
Response to Referees’ Comments 

Response to Reviewer #1: 

This study uses high quality observations to develop a machine-learning-based scheme for 

predicting land-coupled boundary layer cloud fraction at a single point location in Oklahoma in 

the United States.  The scheme consists of three machine learning models, which are used in 

tandem to arrive at cloud fraction predictions at each hour of the day between 8 AM and 6 PM 

local time.  Inputs to these models consist of morning radiosonde profiles of relative humidity, 

potential temperature, and horizontal winds, surface meteorological conditions from the hour 

preceding and hour coinciding with the prediction time, and predictions from intermediate 

steps.  The models achieve moderate success on this prediction problem, accurately predicting the 

cloud base, and approximately predicting the cloud top height and cloud fraction at 10 levels 

between the predicted cloud base and cloud height.  The cloud fraction is generally 

underestimated, and the cloud top height is generally overestimated below roughly 2 km and 

underestimated above. 

The authors then move on to applying their ML models using data from two reanalysis datasets as 

input, instead of observations.  The idea behind this is to illustrate the shortcomings of these 

reanalysis datasets in simulating boundary layer clouds at this particular site, and use the ML 

models as a way to estimate whether errors in simulating the clouds can be attributed to errors in 

predicting underlying meteorological variables versus the errors introduced by the 

parameterization scheme used.  They conclude that errors in ERA5 can be attributed mainly to the 

cloud parameterization, while errors in MERRA-2 can be attributed to both errors in the 

meteorological fields and cloud parameterization. 

To me the most interesting aspect of this study was the fact that it trained ML models purely on 

observations.  This was facilitated by the uniquely extensive observations taken at the ARM SGP 

site.  This is a strength in one sense in that the ground truth has strong credibility, but it is also a 

weakness in another in that it limits the applicability of the trained models (and general approach) 

to a single point location.  The parameterization strategy is also less applicable to general 

circulation models (GCMs), since GCMs simulate vertical profiles of fields at all grid points at 

every timestep, so (unlike in the case limited by observations) there is no need to temporally 

separate vertical profiles from surface meteorological quantities.  Nevertheless, it is useful to see 

that a machine learning model can be trained to predict observed boundary layer clouds better 

than existing physical parameterizations in models used to produce reanalysis data, at least in an 

isolated setting.  For greater impact, a more generalizable model will be key, but that can be saved 

for discussion of future work.  This study could be worth publishing after addressing some 

comments and questions. 

Response: We appreciate the reviewer’s detailed and comprehensive feedback on our study. 

These comments have significantly contributed to improving the clarity of the manuscript. 

We have carefully considered these comments and concerns raised and have integrated 

necessary revisions to address the issues related to the model descriptions, the model 

structure, the application to reanalysis data, and the limitations of the study. All the 

comments and concerns raised by the referee have been carefully considered and 

incorporated into this revision. Our detailed responses to the reviewer’s questions and 

comments are listed below. 

 

General comments: 

1. A cleaner and more complete description of the machine learning approach could be helpful.  



For instance I think the feature importance scores in Table 1, which are illustrated in a more 

interpretable way in Figure 3, could be replaced by some more metadata about the predictor 

and target fields (e.g. the short names could be accompanied by longer descriptions, including 

the data source; see e.g. Table 1 in Payami et al., 2024).  The network structures I think could 

be described in the text.  In addition some more details about the networks could be provided.  

What activation functions were used between the layers?  What was the optimizer used to train 

the networks?  What were the loss functions?  What was the batch size used during training?  

What was the learning rate? 

Response: We are grateful for the reviewer's suggestion for a cleaner and more complete 

description of our machine learning approach. We have revised Table 1 to include longer 

descriptions of each predictor and target field, along with their data sources, similar to the 

format suggested (e.g., Table 1 in Payami et al., 2024). 

In addition, we have included a detailed description of the network structures in the text, 

as follows:  

“The DNN architecture is designed, beginning with an input layer reflective of the 

selected feature set, which includes morning sounding profiles, surface meteorology and heat 

fluxes data, and the derived variables such as LCL, BLHparcel and BLHSH. For predicting the 

current hour BLC, the inputs of surface conditions include data both at the current hour 

and the previous hour. The input variables for training and validating the deep learning 

model are detailed in Table 1, including variable names, descriptions, and data sources, 

together with the ARMBE cloud fraction profiles as the learning target for model outputs.  

The architecture of the DNN models was structured and tailored for each module: 

occurrence, cloud-base, and fraction (or fraction-thickness) estimation. Each module's 

structure is defined by the number of neurons in its hidden layers. For the occurrence 

module, the structure consists of four hidden layers with 108, 64, 36, and 24 neurons, 

respectively. The CBH prediction module is similarly structured with four hidden layers, but 

consisting of 96, 56, 32, and 24 neurons, respectively. The module for predicting cloud 

fraction and thickness has a slightly simpler structure, with three hidden layers containing 

56, 32, and 24 neurons, respectively. 

As the specific configuration, we utilized the ReLU (Rectified Linear Unit) activation 

function to introduce non-linearity into the DNN. L2 regularization with a strength of 0.01 

is applied to mitigate overfitting by penalizing large weights and encouraging simpler 

models. Batch normalization is implemented at each layer to normalize the inputs, ensuring 

consistent data distribution and stabilizing the learning process. A dropout rate of 0.2 is used 

to randomly omit neuron connections during training, preventing overfitting and 

encouraging the network to learn more robust features. The training process was refined 

with early stopping, ceasing further epochs when the validation loss ceased to improve, and 

learning rate reduction, systematically decreasing the learning rate upon encountering 

plateaus in performance improvement. These callbacks were instrumental in honing the 

model's performance, ensuring convergence to the accurate estimation of the BLC. Neuron 

biases are included in the network's architecture and systematically inserted in the hidden 

layers (Battaglia et al. 2018). The model is compiled using the Adam optimizer with an initial 

learning rate of 0.01. The loss functions used are mean squared error for regression tasks 

and Binary Cross-Entropy for binary classification tasks. The batch size during training is 

set to 32. Early stopping with a patience of 37 epochs is implemented to prevent overfitting 

and to restore the best weights when the validation loss ceases to improve.” 



 

Table 1: Detailed descriptions of input and output variables used in the deep learning models for 

predicting boundary layer clouds (BLCs). The table includes the variable names, descriptions, and 

data sources. For the input parameters, surface meteorology and fluxes are taken from the current 

and previous hours, while morning profiles comprises 46 values spanning from 0-8 km at 06 LT. 

Note that the output data is derived from ARSCL (Active Remote Sensing of Clouds). The three 

outputs correspond to the trigger module, cloud-base module, and fraction-thickness module, 

respectively.  

Variable Description Data Source 

Input 

Month Range from 1-12 Time Record 

LT Local Time Time Record 

PS Pressure at surface level (2m) Surface Meteorology Station 

RH Relative Humidity at 2m Surface Meteorology Station 

U Zonal wind at 2m Surface Meteorology Station 

V Meridional wind at 2m Surface Meteorology Station 

T Temperature at 2m Surface Meteorology Station 

LCL Lifted Condensation Level Derived from T, RH, PS 

SH Sensible Heat Energy Balance Bowen Ratio 

LH Latent Heat Energy Balance Bowen Ratio 

RH Profile Morning RH profiles Radiosonde 

U Profile Morning U wind profiles Radiosonde 

V Profile Morning V wind profiles Radiosonde 

θ Profile 
Morning potential temperature 

profiles 
Radiosonde 

BLHSH PBLH derived from sensible heat Derived from θ Profile and SH 

BLHParcel 
PBLH derived from parcel 

method 
Derived from θ Profile and T 

Output 

Trigger Cloud occurrence ARSCL 

Position Cloud-base height ARSCL 

Fraction Profiles Cloud fraction and thickness ARSCL 

 

 

2. The structure of the overall model is complicated.  In particular the way of separating the 

predictions of the top and bottom of the cloud layer from the cloud fraction within the cloud 

layer is unusual (as opposed to simply predicting a cloud fraction at a static set of vertical 

levels).  How was this arrived upon?  In addition, how were the inputs chosen?  There are 

many, and to some extent some could be considered redundant.  For instance I gather that the 

BLH_P, BLH_SH, and LCL inputs are derived from fields that overlap in part with other inputs; 

does omitting those and retraining lead to significant degradation in skill?  Also instead of 

month and local time, could something more physical like insolation be used, which would 

capture both effects, and be better suited for generalizability? 

Response: We appreciate the reviewer’s comments on the structure of the overall model and 

the choice of inputs. Below, we provide a detailed explanation addressing the three points 



one by one. The following discussions have been incorporated into the revised manuscript to 

clarify the rationale behind the model design and the choice of inputs. 

 

(1) Model Structures and Separation of Predictions  

The decision to use three separate models for predicting BLCs, including triggering, 

cloud position, and cloud fraction, was driven by the need to capture the different aspects of 

clouds. To characterize clouds comprehensively, it is essential to consider various aspects 

rather than relying on a single metric. We believe this approach provides a full overview of 

cloud information. 

Firstly, predicting cloud occurrence is a classification problem, distinguishing it from 

the subsequent tasks that deal with continuous variables. Therefore, the first model focuses 

exclusively on cloud occurrence, providing a binary outcome that indicates the presence or 

absence of clouds. This separation ensures that the classification task is handled 

independently, optimizing the model specifically for this type of prediction. Once cloud 

occurrence is determined, the next step involves predicting the cloud position. This second 

model operates on a regression basis, as it deals with the variables representing the vertical 

position of the cloud. Finally, the third model focuses on the cloud fraction within the 

established cloud base and top. This model provides a detailed depiction of the cloud's 

vertical structure by predicting cloud fraction at multiple levels within the clouds.  

The key to this strategy lies in the relative independence between cloud position and 

cloud fraction. BLCs can occur at various positions with different cloud fractions, and the 

height of the cloud does not necessarily indicate its fraction. By isolating these tasks, the 

model can accurately determine different aspects of clouds without interference from other 

predictive tasks. Using three separate models allows for the optimization of each one for its 

specific task. This modular approach ensures that different aspects of cloud characterization 

are captured, enhancing the overall reliability of the predictions. Thus, we believe this 

approach aligns with physical principles and achieves reasonably good performance. To echo 

these points, we added the following description to the revised Section 3.1: 

“The occurrence module, as the first step, evaluates the likelihood of cloud formation by 

producing a number between 0 and 1, which we call “trigger” in the following, whose value 

above 0.5 indicates the presence of clouds. The target data for this module is binary (0 or 1), 

and the model output is a continuous value between 0 and 1. This occurrence information 

then feeds into the other two modules in parallel: one for locating cloud boundaries and the 

other for delineating the vertical shape of the cloud fraction in cloudy layers. While the 

cloud-base (or boundary) module and the fraction-thickness (or fraction) module are 

independent of each other, they collaborate to depict the vertical cloud fraction profile.  

To represent the vertical structure of BLC in the fraction-thickness module, we 

segmented the cloud layer from the base to the top into ten levels, with each level's thickness 

varying according to the overall cloud thickness. These values are then interpolated to create 

a continuous vertical profile of cloud fraction within the BLC boundaries, offering a detailed 

depiction of the cloud's vertical extent. The vertical position of the layer changes based on 

the predicted cloud base and top to accurately represent the vertical structure of BLCs. This 

dynamic approach allows the fraction module to adjust and focus on the relevant portions 

of cloud fraction within cloudy layers. Compared to a static level approach, which requires 

the prediction of cloud fraction across a fixed vertical extent (e.g., multiple levels between 0-



6 km), our method focuses on the shape of the fraction profile. This ensures the model is not 

constrained by fixed vertical levels, allowing for more efficient and robust estimations.” 

 

(2) Derived Inputs: 

The inputs were chosen based on their relevance to the physical processes governing 

boundary layer cloud formation and evolution. Although BLHParcel, BLHSH, and LCL are 

derived from other inputs rather than direct measurements, they can offer some information 

for the formation of BLCs, which is why we include these parameters. The results confirm 

that these parameters are beneficial. As shown in Figure 3, LCL and BLHSH are not very 

important and only play a minor role. Meanwhile, BLHParcel demonstrates a notable impact, 

which is understandable since the PBLH is a critical factor for the formation of BLCs, and 

BLHParcel provides a good representation of PBLH. 

It is also important to note that BLHParcel is derived from surface temperature and 

morning potential temperature profiles, which themselves are significant inputs. The DNN 

model can adjust the weight of each input by itself, automatically filtering out less important 

parameters. After this adjustment, BLHParcel remains an outstanding factor, demonstrating 

its significance. Thus, we believe it is generally beneficial to include these parameters. 

Although LCL and BLHSH may not be crucial for the DNN model, their inclusion can still 

provide some physical constraints to the process. In general, these inputs contribute helpful 

information that enhances the model’s performance. 

 

(3) Use of Time vs. Insolation: 

We acknowledge the potential benefits of using more physically meaningful 

parameters such as insolation rather than proxies like month and local time. Insolation 

directly reflects the solar radiation received at the surface, which could enhance the model's 

accuracy and generalizability across different geographical locations. However, using month 

and local time also has its advantages. These parameters are readily available and are 

naturally linked to diurnal and seasonal cycles, which affect the characteristics of BLCs. 

Moreover, they are easy to obtain from any location. While we recognize the value of 

incorporating insolation in future work, especially for applications over larger regions, the 

current use of month and local time provides practical and meaningful inputs for our model. 

 

3. It is acknowledged briefly as future work, but what challenges might be present in trying to 

apply this approach globally?  One aspect that stands out is that we do not have such high-

quality detailed observations of clouds and radiosonde profiles everywhere.  How would one 

address that?  Data-driven models typically struggle with generalization, so it is unlikely that 

the model trained for this specific location would be drop-in applicable in other synoptic 

regions without being exposed to more diverse training data. 

Response: We recognize the limitation of having high-quality, detailed observations only at 

specific locations like the ARM SGP site. Meanwhile, it should note that the strategy of using 

ARM sites has several advantages. First, the long-term datasets cover a wide range of 

scenarios, making it possible to apply the method to other locations with similar 

meteorological conditions (e.g., mid-latitude plains). Additionally, ARM sites are part of a 

global network with extensive coverage, although many sites have limited measurement 

periods (several months to several years). We recognize the limitation of having high-quality, 

detailed observations only at specific locations like the ARM SGP site. In the revised 



manuscript, we discuss potential strategies for addressing this challenge, such as leveraging 

satellite data, using transfer learning to adapt models trained on one region to others, and 

integrating data from multiple observational networks to create a more diverse training 

dataset. We extensively discuss the limitations and potential future strategies as follows: 

"Moving forward, future work is warranted to test and extend this diagnostic tool to 

different synoptic patterns over a large region, which can be integrated into multiple-scale 

models or reanalysis data. However, several challenges need to be addressed to achieve this. 

One significant limitation is the lack of high-quality, detailed observations of clouds and 

radiosonde profiles globally. This scarcity of data can hinder the model's ability to generalize 

effectively across different regions. To overcome this, there are several potential strategies. 

First, using transfer learning techniques can help adapt the model trained in one region to 

other regions with limited data. Integrating data from global observational networks (i.e., 

ARM) can also create a more diverse and representative training dataset, capturing a wider 

range of atmospheric conditions and cloud characteristics. Meanwhile, leveraging satellite 

data can provide broader coverage and enhance the robustness of the model. We plan to 

explore these approaches in future work to enhance the model's performance and 

applicability on a global scale." 

 

Specific comments: 

Lines 26-28: this sentence is not clear.  Should it be something like "Morning meteorological 

profiles are the initial conditions and then triggers for the formation of BLCs are identified from 

surface fields."? 

Response: We agree with the reviewer’s suggestion. The sentence has been revised for 

clarity: "The model takes ARM measurements as inputs including early-morning soundings 

and the diurnal-varying surface meteorological conditions and heat fluxes and predicts 

hourly estimates as outputs including the determination of cloud occurrence, the positions of 

cloud boundaries, and the vertical profile of cloud fraction." 

 

Lines 47-48: "These clouds [...] are the critical part for weather prediction and climate modeling 

[...]."  I might switch from "the critical part" to "a critical part," since clouds are not the only 

important feature to get right for weather or climate modeling. 

Response: Per this comment, we have deleted the term “the critical part”.  

 

Line 78: O'Gorman and Dwyer (2018) did not use observational data; they aimed to use ML to 

merely emulate (rather than improve upon) a convection scheme in an idealized model.  Similarly 

neither did Gentine et al. (2018); they derived an ML parameterization of convection using data 

from a more expensive super-parameterized simulation.  I think Zhang et al. (2021) is the only 

study cited here that can be said to have used observational data. 

Response: We acknowledge the correction and have revised the statement to reflect this:  

"Similarly, ML tools have been applied to leverage observational data for the refinement of 

convection parameterizations, offering more insights into convective triggering (Zhang et al., 

2021). In addition, ML has been used to emulate convection schemes and develop 

parameterizations using data from advanced simulations (O'Gorman and Dwyer, 2018; 

Gentine et al., 2018). " 

 



Lines 96-98: "By serving as the cloud parameterization in the reanalysis data, this model advanced 

the capability of low cloud simulations within reanalysis frameworks."  I think I get what is being 

said here, but it is important to emphasize that this is an offline approach, meaning the clouds are 

predicted based on output data and not embedded in the simulations that produce the reanalysis 

data itself (thus they cannot affect things like the radiative heating rates and fluxes in the reanalysis 

data). 

Response: We appreciate the clarification. We have revised the sentence to emphasize the 

offline nature of the approach:  

" By serving as an offline diagnostic tool, this model aims to enhance low cloud 

simulations within reanalysis frameworks without being embedded in the simulations that 

produce the reanalysis data itself." 

 

Lines 104-109: it might be helpful to emphasize—if I understand correctly—that while ARM SGP 

takes measurements of some fields at an array of locations across the general SGP region, they 

only launch radiosondes regularly at this one particular point location, and therefore this study 

pertains only to that spot. This is quite different than many ML studies which use either data from 

reanalysis or climate model simulations for training, which is not directly observed (i.e. so can 

have its own internal biases) but at least is global in nature, without any missing data in time or 

space.  Citing a paper like Sisterson et al. (2016) might be helpful for those who want more 

historical background on the SGP site. 

Response: We cited Sisterson et al. (2016) to offer useful information for the historical 

background on the SGP site. We also have included additional context to emphasize the 

specific location of radiosonde launches in Section 2.1: " Note that all the observations are 

collected at the central facility of SGP, a fixed location, which is different from other ML 

studies that use global data from reanalysis or climate model simulations (e.g., O'Gorman 

and Dwyer, 2018; Shamekh et al. 2023).” 

 

Reference: 

Sisterson, D. L., Peppler, R. A., Cress, T. S., Lamb, P. J., & Turner, D. D. (2016). The ARM 

Southern Great Plains (SGP) Site. Meteorological Monographs, 57(1), 6.1-6.14. 

https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0004.1  

Shamekh, S., Lamb, K. D., Huang, Y., & Gentine, P. (2023). Implicit learning of convective 

organization explains precipitation stochasticity. Proceedings of the National Academy of 

Sciences, 120(20), e2216158120. 

 

Line 188: "Launched routinely at multiple times daily [...]" Can this be quantified in some way?  

E.g. approximately how many times per day is it done?  Is the important aspect for this study that 

a radiosonde was launched roughly every morning?  Is that at a particular time of day? 

Response: We have quantified the radiosonde launches in the revised Section 2.1: 

"We take radiosondes (SONDE) measurements around 6 a.m. local time to offer 

thermodynamic and wind profiles in the PBL and the free atmosphere (Holdridge et al. 

(2011) as initial conditions. SONDE launches typically took place four times per day at the 

SGP site, usually at 00, 06, 12, and 18 local times." 

 

Lines 169-172: it could be helpful to note the purpose of this reanalysis data up front, contrasting 

it to the purpose of the observational data described earlier.  As I understand it, the reanalysis 



data is mainly used as a way to illustrate how boundary layer clouds are misrepresented in 

common data sources and as a way to try to disentangle why that might be the case.  Unlike the 

observational data, it is not used in any way to train the ML models. 

Response: Following this helpful suggestion, we have clarified the purpose of the reanalysis 

data upfront in the revised Section 2.3: " Note that unlike observational data 

aforementioned, reanalysis data are not used for training the deep learning model, instead 

they are going to be used to help illustrate how the deep learning model may disentangle the 

potential causes leading to the biased cloud simulations." 

 

Lines 196-197: "models are purpose-built to simulate the initiation, positioning, and vertical 

extent of BLCs."  It might also be worth adding "at the SGP site," since it is likely that these models 

would likely not be sufficient at other locations given the limitations of the training dataset. 

Response: Per the comment, we have added specificity to the sentence: "This study develops 

an integrated deep learning model to simulate BLC over the SGP site, whose design is 

illustrated in Figure 1." 

 

Lines 212-216: "To represent the vertical structure of BLC, we equally segmented the cloud layer 

from the base to the top into ten levels. For each of these levels, our deep learning models calculate 

individual cloud fraction values."  So the vertical position of the layers your models calculate 

cloud fraction for change depending on the cloud base and cloud top? How would the cloud 

fraction network know what portion of the morning profiles were most relevant to the cloud 

fraction?  Why was this more complicated model architecture chosen instead of simply skipping 

straight to predicting a cloud fraction at a static set of vertical levels? 

Response: We appreciate the reviewer's insightful questions regarding our model 

architecture. We have added detailed clarification to explain the reasoning behind our model 

architecture in the revised Section 3.1: 

"To represent the vertical structure of BLC in the fraction-thickness module, we 

segmented the cloud layer from the base to the top into ten levels, with each level's thickness 

varying according to the overall cloud thickness. These values are then interpolated to create 

a continuous vertical profile of cloud fraction within the BLC boundaries, offering a detailed 

depiction of the cloud's vertical extent. The vertical position of the layer changes based on 

the predicted cloud base and top to accurately represent the vertical structure of BLCs. This 

dynamic approach allows the fraction module to adjust and focus on the relevant portions 

of cloud fraction within cloudy layers. Compared to a static level approach, which requires 

the prediction of cloud fraction across a fixed vertical extent (e.g., multiple levels between 0-

6 km), our method focuses on the shape of the fraction profile. This ensures the model is not 

constrained by fixed vertical levels, allowing for more efficient and robust estimations." 

 

Table 1: why is the trigger value an input to the other two models instead of just using the other 

two models only when the predicted trigger value is greater than 0.5?  If I understand correctly, 

with the current approach there is no guarantee that the classification statistics presented in 

Figure 4 will be relevant in the full problem. 

Response: In our approach, the trigger value, which indicates the likelihood of cloud 

occurrence, is used as an input to ensure continuity and coherence between the models. 

Sometimes, the trigger value hovers around 0.5, indicating uncertainty about the presence 

of clouds. This situation often corresponds to scenarios like broken clouds or residual clouds, 



typically associated with relatively small cloud fractions. Incorporating the trigger value as 

an input for cloud fraction estimation helps the model account for these ambiguous 

situations, thereby enhancing its ability to estimate cloud fraction. While including the 

trigger value is particularly beneficial for the cloud fraction model, it does not affect the CBH 

estimation, as this aspect of cloud properties is handled separately. 

Figure 4 demonstrates the classification problem and is related to cloud occurrence 

prediction. The classification significantly affects the statistical estimation of cloud fraction, 

as cloud fraction is set to 0 if the trigger is less than 0.5. However, this does not affect the 

regression tasks for cloud base and top height predictions. 

These discussions have been incorporated into the revised Section 3 to provide a 

clearer understanding of the rationale behind this approach. 

 

Line 227: what is the strength of the L2 regularization? 

Response: The strength of the L2 regularization is specified: "L2 regularization with a 

strength of 0.01 is applied to mitigate overfitting by penalizing large weights and encouraging 

simpler models.” 

 

Lines 244-246: "Additionally we incorporate datasets from 2017-2020 as part of our validation 

process, specifically focusing on data from the untrained period to assess the model's 

performance."  If I understand correctly, this is your "test" dataset in ML parlance. Therefore I 

might rephrase this as "Additionally we save data from 2017-2020 for testing, specifically focusing 

on data from this untrained period to assess the model's performance." 

Response: Following the comment, we have rephrased the sentence for clarity: "In addition, 

we save data from 2017-2020 for testing, specifically focusing on this untrained period to 

assess the model's performance." 

 

Lines 246-248: "The training and validations are both using the more than 20-year BLC 

observations, as well as the ARMBE products."  I'm not sure I totally follow this sentence, since 

the previous few sentences describe the training data / validation datasets as coming from 1998 - 

2016 (which is less than 20 years) and the test dataset coming from 2017 - 2020 (which is also 

less than 20 years).  In general I'm not sure what this sentence adds, since having data from these 

various sources for the time periods cited (which, yes, are in aggregate over 20 years) is already 

implied, so I think it could be removed. 

Response: We acknowledge the confusion of this statement and have removed the redundant 

sentence for clarity. 

 

Lines 285-287: for the morning profiles, which as I understand it are multiple input features each, 

I take it this permutation was done using all the profile values for a particular variable at once?  

This seems reasonable, but might be worth describing in the manuscript. 

Following the reviewer's suggestion, we have added a clarification in the manuscript 

regarding the permutation of the morning profiles, as follows:  

"When performing the permutation, we shuffle the entire morning profile for each case 

without altering the internal order of values within the profile. This approach ensures that 

while profiles are permuted across different cases, the sequential structure of values within 

each profile remains intact. This method allows us to assess the importance of the profiles as 

coherent units, rather than disrupting their vertical structures." 



 

Lines 312-320: it is a bit odd to describe these specific input parameters—and how they were 

derived—only at the moment when describing feature importance (and after discussing some 

sample model predictions).  It would be better to describe this earlier when describing the 

structure of the different models, e.g. in Section 3.1. 

Response: Per this helpful suggestion, we have moved the description of specific input 

parameters (i.e., LCL, BLHParcel, BLHSH) earlier in the revised Section 3.1.  

 

Table 1: I'm not sure I see the value of presenting the precise numerical importance scores in 

addition to the bar chart in Figure 3 (I find the bar chart more interpretable). 

Response: Thanks for pointing out. We have decided to retain only the bar chart in Figure 

3. The current Table 1 has been revised as the input and output lists. 

 

Line 338: "to identify and simulate from surface meteorology."  Should this also include a 

reference to the morning radiosonde inputs? 

Response: Indeed, we have revised this statement as: “……to identify the BLC trigger using 

morning meteorological profiles and observed surface meteorology and fluxes.” 

 

Line 357: "Table 2 complements the Figure 4" It seems Table 2 is completely redundant with 

Figure 4.  I would probably keep Figure 4, since it includes slightly more information. 

Response: We agree with the reviewer and decided to keep Figure 4 and remove Table 2 for 

clarity. 

 

Figure 4: where are the F1 scores shown?  From what I can tell, precision, recall, and accuracy 

are shown, but not F1 scores.  Also I do not think it is important to explicitly show the performance 

within the training data.  What matters most is the performance on the held out test data. 

Response: We appreciate the reviewer's observations regarding Figure 4. We acknowledge 

that Figure 4 does not display the F1 score, and we have deleted any descriptions related to 

the F1 score to avoid confusion. We also agree that the performance within the training data 

is not important as the performance on the held-out test data. However, we did not test the 

performance on the training data. For "the training period", we used a 70% training and 

30% validation split to ensure model validation. This is the regular procedure. In addition, 

we performed an independent test on a separate validation period. This approach 

demonstrates that the DNN model can be applied to future data over this region without the 

need for retraining, indicating its potential for generalizability and robustness in practical 

applications. This clarification has been incorporated into the revised manuscript. 

 

Lines 361-364: "The table highlights the model's robustness, with overall accuracy rates of 92.3% 

for the trained period and a slightly reduced but still substantial 89.2% for the untrained period."  

Given that the datasets are imbalanced (i.e. there are fewer occurrences than non-occurrences) 

the accuracy is perhaps not the best metric to highlight.  The precision and recall are both 

reasonably high, and might be better to highlight.  See discussion in this TensorFlow tutorial 

regarding classification of imbalanced data, in particular the note about the accuracy metric: 

https://www.tensorflow.org/tutorials/structured_data/imbalanced_data. 

Response: Following this constructive comment, we have highlighted precision and recall 

instead of accuracy in these descriptions: "Moreover, for the trained period, the model 



achieved a high precision of 88.1% and a recall of 81.2%. For the independent period, the 

precision and recall remained reasonably high at 76.9% and 75.6%, respectively, 

demonstrating the model's effective generalization to new data." 

 

Figure 6: again I think showing the results on the held out dataset alone is standard and sufficient. 

Response: As noted in the previous response, the term "training period" does not imply using 

the same data for both training and validation. Instead, it indicates the timeframe during 

which we allocated 70% of the data for training and the remaining 30% for validation, 

following common practice. The independent dataset represents a completely different 

period used for additional testing, ensuring that our model's performance is robust and 

generalizable. Therefore, we present results for both the training period (standard method) 

and the independent period. We have clarified this issue in the revised Section 4.2. 

 

Technical corrections: 

Line 28: "offer" -> "offers" 

Lines 41-42: "stratiforms and shallow cumuli" -> "stratiform and shallow cumulus types" 

Line 53: "of land surface" -> "of the land surface" 

Line 57: "simulating the boundary layer clouds" -> "simulating boundary layer clouds" 

Line 88: "structural structure" -> "structure" 

Line 90: "diurnal-varying" -> "diurnally varying" 

Figure 6: "Independant" -> "Independent" 

Figure 12: "attribute" -> "attributed" 

Line 590: "Sesning" -> "Sensing" 

Response:  Thanks a lot for pointing out. We have corrected all these grammars and typos 

as suggested.  


