Thank you for your suggestion and understanding. We will include a brief
theoretical analysis of the second-order temporal accuracy in the appendix.

The IMEX Runge—Kutta (IMEXRK) scheme used in this work are shown in
Eq.(24)-(27):
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For explicit term, we first expand f™* ( p ) :
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Substituting into (26), we obtain:
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The implicit term can be written via a fixed-point expansion:
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Substituting (B2) into (B3), we obtain:
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Then, we expand f™ ( y(z)) and it:
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We can find that f™ ( y(z)) is first-order and Atf™ ( y(z)) is second-order.

Substituting (B5) into (B4), we obtain:

y(n+l) _ y(n) +A1fEX (y(n))+A_12f(EX)' (y(n))fEx (y(n))+ O(At3)
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+At( M y(”))+% S ()™ ( y(”))j+ O(AP).

By rearranging the terms, we obtain (B7), which matches the Taylor expansion



of the exact solution to second order.

Pl = +A(thX (y(”’)+fIM (y(”’))
AL (o () EX (o ™y (m) fM () 3 (B7)
() () s () S (67))+ 0can).
This Hence, the scheme is formally second-order accurate in time, despite the

use of a first-order implicit method.



