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Abstract.  Based on long-term observations at the Southern Great Plains site by the 23 

Atmospheric Radiation Measurement (ARM) program for training and validation, a 24 

deep learning model is developed to simulate the daytime evolution of boundary-layer 25 

clouds (BLCs) from the perspective of land-atmosphere coupling. The model takes 26 

ARM measurements as inputs including early-morning soundings and the diurnal-27 

varying surface meteorological conditions and heat fluxes and predicts hourly estimates 28 

as outputs including the determination of cloud occurrence, the positions of cloud 29 

boundaries, and the vertical profile of cloud fraction. The deep learning model offers a 30 

good agreement with the observed cloud fields, especially on the accuracy in 31 

reproducing cloud occurrence and base height. If substituting the inputs by reanalysis 32 

data from ERA5 and MERRA-2, the outputs of the deep learning model provide a better 33 

agreement with observation than the cloud fields extracted from ERA5 and MERRA-2 34 

themselves. From such practice, the deep learning model shows great potential to serve 35 

as a diagnostic tool on the performance of physics-based models in simulating 36 

stratiform and cumulus clouds. By quantifying biases in clouds and attributing them to 37 

the simulated atmospheric state variables versus the model parameterized cloud 38 

processes, this observation-based deep learning model may offer insights on the 39 

directions to improve the simulation of BLCs in physics-based models for weather 40 

forecasting and climate prediction. 41 

  42 
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1 Introduction 43 

Boundary layer clouds (BLCs), comprising primarily of stratiform and shallow 44 

cumuli, exert a profound influence on the Earth's radiative balance (Betts, 2009; 45 

Teixeira and Hogan, 2002; Lu et al., 2013; Golaz et al., 2002). Their formation and 46 

evolution are critically shaped by the interactions between surface, planetary boundary 47 

layer (PBL) and free troposphere (Miao et al., 2019; Berg and Kassianov, 2008; Zhang 48 

and Klein, 2013; Guo et al., 2017, 2019; Zhang et al., 2017). Numerous studies 49 

investigated the controlling factors of BLCs, highlighting the pivotal role of the land 50 

surface in modulating cloud formation and affecting the spatial and temporal 51 

distribution of low clouds (Zhang and Klein, 2010; 2013; Rieck et al., 2014; Xiao et al., 52 

2018; Lareau et al., 2018; Lee et al., 2019; Tang et al., 2019; Tao et al., 2019; Tian et 53 

al., 2022).  54 

These clouds, which frequently form in the PBL's entrainment zone, are very 55 

challenging to be simulated in weather prediction and climate modeling due to the small 56 

scales of their operating physics and the complex feedback mechanisms between land 57 

surface fluxes, PBL turbulent processes, and cloud microphysics (Miao et al., 2019; Lu 58 

et al., 2011; Fast et al., 2019; Morrison et al. 2020; Yang et al., 2018; Nogherotto et al., 59 

2016; Caldwell et al., 2021; Wang et al., 2023; Guo et al., 2019). These challenges are 60 

compounded when attempting to represent such processes in global and regional 61 

climate models, where the fine-scale interactions are often parameterized in a coarse-62 

resolution grid due to computational constraints (Bretherton et al., 2007; Zheng et al. 63 

2021; Moeng et al., 1996; Randall et al., 2003; Prein et al., 2015). In addition, different 64 
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cloud regimes exhibit complex nonlinear cloud-land interactions, which pose 65 

challenges for observational studies and modeling efforts, particularly for physical 66 

parameterizations (Tang et al., 2018; Qian et al., 2023; Sakaguchi et al., 2022; Poll et 67 

al., 2022; Tao et al., 2021). 68 

As an emerging tool, machine learning (ML) has been widely employed for a 69 

variety of environmental and atmospheric studies (e.g., McGovern et al., 2017; Gagne 70 

et al., 2019; Vassallo et al., 2020; Cadeddu et al., 2009; Molero et al., 2022; Guo et al., 71 

2024). Specifically, ML techniques are increasingly being employed to simulate and 72 

estimate convection and precipitation, which are crucial for accurate weather 73 

forecasting and climate modeling (Mooers et al., 2021; Wang et al., 2020; O'Gorman et 74 

al., 2018; Gentine et al., 2018; Zhang et al., 2021). For example, Rasp (2020) presents 75 

algorithms for the implementation of coupled learning in cloud-resolving models and 76 

the super parameterization framework. Similarly, ML tools have been applied to 77 

leverage observational data for the refinement of convection parameterizations, offering 78 

more insights into convective triggering (Zhang et al., 2021). In addition, ML has been 79 

used to emulate convection schemes and develop parameterizations using data from 80 

advanced simulations (O'Gorman and Dwyer, 2018; Gentine et al., 2018). Furthermore, 81 

Haynes et al. (2022) develop pixel-based ML-based methods of detecting low clouds, 82 

with a focus on improving detection in multilayer cloud situations and specific attention 83 

given to improving cloud characteristics. Despite the considerable advancements 84 

brought by ML, there are persistent challenges in accurately simulating the vertical 85 

structure of clouds, as well as their complex relationships with land surface.  86 



 

 5 

Southern Great Plains (SGP) site, as part of the U.S. Department of Energy 87 

Atmospheric Radiation Measurement (ARM) program, is crucial for cloud evaluation 88 

and climatology studies in modeling efforts. Recognized globally as a leading climate 89 

research facility, the ARM SGP site (36.607°N, 97.488°W) has been collecting a wealth 90 

of meteorological and radiative measurements, offering data that spans over two 91 

decades (Sisterson et al., 2016). The rich dataset from the ARM SGP site can help 92 

address persistent challenges in cloud modeling. This study leverages these extensive 93 

observations to build a deep learning model, serving as an observation-based 94 

"emulator" for simulating BLCs. Our model enhances the estimations for cloud fields 95 

of BLCs, particularly cloud occurrence, position, and fraction. Furthermore, the critical 96 

assessment of our model in comparison with existing reanalysis datasets, including 97 

MERRA-2 and ERA5, highlights the improvement in estimating cloud vertical 98 

structure. Our study analyzed the model's performance across different cloud regimes, 99 

such as stratiform and cumulus. By undertaking this endeavor, we aim to help bridge 100 

the existing gaps between field observations and modeling by a deep learning model of 101 

BLCs, thereby improving diagnostics of model performance and enriching our 102 

understanding of the BLC processes. 103 

   104 

2 Data Description  105 

2.1 Observations for the development of the deep learning model 106 

This study utilized the ARM SGP observations during 1998-2020 to serve as 107 

training, validation, and testing data for the development of the deep learning model. 108 
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Note that all the observations are collected at the central facility of SGP, a fixed location, 109 

which is different from other ML studies that use global data from reanalysis or climate 110 

model simulations (e.g., O'Gorman and Dwyer, 2018; Shamekh et al., 2023). 111 

The input data to train and validate the deep learning model include early morning 112 

sounding data and diurnal varying surface meteorological conditions and surface 113 

turbulent heat fluxes.  We take radiosondes (SONDE) measurements around 6 a.m. 114 

local time to offer thermodynamic and wind profiles in the PBL and the free atmosphere 115 

as initial conditions (Holdridge et al., 2011). SONDE launches typically took place four 116 

times per day at the SGP site, usually at 00, 06, 12, and 18 local times. Local time, 117 

defined as daylight saving time, is used consistently throughout the year. Each morning 118 

profile comprises 46 levels spanning from 0-8 km, which include levels at intervals of 119 

50 meters from 0 to 1 km, 0.1 km from 1 to 2 km, 0.25 km from 2 to 4 km, and 0.5 km 120 

from 4.5 to 8 km.  Meanwhile, the collocated surface meteorology systems (MET, 121 

Ritsche, 2011) provide a variety of meteorological measurements (i.e., temperature, 122 

relative humidity, wind, and pressure) at the surface. Surface sensible and latent heat 123 

fluxes are taken from the ARM value-added product called the best-estimate fluxes 124 

from the Bulk Aerodynamic calculations of the Energy Balance Bowen ratio 125 

measurements (BAEBBR, Cook, 2018).  126 

In addition, we also use derived variables based on observations as the input fields 127 

into the deep learning model. LCL is derived from the surface meteorology (Romps, 128 

2017), BLHparcel (boundary layer height derived from parcel methods) is calculated 129 

from the morning temperature profiles and surface air temperature (Holzworth, 1964; 130 
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Su and Zhang, 2024; Chu et al., 2019). Specifically, BLHparcel is defined as the height 131 

where the morning potential temperature profile first exceeds the current surface 132 

potential temperature by more than 1.5 K. Meanwhile, BLHSH (boundary layer height 133 

derived from sensible heat flux) is calculated from the morning temperature profiles 134 

and surface sensible heat (Stull, 1988; Su et al., 2023). 135 

For the target data of model outputs to train and validate the deep learning model, 136 

our study employs hourly cloud fraction data available from the ARM Best Estimate 137 

(ARMBE, Xie et al, 2010) dataset. This cloud fraction is developed based on the Active 138 

Remote Sensing of Clouds (ARSCL, Clothiaux et al., 2000, 2001; Kollias et al., 2020), 139 

which utilizes the best estimates from ceilometer for the lowest cloud bases and 140 

integrates micro-pulse lidar, ceilometer, and cloud radar data to define cloud tops and 141 

cloud fraction. In addition, to construct learning targets, the base of BLC is determined 142 

at the lowest altitude where the cloud fraction first exceeds 1 %, and the cloud top is 143 

identified at the point where the cloud fraction transitions from exceeding 1 % to falling 144 

below this threshold.  In multi-layer systems, the DNN model is trained based on the 145 

lowest cloud layer when it is coupled with the land surface. However, we do not exclude 146 

multiple-layer cloudy cases if their vertical fractions are continuous from the lower to 147 

upper layer.     148 

Based on ARM observations, this study develops an advanced deep-learning 149 

framework to simulate the BLCs, using detailed observational data, including SONDE 150 

profiles, surface meteorological measurements, and ARSCL, from the SGP site. This 151 

framework is designed for BLCs, placing a particular emphasis on cloud-land coupling 152 
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mechanisms. By integrating morning SONDE observations with diurnally varying 153 

surface fluxes and meteorological data, this deep learning model is capable of 154 

diagnosing the initiation and evolution of low clouds, especially those coupled with 155 

land surface processes.  156 

 157 

2.2 Classification of coupled boundary layer clouds from observations 158 

The deep learning model in this study aims to simulate BLCs strongly coupled with 159 

boundary layer and land surface processes. The classification of clouds below is to filter 160 

the BLCs based on the concept of cloud-land coupling and is important for the training 161 

and analysis of the deep learning model. Here, we treat BLCs as synonymous with land-162 

coupled clouds, in contrast to clouds that are decoupled from the PBL and land surface. 163 

 Coupled clouds are identified when the cloud base height (CBH), as derived from 164 

the ceilometer, aligns with or is below the lidar-detected PBL top height within 0.2 km, 165 

and the calculated surface-based Lifting Condensation Level (LCL, Romps, 2017) falls 166 

within a maximum allowable range of 0.7 km (Su et al., 2022). PBL height data (Su et 167 

al., 2020; Roldán-Henao et al., 2024) are available through the ARM database. This 168 

alignment is indicative of clouds that are directly influenced by surface-driven 169 

processes. Meanwhile, a cloud thickness threshold (< 4 km) is applied to ensure the 170 

occurrence of BLCs (i.e., not deep convective clouds). 171 

Within the scope of land-coupled clouds, we further classify the observed daytime 172 

BLCs into cumulus and stratiform categories following the methodology in Su et al. 173 

(2024). Stratiform cloud days are identified by prolonged overcasting conditions during 174 
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the daytime, lasting more than three hours, with the maximum cloud fraction exceeding 175 

90 % based on ARSCL data. For cumulus cloud days, two criteria are applied: (1) cloud 176 

formations emerge after sunrise, ensuring that they are driven by local convective 177 

processes, and (2) there is an absence of stratiform clouds. Based on these criteria, we 178 

identified 940 days categorized under the cumulus regime, distributed as 21 %, 56 %, 179 

17 %, and 6 % across Spring, Summer, Fall, and Winter, respectively. Similarly, we 180 

identified 657 days falling within the stratiform clouds regime, with respective seasonal 181 

distributions of 37 %, 12 %, 23 %, and 28 %. Note that this cloud regime classification 182 

is done on a daily basis. To maintain clarity in our analysis, we excluded days with 183 

mixed cloud regimes, focusing only on days that exhibit only stratiform or cumulus 184 

clouds during the daytime.  185 

 186 

2.3 Reanalysis data for the application of the deep learning model 187 

To demonstrate how to use the deep learning model, we take advantage of 188 

reanalysis datasets from the European Centre for Medium-Range Weather Forecasts' 189 

fifth-generation global reanalysis (ERA5, Hersbach et al., 2020) and NASA's Modern-190 

Era Retrospective analysis for Research and Applications Version 2 (MERRA-2, Gelaro 191 

et al., 2017). Note that unlike observational data aforementioned, reanalysis data are 192 

not used for training the deep learning model, instead they are going to be used to help 193 

illustrate how the deep learning model may disentangle the potential causes leading to 194 

the biased cloud simulations.  195 

ERA5 provides hourly atmospheric states and cloud fraction around SGP by the 196 
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Integrated Forecasting System (IFS) and a data assimilation system at a horizontal 197 

resolution of 0.25° x 0.25° and a vertical resolution of 25 hPa in the lower atmosphere 198 

(700–1000 hPa). IFS employs a prognostic cloud scheme capable of capturing the 199 

evolution of cloud dynamics over consecutive time steps (Tiedtke, 1993), a feature that 200 

enhances its utility in time-dependent climate studies.  201 

MERRA-2 provides hourly low cloud fraction and 3-hourly vertical cloud 202 

fraction profiles at a spatial resolution of 2/3° (longitude) × 1/2° (latitude). MERRA-203 

2 is based on the Goddard Earth Observing System Data Assimilation System Version 204 

5 and utilizes a diagnostic cloud scheme, focusing on the immediate state of clouds 205 

(Randles et al., 2017), which are widely used in multiple studies (e.g., Yeo et al., 2022; 206 

Kuma, 2020; Miao et al., 2019).  207 

Here we acknowledge the local heterogeneity of cloud fields in the area covered 208 

by an ERA5 or MERRA-2 grid cell. This inherent discrepancy between the reanalysis 209 

data and the ARM SGP observations may arise from the difference between point-based 210 

measurements and area-based assimilated grid-averages. However, observations at the 211 

SGP site, representative of plain regions, have been widely used for evaluating models 212 

across scales from climatological and statical perspectives (e.g., Song et al., 2014; Zhao 213 

et al., 2017; Zheng et al., 2023; Zhang et al., 2017). 214 

 215 
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3 Construction of the Deep Learning Model for Boundary Layer Clouds 216 

3.1 Structure design of the deep learning model  217 

This study develops an integrated deep learning model to simulate BLC over the 218 

SGP site, whose design is illustrated in Fig. 1. Traditionally, simulating BLCs involves 219 

solving complex equations related to PBL turbulence and cloud microphysical 220 

processes. Our approach, however, leverages deep learning to bypass these intricate 221 

simulations. By using module-specific hidden layers, the deep learning model serves as 222 

an observation-based "emulator" that directly estimates BLCs from early-morning 223 

soundings and surface-related parameters. 224 

The model is purpose-built to consist of three distinct deep learning modules, each 225 

responsible for a critical aspect of the cloud simulation: 1) the determination of the 226 

BLC occurrence, 2) the height position of the cloud base, and 3) the cloud thickness 227 

and the normalized 10-layered shape of cloud fraction within cloud boundaries, which 228 

jointly yield the hourly-averaged vertical structures of BLCs. This modular approach 229 

ensures that the estimations are specific for each aspect of the BLCs. Combining cloud 230 

thickness and cloud fraction in one module is logical because the thickness for 10-231 

layered clouds varies based on cloud thickness, and thickness is potentially related to 232 

the fraction, as thicker clouds are sometimes associated with larger cloud fractions. 233 

Naturally, cloud top is considered as the cloud base plus the thickness. This separation 234 

of tasks enhances the overall reliability and clarity of the model in capturing the various 235 

characteristics of BLCs.  Note that each of the three deep learning modules is built 236 

upon a deep neural network (DNN) with multiple hidden layers.   237 
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The occurrence module, as the first step, evaluates the likelihood of cloud 238 

formation by producing a number between 0 and 1, which we call “trigger” in the 239 

following, whose value above 0.5 indicates the presence of clouds. The target data for 240 

this module is binary (0 or 1), and the model output is a continuous value between 0 241 

and 1. This occurrence information then feeds into the other two modules in parallel: 242 

one for locating cloud boundaries and the other for delineating the vertical shape of the 243 

cloud fraction in cloudy layers. While the cloud-base (or boundary) module and the 244 

fraction-thickness (or fraction) module are independent of each other, they collaborate 245 

to depict the vertical cloud fraction profile.  246 

To represent the vertical structure of BLC in the fraction-thickness module, we 247 

segmented the cloud layer from the base to the top into ten levels, with each level's 248 

thickness varying according to the overall cloud thickness. These values are then 249 

interpolated to create a continuous vertical profile of cloud fraction within the BLC 250 

boundaries, offering a detailed depiction of the cloud's vertical extent. The vertical 251 

position of the layer changes based on the predicted cloud base and top to accurately 252 

represent the vertical structure of BLCs. This dynamic approach allows the fraction 253 

module to adjust and focus on the relevant portions of cloud fraction within cloudy 254 

layers. Compared to a static height-level approach, which requires the prediction of 255 

cloud fraction across a fixed vertical extent (e.g., multiple levels between 0-6 km), our 256 

method focuses on the shape of the fraction profile. This ensures the model is not 257 

constrained by fixed vertical levels, allowing for more efficient and robust estimations. 258 

 259 
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3.2 Deep Neural Network (DNN) architecture and configuration  260 

The construction of the deep learning model uses the TensorFlow Package, 261 

developed by Google (https://www.tensorflow.org/). Each module in the deep learning 262 

model is constructed based on a separate deep neural network (DNN) respectively. The 263 

DNN architecture is designed, beginning with an input layer reflective of the selected 264 

feature set, which includes morning sounding profiles, surface meteorology and heat 265 

fluxes data, and the derived variables such as LCL, BLHparcel and BLHSH. For predicting 266 

the current hour BLC, the inputs of surface conditions include data both at the current 267 

hour and the previous hour. The input variables for training and validating the deep 268 

learning model are detailed in Table 1, including variable names, descriptions, and data 269 

sources, together with the ARMBE cloud fraction profiles as the learning target for 270 

model outputs. Normalization, a preprocessing technique, was applied to both input and 271 

target data to scale them to a zero mean and a standard deviation of one (Klambauer et 272 

al. 2017; Salimans and Kingma, 2016; Raju et al. 2020). This standardization ensures 273 

that the data is scaled to a common range and offers some benefits, such as improving 274 

the stability and efficiency of the training process.  275 

The architecture of the DNN models was structured and tailored for each module: 276 

occurrence, cloud-base, and fraction (or fraction-thickness) estimation. Each module's 277 

structure is defined by the number of neurons in its hidden layers. For the occurrence 278 

module, the structure consists of four hidden layers with 108, 64, 36, and 24 neurons, 279 

respectively. The CBH prediction module is similarly structured with four hidden layers, 280 

but consisting of 96, 56, 32, and 24 neurons, respectively. The module for predicting 281 

https://www.tensorflow.org/
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cloud fraction and thickness has a slightly simpler structure, with three hidden layers 282 

containing 56, 32, and 24 neurons, respectively. 283 

As the specific configuration, we utilized the ReLU (Rectified Linear Unit) 284 

activation function to introduce non-linearity into the DNN. L2 regularization with a 285 

strength of 0.01 is applied to mitigate overfitting by penalizing large weights and 286 

encouraging simpler models. Batch normalization is implemented at each layer to 287 

normalize the inputs, ensuring consistent data distribution and stabilizing the learning 288 

process. A dropout rate of 0.2 is used to randomly omit neuron connections during 289 

training, preventing overfitting and encouraging the network to learn more robust 290 

features. The training process was refined with early stopping, ceasing further epochs 291 

when the validation loss ceased to improve, and learning rate reduction, systematically 292 

decreasing the learning rate upon encountering plateaus in performance improvement. 293 

These callbacks were instrumental in honing the model's performance, ensuring 294 

convergence to the accurate estimation of the BLC. Neuron biases are included in the 295 

network's architecture and systematically inserted in the hidden layers (Battaglia et al. 296 

2018). The model is compiled using the Adam optimizer with an initial learning rate of 297 

0.01. The loss functions used are mean squared error for regression tasks and Binary 298 

Cross-Entropy for binary classification tasks. The batch size during training is set to 32. 299 

Early stopping with a patience of 37 epochs is implemented to prevent overfitting and 300 

to restore the best weights when the validation loss ceases to improve. 301 

 302 
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3.3 Model Training Process and Examples 303 

The construction of the deep learning model commences with the segregation of the 304 

ARM observations into a training subset (70 %) and a validation subset (30 %) during 305 

1998-2016. In addition, we save data from 2017-2020 for testing, specifically focusing 306 

on this independent period to assess the model's performance. Upon training completion, 307 

the model is then evaluated, with its performance metrics examined for accuracy and 308 

reliability. This methodical and data-driven process balances complexity with precision, 309 

culminating in a robust model capable of simulating BLC features. 310 

The modules within the deep learning model operate synergistically, with the 311 

predicted occurrence of clouds extending into the modules for cloud base and the 312 

vertical structure (i.e., cloud thickness and shape of the cloud fraction profile). As the 313 

example of the model output, Fig. 2 offers a comparative display of diurnal cloud 314 

fraction profiles over the SGP, contrasting the observed data with the simulated clouds 315 

by the deep learning model. The model accurately simulates the cloud occurrence and 316 

the CBH for these cases, aligning well with observations. However, it falls short in 317 

simulating the cloud top heights, especially significant overestimates for stratiform 318 

clouds. It also underestimates maximum cloud fractions for the stratiform clouds. The 319 

observed maximum cloud fraction for stratiform is close to 1, indicating complete 320 

coverage, however, such an aspect is not fully replicated by the deep learning model. 321 

The third case also falls into the category of stratiform clouds, characterized by an 322 

observed cloud fraction exceeding 0.9. However, the presence of multiple local maxima 323 

within the cloud fraction profile indicates a relatively complex structure. This 324 
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complexity poses a challenge to the model, as the DNN is not fully capable of capturing 325 

the internal variations within the convective system. Instead, the model tends to produce 326 

a more uniform cloud fraction across this convective system. Despite these variances, 327 

the model-derived cloud bases and occurrence demonstrate high consistency with 328 

observations, highlighting its value in the cloud simulations. 329 

 330 

3.4 Calculations of Feature Importance and Performance Metric 331 

To elucidate the significance of each input variable within our deep learning models, 332 

we implemented a permutation importance analysis. This robust, model-agnostic 333 

technique assesses each feature's influence on the model's predictive accuracy, which 334 

is crucial for assessing DNN (Date and Kikuchi, 2018; Altmann et al. 2010). In this 335 

study, the permutation importance method differs slightly for each module within the 336 

deep learning model based on whether the module’s task is regression (cloud-base and 337 

fraction-thickness) or classification (occurrence). 338 

For the modules of cloud-base and fraction-thickness, which are regression tasks, 339 

the Mean Absolute Error (MAE) serves as the performance metric. First, we perform a 340 

test run to establish a baseline performance by calculating the MAE of the module using 341 

the original, unperturbed validation datasets, which comprise early-morning sounding, 342 

surface conditions and the derived variables as the inputs. Then, for every input feature 343 

in the validation set, we disrupt its association with the target cloud fields by shuffling 344 

its values across all instances, creating a permutation of the dataset. This is executed 345 
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while maintaining the original order of other features. When performing the 346 

permutation, we shuffle the entire morning profile for each case without altering the 347 

internal height order of values within the profile. This approach ensures that while 348 

profiles are permuted across different cases, the sequential structure of height values 349 

within each profile remains intact. This method allows us to assess the importance of 350 

the profiles as coherent units, rather than disrupting their vertical structures. 351 

Furthermore, we re-run the DNN modules with the shuffled feature and all other 352 

features intact as inputs and recalculate the MAE with the new outputs. The difference 353 

between this new MAE and the baseline MAE represents the feature's importance. To 354 

ensure a comprehensive assessment, the permutation and the subsequent MAE 355 

calculation are repeated 20 times with different random shuffles for each input feature. 356 

The final importance score for each feature is then determined as the mean increase in 357 

MAE across these permutations. 358 

For the module of cloud occurrence, which is a classification task, the accuracy 359 

score is used as the performance metric. The accuracy score is a measure of the model's 360 

overall correctness and is calculated using the formula: 361 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                (1) 362 

where True Positives (TP) indicates the number of instances correctly predicted as 363 

positive; True Negatives (TN) indicates the number of instances correctly predicted as 364 

negative; False Positives (FP) indicates the number of instances incorrectly predicted 365 

as positive, and False Negatives (FN) indicates the number of instances incorrectly 366 

predicted as negative. After determining the performance metric, other procedures for 367 
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determining feature importance remain the same between regression tasks and the 368 

classification task.  369 

After determining the importance scores from the test run, in refining the model, 370 

features contributing a negligible or negative effect on performance (i.e., importance 371 

scores less than zero) are excluded to ensure only beneficial data is used. 372 

By using this methodology, Fig. 3 illustrates these importance scores from different 373 

features, underscoring the most influential factors for predicting the BLC occurrence, 374 

the cloud-base, and the thickness and the shape of the vertical fraction of BLCs. These 375 

factors are ranked from most important factors to least important factors. Notably, the 376 

importance scores are not computed as a simple sum but are determined by collectively 377 

shuffling groups of features and observing the impact on model performance. The BLC 378 

trigger of occurrence is a special factor since it is the output of the classification model. 379 

The trigger value, which indicates the likelihood of cloud occurrence, is used as an input 380 

to the estimations of cloud boundaries and fractions. Sometimes, the trigger value 381 

hovers around 0.5, indicating uncertainty about the presence of clouds. This situation 382 

often corresponds to scenarios like broken clouds or residual clouds, typically 383 

associated with relatively small cloud fractions. Incorporating the trigger value as an 384 

input for cloud fraction estimation helps the model account for these ambiguous 385 

situations, thereby enhancing its ability to estimate cloud fraction. Specifically, only 386 

trigger values greater than 0.5 indicate cloud presence and are used for cloud fraction 387 

predictions. While including the trigger value is beneficial for the cloud fraction model, 388 

it does not affect the CBH estimation. 389 
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In particular, surface relative humidity (RH), surface air temperature (T), and 390 

morning relative humidity profiles are highly influential in BLC simulations. This is 391 

consistent with previous observational and modeling studies (Zhang and Klein, 2013). 392 

Surface RH is a critical factor affecting the occurrence, CBH, and cloud fraction 393 

predictions. As the input conditions for the DNN modules, early-morning atmospheric 394 

profiles of different meteorological parameters (i.e., RH, temperature, and wind 395 

components) exert a notable impact on cloud occurrence detection and the 396 

determination of cloud fractions. Surface air temperature is shown to have a substantial 397 

effect on cloud fraction, highlighting the sensitivity of cloud simulations to near-surface 398 

thermal conditions. Meanwhile, BLHparcel demonstrates a notable impact, which is 399 

understandable since the PBLH is a critical factor for the formation of BLCs, and 400 

BLHparcel provides a good representation of PBLH. This approach also recognizes the 401 

interconnectedness of certain features and their collective contribution to the model's 402 

output. 403 

 404 

4 Boundary Layer Cloud Simulations by the Deep Learning Model 405 

4.1 The Occurrence of Boundary Layer Clouds 406 

The occurrence of BLC is a multifaceted process influenced by a variety of 407 

atmospheric parameters and surface processes. As a critical component in the formation 408 

of BLCs, we utilize the deep learning model to identify the BLC trigger using morning 409 

meteorological profiles and observed surface meteorology and fluxes. Figure 4 410 

showcases the model's proficiency in classifying the occurrences (class 1) and non-411 
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occurrences (class 0) of BLC during both a trained period and an independent period. 412 

The classification significantly affects the statistical estimation of cloud fraction, as 413 

cloud fraction is set to 0 if the trigger is less than 0.5. The confusion matrices (Luque 414 

et al. 2019) for the trained period (1998-2016) and for the independent period (2017-415 

2020) display the model's predictive performance. The matrices reveal the counts and 416 

percentages of TP, FP, TN, and FN. For the training period, we use a 70 % training and 417 

30 % validation split to ensure model validation and use the validation dataset to 418 

generate the statistics. Meanwhile, for the independence period, we use the full dataset 419 

for the validation. 420 

Figure 4a represents the trained period, the validation datasets show a high 421 

percentage of TN at 71.2 % and TP at 21.1 %, indicating that the model is accurate 422 

during the period it was trained. For the independent period (2017-2020), the model 423 

still performs well, with 71.8 % TN and 17.4 % TP (Fig. 4b). However, the rates of FN 424 

and FP are slightly higher at 5.6 % and 5.2 % respectively, which could indicate that 425 

the model is slightly less accurate when applied to data beyond its training scope. The 426 

table highlights the model's robustness, with overall accuracy rates of 92.3 % for the 427 

trained period and a slightly reduced but still substantial 89.2 % for the independent 428 

period. Moreover, for the trained period, the model achieved a high precision of 88.1 % 429 

and a recall of 81.2 %. For the independent period, the precision and recall remained 430 

reasonably high at 76.9 % and 75.6 %, respectively, demonstrating the model's effective 431 

generalization to new data. These metrics demonstrate the model's predictive 432 

capabilities and reliability for both trained and independent periods.   433 
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Figure 5 further compares the diurnal frequency of BLC occurrence between 434 

observations (OBS) and the DNN predictions for different seasons. The BLC's strong 435 

diurnal pattern is well-captured by the model, when BLC development peaks between 436 

12-16 local times, aligning closely with observed frequencies. Among different seasons, 437 

the model is notably effective in simulating the pronounced diurnal cycle of summer 438 

clouds, which are typically influenced by local convection. Conversely, the winter 439 

season exhibits a weaker diurnal pattern, likely linked to the diminished surface fluxes. 440 

The DNN tends to overestimate BLC presence in the early morning, especially for the 441 

winter season. The overall alignment between observations and the DNN module 442 

represents the model's capability of capturing the diurnal patterns of BLC formation 443 

and development. Determining the occurrence of BLC lays the foundation for the 444 

integrated simulations of BLC features.   445 

  446 

4.2 Cloud Boundaries and Fraction 447 

A key aspect of cloud modeling involves the accurate simulation of cloud 448 

boundaries and fraction, which are indicative of a cloud's vertical extent and fractional 449 

coverage at different height levels. Our deep learning model demonstrates capabilities 450 

in predicting these key attributes of BLC. 451 

Figure 6 offer the comparisons between observed values and predictions by the 452 

DNN for CBH, CTH, and cloud fraction. Similarly, as in Sect. 4.1, these comparisons 453 

are presented for both the training period (a, c, e, based on validation datasets) and an 454 
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independent period (b, d, f), revealing the model's ability to generalize beyond its initial 455 

training data. The DNN model demonstrates remarkable performance in simulating 456 

cloud base, boasting a correlation coefficient surpassing 0.9 and an MAE under 0.15 457 

km. Conversely, the model encounters challenges with CTH prediction, evidenced by 458 

a lower correlation of about 0.5 and a significantly higher MAE between 0.8 and 0.9 459 

km, aligning with case studies in Fig. 2. 460 

The discrepancy in accurately simulating CBH and CTH may stem from two main 461 

factors. Firstly, observed CBH determinations are generally more precise due to the 462 

effectiveness of laser-based methods (Pal et al., 1992), while observed CTH estimations 463 

often suffer from reduced accuracy, partly attributed to signal attenuation issues 464 

(Clothiaux et al., 2000). For the observed shallow cumulus, cloud top is often 465 

contaminated by insect signals, further complicating accurate CTH measurements 466 

(Chandra et al, 2010). Secondly, our DNN simulations are developed from the 467 

perspective of cloud-land coupling, primarily utilizing surface meteorology. This can 468 

introduce inherent limitations, as the tops of many clouds may be decoupled from 469 

surface influences despite a coupled base, potentially leading to gaps in the DNN's 470 

ability to accurately define and estimate the cloud top. 471 

The comparison of cloud fraction between observations and DNN is presented to 472 

consider the model's capability to simulate the vertical distribution of cloud coverage 473 

(Fig. 6e-f). The scatterplots comparing observed and modeled cloud fractions at 474 

individual levels in cloudy scenarios show a satisfactory correlation, with an R-value 475 
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exceeding 0.77 and an MAE around 0.15. Nevertheless, the DNN model tends to 476 

underestimate the peak cloud fraction, displaying a range up to ~0.8 compared to the 477 

full 0-1 range observed. This underestimation is intrinsically linked to the model's 478 

simulation of cloud boundaries, as both cloud fraction and cloud-base modules operate 479 

in tandem. For stratiform clouds, observational data typically exhibit a relatively 480 

uniform vertical extent with cloud fractions close to unity at the central height, whereas 481 

the DNN model tends to generate a broader, more attenuated profile with a reduced 482 

maximum cloud fraction at the center. This points to a need for refining the model's 483 

ability to replicate the pronounced peak cloud fractions characteristic of stratiform 484 

cloud profiles. 485 

The diurnal patterns of cloud base and top heights, captured through daily profiles, 486 

showcase the model's adeptness at simulating the temporal changes in cloud positions 487 

for all BLCs, the cumulus regime, and the stratiform regime (as shown in Fig. 7). These 488 

profiles, derived from both observational data and DNN outputs, include shaded regions 489 

representing the variability (one standard deviation) around the average heights. 490 

Cumulus clouds exhibit a marked diurnal cycle, whereas stratiform clouds typically 491 

maintain a relatively constant cloud boundaries and smaller variations throughout the 492 

day. A close alignment is observed between the mean and standard deviation of the 493 

cloud base between the observed and the simulated data for different cloud regimes. In 494 

contrast, while the mean cloud top heights follow a similar diurnal trend in both cases, 495 

the observed data exhibits more pronounced variabilities compared to the relatively 496 

small variabilities in the DNN simulations. 497 
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Figures 6 and 7 collectively demonstrate the model’s ability to simulate cloud 498 

boundaries and fractions within BLC. It reliably captures CBH yet encounters 499 

challenges with accurately representing cloud top heights and peak cloud fractions on 500 

an individual basis. These constraints are somewhat expected, given that even very fine-501 

scale models struggle to entirely capture the vertical extent of clouds, as evidenced in 502 

Large-Eddy Simulations or Convection-Permitting Models (Zhang et al. 2017; 503 

Gustafson et al. 2020; Bogenschutz et al. 2023). In addition to the discussion of deep 504 

learning models, we also acknowledge the role of mixed-layer (single-column) models 505 

in representing boundary layer processes (Lilly 1968, Pelly and Belcher, 2001; Clayson 506 

and Chen, 2002; Zhang et al, 2005, 2009; De Roode et al., 2014). Mixed-layer models 507 

have several advantages: they are inherently grounded in physical principles and are 508 

readily integrated into many large-scale models. These models are effective at capturing 509 

the diurnal evolution of the PBL given an initial state and time series of surface fluxes. 510 

However, the DNN approach offers distinct benefits that complement this theoretical 511 

approach. DNNs might be able to capture complex, nonlinear relationships between 512 

various controlling factors and the cloud fraction. These may be difficult to capture by 513 

the single (for the overcast stratocumulus-topped mixed layer) or multiple mixed-layer 514 

models (for the broken trade cumulus clouds), which are still subject to assumptions, 515 

e.g., on entrainment processes. By training on large observational datasets, DNNs can 516 

learn from real-world examples, potentially identifying patterns and relationships not 517 

explicitly encoded in physical models.  518 

 519 
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5 Application of the Deep Learning Model 520 

5.1 Integration with Reanalysis Datasets 521 

As shown in Sect. 4, the deep learning model can take the conventional 522 

meteorological observations (i.e. morning SONDE and surface conditions) as inputs to 523 

simulate the BLC as outputs, reasonably reproduce a good agreement with the observed 524 

vertical structures of BLCs. For its potential application, we may treat it as an “emulator” 525 

of the observed relationships between input and output variables. Here we present an 526 

example by integrating the deep learning model with ERA5 and MERRA-2 to simulate 527 

BLC with the input of early-morning profiles and surface conditions from the reanalysis. 528 

Here we ask, if inputs are treated as “reality”, what would be the expected responding 529 

cloud fraction simulated by the deep learning model, an observation-based emulator? 530 

Following these thoughts, Fig. 8 contrasts diurnal cloud fraction patterns from the 531 

observational data and the deep learning model predictions averaged over all conditions 532 

of seasons and years. Figure 8a-b present the observed cloud fractions and those 533 

simulated by the deep learning using ARM data as inputs, respectively. Panels c and e 534 

show the cloud fractions directly extracted from ERA5 and MERRA-2 reanalysis 535 

datasets, while panels d and f illustrate the simulated cloud fraction by the deep learning 536 

model using inputs from ERA (ERADNN) and MERRA (MERRADNN) reanalysis data. 537 

Observing fluctuations in surface temperature and humidity data in ERA5 for this 538 

region, we smoothed ERA5 surface air temperature and humidity data with a ±1-hour 539 

window to mitigate potential variability from assimilation before using them as input 540 

for the DNN modules. To eliminate sampling biases in comparison, we averaged only 541 
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those samples for which both observations and reanalysis are concurrently available.  542 

Note that here we adopt the deep learning model as a complementary tool rather 543 

than a replacement for any existing cloud representations in reanalysis data. The DNN 544 

outputs serve a diagnostic purpose, identifying biases in BLCs and aiding in 545 

understanding deficiencies within reanalysis data. 546 

The DNN simulations with ARM observations as inputs align closely with the ARM 547 

observed cloud fraction profiles within the 0-2 km range, reflecting the model's ability 548 

to capture land-coupled clouds. As this model is designed for diagnosing land-coupled 549 

clouds, the model does not simulate decoupled clouds, which often have bases 550 

occurring above 2-km (Su et al., 2022). Original cloud data directly from reanalysis 551 

show significant underestimations of BLC fractions, particularly evident in MERRA-2. 552 

The application of the deep learning model using reanalysis data as inputs enhances 553 

cloud fraction estimations compared to the original cloud data directly from reanalysis, 554 

demonstrating the DNN model's strength in simulating BLC. Given that the DNN 555 

model specializes in simulating BLC, when utilizing reanalysis data, the portion of 556 

cloud profiles that are decoupled are preserved as they are in the original datasets—that 557 

is, for the cloud layers above the BLC-tops or as those clouds rooted above the PBL.  558 

Furthermore, Fig. 9 provides a detailed examination of stratiform clouds, utilizing 559 

the same comparative approach as in Fig. 8. The observed stratiform clouds display a 560 

layered structure with expansive coverage and maximum cloud fractions typically 561 

exceeding 0.6. The DNN model using ARM data as inputs reproduces these observed 562 

characteristics fairly well, albeit with minor overestimations in cloud vertical extent. 563 



 

 27 

Conversely, the original ERA5 and MERRA-2 stratiform cloud data exhibit limitations, 564 

particularly in underestimating cloud fraction. The integration of the DNN model with 565 

reanalysis data as inputs enhances the estimations of stratiform cloud fractions, as 566 

depicted in the heatmaps of Fig. 9, showcasing improved agreement with observational 567 

data and underscoring the enhancement potential for cloud fraction simulations in 568 

reanalysis datasets. 569 

In addition, Fig. 10 extends the comparative study to cumulus clouds. Cumulus 570 

clouds pose significant challenges for modeling and parameterization partly due to their 571 

typically small spatial extent compared to the model grid, often spanning from a few 572 

hundred meters to several kilometers (Zhang et al. 2017; Tao et al., 2021; Bogenschutz 573 

et al. 2023; Gustafson et al. 2020). In line with expectations, the original ERA5 and 574 

MERRA-2 cloud fields exhibit significant biases in representing cumulus clouds when 575 

compared to observational data. In contrast, the DNN model with ARM data as inputs 576 

achieves commendable success in capturing the diurnal variability of cumulus clouds, 577 

including cloud base, vertical extension, and cloud fraction, by leveraging local 578 

convective signals derived from surface meteorology data. When the DNN model is 579 

integrated with ERA5 as inputs, it significantly improves the estimation of vertical 580 

cloud fields of cumulus. However, the original MERRA-2 data, which tend to overlook 581 

the majority of cumulus clouds, continue to significantly underrepresent them even 582 

after the application of DNN, suggesting that additional biases in the input variables 583 

such as meteorological factors may contribute to this discrepancy. 584 

The integration of deep learning with ERA5 and MERRA-2 reanalysis datasets 585 
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demonstrates the notable refinement in the simulation of BLC, and achieves more 586 

accurate estimations of cloud fractions for both stratiform and cumulus clouds. 587 

 588 

5.2 Applying Deep Learning for Bias Attribution in Cloud Simulation 589 

We further examine the remaining disparities in cloud fraction simulations within 590 

reanalysis datasets, despite the integration of deep learning models (as shown in Figs. 591 

8-10), indicating persisting meteorological biases. Deep learning is utilized to quantify 592 

and attribute these biases for BLC simulations. 593 

Figure 11 offers a comparative analysis of vertical cloud fraction profiles for both 594 

stratiform and cumulus clouds. It presents cloud fractions directly taken from reanalysis 595 

data (RD), including ERA5 and MERRA-2, and their corresponding deep learning-596 

informed simulations. While the application of deep learning to use reanalysis data as 597 

inputs (RDDNN) yields improvements, remaining cloud biases are evident, particularly 598 

in MERRA-2. Acknowledging the significant influence of surface RH on BLC 599 

simulations (as indicated by Fig. 3e, we refine the inputs into the DNN model by 600 

replacing the reanalysis surface RH with the ARM observed surface RH (the model 601 

output is labeled as RDDNN-RH). This modification leads to a much better simulation for 602 

MERRA-2, closing the gap with observational data, especially for stratiform clouds. 603 

For ERA5, RDDNN-RH and RDDNN show negligible differences for cumulus clouds, but 604 

for stratiform clouds, RDDNN-RH also exhibits a reduced bias. These refined profiles of 605 

cloud fraction attest to the benefits of using the observed surface moisture data as input, 606 

confirming its important role in achieving a more accurate representation of BLC. 607 



 

 29 

With such methodology, we may further dissect the bias in cloud fraction 608 

simulations attributed to various meteorological factors and the parameterization 609 

schemes within ERA and MERRA reanalysis datasets: 610 

𝐵𝑖𝑎𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = |𝑅𝐷 − 𝑂𝐵𝑆| − |𝑅𝐷𝐷𝑁𝑁 − 𝑂𝐵𝑆|          (2) 611 

𝐵𝑖𝑎𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑅𝐻 = |𝑅𝐷𝐷𝑁𝑁 − 𝑂𝐵𝑆| − |𝑅𝐷𝐷𝑁𝑁−𝑅𝐻 − 𝑂𝐵𝑆|          (3) 612 

where RD and OBS are the cloud fraction taken directly from reanalysis data and 613 

observations, respectively. The definitions of RDDNN and RDDNN-RH are the same as the 614 

above. For getting a representative value, these biases are layer-averaged from 0-4 km 615 

over different local times, and then normalized by the observed mean cloud fraction, 616 

offering a climatological perspective on the discrepancies between observed and 617 

simulated data across seasons and years. For equation (2), we assume that the 618 

climatology of observations used as input to the DNN model (OBSDNN) matches the 619 

observed cloud fraction climatology (i.e., OBSDNN≈OBS), which has been 620 

demonstrated in Figs. 9-11. Therefore, we exclude the term representing the difference 621 

between the DNN-predicted observations and the actual observations. This assumption 622 

justifies our approach by ensuring the input observations align with the observed cloud 623 

fraction in equations. 624 

We get the bias attributed to different meteorological factors and parameterization 625 

schemes in the ERA5 and MERRA-2 datasets, respectively (Fig. 12).  Each bar 626 

indicates the normalized bias contributed by factors such as morning meteorological 627 

profiles, surface pressure, surface fluxes, various surface meteorology variables, and 628 

parameterization schemes. Notably, parameterization stands out as a significant 629 
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contributor to bias, accounting for 14.45 % and 19.05 % of the discrepancy in stratiform 630 

clouds between observations versus ERA5 and MERRA-2 respectively. For cumulus 631 

clouds, the parameterization biases are more pronounced, contributing 22.23 % and 632 

30.94 % for ERA5 and MERRA-2, respectively.  633 

In addition to parameterization, RH, RH profiles, and sensible heat are identified as 634 

major factors contributing to the differences between observations and reanalysis data. 635 

For instance, aligning MERRA-2's RH with observed surface RH could potentially 636 

reduce bias by 23.13 % for stratiform and 10.26 % for cumulus clouds. Meanwhile, 637 

surface RH and morning RH profiles in ERA5 lead to 11.25 % and 3.96 % of biases for 638 

the stratiform clouds. The bias between ERA5 and observed cumulus clouds is largely 639 

driven by parameterization, which suggests that employing the DNN model with ERA5 640 

can lead to a more accurate simulation of cumulus clouds. 641 

The detailed bias attribution analysis facilitated by the deep learning model 642 

elucidates the individual impact of meteorological factors on the discrepancies in cloud 643 

fraction between observations and reanalysis data. It underscores the necessity for more 644 

accurate humidity data within reanalysis datasets to refine BLC simulations. 645 

Furthermore, this deep learning approach illuminates pathways for improved 646 

parameterization of boundary layer convection. 647 

 648 

6. Summary  649 

This study has developed a deep learning model to estimate the evolution of BLCs 650 

over the SGP. The model utilizes over two decades of meteorological data to simulate 651 
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BLC formation and characteristics, including the occurrence of BLCs, cloud boundaries, 652 

and vertical structures of cloud fraction. As this model is built based on the perspective 653 

of cloud-land coupling, the DNN approach demonstrates the capability to diagnose 654 

land-coupled convective systems from early-morning sounding and surface conditions. 655 

The DNN model is built on the cloud-land interactions and serves as the testimony for 656 

the coupling between BLCs and the land surface. The proficiency and reliability of the 657 

DNN model are evident in its robustness during both the training period and the 658 

subsequent independent periods. The deep learning model addresses the simulation of 659 

cloud vertical structure, among one of the key challenges in physics-based large-scale 660 

models. It should be noted that the current DNN model cannot produce detailed cloud 661 

microphysics and turbulence information. We propose using the DNN model alongside 662 

traditional physical models to obtain comprehensive information on BLCs.  663 

The application of this model on the reanalysis datasets like ERA5 and MERRA-2 664 

has resulted in enhanced cloud field estimations for stratiform clouds and cumulus, and 665 

an accurate vertical structure of clouds in terms of climatology, providing a promising 666 

diagnostic tool for improving weather forecasting and climate modeling. The deep 667 

learning model notably addresses the limitation in cumulus simulations in the reanalysis 668 

data, Meanwhile, this approach is much more cost-effective compared to traditional 669 

parameterizations and schemes at various scales, as it can simulate two decades of 670 

BLCs with vertical information over the SGP within 1-minute using a single GPU node.  671 

In addition to the BLC simulations, the deep learning model developed in this study 672 

also is used to attribute discrepancies between observational data and reanalysis 673 
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datasets to different meteorological factors. Besides parameterization, surface RH, 674 

morning RH profiles, and surface sensible heat are the three major factors that lead to 675 

the mismatches in BLC representation in ERA5 and MERRA-2. These findings 676 

underscore the importance of incorporating more accurate humidity information in 677 

reanalysis datasets, which is crucial for refining BLC simulations. This analysis also 678 

sheds light on the necessity to update reanalysis datasets with improved 679 

parameterization of boundary layer convection.  680 

Moving forward, future work is warranted to test and extend this diagnostic tool to 681 

different synoptic patterns over a large region, which can be integrated into multiple-682 

scale models or reanalysis data. However, several challenges need to be addressed to 683 

achieve this. One significant limitation is the lack of high-quality, detailed observations 684 

of clouds and radiosonde profiles globally. This scarcity of data can hinder the model's 685 

ability to generalize effectively across different regions. To overcome this, there are 686 

several potential strategies. First, using transfer learning techniques can help adapt the 687 

model trained in one region to other regions with limited data. Integrating data from 688 

global observational networks (i.e., ARM) can also create a more diverse and 689 

representative training dataset, capturing a wider range of atmospheric conditions and 690 

cloud characteristics. Meanwhile, leveraging satellite data can provide broader 691 

coverage and enhance the robustness of the model. We plan to explore these approaches 692 

in future work to enhance the model's performance and applicability on a global scale. 693 

 694 

 695 
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Code and data availability. The code package of DNN models and for the simulation 696 

outputs of BLCs from observed meteorological data and ERA5 and MERRA-2 is 697 

available under the GNU General Public License v3.0 at 698 

https://doi.org/10.5281/zenodo.10719342 (Su, 2024). ARM radiosonde data, surface 699 

fluxes, and cloud masks are available at 700 

https://adc.arm.gov/discovery/#/results/instrument_class_code::armbe (ARM user 701 

facility, 1994). ARSCL (Active Remote Sensing of Clouds) can be found in 702 

https://adc.arm.gov/discovery/#/results/instrument_class_code::arscl (ARM user 703 

facility, 1996). MERRA-2 reanalysis data can be downloaded obtained from 704 

https://disc.gsfc.nasa.gov/datasets/M2T1NXRAD_5.12.4/summary?keywords%E2%8705 

0%89=%E2%80%89MERRA-2%20tavg1_2d_rad_Nx (GMAO, 2015). ERA5 706 

reanalysis data are obtained from 707 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-708 

levels?tab=form (Hersbach et al. 2023). 709 
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TABLE LIST: 1073 

Table 1: Detailed descriptions of input and output variables used in the deep learning 1074 

models for predicting boundary layer clouds (BLCs). The table includes the variable 1075 

names, descriptions, and data sources. For the input parameters, surface meteorology 1076 

and fluxes are taken from the current and previous hours, while morning profiles 1077 

comprises 46 values spanning from 0-8 km at 06 LT. Note that the output data is derived 1078 

from ARSCL (Active Remote Sensing of Clouds). The three outputs correspond to the 1079 

trigger module, cloud-base module, and fraction-thickness module, respectively.  1080 

Variable Description Data Source 

Input 

Month Range from 1-12 Time Record 

LT Local Time Time Record 

PS Pressure at surface level (2m) Surface Meteorology Station 

RH Relative Humidity at 2m Surface Meteorology Station 

U Zonal wind at 2m Surface Meteorology Station 

V Meridional wind at 2m Surface Meteorology Station 

T Temperature at 2m Surface Meteorology Station 

LCL Lifted Condensation Level Derived from T, RH, PS 

SH Sensible Heat Energy Balance Bowen Ratio 

LH Latent Heat Energy Balance Bowen Ratio 

RH Profile Morning RH profiles Radiosonde 

U Profile Morning U wind profiles Radiosonde 

V Profile Morning V wind profiles Radiosonde 

θ Profile 
Morning potential temperature 

profiles 
Radiosonde 

BLHSH PBLH derived from sensible heat Derived from θ Profile and SH 

BLHParcel 
PBLH derived from parcel 

method 
Derived from θ Profile and T 

Output 

Trigger Cloud occurrence ARSCL 

Position Cloud-base height ARSCL 

Fraction Profiles Cloud fraction and thickness ARSCL 

 1081 
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Figures 1094 

 1095 

Figure 1: Conceptual diagram of the deep learning framework for simulating boundary 1096 

layer cloud (BLC) characteristics over the US Southern Great Plains. Inputs for the deep 1097 

neural networks (DNN) include morning meteorological profiles from radiosonde 1098 

(SONDE), time indicators (i.e., local time and month), and surface conditions such as 1099 

fluxes (curved black arrows) and meteorological data. The relevance of relative 1100 

humidity (RH) profiles and the planetary boundary layer (PBL) top is emphasized due 1101 

to their critical role in BLCs development. These variables are processed through 1102 

multiple layers of hidden neurons (h11 to hMK). Both input and output parameters are 1103 

hourly, except for the morning SONDE. Separate DNN modules are constructed for 1104 

each task: Module 1 handles the initiation (trigger) of BLC; Module 2 estimates the 1105 

cloud base; and Module 3 estimates cloud fraction and thickness. Together, these 1106 

models synergize to predict the presence, altitude, and stratification of BLC. 1107 
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 1108 

Figure 2: Examples of diurnal cloud fraction profiles for cumulus (a, b), stratiform (c, 1109 

d), and complex cloud structures (e, f) over the US Southern Great Plains. Observed 1110 

data (OBS) are shown alongside deep learning neural network (DNN) simulations. 1111 

Black lines represent the observed PBL height (PBLH), with cloud base (CBH) and 1112 

cloud top heights (CTH) marked by pink and red dots, respectively. The color gradient 1113 

indicates the cloud fraction. 1114 
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 1115 

Figure 3. Feature importance scores for predicting cloud occurrence (a), cloud base 1116 

height (CBH) (b), and cloud fraction (c) in the deep learning simulations of BLCs. Each 1117 

panel presents the relative contribution of input features, includes month, local time 1118 

(LT), surface pressure (PS), relative humidity (RH), zonal (U) and meridional (V) wind 1119 

components, temperature (T), lifting condensation level (LCL), boundary layer height 1120 

derived from sensible heat (BLHSH) and parcel methods (BLHParcel), sensible heat (SH), 1121 

latent heat (LH), and morning profiles of relative humidity (R Profile), U wind (U 1122 

Profile), V wind (V Profile), and potential temperature (θ Profile). These factors are 1123 

ranked based on their overall importance. The importance scores are calculated with 1124 

permutation method and quantify the relative contribution of each feature to the model's 1125 

predictive accuracy. 1126 
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 1127 

Figure 4: Confusion matrices on the classification performance of the deep learning 1128 

model in predicting the occurrence of boundary layer clouds (BLCs) during the trained 1129 

period (1998-2016) in panel (a), and the independent period (2017-2020) in panel (b). 1130 

The matrices in the trained period are calculated using the 30 % dataset for the 1131 

validation. The matrices in the black color display the counts and percentages of true 1132 

positive (TP), false positive (FP), true negative (TN), and false negative (FN) 1133 

predictions. The overall accuracy, precision, and recall scores for each class are also 1134 

included, demonstrating the model's ability in identifying BLC occurrence. 1135 
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 1136 

Figure 5. Bar graph comparison on the occurrence frequency of boundary layer clouds 1137 

(BLC) between the observed (OBS, red) and the predicted by the deep learning neural 1138 

network (DNN, blue) across different local times of the day, segmented by seasons: (a) 1139 

MAM (Spring), (b) JJA (Summer), (c) SON (Fall), and (d) DJF (Winter).  1140 

 1141 

 1142 

 1143 
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 1144 

Figure 6. Scatter density comparison between the observed (OBS) and the predicted 1145 

values by the deep learning neural network (DNN) for cloud base height (CBH), cloud 1146 

top height (CTH), and cloud fraction during the trained period (a, c, e) and an 1147 

independent period (b, d, f). Note that the BLC is segmented into ten layers, yielding 1148 

ten separate cloud fraction values per BLC instance for analysis. The correlation 1149 

coefficient (R) and mean absolute error (MAE) are indicated for each comparison. The 1150 

color scale represents the normalized density of data points. The solid lines and error 1151 

bars denoting the linear regression and standard deviations in each bar.  1152 
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 1153 

Figure 7. Diurnal profiles of cloud base height (CBH) and cloud top height (CTH) as 1154 

determined by the observations (OBS) and deep learning simulations for all BLC (a-b), 1155 

stratiform clouds (c-d), and cumulus (e-f). The shaded areas represent the variability 1156 

(one standard deviation) around the mean heights. 1157 
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 1158 

Figure 8. Color shaded areas demonstrate the diurnal variation in cloud fraction for all 1159 

cases as observed and simulated. Panel (a) shows the observed cloud fraction (OBS), 1160 

while panel (b) illustrates the cloud fraction simulated by the deep learning neural 1161 

networks (DNN) using ARM observational data as inputs. (c, e): cloud fractions direcly 1162 

extracted from ERA and MERRA reanalysis datasets, respectively. (d, f): the cloud 1163 

fractions simulated by the DNN model using ERA (ERADNN) and MERRA 1164 

(MERRADNN) data as inputs.  1165 
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 1166 

Figure 9. Same to Figure 8, but for stratiform clouds. 1167 
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 1168 

Figure 10. Same to Figure 8, but for cumulus. 1169 

 1170 
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 1171 

 1172 

Figure 11: Vertical profiles of cloud fraction for stratiform (St) and cumulus (Cu) 1173 

scenarios over the US Southern Great Plains. Panels (a) and (b) display ERA reanalysis 1174 

data comparisons, while panels (c) and (d) show MERRA reanalysis data comparisons. 1175 

The observed cloud fractions (OBS) are represented by the shaded grey area, illustrating 1176 

the averaged cloud coverage recorded by field observations. The original reanalysis 1177 

data (RD) is indicated in pink, indicating the baseline cloud fraction profiles as 1178 

simulated by the reanalysis. The RDDNN profiles in blue depict the new simulation 1179 

results after applying the DNN models to the reanalysis data for boundary layer cloud 1180 

(BLC) simulation. The RDDNN-RH profiles in green show the simulation results when 1181 

the surface relative humidity (RH) from the reanalysis data is replaced with observed 1182 

values, indicating the impact of accurate surface moisture representation on cloud 1183 

fraction simulations. 1184 
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 1185 

Figure 12: Attribution of bias between observed and reanalysis on cloud fractions to 1186 

various meteorological factors and parameterization schemes for stratiform (a) and 1187 

cumulus (b) cloud scenarios. The bars represent the normalized bias (bias divide mean 1188 

cloud fraction) contributed by each factor: relative humidity profile (RH), meridional 1189 

wind profile (V Profile), temperature profile (T Profile), zonal wind profile (U Profile), 1190 

surface pressure (SP), latent heat flux (LH), and parameterization (P). All profiles took 1191 

on morning (06:00 LT). Light blue bars indicate biases identified in the ERA reanalysis 1192 

dataset, while pink bars represent biases in the MERRA reanalysis dataset. The dashed 1193 

red line marked 'P' denotes biases attributed specifically to the parameterization within 1194 

the reanalysis models. This analysis uses the DNN to discern the impact of each factor 1195 

(ranked from highest to lowest) on the discrepancy in cloud fraction estimates between 1196 

observations and reanalysis models. 1197 


