
GMDD - Discussion of Schlund et al. (https://doi.org/10.5194/gmd-2024-236)

Answer to Anonymous Referee #1 (RC1)

Reviewer comments are given in bold, our answers in blue.

Thank you for this article. This was generally clearly written and it is a good
reference for ESMValTool users and developers. I do appreciate that real-world
and clearly defined use cases have been analysed. The benefits of the work to the
global model evaluation community are also clearly articulated.

I am therefore happy to recommend this article for publication in GMD but please
find some comments that could improve the quality of the article.

We would like to thank the reviewer for taking the time to evaluate our work and for
their helpful and constructive comments. We have revised our manuscript in light
of these and the other reviewers’ comments we have received. A pointwise reply is
given below. Line numbers in the answers correspond to line numbers in the revised
manuscript.

One section in particular would benefit from some clarifications. I do find the
section between lines 285 and 301 explaining scalability in Table 2 quite difficult to
follow.

The explanation about coordinate files is difficult to understand. On one hand, it
is referred to as a serial operation (line 288), on the other hand it is said to be based
on reading many small files (line 290)– which could lead to easy parallelism. Line
289 it is written that loading and processing coordinates takes 50% of runtime but
without stating exactly on which case. Is it the reference case? It cannot be 50%
equally on all experiments. Could this be explained more clearly ?

We added an explanation of why parallelizing these operations is not trivial:

L.268–276: " On the other hand, the multi-model analysis involves a large number of data sets
and files (here, data from 238 ensemble members of 33 different CMIP6 models scattered over
3708 files), which requires a high number of serial metadata computations like loading the list
of available variables in files and processing coordinate arrays (e.g., time, latitude, longitude),
resulting in a much larger proportion of serial operations. Consequently, the maximum possible
speedup factor and thus the actual speedup factor is a lot smaller in this example. Parallelizing
these metadata operations is more challenging because it requires performing operations on Iris
cubes (i.e., the fundamental Iris objects representing multi-dimensional data with metadata) on
the Dask workers instead of just replacing Numpy arrays with Dask arrays. First attempts at
this were not successful due to issues with the ability of underlying libraries (Iris and ESMPy)
to run on Dask workers, but we aim to address those problems in future releases. "

1

https://doi.org/10.5194/gmd-2024-236


GMDD - Discussion of Schlund et al. (https://doi.org/10.5194/gmd-2024-236)

In addition, we do not mention anymore how much of the runtime is spent on loading
and processing coordinates because this only based on a rough estimate and might
lead to confusion.

Line 296 says that some parts of the application profile are sensitive to Lustre load
and ESGF servers connectivity. This begs the question: can we trust the timings
presented in Table 2 and if yes - why?

The results presented in Section 3 of our paper do not depend on connectivity to
ESGF servers since all data is available locally; thus, there is no need to query ESGF
servers or to download any data. We tried to minimize the influence of the Lustre file
system on our results by repeating the analyses several times and/or running them
during periods with little user activity (e.g., over night or on weekends). Since the
fluctuations of the run times when using the same setup are much smaller than the
differences between the run times of different setups, we are confident that our results
are robust.

To emphasize that these two issues do not affect our results presented here, we re-
moved the corresponding sentence in the revised manuscript and added the following
clarifications to Sections 3.1 and 3.2, respectively:

L.192–194: " Each entry here has been averaged over two independent ESMValTool runs to
minimize the effects of random runtime fluctuations. Since the runtime differences within a
setup are much smaller than the differences between different setups, we are confident that our
results are robust. "

L.221–223: " Similar to Table 2, the values are averaged over two ESMValTool runs of the
same recipe. The runtime differences within setups are again much smaller than the differences
between different setups, indicating that the results are robust. "

Lines 298-302, this is a canonical example of Amdhal’s law, but it is not completely
correctly stated in the text (for example scalability >1 should remain true analyti-
cally).

To properly reflect Amdahl’s law, we rephrased the beginning and end of the corre-
sponding paragraph:

L.263–268: " The high-resolution analysis achieves significant performance gains because it
uses data from only a single ensemble member of one climate model loaded from just 11 files.
Consequently, most of the runtime of this workflow is spent on preprocessing calculations on
the array representing near-surface air temperature, a task that can be highly optimized using
Dask. In other words, the proportion of operations that can be parallelized is high, leading to a
large maximum possible speedup factor (Amdahl’s law). For example, if 90% of the code can be
parallelized, the maximum possible speedup factor is 10 since 1/10 of the code cannot be sped

2

https://doi.org/10.5194/gmd-2024-236


GMDD - Discussion of Schlund et al. (https://doi.org/10.5194/gmd-2024-236)

up. "

L.282–286: " Amdahl’s law also provides a theoretical explanation why the scaling efficiencies
decrease when the number of HPC nodes is increased (see Tables 2 and 3). Due to the serial
part of the code that cannot be parallelized, the speedup factor 𝑠 will always grow slower than
the number of HPC nodes 𝑛, resulting in a decrease of the scaling efficiencies 𝑒 with rising
𝑛 (see Equation 2). In the limit of infinite nodes 𝑛 → ∞, 𝑠 approaches a finite value (the
aforementioned maximum possible speedup factor); thus, 𝑒 → 0. "

3

https://doi.org/10.5194/gmd-2024-236


GMDD - Discussion of Schlund et al. (https://doi.org/10.5194/gmd-2024-236)

Answer to Anonymous Referee #2 (RC2)

Reviewer comments are given in bold, our answers in blue.

Thank you for your submission. ESMValTool is clearly part of the production
workflow for evaluating the output of Earth system models, and therefore its opti-
mization is of significant importance to the climate community. The paper is well
written and establishes a clear performance improvement of version 2.11.0 over the
previous 2.8.0 version, The significant improvements are the possibility for out-of-
core computing, which allows 2.11.0 to run on configurations where 2.8.0 reports
out-of-memory errors, and the support for distributed execution. The paper clearly
illustrates the resulting performance increase.

We would like to thank the reviewer for taking the time to evaluate our work and for
their helpful and constructive comments. We have revised our manuscript in light
of these and the other reviewers’ comments we have received. A pointwise reply is
given below. Line numbers in the answers correspond to line numbers in the revised
manuscript.

Having said that, there are some key deficiencies in the methodology. In partic-
ular, the scaling efficiency metric provided in Equation (2) leads to confusion in
the subsequent performance analysis, particularly in runs using "1/16 node". For
example, the remarkable scaling efficiencies in Table 2 (e.g., 16) and Table 3 (e.g.,
40) are in the cases where v.2.11.0 can run on 1/16-node where v2.8.0 on 1/16-node
runs into memory limitations therefore cannot be used as the reference. These
high values are an artifact of comparing the run time of v2.8.0 on a fully occupied
node, but assuming that v2.11.0 is taking only one sixteenth of the node while all
the other cores are doing effective work. However, most schedulers, particularly on
DKRZ Levante, will not allow the exploitation of cores at this fine granularity, and
thus the high efficiencies for the 1/16-node case are not realizable. The confusion
increases in Figure 4 where v2.8.0 can be run on 1/16-node and therefore becomes
the reference. The dramatically *low* efficiencies on a full node at the bottom of
Figure 4 are again an artifact of the assumption that the other fifteen cores of the
node could actually be doing effective work, which they realistically cannot.

My recommendation would be either to explain how all cores on the node can be
sensibly occupied when ESMValTool occupies only 1/16-node, or to avoid the 1/16-
node results entirely and concentrate of the objective improvements in the 1 and 2
node cases. The findings for the 1-node case are (1) v2.11.0 (threaded) is minimally
slower or faster than v2.8.0 (threaded), but v2.11.0 (distributed) is signicantly faster,
e.g., 1.7 - 2.0x in many cases, and 22x in the exceptional case of "extract_levels".
The scaling efficiency should only be used in the case of comparing single node
execution to multiple node (in this case 2), which essentially then becomes a strong

1

https://doi.org/10.5194/gmd-2024-236


GMDD - Discussion of Schlund et al. (https://doi.org/10.5194/gmd-2024-236)

scaling analysis. There are still remarkable improvements to report, in particular
the case the authors recount in lines 280-284.

We agree that by using different reference setups for the different sections (1 node
for Sections 3.1 and 3.2, 1/16 node for Section 3.3), the corresponding results can
be confusing and difficult to interpret. Thus, as recommended by the reviewer, we
removed the 1/16 node setup altogether and only consider 1- and 2-node setups for
the analysis of the speedup factors and scaling efficiencies. The reference setup is now
"v2.8.0 on one HPC node" for all sections. Instead of the 1/16 node setup, we run
ESMValTool on a personal laptop with 16 GB of RAM to demonstrate ESMValTool’s
out-of-core computation capabilities. This has two main advantages: (1) the consistent
reference setup allows a much easier comparison of the results of the different sections,
and (2) using an actual laptop demonstrates that ESMValTool can be properly used
without access to an HPC system. Since this change affects a large number of lines in
the manuscript, we do not provide a detailed list of changed lines here but would like
to refer to the "track changes" version of the manuscript instead.

We would like to point out that at least in theory when using a shared node on Levante,
the resources of a single node can actually be properly shared between different jobs
and/or users. For example, the following command can be used to request interactive
access to 16 CPUs of a shared node:

$ salloc --partition=shared --cpus-per-task=16 --mem-per-cpu=1940M

On this node, asking for the number of processes available to the current thread with
nproc gives 16, and analyzing the resource usage afterwards reveals that only 1/16 of
the node hours compared to a full node have been consumed (=16/256 of the available
CPUs). Furthermore, checking the running processes on the node with htop suggests
that the node is indeed shared with other users.

In the manuscript, we now mention that computational costs can be further reduced
by using a shared HPC node:

L.328–330: " To further reduce computational costs on an HPC system, ESMValTool can
be configured to run only on a shared HPC node using only parts of the node’s resources.
This reduces the influence of code that cannot be parallelized and thus optimizes the scaling
efficiency (Amdahl’s law; see Section 4). "

In spite of my concerns about the methodology, this paper does illustrate solid
optimizations of a production tool which is central to data analysis. As you point
out in lines 55-58, it is a key responsibility of our community to minimize the

2

https://doi.org/10.5194/gmd-2024-236


GMDD - Discussion of Schlund et al. (https://doi.org/10.5194/gmd-2024-236)

impact and carbon footprint of climate computing. But you must also mention
and put into perspective that the vast majority of the footprint is coming from the
simulations themselves rather than diagnostic tools such as ESMValTool.

Good point. We changed this to:

L.55–58: " Second, minimizing the usage of computational resources reduces energy demand
and the carbon footprint of HPC and data centers, which are expected to have a steadily
increasing contribution to the total global energy demand in the upcoming years (Jones, 2018).
Having said this, it should be noted that producing the actual ESM simulations requires much
more computational resources than their evaluation with tools like ESMValTool. "

3

https://doi.org/10.5194/gmd-2024-236


GMDD - Discussion of Schlund et al. (https://doi.org/10.5194/gmd-2024-236)

Answer to Anonymous Referee #3 (RC3)

Reviewer comments are given in bold, our answers in blue.

The manuscript describes the new advancement in the ESMValTool, which is one
of widely used open-source Earth System model (ESM) evaluation tools. The new
advancement focuses on the parallel optimization of the code to enable speed up
of the code in parallel computation environment. The manuscript demonstrates
that there was considerable speed up in the new version via active employment
of Dask (Python library for parallelization). Considering the massive data size of
ESMs, for example CMIP, it is definitely beneficial to have efficient computation
capability especially when the code has to run for multiple datasets (i.e., multiple
models) to enable benchmarking and intercomparison. Speaking of that, I believe
it is worth documenting such improvement of the tool. The manuscript is well
organized and prepared, and the speed up was clearly shown. With that, I support
the publication of the manuscript.

We would like to thank the reviewer for taking the time to evaluate our work and
their positive feedback. In light of the other reviewers’ comments, we have revised
our manuscript.

1

https://doi.org/10.5194/gmd-2024-236

