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Abstract. This study developed  Based on long-term observations at the Southern Great 23 

Plains site by the Atmospheric Radiation Measurement (ARM) program for training 24 

and validation, a deep learning model is developed to simulate the complex 25 

dynamicsdaytime evolution of boundary -layer clouds (BLCs) over the US Southern 26 

Great Plains. Using over twenty years of extensive observations from the Atmospheric 27 

Radiation Measurement program for training and validation, the model diagnoses the 28 

BLCs from the perspective of cloud-land-atmosphere coupling. Morning The model 29 

takes ARM measurements as inputs including early-morning soundings and the diurnal-30 

varying surface meteorological profiles set as the initial conditions and then identifying 31 

triggers for BLCs formation from surface meteorology.heat fluxes and predicts hourly 32 

estimates as outputs including the determination of cloud occurrence, the positions of 33 

cloud boundaries, and the vertical profile of cloud fraction. The deep learning model 34 

offer accurate simulation of the convection initiation and cloud base of BLCs. In 35 

comparisonoffers a good agreement with the observed cloud fields, especially on the 36 

accuracy in reproducing cloud occurrence and base height. If substituting the inputs by 37 

reanalysis data (i.e.,from ERA-5 and MERRA-2), it provides a notable improvement in 38 

the vertical structure, the outputs of low clouds from a climatological perspective. The 39 

the deep learning model can provide a better agreement with observation than the cloud 40 

fields extracted from ERA-5 and MERRA-2 themselves. From such practice, the deep 41 

learning model shows great potential to serve as the cloud parameterization and extend 42 

to analyzinga diagnostic tool on the performance of physics-based models performance 43 

in simulating stratiform and cumulus clouds within reanalysis frameworks, offering . 44 
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By quantifying biases in clouds and attributing them to the simulated atmospheric state 45 

variables versus the model parameterized cloud processes, this observation-based deep 46 

learning model may offer insights into improvingon the directions to improve the 47 

simulation of BLCs. By quantifying biases due to various meteorological factors and 48 

parameterizations, this deep learning-driven approach bridges the observational-49 

modeling divide. Surface humidity and parameterization emerge as key limiting factors 50 

to affect the representation of BLCs in the reanalysis data. This deep learning approach 51 

holds promise for improving the convection parameterization and advancing model 52 

diagnostics in  in physics-based models for weather forecasting and climate 53 

modelling prediction. 54 

  55 
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1 Introduction 56 

Boundary layer clouds (BLCs), comprising primarily of stratiformsstratiform and 57 

shallow cumuli, exert a profound influence on the Earth's radiative balance and climate 58 

system (Betts, 2009; Teixeira and Hogan, 2002; Lu et al., 2013; Golaz et al., 2002). 59 

Their formation and evolution within the planetary boundary layer (PBL) are critically 60 

shaped by the interactions between surface processes, planetary boundary layer the 61 

(PBL) and atmospheric dynamicsfree troposphere (Miao et al., 2019; Berg and 62 

Kassianov, 2008; Zhang and Klein, 2013; Guo et al., 2019; Zhang et al., 2017). These 63 

clouds, which frequently form in the PBL's entrainment zone, are the critical part for 64 

weather prediction and climate modeling, holding the key to understanding land-65 

atmosphere interactions (Caldwell et al., 2021; Bretherton et al., 2007; Wang et al., 2020, 66 

2023; Moeng et al., 1996; Su et al. 2023; Zhang and Klein, 2010; Guo et al., 2019). 67 

Numerous studies have been dedicated to investigateding the dynamicscontrolling 68 

factors of boundary layer cloudsBLCs, highlighting the pivotal role of the land surface 69 

in modulating cloud formation and affecting the spatial and temporal distribution of 70 

low clouds (Zhang and Klein, 2010; 2013; Rieck et al., 2014; Xiao et al., 2018; Lareau 71 

et al., 2018; Lee et al., 2019; Fast et al., 2019b; Tang et al., 2018; Tang et al., 2019; Tao 72 

et al., 2019; Tian et al., 2022; Qian et al., 2023). Despite considerable advancements).  73 

These clouds, which frequently form in observations and the PBL's entrainment 74 

zone, are very challenging to be simulated in weather prediction and climate modeling 75 

capabilities, simulating the boundary layer clouds remains a significant challenge, 76 

largely due to the small scales of their operating physics and the complex feedback 77 
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mechanisms between land surface fluxes, PBL turbulent processes, and cloud 78 

microphysics (Miao et al., 2019; Lareau et al., 2018; Lu et al., 2011; Fast et al., 2019a; 79 

Wang2019; Morrison et al., 2014. 2020; Yang et al., 2018; Nogherotto et al., 20162016; 80 

Caldwell et al., 2021; Wang et al., 2023; Guo et al., 2019). These challenges are 81 

compounded when attempting to represent such processes in global and regional 82 

climate models, where the fine-scale interactions are often parameterized in a coarse-83 

resolution grid due to computational constraints (Bretherton et al., 2007; Moeng et al., 84 

1996). In addition, different cloud regimes exhibit variedcomplex nonlinear cloud-land 85 

interactions that complicate their representation and present, which pose challenges for 86 

observational studies and modeling efforts, particularly for physicalempirical 87 

parameterizations (Tang et al., 2018; Qian et al., 2023; Sakaguchi et al., 2022; Poll et 88 

al., 2022; Tao et al., 2021). 89 

As an emerging tool, machine learning (ML) has been widely employed for a 90 

variety of environmental and atmospheric studies (e.g., McGovern et al., 2017; Gagne 91 

et al., 2019; Vassallo et al., 2020; Cadeddu et al., 2009; Molero et al., 2022; Guo et al., 92 

2024). Specifically, ML techniques are increasingly being employed to simulate and 93 

estimate convection and precipitation, which are crucial for accurate weather 94 

forecasting and climate modeling (Mooers et al., 2021; Wang et al., 2020; O'Gorman et 95 

al., 2018; Gentine et al., 2018; Zhang et al., 2021). For example, Rasp (2020) presents 96 

algorithms for the implementation of coupled learning in cloud-resolving models and 97 

the super parameterization framework. Similarly, ML tools have been applied to 98 

leverage observational data for the refinement of convection parameterizations, offering 99 
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more insights into convective triggering (Zhang et al., 2021). dynamicsIn addition, ML 100 

has been used to emulate convection schemes and develop parameterizations using data 101 

from advanced simulations (O'Gorman et al.,and Dwyer, 2018; Gentine et al., 2018; ). 102 

FurthermoreZhang et al., 2021). Moreover, Haynes et al. (2022) develop pixel-based 103 

ML-based methods of detecting low clouds, with a focus on improving detection in 104 

multilayer cloud situations and specific attention given to improving the cloud 105 

characteristicszation. 106 

. Despite the considerable advancements brought by ML, there are persistent 107 

challenges in accurately simulating the vertical structure of clouds, as well as their 108 

complex relationships with land surface. To address these complexities, this study 109 

developed an advanced deep-learning framework to simulate the BLCs, using 110 

comprehensive data from the Atmospheric Radiation Measurement (ARM) program at 111 

the Southern Great Plains (SGP) site. This framework is designed to simulate the 112 

triggers, progression, and structural structure of boundary layer clouds, placing a 113 

particular emphasis on cloud-land coupling mechanisms. By assimilating morning 114 

radiosonde observations with diurnal-varying surface fluxes and meteorological data, 115 

this deep learning model is uniquely positioned to unravel the complex initiation and 116 

evolution of low clouds, especially those coupled with land surface processes..  117 

Southern Great Plains (SGP) site, as part of the U.S. Department of Energy 118 

Atmospheric Radiation Measurement (ARM) program, is crucial for cloud evaluation 119 

and climatology studies in modeling efforts. Recognized globally as a leading climate 120 

research facility, the ARM SGP site (36.607°N, 97.488°W) has been collecting a wealth 121 
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of meteorological and radiative measurements, offering data that spans over two 122 

decades (Sisterson et al. 2016). The rich dataset from the ARM SGP site can help 123 

address persistent challenges in cloud modeling. This study leverages these extensive 124 

observations to build a deep learning model, serving as an observation-based 125 

"emulator" for simulating BLCs. Our model enhances the estimations for cloud fields 126 

of BLCs, particularly cloud occurrence, position, and fraction. Furthermore, the critical 127 

assessment of our model in comparison with existing reanalysis datasets, including 128 

MERRA-2 and ERA-5, highlights the improvement in representingestimating cloud 129 

vertical structure. Our study analyzed the model's performance across variousdifferent 130 

cloud regimes, such as stratiform and cumulus. By serving as the cloud 131 

parameterization in the reanalysis data, this model advanced the capability of low cloud 132 

simulations within reanalysis frameworks. By undertaking this endeavor, we striveaim 133 

to narrowhelp bridge the existing gaps in boundary layer cloudsrepresenting BLCs 134 

between field observations and modeling by a deep learning model of BLCs, thereby 135 

improving diagnostics of model performance and enriching our understanding of the 136 

BLCconvective processes. 137 

   138 
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2 Data and instrumentsDescription  139 

2.1 Comprehensive observations atObservations for the US Southern Great Plains 140 

The ARM program, funded by development of the U.S. Department of Energy, 141 

plays a pivotal role at the SGP site in Oklahoma (36.607°N, 97.488°W). Recognized 142 

globally as a leading climate research facility, the ARM SGP site has been 143 

collecting a wealth of meteorological and radiative measurements, offering data 144 

that spans over two decades. deep learning model 145 

This study utilized these extensive field the ARM SGP observations during 1998-146 

2020 to explore serve as training, validation, and testing data for the development of 147 

the simultionsdeep learning model. Note that all the observations are collected at the 148 

central facility of BLCs from the deep learning techniques.  149 

Our study employs the Active Remote Sensing of Clouds (ARSCL) productSGP, a 150 

fixed location, which integrates lidars, ceilometer,is different from other ML studies 151 

that use global data from reanalysis or climate model simulations (e.g., O'Gorman and 152 

cloud radarDwyer, 2018; Shamekh et al. 2023). 153 

The input data to define cloud boundaries, utilizingtrain and validate the best 154 

estimates from lidar for the lowest cloud bases (Clothiaux et al. 2000, 2001; Kollias et 155 

al. 2020). Based on the comprehensive information of cloud vertical structure and 156 

temporal evolution from the ARSCL dataset, Xie et al. (2010) offers detailed cloud 157 

fraction profiles at the hourly resolution in ARM BEST ESTIMATE DATA 158 

PRODUCTS (ARMBE).  159 



 

 9 

Central to our analysis are the comprehensive thermodynamic profiles obtained 160 

from deep learning model include early morning sounding data and diurnal varying 161 

surface meteorological conditions and surface turbulent heat fluxes.  We take 162 

radiosondes (SONDE). Launched routinely at multiple times daily, these SONDE) 163 

measurements around 6 a.m. local time to offer detailed information into the 164 

thermodynamic state ofand wind profiles in the PBL and the free atmosphere. The 165 

operation and technical aspects of the ARM SONDE are detailed in  (Holdridge et al. 166 

(2011).  167 

) as initial conditions. SONDE launches typically took place four times per day at 168 

the SGP site, usually at 00, 06, 12, and 18 local times. Local time, defined as daylight 169 

saving time, is used consistently throughout the year. Each morning profile comprises 170 

46 levels spanning from 0-8 km, which include levels at intervals of 50 meters from 0 171 

to 1 km, 0.1 km from 1 to 2 km, 0.25 km from 2 to 4 km, and 0.5 km from 4.5 to 8 km.  172 

Meanwhile, We use the collocated surface meteorology systems (MET, Ritsche, 2011) 173 

provide a variety of meteorological parametersmeasurements (i.e., temperature, relative 174 

humidity, wind, and pressure) at the surface level from collocated surface meteorology 175 

systems (MET) at the ARM SGP site. These surface meteorological parameters play 176 

roles in the formation and development of BLCs. Furthermore, the site also provides 177 

data on surface. Surface sensible and latent heat fluxes. An are taken from the ARM 178 

value-added product called the best-estimate fluxes from energy balance Bowen ratio 179 

measurements andthe Bulk Aerodynamic calculations of the Energy Balance Bowen 180 

ratio measurements (BAEBBR), was generated to replace the energy balance Bowen 181 
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ratio flux measurements with a bulk aerodynamic estimation when the Bowen Ratio 182 

has a range of −1.6 and −0.45 (, Cook, 2018). The replacements generally happen for 183 

the measurements at a 30-min temporal resolution under the low sensible heat scenario. 184 

We use the BAEBBR data along with  185 

In addition, we also use derived variables based on observations as the input fields 186 

into the deep learning model. LCL is derived from the surface meteorology (Romps, 187 

2017), BLHparcel (boundary layer height derived from parcel methods) is calculated 188 

from the morning temperature profiles and surface air temperature (Holzworth, 1964; 189 

Su and Zhang, 2024). Specifically, BLHparcel is defined as the height where the morning 190 

potential temperature profile first exceeds the current surface potential temperature by 191 

more than 1.5 K. Meanwhile, BLHSH (boundary layer height derived from sensible heat 192 

flux) is calculated from the morning temperature profiles and surface sensible heat 193 

(Stull, 1988; Su et al. 2023). 194 

For the target data of model outputs to train and validate the deep learning model, 195 

our study employs hourly cloud fraction data available from the ARM Best Estimate 196 

(ARMBE, Xie et al, 2010) dataset. This cloud fraction is developed based on the Active 197 

Remote Sensing of Clouds (ARSCL, Clothiaux et al. 2000, 2001; Kollias et al. 2020), 198 

which utilizes the best estimates from ceilometer for the lowest cloud bases and 199 

integrates micro-pulse lidar, ceilometer, and cloud radar data to define cloud tops and 200 

cloud fraction. In addition, to construct learning targets, the base of BLC is determined 201 

at the lowest altitude where the cloud fraction first exceeds 1%, and the cloud top is 202 

identified at the point where the cloud fraction transitions from exceeding 1% to falling 203 
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below this threshold.  In multi-layer systems, the DNN model is trained based on the 204 

lowest cloud layer when it is coupled with the land surface. However, we do not exclude 205 

multiple-layer cloudy cases if their vertical fractions are continuous from the lower to 206 

upper layer. as the key input for the deep learning model. 207 

 208 

    209 

Based on ARM observations, this study developsed an advanced deep-learning 210 

framework to simulate the BLCs, using detailed observational data, including SONDE 211 

profiles, surface meteorological measurements, and ARSCL, from the SGP site. This 212 

framework is designed for BLCs, placing a particular emphasis on cloud-land coupling 213 

mechanisms. By integrating morning SONDE observations with diurnally varying 214 

surface fluxes and meteorological data, this deep learning model is capable of 215 

diagnosing the initiation and evolution of low clouds, especially those coupled with 216 

land surface processes. By serving as an offline diagnostic tool, this model aims to 217 

enhance low cloud simulations within reanalysis frameworks without being embedded 218 

in the simulations that produce the reanalysis data itself. 219 

 220 

2.2 Classification of coupled bBoundary layer clouds from oObservations 221 

The deep learning model in this study aims to simulate BLCs demonstrate complex 222 

evolutions and interactstrongly coupled with boundary layer and land surface processes. 223 

TrackingThe classification of clouds below is to filter the initiation, development, and 224 

lifecycle of BLCs is crucial for understandingbased on the convection in our climate 225 
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system. Weconcept of cloud-land coupling and is important for the training and analysis 226 

of the deep learning model. Here, we treat BLCs as synonymous with land-coupled 227 

clouds, in contrast to those clouds that are decoupled from the PBL and land surface. 228 

In this regard, Su et al. (2022) devised a lidar-based method to discern cloud-land 229 

coupling, leveraging the vertical coherence and temporal continuity of the PBL. This 230 

approach, combined with cloud base height measurements from ceilometers and 231 

surface-based Lifting Condensation Level (LCL) calculations as proposed by Romps 232 

(2017), forms the foundation for identifying coupled low-level clouds in our study. The 233 

methodology for determining PBLH, as outlined by Su et al. (2020), established a long-234 

term record of PBLH at the SGP. The resulting data are publicly available through the 235 

ARM database (https://www.arm.gov/data/data-sources/pblht-206). 236 

 Coupled clouds are identified when the cloud base height (CBH), as derived from 237 

the ceilometer, aligns with or is below the lidar-detected PBL top height within 0.2 km, 238 

and the calculated surface-based Lifting Condensation Level (LCL, Romps 2017) falls 239 

within a certainmaximum allowable range of 0.7 km (Su et al. 2022).2022). PBL height 240 

data (https://doi.org/10.5439/2007149, Su et al. 2020) are publicly available through the 241 

ARM database. This alignment is indicative of clouds that are directly influenced by 242 

surface-driven processes. Meanwhile, we apply a cloud thickness threshold of less 243 

than(< 4 km) is applied to analyze ensure the occurrence of BLCs. (i.e., not deep 244 

convective clouds). 245 

Within the scope of land-coupled clouds, we further classify the observed daytime 246 

BLCs into cumulus and stratiform categories. following the methodology in Su et al. 247 

https://doi.org/10.5439/2007149
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(2024). Stratiform cloud days are identified by prolonged overcasting conditions during 248 

the daytime, lasting more than three hours, with the maximum cloud fraction exceeding 249 

90% based on ARSCL data. For cumulus cloudscloud days, two criteria are applied: (1) 250 

cloud formations emerge after sunrise, ensuring that they are driven by local convective 251 

processes, and (2) there is an absence of overcasting clouds. Conversely, stratiform 252 

clouds are identified by prolonged overcasting conditions during the daytime, typically 253 

lasting more than three hours, with cloud fractions exceeding 90% as per ARSCL data. 254 

Based on thestratiform clouds. Based on these criteria, we identified 940 days 255 

categorized under the cumulus regime, distributed as 21%, 56%, 17%, and 6% across 256 

Spring, Summer, Fall, and Winter, respectively. Similarly, we identified 657 days 257 

falling within the stratiform clouds regime, with respective seasonal distributions of 258 

37%, 12%, 23%, and 28%. This classification of cloud types to filter the BLCs based 259 

on the concept of cloud-land coupling is important for the training and analysis of the 260 

deep learning model. We further attempt to use the comprehensive cloud observations 261 

at the SGP to build the deep learning model.Note that this cloud regime classification 262 

is done on a daily basis. To maintain clarity in our analysis, we excluded days with 263 

mixed cloud regimes, focusing only on days that exhibit only stratiform or cumulus 264 

clouds during the daytime.  265 

 266 

2.3 Reanalysis data for the application of the deep learning model 267 

In this study, we also useTo demonstrate how to use the deep learning model, 268 

we take advantage of reanalysis datasets from the European Centre for Medium-Range 269 
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Weather Forecasts' fifth-generation global reanalysis (ERA-5, Hersbach et al., 2020) 270 

and NASA's Modern-Era Retrospective analysis for Research and Applications Version 271 

2 (MERRA-2, Gelaro et al., 2017).2017). Note that unlike observational data 272 

aforementioned, reanalysis data are not used for training the deep learning model, 273 

instead they are going to be used to help illustrate how the deep learning model may 274 

disentangle the potential causes leading to the biased cloud simulations.  275 

As the state-of-art reanalysis data, the ERA-5 is producedprovides hourly 276 

atmospheric states and cloud fraction around SGP by the Integrated Forecasting System 277 

(IFS) and a data assimilation system at a fine spatialhorizontal resolution of 0.25° x 278 

0.25°. ERA-5 reanalysis data are obtained from the Copernicus Climate Data Store. 279 

This dataset° and a vertical resolution of 25 hPa in the lower atmosphere (700–280 

1000 hPa). IFS employs a prognostic cloud scheme capable of capturing the evolution 281 

of cloud dynamics over consecutive time steps (Tiedtke 1993), a feature that enhances 282 

its utility in time-dependent climate studies. We also use ERA-5 data to obtain the cloud 283 

and atmospheric information, which provides the hourly measurements at a 0.25°- 284 

0.25° longitude-latitude grid. The vertical resolution of ERA-5 data is 25 hPa in the 285 

lower atmosphere (700–1000 hPa).  286 

The MERRA-2 reanalysis data use a new version of the provides hourly low 287 

cloud fraction and 3-hourly vertical cloud fraction profiles at a spatial resolution of 2/3° 288 

(longitude) × 1/2° (latitude). MERRA-2 is based on the Goddard Earth Observing 289 

System Data Assimilation System Version 5, which is a advanced system coupling a 290 

global atmospheric general circulation model to NCEP's Grid-point Statistical 291 
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Interpolation analysis (Randles et al., 2017). The MERRA-2 reanalysis has a spatial 292 

resolution of 2∕3∘ × 1/2∘ (longitude–latitude).  MERRA-2 and utilizes a diagnostic 293 

cloud scheme, focusing on the immediate state of clouds (Randles et al., 2017). This 294 

dataset specializes in the representation of the hydrological cycle and cloud information, 295 

which are widely used in multiple studies (e.g., Yeo et al., 2022; Kuma, 2020; Miao et 296 

al., 2019). MERRA-2's reanalysis provides detailed hourly low cloud fraction data and 297 

tri-hourly vertical cloud fraction profiles. 298 

 299 

Here we acknowledge the local heterogeneity of cloud fields in the area covered 300 

by an ERA5 or MERRA grid cell. This inherent discrepancy between the reanalysis 301 

data and the ARM SGP observations may arise from the difference between point-based 302 

measurements and area-based assimilated grid-averages. However, observations at the 303 

SGP site, representative of plain regions, have been widely used for evaluating models 304 

across scales from climatological and statical perspectives (e.g., Song et al., 2014; Zhao 305 

et al., 2017; Zheng et al., 2023; Zhang et al., 2017). 306 

 307 

3 Construction of the Deep Learning FrameworkModel for Simulating 308 

Boundary Layer Clouds 309 

3.1 Integrated Deep Learning Models for Cloud Simulation 310 

3.1 Structure design of the deep learning model  311 

This study developeddevelops an integrated deep learning approachmodel to 312 

simulate BLC over the SGP site. These models are , whose design is illustrated in Figure 313 
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1. Traditionally, simulating BLCs involves solving complex equations related to PBL 314 

turbulence and cloud microphysical processes. Our approach, however, leverages deep 315 

learning to bypass these intricate simulations. By using module-specific hidden layers, 316 

the deep learning model serves as an observation-based "emulator" that directly 317 

estimates BLCs from early-morning soundings and surface-related parameters. 318 

The model is purpose-built to simulate the initiation, positioning, and vertical 319 

extent of BLCs. Figure 1 demonstrates the design of our deep learning framework. The 320 

coreconsist of this research integrates three distinct deep learning modelsmodules, each 321 

responsible for a critical aspect of the cloud simulation: the triggering of cloud 322 

formation,1) the determination of cloud the BLC occurrence, 2) the height position, 323 

and the vertical profile of the cloud base, and 3) the cloud thickness and the normalized 324 

10-layered shape of coveragecloud fraction within cloud boundaries, which jointly 325 

yielding the comprehensive featuresyield the hourly-averaged vertical structures of 326 

BLCs through. This modular approach ensures that the estimations are specific for each 327 

aspect of the BLCs. Combining cloud thickness and cloud fraction in one module is 328 

logical because the thickness for 10-layered clouds varies based on cloud thickness, 329 

and thickness is potentially related to the fraction, as thicker clouds are sometimes 330 

associated with larger cloud fractions. Naturally, cloud top is considered as the cloud 331 

base plus the thickness. This separation of tasks enhances the overall reliability and 332 

clarity of the model in capturing the various characteristics of BLCs.  Note that each 333 

of the three deep learning modules is built upon a deep neural network (DNN) with 334 

multiple hidden layers. Initially,  335 
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The occurrence module, as the triggering modelfirst step, evaluates whetherthe 336 

likelihood of cloud formation is likely,by producing a valuenumber between 0 and 1, 337 

with values which we call “trigger” in the following, whose value above 0.5 338 

indicatingindicates the presence of clouds. This triggeringThe target data for this 339 

module is binary (0 or 1), and the model output is a continuous value between 0 and 1. 340 

This occurrence information then feeds into the other two modelsmodules in parallel: 341 

one for determining the cloud's positionlocating cloud boundaries and the other for 342 

calculatingdelineating the vertical shape of the cloud fraction in cloudy layers. While 343 

the cloud position-base (or boundary) module and cloudthe fraction models-thickness 344 

(or fraction) module are independent componentsof each other, they collaborate to 345 

depict the vertical cloud fraction profile.  346 

Morning meteorological profiles set as the initial conditions and then identifying 347 

triggers for BLC formation from surface meteorology. Each morning profiles have 46 348 

elements from 0-6km. For surface meteorology and fluxes, the inputs include the data 349 

at the current hour and the previous hour. The RH profiles and PBL top are highlighted 350 

for their significance in boundary layer development.  To represent the vertical structure 351 

of BLC, we equally in the fraction-thickness module, we segmented the cloud layer 352 

from the base to the top into ten levels. For each of these levels, our deep learning 353 

models calculate individual cloud fraction values, with each level's thickness varying 354 

according to the overall cloud thickness. These values are then interpolated to create a 355 

continuous vertical profile of cloud fraction within the BLC, offering a detailed 356 

depiction of the cloud's vertical extent. This model used boundaries, offering a detailed 357 
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depiction of the cloud's vertical extent. The vertical position of the layer changes based 358 

on the predicted cloud base and top to accurately represent the vertical structure of 359 

BLCs. This dynamic approach allows the fraction module to adjust and focus on the 360 

relevant portions of cloud fraction within cloudy layers. Compared to a static height-361 

level approach, which requires the prediction of cloud fraction across a fixed vertical 362 

extent (e.g., multiple levels between 0-6 km), our method focuses on the shape of the 363 

fraction profile. This ensures the model is not constrained by fixed vertical levels, 364 

allowing for more efficient and robust estimations. 365 

 366 

3.2 Deep Neural Network (DNN) architecture and configuration  367 

The construction of the deep learning model uses the TensorFlow Package, 368 

developed by Google (https://www.tensorflow.org/). Each module in the deep learning 369 

model is constructed based on a separate deep neural network (DNN) respectively. The 370 

DNN architecture is designed, beginning with an input layer reflective of the selected 371 

feature set, which includes morning sounding profiles, surface meteorology and heat 372 

fluxes data, and the derived variables such as LCL, BLHparcel and BLHSH. For predicting 373 

the current hour BLC, the inputs of surface conditions include data both at the current 374 

hour and the previous hour. The input variables for training and validating the deep 375 

learning model are detailed in Table 1, including variable names, descriptions, and data 376 

sources, together with the ARMBE cloud fraction profiles as the learning target for 377 

model outputs.  378 

https://www.tensorflow.org/
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The deep neural network (DNN) architecture was designed (brown boxes in Figure 379 

1), beginning with an input layer reflective of the selected feature set. The detailed 380 

structures for the three models can be found in Table 1. Normalization is, a 381 

preprocessing technique that often leads to improvements in model training by scaling 382 

the input features and target values to a standard range (Raju et al. 2020). We , was 383 

applied the normalization process to both the input and target data to ensure that they 384 

havescale them to a zero mean and a standard deviation of one (Klambauer et al. 2017; 385 

Salimans and Kingma, 2016; Raju et al. 2020). . This standardization scalesensures that 386 

the data is scaled to a common range, allowing for a more stable and efficientoffers 387 

some benefits, such as improving the stability and efficiency of the training process. 388 

Subsequent 389 

The architecture of the DNN models was structured and tailored for each module: 390 

occurrence, cloud-base, and fraction (or fraction-thickness) estimation. Each module's 391 

structure is defined by the number of neurons in its hidden layers were integrated, each 392 

imbued. For the occurrence module, the structure consists of four hidden layers with 393 

108, 64, 36, and 24 neurons, respectively. The CBH prediction module is similarly 394 

structured with four hidden layers, but consisting of 96, 56, 32, and 24 neurons, 395 

respectively. The module for predicting cloud fraction and thickness has a slightly 396 

simpler structure, with three hidden layers containing 56, 32, and 24 neurons, 397 

respectively. 398 
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As the specific configuration, we utilized the ReLU (Rectified Linear Unit) 399 

activation function to introduce non-linearity into the DNN. L2 regularization with a 400 

strength of 0.01 is applied to mitigate overfitting by penalizing complexity.  401 

large weights and encouraging simpler models. Batch normalization wasis 402 

implemented at each layer to normalize the inputs, ensuring consistent data distribution 403 

throughout the network, therebyand stabilizing the learning process. A dropout rate of 404 

0.2 further prevented overfitting by is used to randomly omittingomit neuron 405 

connections during training, preventing overfitting and encouraging the network to 406 

learn more robust features. TrainingThe training process was refined with early 407 

stopping, ceasing further epochs when the validation loss ceased to improve, and 408 

learning rate reduction, systematically decreasing the learning rate upon encountering 409 

plateaus in performance improvement. These callbacks were instrumental in honing the 410 

model's performance, ensuring convergence to the accurate representationestimation of 411 

the BLC. Neuron biases are included in the network's architecture and systematically 412 

inserted in the hidden layers (Battaglia et al. 2018). The model is compiled using the 413 

Adam optimizer with an initial learning rate of 0.01. The loss functions used are mean 414 

squared error for regression tasks and Binary Cross-Entropy for binary classification 415 

tasks. The batch size during training is set to 32. Early stopping with a patience of 37 416 

epochs is implemented to prevent overfitting and to restore the best weights when the 417 

validation loss ceases to improve. 418 

 419 

 420 
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3.23 Model Training Process and Examples 421 

The construction of ourthe deep learning model suite commencedcommences with 422 

the segregation of the comprehensive dataset, sourced from the rich datasets of ARM 423 

program,observations into a training subset (70%) and a validation subset (30%) during 424 

1998-2016. AdditionallyIn addition, we incorporate datasetssave data from 2017-2020 425 

as part of our validation processfor testing, specifically focusing on data from the 426 

untrainedthis independent period to assess the model's performance. The training and 427 

validations are both using the more than 20-year BLC observations, as well as the 428 

ARMBE products. The base of BLC is determined at the lowest altitude where cloud 429 

fraction exceeds 1%, and the cloud top is identified at the point where cloud fraction 430 

transitions from exceeding 1% to falling below this threshold. In multi-layer systems, 431 

the DNN model is trained based on the lowest cloud layer when it is coupled with the 432 

land surface. Upon training completion, the model wasis then evaluated, with its 433 

performance metrics examined for accuracy and reliability. This methodical and data-434 

driven process balancedbalances complexity with precision, culminating in a robust 435 

model capable of simulating BLC features. 436 

These models The modules within the deep learning model operate synergistically, 437 

with the predicted cloud triggeroccurrence of clouds extending into the modelsmodules 438 

for cloud positionbase and the vertical structure (i.e., cloud fraction and cloud thickness 439 

and shape of the cloud fraction profile). As the example of the model output, Figure 2 440 

offers a comparative display of diurnal cloud fraction profiles over the SGP, contrasting 441 

the observed data with the simulated clouds by the deep learning simulationsmodel. 442 
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The model accurately simulates the cloud occurrence and cloud basethe CBH for these 443 

cases, aligning well with observations. However, it falls short in simulating the cloud 444 

top positionheights, especially significant overestimates for stratiform clouds, 445 

overestimating cloud tops.. It also underestimates maximum cloud fractions for the 446 

stratiform clouds. The observed maximum cloud fraction for stratiform is close to 1, 447 

indicating complete coverage, however, such an aspect is not fully replicated by the 448 

deep learning model. The third case also falls into the category of stratiform clouds, 449 

characterized by aan observed cloud fraction exceeding 0.9. However, the presence of 450 

multiple local maxima within the cloud fraction profile indicates a relatively complex 451 

structure. This complexity poses a challenge to the model, as the DNN is not fully 452 

capable of capturing the internal variations within the convective system. Instead, the 453 

model tends to produce a more uniform cloud fraction across this convective system. 454 

Despite these variances, the model-derived cloud bases and occurrence 455 

demonstratesdemonstrate high consistency with observations, highlighting its value in 456 

the cloud simulations. 457 

 458 

3.34 Calculations of Feature Importance and Performance Metric 459 

To elucidate the significance of each input variable within our deep learning models, 460 

we implemented a permutation importance analysis. This robust, model-agnostic 461 

technique assesses each feature's influence on the model's predictive accuracy, which 462 

is crucial for assessing DNN (Date and Kikuchi, 2018; Altmann et al. 2010). In this 463 

study, the permutation importance method differs slightly for each module within the 464 
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deep learning model based on whether the model'smodule’s task is regression (cloud 465 

position-base and fraction-thickness) or classification (triggeroccurrence). 466 

For the models predictingmodules of cloud position-base and cloud fraction-467 

thickness, which are regression tasks, the Mean Absolute Error (MAE) serves as the 468 

performance metric. First, we perform a test run to establish a baseline performance by 469 

calculating the MAE of the modelmodule using the original, unperturbed validation 470 

datasets, which comprises comprise early-morning sounding and, surface meteorology 471 

dataconditions and the derived variables as the inputinputs. Then, for every input 472 

feature in the validation set, we disrupt its association with the target cloud fields by 473 

shuffling its values across all instances, creating a permutation of the dataset. This is 474 

executed while maintaining the original order of all other features. Furthermore, we 475 

recalculate the MAE with the shuffled data.other features. When performing the 476 

permutation, we shuffle the entire morning profile for each case without altering the 477 

internal height order of values within the profile. This approach ensures that while 478 

profiles are permuted across different cases, the sequential structure of height values 479 

within each profile remains intact. This method allows us to assess the importance of 480 

the profiles as coherent units, rather than disrupting their vertical structures. 481 

Furthermore, we re-run the DNN modules with the shuffled feature and all other 482 

features intact as inputs and recalculate the MAE with the new outputs. The difference 483 

between this new MAE and the baseline MAE represents the feature's importance. To 484 

ensure a comprehensive assessment, the permutation and the subsequent MAE 485 

calculation are repeated 20 times with different random shuffles for each input feature. 486 
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The final importance score for each feature is then determined as the mean increase in 487 

MAE across these permutations. 488 

However, forFor the model classifyingmodule of cloud triggersoccurrence, which 489 

is a classification task, the accuracy score is used as the performance metric. The 490 

accuracy score is a measure of the model's overall correctness and is calculated using 491 

the formula: 492 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                (1) 493 

where True Positives (TP) indicates the number of instances correctly predicted as 494 

positive; true Negatives (TN) indicates the number of instances correctly predicted as 495 

negative; False Positives (FP) indicates the number of instances incorrectly predicted 496 

as positive, and False Negatives (FN) indicates the number of instances incorrectly 497 

predicted as negative. After determining the performance metric, other procedures for 498 

determining feature importance remain the same between regression tasks and the 499 

classification task. In the model, we filter individual input parameters from the 500 

consideration of importance score. 501 

After determining the importance scores from the test run, in refining the model, 502 

features contributing a negligible or negative effect on performance (i.e., importance 503 

scores less than zero) are excluded to ensure only beneficial data is used. 504 

By using this methodology, Figure 3 illustrates these importance scores from 505 

different features, underscoring the most influential factors for predicting the presence, 506 

positionBLC occurrence, the cloud-base, and the thickness and the shape of the vertical 507 

fraction of BLCs. These factors are ranked from most important factors to least 508 
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important factors. BLC trigger is a special factor since it is the output of the 509 

classification model. Notably, the importance scores are not computed as a simple sum 510 

but are determined by collectively shuffling groups of features and observing the impact 511 

on model performance. Table 1 complements Figure 3 by providing the model's 512 

structure and the precise importance values assigned to each feature across the three 513 

cloud prediction tasks. Among these factors, LCL is derived from the surface 514 

meteorology (Romps, 2017), BLHparcel is derived from the morning temperature profiles 515 

and surface air temperature based on the Parcel method (Holzworth, 1964; Su et al. The 516 

BLC trigger of occurrence is a special factor since it is the output of the classification 517 

model. The trigger value, which indicates the likelihood of cloud occurrence, is used as 518 

an input to the estimations of cloud boundaries and fractions. Sometimes, the trigger 519 

value hovers around 0.5, indicating uncertainty about the presence of clouds. This 520 

situation often corresponds to scenarios like broken clouds or residual clouds, typically 521 

associated with relatively small cloud fractions. Incorporating the trigger value as an 522 

input for cloud fraction estimation helps the model account for these ambiguous 523 

situations, thereby enhancing its ability to estimate cloud fraction. Specifically, only 524 

trigger values greater than 0.5 indicate cloud presence and are used for cloud fraction 525 

predictions. While including the trigger value is beneficial for the cloud fraction model, 526 

it does not affect the CBH estimation.2020). Specifically, BLHparcel is defined as the 527 

height where the morning potential temperature profile first exceeds the current surface 528 

potential temperature by more than 1.5 K. BLHSH is derived from the morning 529 

temperature profiles and surface sensible heat (Stull, 1988; Su et al. 2023).  530 
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In particular, surface relative humidity (RH), surface air temperature (T), and 531 

morning relative humidity profiles are highly influential in BLC simulations. This is 532 

consistent with previous observational and modeling studies (Zhang and Klein, 2013). 533 

Surface RH is a critical factor affecting the triggeroccurrence, CBH, and cloud fraction 534 

predictions. As the boundary conditioninput conditions for the DNN model, modules, 535 

early-morning atmospheric profiles of different meteorological parameters (i.e., RH, 536 

temperature, and wind components) exert a notable impact on cloud triggeroccurrence 537 

detection and the determination of cloud fractions. Surface air temperature is shown to 538 

have a substantial effect on cloud fraction, highlighting the sensitivity of cloud 539 

simulations to near-surface thermal conditions. This approachMeanwhile, BLHparcel 540 

demonstrates a notable impact, which is understandable since the PBLH is a critical 541 

factor for the formation of BLCs, and BLHparcel provides a good representation of PBLH. 542 

This approach also recognizes the interconnectedness of certain features and their 543 

collective contribution to the model's output. 544 

 545 

4 ModelingBoundary Layer Cloud Simulations by the Deep Learning Model 546 

4 4.1 The Occurrence of Boundary Layer Clouds with Deep Learning 547 

4.1 Boundary Layer Clouds Trigger 548 

The occurrence of BLC is a multifaceted process influenced by a variety of 549 

atmospheric parameters and surface processes. The BLC trigger,As a critical 550 

component in the formation of BLCs, is a dynamic phenomenon that our we utilize the 551 

deep learning model seeks to identify and simulate from the surface meteorology. 552 
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Bythe BLC trigger using the morning SONDEmeteorological profiles and 553 

measurements ofobserved surface meteorology and fluxes,. Figure 4 showcases the 554 

model's proficiency in classifying the occurrences (class 1) and non-occurrences (class 555 

0) of BLC during both a trained period and an untrained, futureindependent period. The 556 

classification significantly affects the statistical estimation of cloud fraction, as cloud 557 

fraction is set to 0 if the trigger is less than 0.5. The confusion matrices (Luque et al. 558 

2019) for the trained period (1998-2016) and for the untrainedindependent period 559 

(2017-2020) display the model's predictive performance. The matrices reveal the counts 560 

and percentages of TP, FP, TN, and FN. For the training period, we use a 70% training 561 

and 30% validation split to ensure model validation and use the validation dataset to 562 

generate the statistics. Meanwhile, for the independence period, we use the full dataset 563 

for the validation. 564 

Figure 4a represents the trained period, we use 30% dataset for the validation and 565 

seedatasets show a high percentage of TN at 71.2% and TP at 21.1%, indicating that the 566 

model is accurate during the period it was trained on. For the untrainedindependent 567 

period (2017-2020), the model still performs well, with 71.8% TN and 17.4% TP 568 

(Figure 4b). However, the rates of FN and FP are slightly higher at 5.6% and 5.2% 569 

respectively, which could indicate that the model is slightly less accurate when applied 570 

to data beyond its training scope.  571 

TP, FP, TN, and FN, further offer insights into the model's precision, recall, and 572 

overall accuracy in detecting the presence of BLC. Precision, which gauges the 573 
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accuracy of positive predictions, recall, which assesses the detection of actual positives, 574 

and the F1 score, which balances the two, are consistently above 75% across both 575 

periods. This high performance across key metrics demonstrates the model's robustness 576 

and reliability in identifying the onset of BLCs. 577 

Table 2 complements the Figure 4 and provides a detailed quantitative number of 578 

the model's classification performance. It presents the number of instances and their 579 

corresponding percentages of different matrices (i.e., TN, FP, FN, and TP). The high 580 

percentages of correct predictions (TP and TN) underscore the model's effectiveness, 581 

while the lower FP and FN rates reflect its reliability. The table highlights the model's 582 

robustness, with overall accuracy rates of 92.3% for the trained period and a slightly 583 

reduced but still substantial 89.2% for the untrained period.independent period. 584 

Moreover, for the trained period, the model achieved a high precision of 88.1% and a 585 

recall of 81.2%. For the independent period, the precision and recall remained 586 

reasonably high at 76.9% and 75.6%, respectively, demonstrating the model's effective 587 

generalization to new data. These metrics demonstrate the model's predictive 588 

capabilities and reliability for both trained and untrainedindependent periods.   589 

Figure 5 further compares the diurnal frequency of BLC occurrence between 590 

observations (OBS) and the DNN predictions for different seasons. The BLC's strong 591 

diurnal pattern is well-captured by the model, when BLC development peaks between 592 

12-16 local times, aligning closely with observed frequencies. Among different seasons, 593 

the model is notably effective in simulating the pronounced diurnal cycle of summer 594 

clouds, which are typically influenced by local convection. Conversely, the winter 595 
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season exhibits a weaker diurnal pattern, likely linkinglinked to the diminished surface 596 

fluxes. The DNN tends to overestimate BLC presence in the early morning, especially 597 

for the winter season. The overall alignment between observations and the DNN 598 

modelmodule represents the model's capability of capturing the diurnal patterns of BLC 599 

formation and development. Determining the triggersoccurrence of BLC lays the 600 

foundation for the integrated simulations of BLC features.   601 

  602 

4.2 Simulating Cloud PositionsBoundaries and Cloud FractionsFraction 603 

A key aspect of cloud modeling involves the accurate simulation of cloud 604 

positionsboundaries and fractionsfraction, which are indicative of a cloud's vertical 605 

extent and fractional coverage at different height levels. Our deep learning model 606 

demonstrates capabilities in predicting these key attributes of BLC. 607 

Figure 6 offer the comparisons between observed values and predictions by the 608 

DNN for CBH, CTH, and cloud fraction. TheseSimilarly, as in Section 4.1, these 609 

comparisons are presented for both the training period (a, c, e, based on validation 610 

datasets) and an independent period (b, d, f), revealing the model's ability to generalize 611 

beyond its initial training data. The DNN model demonstrates remarkable performance 612 

in simulating cloud base, boasting a correlation coefficient surpassing 0.9 and an MAE 613 

under 0.15 km. Conversely, the model encounters challenges with CTH prediction, 614 

evidenced by a lower correlation of about 0.5 and a significantly higher MAE between 615 

0.8 and 0.9 km, aligning with case studies in Figure 2. 616 
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The discrepancy in accurately simulating CBH and CTH may stem from two main 617 

factors. Firstly, observed CBH determinations are generally more precise due to the 618 

effectiveness of laser-based methods (Pal et al., 1992), while observed CTH estimations 619 

often suffer from reduced accuracy, partly attributed to signal attenuation issues 620 

(Clothiaux et al., 2000). For the observed shallow cumulus, cloud top is often 621 

contaminated by insect signals, further complicating accurate CTH measurements 622 

(Chandra et al, 2010). Secondly, our DNN simulations are developed from the 623 

perspective of cloud-land coupling, primarily utilizing surface meteorology. This can 624 

introduce inherent limitations, as the tops of many clouds may be decoupled from 625 

surface influences despite a coupled base, potentially leading to potential gaps in the 626 

model's parameterizationDNN's ability to accurately define and estimate the cloud top. 627 

The comparison of cloud fraction between observations and DNN areis presented 628 

to consider the model's capability to simulate the vertical distribution of cloud coverage 629 

(Figure 6e-f). The scatterplots comparing observed and modeled cloud fractions at 630 

individual levels in cloudy scenarios show a satisfactory correlation, with an R-value 631 

exceeding 0.77 and an MAE around 0.15. Nevertheless, the DNN model tends to 632 

underestimate the peak cloud fraction, displaying a range up to ~0.8 compared to the 633 

full 0-1 range observed. This underestimation is intrinsically linked to the model's 634 

simulation of cloud positionboundaries, as both cloud fraction and position 635 

modelscloud-base modules operate in tandem. For stratiform clouds, observational data 636 

typically exhibit a relatively uniform vertical extent with cloud fractions close to unity 637 

at the central height, whereas the DNN model tends to generate a broader, more 638 
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attenuated profile with a reduced maximum cloud fraction at the center. This points to 639 

a need for refining the model's ability to replicate the pronounced peak cloud fractions 640 

characteristic of stratiform cloud profiles. 641 

The diurnal patterns of cloud base and top heights, captured through daily profiles, 642 

showcase the model's adeptness at simulating the temporal changes in cloud positions 643 

for all BLCs, the cumulus regime, and the stratiform regime (as shown in Figure 7). 644 

These profiles, derived from both observational data and DNN outputs, include shaded 645 

regions representing the variability (one standard deviation) around the average heights. 646 

Cumulus clouds exhibit a marked diurnal cycle, whereas stratiform clouds typically 647 

maintain a relatively consistent positionconstant cloud boundaries and smaller 648 

variations throughout the day. A close alignment is observed between the mean and 649 

standard deviation of the cloud base between the observed and the simulated data for 650 

different cloud regimes. In contrast, while the mean cloud top heights follow a similar 651 

diurnal trend in both cases, the variability presented by the observed data exhibits more 652 

pronounced variabilities compared to the relatively small variabilities in the DNN 653 

simulations. 654 

Figures 6 and 7 collectively demonstrate the model’s ability to simulate cloud 655 

positionsboundaries and fractions within BLC. It reliably captures cloud base 656 

heightsCBH yet encounters challenges with accurately representing cloud top heights 657 

and peak cloud fractions on an individual basis. These constraints are somewhat 658 

expected, given that even very fine-scale modelmodels struggle to entirely capture the 659 
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vertical extent of clouds, as evidenced in Large-Eddy Simulations or Convection-660 

Permitting Models (Zhang et al. 2017; Gustafson et al. 2020; Bogenschutz et al. 2023). 661 

In addition to the discussion of deep learning models, we also acknowledge the role of 662 

mixed-layer (single-column) models in representing boundary layer processes (Lilly 663 

1968, Pelly and Belcher, 2001; Clayson and Chen, 2002; Zhang et al, 2005, 2009; De 664 

Roode et al., 2014). Mixed-layer models have several advantages: they are inherently 665 

grounded in physical principles and are readily integrated into many large-scale models. 666 

These models are effective at capturing the diurnal evolution of the PBL given an initial 667 

state and time series of surface fluxes. However, the DNN approach offers distinct 668 

benefits that complement this theoretical approach. DNNs might be able to capture 669 

complex, nonlinear relationships between various controlling factors and the cloud 670 

fraction. Theseis may be difficult to capture by the single (for the overcast 671 

stratocumulus-topped mixed layer) or multiple mixed-layer models (for the broken 672 

trade cumulus clouds), which are still subject to assumptions, e.g., on entrainment 673 

processes. By training on large observational datasets, DNNs can learn from real-world 674 

examples, potentially identifying patterns and relationships not explicitly encoded in 675 

physical models.  676 

 677 

5 Integrating Application of the Deep Learning Models into 678 

Model 679 

4.35.1 Integration with Reanalysis Datasets 680 

The DNNAs shown in Section 4, the deep learning model can usetake the 681 
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conventional meteorological dataobservations (i.e. morning SONDE and surface 682 

meteorology data)conditions) as inputs to diagnosesimulate the BLC. Meanwhile, as 683 

outputs, reasonably reproduce a good agreement with the observed vertical structures 684 

of BLCs. For its potential application, we may treat it also can be used in reanalysis 685 

data (i.e.,as an “emulator” of the observed relationships between input and output 686 

variables. Here we present an example by integrating the deep learning model with 687 

ERA-5 and MERRA-2) to serve as the convection parameterization to simulate BLC 688 

with the input of early-morning profiles and meteorology datasurface conditions from 689 

the reanalysis. Thus, we can assess the integration of Deep Learning Models with 690 

reanalysis datasets to refine the simulation of BLCs.Here we ask, if inputs are treated 691 

as “reality”, what would be the expected responding cloud fraction simulated by the 692 

deep learning model, an observation-based emulator? 693 

Following thisthese thoughts, Figure 8 contrasts diurnal cloud fraction patterns from 694 

the observational data and the deep learning model predictions acrossaveraged over all 695 

conditions of seasons and years. Figure 8a-b present the observed cloud fractions and 696 

those simulated by ourthe deep learning neural network (DNN),using ARM data as 697 

inputs, respectively. Panels c and e displayshow the cloud fractions directly 698 

availableextracted from ERA-5 and MERRA-2 reanalysis datasets, while panels d and 699 

f illustrate the enhanced simulation results after the application of DNN tosimulated 700 

cloud fraction by the deep learning model using inputs from ERA (ERADNN) and 701 

MERRA (MERRADNN) data. To eliminate sampling biases, we averaged only those 702 

samples for which both observational and reanalysis datasets are concurrently 703 
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availabledata. Observing fluctuations in surface temperature and humidity data in ERA-704 

5 for this region, we smoothed ERA-5 surface air temperature and humidity data with 705 

a ±1-hour window to mitigate potential variability from assimilation before using them 706 

as input for the DNN. modules. To eliminate sampling biases in comparison, we 707 

averaged only those samples for which both observations and reanalysis are 708 

concurrently available.  709 

Note that here we adopt the deep learning model as a complementary tool rather 710 

than a replacement for any existing cloud representations in reanalysis data. The DNN 711 

outputs serve a diagnostic purpose, identifying biases in BLCs and aiding in 712 

understanding deficiencies within reanalysis data. 713 

The DNN simulations with observed meteorological dataARM observations as 714 

inputs align closely inwith the ARM observed cloud fraction profiles within the 0-2 km 715 

range, reflecting the model's ability to capture land-coupled clouds. As this model areis 716 

designed for diagnosing land-coupled clouds, the model does not simulate decoupled 717 

clouds, which often have bases occurring above the 2-km (Su et al. 2022). Original 718 

cloud data directly from reanalysis data show significant underestimations of cloudBLC 719 

fractions for low clouds, particularly evident in MERRA-2. The 720 

implementationapplication of DNNthe deep learning model using reanalysis data as 721 

inputs enhances cloud fraction representationestimations compared to the original cloud 722 

data directly from reanalysis data, demonstrating the DNN model's strength in 723 

simulating BLC. Given that the DNN model specializes in simulating BLC, when 724 

utilizing reanalysis data, the portion of cloud profiles that are decoupled are preserved 725 
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as they are in the original datasets—that is, for the cloud layers above the BLC-tops or 726 

foras those clouds that rooted above the PBL.  727 

Furthermore, Figure 9 provides a detailed examination of stratiform clouds, 728 

utilizing the same comparative approach as in Figure 8. The observed stratiform clouds 729 

display a layered structure with expansive coverage and maximum cloud fractions 730 

typically exceeding 0.6. The DNN model reproduceusing ARM data as inputs 731 

reproduces these observed characteristics fairly well, albeit with minor overestimations 732 

in cloud vertical extent. Conversely, the original ERA-5 and MERRA-2 stratiform 733 

cloud data exhibit limitations, particularly in underestimating cloud fraction. The 734 

integration of the DNN model with reanalysis data as inputs enhances the 735 

representationestimations of stratiform cloud fractions, as depicted in the heatmaps of 736 

Figure 9, showcasing improved agreement with observational data and underscoring 737 

the enhancement potential for cloud fraction simulations in reanalysis datasets. 738 

AdditionallyIn addition, Figure 10 extends the comparative study to cumulus clouds. 739 

Cumulus clouds pose significant challenges for modeling and parameterization partly 740 

due to their typically small spatial extent compared to the model grid, often spanning 741 

from a few hundred meters to several kilometers (Zhang et al. 2017; Tao et al., 2021; 742 

Bogenschutz et al. 2023; Gustafson et al. 2020). In line with expectations, the original 743 

ERA-5 and MERRA-2 cloud fields exhibit significant biases in representing cumulus 744 

clouds when compared to observational data, possibly related to the large grid of the 745 

reanalysis that might not fully capture the fine-scale characteristics of cumulus 746 

formations.  747 
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. In contrast, the DNN model with ARM data as inputs achieves commendable 748 

success in capturing the diurnal variability of cumulus clouds, including cloud base, 749 

vertical extension, and cloud fraction, by leveraging local convective signals derived 750 

from surface meteorology data. When the DNN methodologymodel is applied 751 

tointegrated with ERA-5 as inputs, it significantly improves the 752 

representationestimation of vertical cloud fields of cumulus clouds. However, the 753 

original MERRA-2 data, which tend to overlook the majority of cumulus clouds, 754 

continue to significantly underrepresent them even after the application of DNN, 755 

suggesting that additional biases in the input variables such as meteorological factors 756 

may contribute to this discrepancy. 757 

The integration of deep learning with ERA-5 and MERRA-2 reanalysis datasets 758 

demonstrates the notable refinement in the simulation of BLC. By integrating our deep 759 

learning models with reanalysis data, we achieve a, and achieves more accurate 760 

representationestimations of cloud fractions for both stratiform and cumulus clouds. 761 

 762 

4.45.2 Applying Deep Learning for Bias Attribution in Cloud Simulation 763 

We further examine the remaining disparities in cloud fraction simulations within 764 

reanalysis datasets, despite the integration of deep learning models (as shown in Figures 765 

8-10), indicating persisting meteorological biases. Deep learning is utilized to quantify 766 

and attribute these biases for BLC simulations. 767 

Figure 11 offers a comparative analysis of vertical cloud fraction profiles for both 768 

stratiform and cumulus clouds. It presents cloud fractions observed with thosedirectly 769 
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taken from reanalysis data (RD), including ERA-5, and MERRA-2, and their 770 

corresponding deep learning-informed simulations. While the application of deep 771 

learning to use reanalysis data as inputs (RDDNN) yields improvements, remaining cloud 772 

biases are evident, particularly in MERRA-2. Acknowledging the significant influence 773 

of surface RH on BLC simulations (as indicated by Figure 3e, inputwe refine the inputs 774 

into the DNN model by replacing the reanalysis surface RH with the ARM observed 775 

surface relative humidity (RH) instead of reanalysis RH into (the DNN models 776 

(themodel output is labeled as RDDNN-RH). This modification leads to a more 777 

accuratemuch better simulation for MERRA-2, closing the gap with observational data, 778 

especially for stratiform clouds. For ERA-5, RDDNN-RH and RDDNN show negligible 779 

differences for cumulus clouds, but for stratiform clouds, RDDNN-RH also exhibits a 780 

reduced bias. These refined profiles of cloud fraction attest to the benefits of using the 781 

observed surface moisture data as input, confirming its important role in achieving a 782 

more accurate representation of BLC. 783 

We canWith such methodology, we may further dissect the bias in cloud fraction 784 

simulations attributed to various meteorological factors and the parameterization 785 

schemes within ERA and MERRA reanalysis datasets: 786 

𝐵𝑖𝑎𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = |𝑅𝐷 − 𝑂𝐵𝑆| − |𝑅𝐷𝐷𝑁𝑁 − 𝑂𝐵𝑆|          (2) 787 

𝐵𝑖𝑎𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑅𝐻 = |𝑅𝐷𝐷𝑁𝑁 − 𝑂𝐵𝑆| − |𝑅𝐷𝐷𝑁𝑁−𝑅𝐻 − 𝑂𝐵𝑆|          (3) 788 

where RD and OBS are the cloud fraction derivedtaken directly from reanalysis data 789 

and observations, respectively. The definitiondefinitions of RDDNN and RDDNN-RH are 790 

the same withas the above. For getting a representative value, these biases are layer-791 
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averaged from 0-4 km over different local times, and then normalized by the observed 792 

mean cloud fraction, offering a climatological perspective on the discrepancies between 793 

observed and simulated data across seasons and years. For equation (2), we assume that 794 

the climatology of observations used as input to the DNN model (OBSDNN) matches the 795 

observed cloud fraction climatology (i.e., OBSDNN≈OBS), which has been 796 

demonstrated in Figures 9-11. Therefore, we exclude the term representing the 797 

difference between the DNN-predicted observations and the actual observations. This 798 

assumption justifies our approach by ensuring the input observations align with the 799 

observed cloud fraction in equations. 800 

We get the bias attributed to different meteorological factors and parameterization 801 

schemes in the ERA-5 and MERRA-2 datasets, respectively (Figure 12).  Each bars 802 

indicatebar indicates the normalized bias contributed by factors such as morning 803 

meteorological profiles, surface pressure, surface fluxes, various surface meteorology 804 

variables, and parameterization schemes. Notably, parameterization stands out as a 805 

significant contributor to bias, accounting for 14.45%/% and 19.05% of the discrepancy 806 

in stratiform clouds between observations andversus ERA-5/ and MERRA-2 807 

respectively. For cumulus clouds, the parameterization biases are more pronounced, 808 

contributing 22.23% and 30.94% for ERA-5 and MERRA-2, respectively.  809 

In addition to parameterization, RH, RH profiles, and sensible heat are identified as 810 

major factors contributing to the differences between observations and reanalysis data. 811 

For instance, aligning MERRA-2's RH with observed surface RH could potentially 812 

reduce bias by 23.13% for stratiform and 10.26% for cumulus clouds. Meanwhile, 813 
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surface RH and morning RH profiles in ERA-5 lead to 11.25% and 3.96% of biases for 814 

the stratiform clouds. The bias between ERA-5 and observed cumulus clouds is largely 815 

driven by parameterization, which suggests that employing the DNN model with ERA-816 

5 can lead to a more accurate simulation of cumulus clouds. 817 

The detailed bias attribution analysis facilitated by the deep learning model 818 

elucidates the individual impact of meteorological factors on the discrepancies in cloud 819 

fraction between observations and reanalysis data. It underscores the necessity for more 820 

accurate humidity data within reanalysis datasets to refine BLC simulations. 821 

Furthermore, this deep learning approach illuminates pathways for improved 822 

parameterization of boundary layer convection. 823 

 824 

56. Summary  825 

This study has developed a deep learning model to estimate the evolution of BLCs 826 

over the SGP. The model utilizes over two decades of meteorological data to simulate 827 

BLC formation and characteristics, including timingthe occurrence of convection 828 

initiation (BLC onset), their positionsBLCs, cloud boundaries, and vertical structures 829 

of cloud fraction. As this model is built based on the perspective of cloud-land coupling, 830 

the DNN approach demonstrates the capability to diagnose land-coupled convective 831 

systems from early-morning sounding and surface meteorologyconditions. The DNN 832 

model is built on the cloud-land interactions and serves as the testimony for the coupling 833 

between BLCs and the land surface. The proficiency and reliability of the DNN model 834 

isare evident in its robustness during both the training period and the subsequent 835 
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independent periods. The deep learning model addresses the simulation of cloud 836 

vertical structure, among one of the key challenges in physics-based large-scale models. 837 

It should be noted that the current DNN model cannot produce detailed cloud 838 

microphysics and turbulence information. We propose using the DNN model alongside 839 

traditional physical models to obtain comprehensive information on BLCs.  840 

The implementationapplication of this model withinon the reanalysis datasets like 841 

ERA-5 and MERRA-2 has resulted in enhanced representationcloud field estimations 842 

for stratiform clouds and cumulus, and an accurate vertical structure of clouds in 843 

termterms of climatology, providing a promising diagnostic tool for improving weather 844 

forecasting and climate modeling. The deep learning model notably addressaddresses 845 

the limitation in cumulus simulations in the reanalysis data, Meanwhile, this approach 846 

is much more cost-effective compared to traditional parameterizations and schemes  at 847 

various scales, as it can simulate two decades of BLCBLCs with vertical information 848 

over the SGP in ~30-secondwithin 1-minute using a single GPU node.  849 

In addition to the BLC simulations, the deep learning model developed in this study 850 

also is used to attribute discrepancies between observational data and reanalysis 851 

datasets to different meteorological factors. Besides parameterization, surface RH, 852 

morning RH profiles, and surface sensible heat are the three major factors that lead to 853 

the mismatches in BLC representation in ERA-5 and MERRA-2. These findings 854 

underscore the importance of incorporating more accurate humidity information in 855 

reanalysis datasets, which is crucial for refining BLC simulations. This analysis also 856 

sheds light on the necessity to update reanalysis datasets with improved 857 
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parameterization of boundary layer convection.  858 

By leveraging deep learning, the model addressed the simulation of cloud vertical 859 

structure, among one of the key challenges in the field. They highlight the value of deep 860 

learning in advancing our understanding of BLC dynamics and improving the 861 

representation of low clouds in atmospheric models. This work not only narrows the 862 

observational-modeling divide but also paves the way for future developments in cloud 863 

parameterization. Moving forward, future work is warranted to test and extend this 864 

parameterization to different synoptic regions. The goal is to develop a versatile model 865 

capable of simulating BLC on a global scale, which can be integrated into multiple scale 866 

models or reanalysis data.Moving forward, future work is warranted to test and extend 867 

this diagnostic tool to different synoptic patterns over a large region, which can be 868 

integrated into multiple-scale models or reanalysis data. However, several challenges 869 

need to be addressed to achieve this. One significant limitation is the lack of high-870 

quality, detailed observations of clouds and radiosonde profiles globally. This scarcity 871 

of data can hinder the model's ability to generalize effectively across different regions. 872 

To overcome this, there are several potential strategies. First, using transfer learning 873 

techniques can help adapt the model trained in one region to other regions with limited 874 

data. Integrating data from global observational networks (i.e., ARM) can also create a 875 

more diverse and representative training dataset, capturing a wider range of atmospheric 876 

conditions and cloud characteristics. Meanwhile, leveraging satellite data can provide 877 

broader coverage and enhance the robustness of the model. We plan to explore these 878 

approaches in future work to enhance the model's performance and applicability on a 879 
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global scale. 880 

 881 

 882 

Code and data availability. The code package of DNN models and for the The 883 

simulation outputs of BLCs from observed meteorological data and ERA-5 and 884 

MERRA-2 is available under the GNU General Public License v3.0 at can be found in 885 

https://doi.org/10.5281/zenodo.10719342 (Su, 2024). ARM radiosonde data, surface 886 

fluxes, and cloud masks are available at 887 

https://adc.arm.gov/discovery/#/results/instrument_class_code::armbe (ARM user 888 

facility, 1994). ARSCL (Active Remote SesningSensing of CloudClouds) can be found 889 

in https://adc.arm.gov/discovery/#/results/instrument_class_code::arscl (ARM user 890 

facility, 1996). MERRA-2 reanalysis data can be downloaded obtained from 891 

https://disc.gsfc.nasa.gov/datasets/M2T1NXRAD_5.12.4/summary?keywords%E2%8892 

0%89=%E2%80%89MERRA-2%20tavg1_2d_rad_Nx (GMAO, 2015). ERA-5 893 

reanalysis data are obtained from 894 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-895 

levels?tab=form (Hersbach et al. 2023). 896 
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TABLE LIST: 1238 

Table 1: Detailed descriptions of input and output variables used in the deep learning 1239 

models for predicting boundary layer clouds (BLCs). The table includes the variable 1240 

names, descriptions, and data sources. For the input parameters, surface meteorology 1241 

and fluxes are taken from the current and previous hours, while morning profiles 1242 

comprises 46 values spanning from 0-8 km at 06 LT. Note that the output data is derived 1243 

from ARSCL (Active Remote Sensing of Clouds). The three outputs correspond to the 1244 

trigger module, cloud-base module, and fraction-thickness module, respectively.  1245 

Variable Description Data Source 

Input 

Month Range from 1-12 Time Record 

LT Local Time Time Record 

PS Pressure at surface level (2m) Surface Meteorology Station 

RH Relative Humidity at 2m Surface Meteorology Station 

U Zonal wind at 2m Surface Meteorology Station 

V Meridional wind at 2m Surface Meteorology Station 

T Temperature at 2m Surface Meteorology Station 

LCL Lifted Condensation Level Derived from T, RH, PS 

SH Sensible Heat Energy Balance Bowen Ratio 

LH Latent Heat Energy Balance Bowen Ratio 

RH Profile Morning RH profiles Radiosonde 

U Profile Morning U wind profiles Radiosonde 

V Profile Morning V wind profiles Radiosonde 

θ Profile 
Morning potential temperature 

profiles 
Radiosonde 

BLHSH PBLH derived from sensible heat Derived from θ Profile and SH 

BLHParcel 
PBLH derived from parcel 

method 
Derived from θ Profile and T 

Output 

Trigger Cloud occurrence ARSCL 

Position Cloud-base height ARSCL 

Fraction Profiles Cloud fraction and thickness ARSCL 

 1246 

 1247 

 1248 

 1249 
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Table 2: Classification Performance of the Deep Learning Model for Boundary Layer 1250 

Clouds (BLC) Trigger. This table present the performance metrics of the deep learning 1251 

model during both the trained and untrained periods. It lists the number of samples and 1252 

corresponding percentages for true negatives (TN), false positives (FP), false negatives 1253 

(FN), and true positives (TP). The overall accuracy for each period is also provided, 1254 

indicating the model's overall effectiveness in predicting the presence of boundary layer 1255 

clouds. 1256 

Performance 

Metrics 

Trained Period (1998-2016) Untrained Period (2017-2020) 

Sample # Percentage (%) Sample # Percentage (%) 

TN 9773 71.1747142 5416 71.8016704 

FP 393 2.8621368 393 5.2101286 

FN 670 4.8794698 424 5.6211057 

TP 2895 21.0836793 1310 17.3670953 

Overall Accuracy N.A. 92.2583934 N.A. 89.1687657 

 1257 

 1258 

 1259 

 1260 

 1261 

 1262 

 1263 

 1264 

 1265 

 1266 

Figures 1267 
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 1268 

Figure 1: Conceptual diagram of the deep learning framework for simulating boundary 1269 

layer cloud (BLC) characteristics over the US Southern Great Plains. Inputs for the deep 1270 

neural networks (DNN) include morning meteorological profiles from radiosonde 1271 

(SONDE) profiles,), time indicators, (i.e., local time and month), and surface conditions 1272 

such as fluxes (curved black arrows) and meteorological data. The relevance of relative 1273 

humidity (RH) profiles and the planetary boundary layer (PBL) top is emphasized due 1274 

to their critical role in boundary layerBLCs development. These variables are processed 1275 

through multiple layers of hidden neurons (ℎ11 h11 to ℎ𝑀𝐾 ), each with neuron bias 1276 

adjustments to optimize the network's predictive capability.hMK). Both input and output 1277 

parameters are hourly, except for the morning SONDE. Separate DNN modelsmodules 1278 

are constructed for each task: Module 1 handles the initiation (trigger) of boundary layer 1279 

clouds (BLC), their vertical positioning, and ; Module 2 estimates the cloud base; and 1280 

Module 3 estimates cloud fraction across ten atmospheric layersand thickness. Together, 1281 

these models synergize to predict the presence, altitude, and stratification of BLC. 1282 
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 1283 

Figure 2: Examples of diurnal cloud fraction profiles for cumulus (a, b), stratiform (c, 1284 

d), and complex cloud structures (e, f) over the US Southern Great Plains. Observed 1285 

data (OBS) are shown alongside deep learning neural network (DNN) simulations. 1286 

Black lines represent the observed PBL height (PBLH), with cloud base (CBH) and 1287 

cloud top heights (CTH) marked by pink and red dots, respectively. The color gradient 1288 

indicates the cloud fraction. 1289 
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 1290 

Figure 3. Feature importance scores for predicting cloud triggeroccurrence (a), cloud 1291 

base height (CBH) (b), and cloud fraction (c) in the deep learning simulations of BLCs. 1292 

Each panel presents the relative contribution of input features, includes month, local 1293 

time (LT), surface pressure (PS), relative humidity (RH), zonal (U) and meridional (V) 1294 

wind components, temperature (T), lifting condensation level (LCL), boundary layer 1295 

height derived from sensible heat (BLHSH) and parcel methods (BLHParcel), sensible 1296 

heat (SH), latent heat (LH), and morning profiles of relative humidity (R Profile), U 1297 

wind (U Profile), V wind (V Profile), and potential temperature (θ Profile). These 1298 

factors are ranked based on their overall importance. The importance scores are 1299 

calculated with permutation method and quantify the relative contribution of each 1300 

feature to the model's predictive accuracy. 1301 
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 1303 

Figure 4: Confusion matrices representingon the classification performance of the deep 1304 

learning model forin predicting the presenceoccurrence of boundary layer clouds 1305 

(BLCs) during the trained period (1998-2016) in panel (a), and the 1306 

untrainedindependent period (2017-2020) in panel (b). ForThe matrices in the trained 1307 

period, we use are calculated using the 30% dataset for the validation. The matrices in 1308 

the black color display the counts and percentages of true positive (TP), false positive 1309 

(FP), true negative (TN), and false negative (FN) predictions. The overall accuracy, 1310 

precision, and recall, and F1 scores for each class are also included, demonstrating the 1311 
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model's ability in identifying BLC occurrence. 1312 

 1313 

Figure 5. Bar graph comparingcomparison on the occurrence frequency of boundary 1314 

layer cloudclouds (BLC) occurrence asbetween the observed (OBS, red) and asthe 1315 

predicted by the deep learning neural network (DNN, blue) across different local times 1316 

of the day, segmented by seasons: (a) MAM (Spring), (b) JJA (Summer), (c) SON (Fall), 1317 

and (d) DJF (Winter). The bars present the diurnal pattern of BLC development. 1318 

 1319 

 1320 

 1321 
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 1323 

Figure 6. Scatter density plots comparing comparison between the observed (OBS) and 1324 

the predicted values by the deep learning neural network (DNN) predicted values for 1325 

cloud base height (CBH), cloud top height (CTH), and cloud fraction during the 1326 

traintrained period (a, c, e) and an independent period (b, d, f). Note that the BLC is 1327 

segmented into ten layers, yielding ten separate cloud fraction values per BLC instance 1328 

for analysis. The correlation coefficient (R) and mean absolute error (MAE) are 1329 

indicated for each comparison. The color scale represents the normalized density of 1330 

data points. The solid lines and error bars denoting the linear regression and standard 1331 

deviations in each bar.  1332 

 1333 
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 1334 

Figure 7. Diurnal profiles of cloud base height (CBH) and cloud top height (CTH) as 1335 

determined by the observations (OBS) and deep learning simulations for all BLC (a-b), 1336 

stratiform clouds (c-d), and cumulus (e-f). The shaded areas represent the variability 1337 

(one standard deviation) around the mean heights. 1338 

 1339 
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 1340 

Figure 8. CloudColor shaded areas demonstrate the diurnal variation in cloud fraction 1341 

for all cases as observed and simulated. Panel (a) shows the observed cloud fraction 1342 

(OBS), while panel (b) illustrates the cloud fraction simulated by the deep learning 1343 

neural networks (DNN).) using ARM observational data as inputs. (c, e): cloud fractions 1344 

direcly extracted from ERA and MERRA reanalysis datasets, respectively. (d, f): the 1345 

cloud fractions after the application ofsimulated by the DNN model tousing ERA 1346 

(ERADNN) and MERRA (MERRADNN) data as inputs.  1347 
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 1348 

Figure 9. Same to Figure 8, but for stratiform clouds. 1349 
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 1350 

Figure 10. Same to Figure 8, but for cumulus. 1351 

 1352 
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 1353 

 1354 

Figure 11: Vertical profiles of cloud fraction for stratiform (St) and cumulus (Cu) 1355 

scenarios over the US Southern Great Plains. Panels (a) and (b) display ERA reanalysis 1356 

data comparisons, while panels (c) and (d) show MERRA reanalysis data comparisons. 1357 

The observed cloud fractions (OBS) are represented by the shaded grey area, illustrating 1358 

the averaged cloud coverage recorded by field observations. The original reanalysis 1359 

data (RD) is indicated in pink, indicating the baseline cloud fraction profiles as 1360 

simulated by the reanalysis. The RDDNN profiles in blue depict the new simulation 1361 

results after applying the DNN models to the reanalysis data for boundary layer cloud 1362 

(BLC) simulation. The RDDNN-RH profiles in green show the simulation results when 1363 

the surface relative humidity (RH) from the reanalysis data is replaced with observed 1364 

values, indicating the impact of accurate surface moisture representation on cloud 1365 

fraction simulations. 1366 
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 1367 

Figure 12: Attribution of bias between observed and reanalysis on cloud fractions to 1368 

various meteorological factors and parameterization schemes for stratiform (a) and 1369 

cumulus (b) cloud scenarios. The bars represent the normalized bias (bias divide mean 1370 

cloud fraction) contributed by each factor: relative humidity profile (RH), meridional 1371 

wind profile (V Profile), temperature profile (T Profile), zonal wind profile (U Profile), 1372 

surface pressure (SP), latent heat flux (LH), and parameterization (P). All profiles took 1373 

on morning (06:00 LT). Light blue bars indicate biases identified in the ERA reanalysis 1374 

dataset, while pink bars represent biases in the MERRA reanalysis dataset. The dashed 1375 

red line marked 'P' denotes biases attributed specifically to the parameterization within 1376 

the reanalysis models. This analysis uses the DNN to discern the impact of each factor 1377 

(ranked from highest to lowest) on the discrepancy in cloud fraction estimates between 1378 
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observations and reanalysis models. 1379 


