Thank you for your suggestion and understanding. We will include a brief theoretical analysis of the second-order temporal accuracy in the appendix.

The IMEX Runge–Kutta (IMEXRK) scheme used in this work are shown in Eq.(24)-(27):

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f^{\mathrm{EX}}(y) + f^{\mathrm{IM}}(y), \tag{24}$$

$$\mathbf{y}^{(1)} = \mathbf{y}^{(n)} + \Delta t \mathbf{f}^{\mathrm{EX}} \left(\mathbf{y}^{(n)} \right), \tag{25}$$

$$\mathbf{y}^{(2)} = \mathbf{y}^{(n)} + \frac{1}{2} \Delta t \left(\mathbf{f}^{EX} \left(\mathbf{y}^{(n)} \right) + \mathbf{f}^{EX} \left(\mathbf{y}^{(1)} \right) \right), \tag{26}$$

$$\mathbf{y}^{(n+1)} = \mathbf{y}^{(2)} + \Delta t \mathbf{f}^{\mathrm{IM}} \left(\mathbf{y}^{(n+1)} \right). \tag{27}$$

For explicit term, we first expand $f^{EX}(y^{(1)})$:

$$\boldsymbol{f}^{\mathrm{EX}}\left(\boldsymbol{y}^{(1)}\right) = \boldsymbol{f}^{\mathrm{EX}}\left(\boldsymbol{y}^{(n)} + \Delta t \boldsymbol{f}^{\mathrm{EX}}\left(\boldsymbol{y}^{(n)}\right)\right) = \boldsymbol{f}^{\mathrm{EX}}\left(\boldsymbol{y}^{(n)}\right) + \Delta t \boldsymbol{f}^{(\mathrm{EX})'}\left(\boldsymbol{y}^{(n)}\right) \boldsymbol{f}^{\mathrm{EX}}\left(\boldsymbol{y}^{(n)}\right) + O(\Delta t^{2}).$$
(B1)

Substituting into (26), we obtain:

$$\mathbf{y}^{(2)} = \mathbf{y}^{(n)} + \Delta t \mathbf{f}^{\mathrm{EX}} \left(\mathbf{y}^{(n)} \right) + \frac{\Delta t^2}{2} \mathbf{f}^{(\mathrm{EX})'} \left(\mathbf{y}^{(n)} \right) \mathbf{f}^{\mathrm{EX}} \left(\mathbf{y}^{(n)} \right) + O(\Delta t^3).$$
 (B2)

The implicit term can be written via a fixed-point expansion:

$$\mathbf{y}^{(n+1)} = \mathbf{y}^{(2)} + \Delta t \mathbf{f}^{\text{IM}} \left(\mathbf{y}^{(2)} \right) + O\left(\Delta t^2\right).$$
 (B3)

Substituting (B2) into (B3), we obtain:

$$\mathbf{y}^{(n+1)} = \mathbf{y}^{(n)} + \Delta t \mathbf{f}^{\mathrm{EX}} \left(\mathbf{y}^{(n)} \right) + \frac{\Delta t^{2}}{2} \mathbf{f}^{(\mathrm{EX})'} \left(\mathbf{y}^{(n)} \right) \mathbf{f}^{\mathrm{EX}} \left(\mathbf{y}^{(n)} \right) + O(\Delta t^{3})$$

$$+ \Delta t \mathbf{f}^{\mathrm{IM}} \left(\mathbf{y}^{(2)} \right) + O(\Delta t^{2}). \tag{B4}$$

Then, we expand $f^{\text{IM}}(y^{(2)})$ and it:

$$\boldsymbol{f}^{\mathrm{IM}}\left(\boldsymbol{y}^{(2)}\right) = \boldsymbol{f}^{\mathrm{IM}}\left(\boldsymbol{y}^{(n)}\right) + \frac{\Delta t}{2}\boldsymbol{f}^{\mathrm{(IM)'}}\left(\boldsymbol{y}^{(n)}\right)\boldsymbol{f}^{\mathrm{IM}}\left(\boldsymbol{y}^{(n)}\right) + O(\Delta t^{2}). \tag{B5}$$

We can find that $f^{\text{IM}}(y^{(2)})$ is first-order and $\Delta t f^{\text{IM}}(y^{(2)})$ is second-order. Substituting (B5) into (B4), we obtain:

$$\mathbf{y}^{(n+1)} = \mathbf{y}^{(n)} + \Delta t \mathbf{f}^{\mathrm{EX}} \left(\mathbf{y}^{(n)} \right) + \frac{\Delta t^{2}}{2} \mathbf{f}^{(\mathrm{EX})'} \left(\mathbf{y}^{(n)} \right) \mathbf{f}^{\mathrm{EX}} \left(\mathbf{y}^{(n)} \right) + O(\Delta t^{3})$$

$$+ \Delta t \left(\mathbf{f}^{\mathrm{IM}} \left(\mathbf{y}^{(n)} \right) + \frac{\Delta t}{2} \mathbf{f}^{(\mathrm{IM})'} \left(\mathbf{y}^{(n)} \right) \mathbf{f}^{\mathrm{IM}} \left(\mathbf{y}^{(n)} \right) \right) + O(\Delta t^{3}).$$
(B6)

By rearranging the terms, we obtain (B7), which matches the Taylor expansion

of the exact solution to second order.

$$y^{(n+1)} = y^{(n)} + \Delta \left(t f^{\text{EX}} \left(y^{(n)} \right) + f^{\text{IM}} \left(y^{(n)} \right) \right)$$

$$+ \frac{\Delta t^{2}}{2} \left(f^{(\text{EX})'} \left(y^{(n)} \right) f^{\text{EX}} \left(y^{(n)} \right) + f^{(\text{IM})'} \left(y^{(n)} \right) f^{\text{IM}} \left(y^{(n)} \right) \right) + O(\Delta t^{3}).$$
(B7)

This Hence, the scheme is formally second-order accurate in time, despite the use of a first-order implicit method.