittensor et al., 2021) and provide a more
accurate representation of the role of fish in global biogeo-
chemical cycles (Bianchi et al., 2021; Le Mézo et al., 2022).
Future model improvements could include a representation
of the migration of fish stocks (Sumaila et al., 2015), the role
of diverse coastal environments such as mangroves, reefs,
and lagoons (Tittensor et al., 2010), and a representation
of distinct mesopelagic communities (Irigoien et al., 2014;
St. John et al., 2016; Hidalgo and Browman, 2019).
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Appendix A: BOATSv2 governing equations and
parameters

Table A1. List of ecological and economic parameters in BOATSv2 for pelagic (P), demersal (D), or both communities. Parameters selected
by the Monte Carlo procedure are reported by the range of best selected values. See more details in Carozza et al. (2016, 2017).

Parameter Name Value (ranges in brackets) Unit

m0 Lower bound of smallest mass class 10 g
mu Upper bound of largest mass class 100 000 g
nk Number of fish size groups 3 Unitless
m∞,k Asymptotic mass of group k (0.3,8.5,100) kg
Tr Reference temperature of a(T ) 10+ 273.15 K
kB Boltzmann’s constant 8.617 × 10−5 eV K−1

ωa,A Growth activation energy of metabolism P: [0.30,0.47]; D: [0.12,0.33] eV
ωa,λ Mortality activation energy of metabolism P: [0.39,0.53]; D: [0.49,0.61] eV
b Allometric scaling exponent [0.70,0.80] Unitless
A0 Allometric growth constant [4.35,5.04] g1−b s−1

εa Activity fraction 0.8 Unitless
cs Slope parameter of sk 5 Unitless
η Ratio of mature to asymptotic mass 0.25 Unitless
α Trophic efficiency [0.09,0.14] Unitless
β Predator to prey mass ratio [2830,8890] Unitless
τ Trophic scaling [−0.27,−0.23] Unitless
mL Mass of large phytoplankton 4× 10−6 g
mS Mass of small phytoplankton 4× 10−15 g
kE Eppley constant for phytoplankton growth∗ 0.06 °C−1

5∗ Nutrient concentration∗ 0.35 mmolCm−3 d−1

mβ Representative mass of benthos [8.3× 10−7, 1.6× 10−6] g
ba Martin curve attenuation coefficient −0.8 Unitless
zeu Reference euphotic layer depth 75 m
kNO−3

Nitrate concentration constant 5 µM

ζ1 Mortality constant [−0.68,−0.07] Unitless
h Allometric mortality scaling [0.46,0.55] Unitless
φf Fraction of females 0.5 Unitless
φC,k Fraction of NPP allocated to a group k 1/3 Unitless
se Eggs to recruit survival fraction [0.024,0.093] Unitless
me Egg mass 5.2 × 10−4 g

κe Fleet dynamics parameter 10−6 WUSD−1 s−1

κs Regulation response parameter 4 × 108 m2 s−1

S Societal enforcement strength (here deactivated) 0 Unitless
cσ Fishing selectivity slope 17.8 Unitless
dm2,k Selectivity mass adjustment (1,1,1) Unitless
em2,k Selectivity mass scaling [0.44,0.97] Unitless
(δz,δd) Rate of cost increase with depth− distance (2.5× 10−3, 7.9× 10−3) (USDm−1 W−1 yr−1, USDkm−1 W−1 yr−1)
(zref,dref) Reference variables for cost profiles (200,370) (m,km)
qmin Minimum gear efficiency 0.8 Unitless
(zmean,zmax) Reference depths for catchability profile (2372,5750) m
∗ Estimation of the fraction of large phytoplankton production following Dunne et al. (2005).
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Table A2. Variables and governing equations for the ecological module of BOATSv2 for pelagic (P), demersal (D), or both communities.
See more details in Carozza et al. (2016, 2017).

Variable and functions Formulation Unit

Size (mass) of fish m g
Time t s

Temperature T (t)

{
P : T75

D : Tbot
K or °C

Surface nitrate concentration NO3(t) µM
Net primary production 5ψ (t) mmolCm−2 s−1

Bathymetry zbot m
Fraction of large phytoplankton production1 8L(t) –
Particle export ratio1 peratio(t) –

Fish biomass spectrum of group k fk(m, t) gm−2 g−1

Cumulative biomass of group k Bk(t)=
∫m∞,k
m0

fkdm gm−2

Fish catch spectrum of group k hk(m, t) gm−2 g−1 s−1

McKendrick von Foerster model ∂fk
∂t
=−

∂γS,kfk
∂m

+
γS,kfk
m −3kfk −hk –

Recruitment at m=m0 γS,kfk = RP,k
Re,k

RP,k+Re,k
gm−2 s−1

Individual growth rate γS,k = (1−8k)ξI,k gs−1

Fraction of input energy allocated to growth 8k = sk
1−εa

(m/m∞,k)
(b−1)−εa

–

Individual level total energy input ξI,k =min
[
φC,kπm
fk

,Amb
− kam

]
gs−1

Growth constant A= A0aA(T ) g1−b s−1

Mass-specific investment in activity ka = Aεam
b−1
∞,k

s−1

Fish production spectrum π =

P : 5ψmψ

(
m
mψ

)τ−1

D : 5βmβ

(
m
mβ

)τ−1 gm−2 g−1 s−1

Representative mass of phytoplankton mψ =m
8L
L
m

1−8L
S

g

Particle flux at bottom 5β =5ψ peratio

(
zbot
zeu

)ba
mmolCm−2 s−1

Mass structure of energy to reproduction sk =

[
1+

(
m
mα,k

)−cs]−1
–

Mass of maturity mα,k = η m∞,k g
Natural mortality rate 3k = λm

−hmh+b−1
∞,k

s−1

Mortality constant λ= eζ1
(
A0
3

)
aλ(T ) g1−b s−1

Primary-production-determined recruitment RP,k = φC,kπ(m0)m0 gm−2 s−1

Egg-production-determined recruitment Re,k = φfse
m0
me

∫m∞,k
m0

γR,k(m)
fk(m)
m dm gm−2 s−1

Energy allocated to reproduction γR,k =8kξI,k gs−1

van’t Hoff–Arrhenius equation aa,λ(T )= exp
[
ωa,λ
kB
( 1
Tr
−

1
T
)
]

–

Corrected trophic scaling2 τ =

ln

α k
NO−3

k
NO−3

+NO−3


ln(β)

–

1 Estimated from net primary production and surface temperature (in °C) following Dunne et al. (2005). 2 Correction of trophic scaling when
reduced growth in iron-limited regions is activated.
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Table A3. Variables and governing equations for the economic module of BOATSv2 for pelagic (P), demersal (D), or both communities. See
more details in Carozza et al. (2016, 2017).

Variable and functions Formulation Unit

Fish catchability of group k qk(t) m2 Ws−1

Ex-vessel fish price for group k pk(t) USDg−1

Cost per unit effort for group k ck(t) USDW−1 s−1

Bathymetry zbot m
Distance to shore dcoast km
Societal target for fishing effort1 Etarg,k(t) Wm−2

Fish catch spectrum of group k hk(m, t) gm−2 g−1 s−1

Cumulative catch of group k Ck(t)=
∫m∞,k
m0

hkdm gm−2 s−1

Fishing effort of group k Ek(t) Wm−2

Fishing effort model dEk
dt =

(
κe

revenuek−costk
Ek

)
e−S + (1− e−S)κs(Etarget,k −Ek) -

Revenue from fishing revenuek = qk Ek dt
∫m∞,k
m0

pkσk(m)fk(m)dm USDm−2 s−1

Size-dependent selectivity of catch σk =

[
1+

(
m
m2,k

)−cσ /3]−1
–

Threshold mass for catch m2,k = dm2,k em2,k mα,k g
Cost of fishing costk = ck Ek dt USDm−2 s−1

Corrected depth-dependent cost profile2 ck(zbot)= ck + δz(zbot− zref) USDW−1 s−1

Corrected distance-dependent cost profile2 ck(zdist)= ck + δd(dcoast− dref) USDW−1 s−1

Corrected depth-dependent catchability profile2 qk(zbot)= qk Pr(zbot) Of(P,D) m2 Ws−1

Depth-dependent catchability weight Pr(zbot)= qmin+ (1− qmin)
log10(zmax)−log10(zbot)

log10(zmax)−log10(zmean)
–

Catchability offset between communities Of(P)= 1.4 Of(D) –

1 Not detailed in the present model description; see Scherrer and Galbraith (2020). 2 Correction of catchability or cost when spatial economic parameterization is activated.

Appendix B: Global variability in surface nitrate

Figure B1. Minimum monthly sea surface nitrate concentration (in µM) from the World Ocean Atlas (Locarnini et al., 2006).
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Appendix C: Spatial variation of costs

The cost of fishing varies by fishing gear and by targeted fish
community (Lam et al., 2011). To best constrain spatially
variable costs we use estimates of these separate fishing costs
in the high seas for the main gear types (98 % of total ef-
fort) following data reported by Sala et al. (2018). Table C1
summarizes these estimated costs. These compare with the
BOATS default fishing cost of 5.85 USDW−1 yr−1 (Carozza
et al., 2017; Galbraith et al., 2017). We defined spatially vari-
able costs as a function of distance to the coast dcoast and
depth of the seafloor zbot. Figure C1a illustrates the profile of
distance-dependent costs and Fig. C1b the profile of depth-
dependent costs (in USDW−1 yr−1).

Table C1. Cost of fishing the high seas based on estimates from Sala et al. (2018) for the year 2016.

Gear type Effort in kWh (fraction of total) Cost range in USD Cost per unit effort in USDW−1 yr−1

Trawlers 979× 106 (15 %) [750× 106–1030× 106] [6.7–9.2]
Longliners 3719× 106 (55 %) [2523× 106–3023 106] [6.0–7.1]
Purse seiners 394× 106 (6 %) [702× 106–1188× 106] [15.7–26.0]
Squid jiggers 1490× 106 (22 %) [1308× 106–1616× 106] [7.7–9.5]

Range for all gears (98 %) – [6.94–8.87]

BOATS default – – 5.85

Figure C1. Cost per unit effort profiles ccoor
k

in the global ocean (in USDW−1 yr−1) (a) as a function of distance to the nearest coast

ccoor
k
= cdist

k
and (b) as a function of depth of the seafloor ccoor

k
= c

depth
k

.
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Appendix D: Spatial variation of catchability

Technology coefficients vary between gears (Palomares and
Pauly, 2019), and gears are predominantly used in separate
regions of the global ocean (Kroodsma et al., 2018; Kerry
et al., 2022). Ultimately this can lead to spatially heteroge-
neous catchability of fish resources.

In order to better constrain the catchability, we use the
reported difference of technology coefficients by gear esti-
mated in 1995 and a coarse estimation of the contribution
of each gear to the global fishing effort from 2015 through
2020 as reconstructed by Global Fishing Watch (GFW; see
Kroodsma et al., 2018). Depending on the functional type
predominantly targeted by a gear, pelagic vs. demersal, we
estimate the mean technology coefficients for pelagic species
to be Of(P)= 1.3 compared to Of(D)= 0.9 for demersal
species (see Table D1).

Based on the observation that a dominant part of fishing
effort on pelagic species by longliners occurs near seamounts
(Kerry et al., 2022), we adjust the spatial catchability as a
function of the depth of the seafloor such that it varies from
a minimum of Pr(zbot)= 0.8 over deep seafloors (e.g., for
tuna seiners; Table D1) to Pr(zbot)= 2.4 in shallow regions
(such that the global mean is 1.3). Figure D1 illustrates the
reference profile of technology coefficients Pr(zbot) used for
the analysis.

Table D1. Technology coefficient per fish community. The coefficients per gear are based on reported values in Palomares and Pauly (2019).
Each gear is linked to the dominant resource it targets, pelagic (Pel) or demersal (Dem), and associated with the fraction of global fishing
effort from 2015 through 2020, as reported by Global Fishing Watch. We reported the mean technological coefficient weighted with effort
by gear, when available.

Gear type (fraction of GFW effort) Dominant target (Pel vs. Dem) Technology coefficient 1995 (normalized)

Super trawlers (–) Pel 1.3
Tuna seiner (1.1 %) Pel 0.8
Freeze trawler (–) Pel 1.0
Tuna longliner (–) Pel 1.2
Purse seiner (2.2 %) Pel 1.0
Stern trawler (–) Pel/Dem 1.0
Longliner (19 %) Pel 1.4
Multipurpose vessel (–) Pel/Dem 1.3
Shrimp trawler (–) Dem 1.1
Trawler (48 %) Dem 0.9
Gill netter (6 %) Dem 0.8
Fast potter (0.7 %) Dem 0.7
Other (23 %) Pel/Dem –

Mean pelagic (22 %) Pel 1.3
Mean demersal (55 %) Dem 0.9
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Figure D1. Relative technology coefficient profiles Pr(zbot) in the global ocean.

Appendix E: Large marine ecosystems and high seas
ecosystems

Figure E1. Regional masks used to compare observations and simulations. (a) Large marine ecosystems. (b) High seas ecosystems adapted
from Weber et al. (2016).

Appendix F: Pelagic and demersal catches

Table F1. The Sea Around Us (Pauly et al., 2020) functional types associated with pelagic and demersal catches.

Catch type SAU functional types

Pelagic pelagic s/m/l
bathypelagic s/m/l
cephalopods

Demersal demersal s/m/l
reef-associated s/m/l
benthopelagic s/m/l
bathydemersal s/l
shark s/l
flatfish s/l
ray s/l
shrimp
lobster and crab
other demersal invertebrates
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Appendix G: Global catch distribution between BOATS
versions

Figure G1. Simulated catch in the 1990s, C90s (in log10; t km−2 yr−1). (a) BOATSv1. (b) Updated version with improved ecology –
BOATSv2-Bio. (c) Final update including improved economics – BOATSv2.

Appendix H: Historical catch deepening

Figure H1. Fishing over increasingly deep seafloors. (a) Observed and (b, c) simulated mean total catch density (in log10; t km−2 yr−1) over
depth strata. Compared to observations (a), BOATSv1 (b) fails to capture the deepening, while BOATSv2 corrects it.
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Appendix I: Historical biomass variation in selected
LMEs

Figure I1. Observed and simulated biomass decline in LMEs for demersal and pelagic biomass. Each panel shows the simulated historical
fish biomass density (in gm−2) decline, averaged across the selected LME (dotted line) or averaged over 1° grid cells where observations are
available (plain line). These are compared to the range of observed biomass density per LME over years in the 2000s, indicated by the median
value (plain black lines) and the 25th and 75th percentiles (dotted black lines). Colors indicate neighboring LMEs, North American LMEs
along the east coast (green), North American LMEs along the west coast (light blue), the Gulf of Mexico and Florida LMEs (in orange), and
European LMEs (dark blue).
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