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Abstract. Models of coastal barrier geomorphic and ecologic change are valuable tools for understanding and predicting when,
where, and how barriers evolve and transition between ecogeomorphic states. Few existing models of barrier systems are
designed to operate over spatiotemporal scales congruous with effective management practices (i.e., decades/kilometers,
referred to herein as “mesoscales”), incorporate important ecogeomorphic feedbacks, and provide probabilistic projections of
future change. Here, we present a new numerical model designed to address these gaps by explicitly yet efficiently simulating
coupled aeolian, marine, vegetation, and shoreline components of barrier evolution over spatiotemporal scales relevant to
management. The Mesoscale Explicit Ecogeomorphic Barrier model (MEEB) simulates subaerial ecomorphologic change of
undeveloped barrier systems over kilometers and decades using meter-scale spatial resolution and weekly time steps. MEEB
applies simplified parameterizations to represent and couple key ecogeomorphic processes: dune growth, vegetation expansion
and mortality, beach and foredune erosion, barrier overwash, and shoreline and shoreface change. The model is parameterized
and calibrated with observed elevation, vegetation, and water level data for a case study site of North Core Banks, NC, USA.
Simulated ecogeomorphic change in model hindcasts agrees well with observations, demonstrating both favorable skill scores
and qualitatively correct behavior. We also describe an additional model framework for producing probabilistic projections
that account for uncertainties related to future forcing conditions and intrinsic stochastic dynamics and demonstrate the
probabilistic framework’s utility with example forecast simulations. As a mesoscale model, MEEB is designed to investigate
questions about future barrier ecogeomorphic change of moderate complexity, offering semi-qualitative predictions and semi-
quantitative explanations. For example, MEEB can be used to investigate how climate-induced shifts in ecological composition

may alter the likelihood of morphologic impacts or to generate probabilistic projections of ecogeomorphic state change.

1 Introduction

Coastal barrier environments are of critical economic, ecologic, and cultural importance, but, as low-lying collections

of mobile sediment, are constantly evolving under drivers of both chronic and event-based change. In the face of rising
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atmospheric temperatures, projected accelerated relative sea-level rise (RSLR; Sweet et al., 2022), and anticipated changes in
tropical storm activity (e.g., Knutson et al., 2020), future barrier evolution remains uncertain. This uncertainty is further
complicated by transformations in ecological assemblages related to global climate warming, which have become increasingly
apparent within barrier systems in recent decades (e.g., Goldstein et al., 2018; Zinnert et al., 2016) and have the potential to
fundamentally alter the morphology and behavior of coastal barriers (e.g., Reeves et al., 2022; Zinnert et al., 2019). An
understanding of when, where, and how ecogeomorphic change in barrier systems is most likely to occur remains of paramount
importance to coastal communities looking to prepare for and adapt to future change. Furthermore, the ability to capture future
changes to barrier systems can help inform broader understanding of both the functional transformations we may anticipate
across the broader coastal landscape, as well as whether protections coastal barriers provide to mainland settings will persist
in the future.

Numerical models capable of simulating across a range of scenarios and conditions offer possibly the best opportunity
to predict and understand coastal change and behavior. Prediction of historically unprecedented behavior will be important
given uncertainties in future forcing conditions (e.g., RSLR, storm intensity) coupled with inherently complex nonlinear
interactions (e.g., feedbacks, multistability) and stochasticity (e.g., storm occurrence, seed dispersal). Numerical models can
inform active planning and management strategies for “undeveloped” barrier systems (i.e., those without sustained residential
and/or commercial infrastructure and activity) that are typically intended to preserve and protect ecosystems, infrastructure,
and natural resources; provide for human use; mitigate hazards; and inform public expectations.

Coastal management practices usually consider timescales of several decades into the future — often with regard to
milestones of 2050 and 2100 CE defined by climate change science — over multiple kilometers of coastline. Amongst coastal
managers and decision-makers, there is increasing demand for model projections that both explicitly take into account these
spatiotemporal horizons and at the same time provide reliable and sufficiently quantitative predictions (French et al., 2016;
Martin et al., 2023). Many models of barrier geomorphology and ecology exist as powerful tools for predicting event-based
change or understanding fundamental behaviors and processes (Hoagland et al., 2023; Piercy et al., 2023). While these models
provide useful insight to planning and decision-making processes, they tend to lack important features and components that
are particularly relevant to the typical goals of management endeavors: management-relevant spatiotemporal scales (decades
and kilometers) and resolutions (meters and weeks), feedbacks between key ecologic and geomorphic processes, and the ability
to provide probabilistic projections of future change.

Numerical models of barrier evolution can be arranged along a continuum between micro and macro scales (Hoagland
et al., 2023; Murray, 2003). What we herein consider microscale models (e.g., XBeach, Roelvink et al., 2009; Delft3D, Lesser
etal., 2004; COAWST, Warner et al., 2008), also commonly referred to as event-based or simulation models, typically simulate
coastal change over hours to years and up to hundreds of meters. These models tend to be built upon highly realistic expressions
of the underlying physics and incorporate as many system processes as practical while striving to simulate a particular place
or set of conditions with as much quantitative accuracy (predictive skill) as possible (Murray, 2003; Sherwood et al., 2022).

As such, microscale models typically require relatively large computational resources, observational or experimental data for
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model initialization and testing, and careful calibration of important model coefficients (e.g., Windsurf, Itzkin et al., 2022). In
contrast, macroscale models (e.g., CoastMorpho2D, Mariotti, 2021; Barrier3D, Reeves et al., 2021; BIT, Masetti et al., 2008;
BRIE, Nienhuis and Lorenzo-Trueba, 2019a), often referred to as exploratory or reduced-complexity models, operate over
temporal scales of decades to millennia and over spatial scales up to thousands of meters, typically with coarse spatial
resolutions > 10 m. Macroscale models simplify systems to focus on essential, emergent processes, often with the goal of
exploring and explaining large-scale behavior (Murray, 2003). As such, larger-scale models tend to use synthesized
representations of natural phenomena that average over ecogeomorphic processes and features occurring at much smaller
spatiotemporal scales, providing the most direct explanations and likely the most reliable predictions of larger-scale
phenomena (Murray, 2007). Macroscale models also tend to use idealized (e.g., LTA14, Lorenzo-Trueba and Ashton, 2014)
or equilibrium (e.g., GEOMBEST, Stolper et al., 2005) morphologies meant to represent generalized conditions or behaviors
rather than specific real-world locations.

There is a dearth, however, of mesoscale models that occupy the continuum between micro- and macroscale
endmembers. Few models or model frameworks of coastal barrier environments are designed to simulate over years to decades
and hundreds to thousands of meters and with meter-scale spatial resolution. Notable exceptions include DUBEVEG (Keijsers
et al., 2016) and the Coastal Dune Model (Duran Vinent & Moore, 2015), which simulate decadal ecologic and geomorphic
evolution of beach and dune environments, and ISLAND (Rastetter, 1991) and the model of Robson et al. (2024), which model
decadal vegetation-habitat interactions across a barrier; however, these models lack full representation of the entire barrier
system and/or key processes (e.g., overwash) needed for holistic assessments and relevant mesoscale projections of barrier
evolution. The polarity of spatiotemporal scales among existing coastal barrier models likely exists because of contrasting
goals, assumptions, and modeling techniques of micro- and macroscale models (Murray, 2003); the sheer number of processes
that could be important for driving coastal change (van Maanen et al., 2016); a lack of decadal observational data needed to
develop mesoscale parameterizations and evaluate mesoscale models (French et al., 2016; Hoagland et al., 2023); and nascent
theory on model up-scaling and down-scaling, with up-scaling approaches (i.e., using microscale models in meso- or
macroscale applications) particularly limited by high computational costs and the potential for imperfections in reductionist
microscale parameterizations compounding over much larger scales, thereby preventing reliable quantitative results (Murray,
2007; French et al., 2016). However, coastal management practices typically consider timescales on the order of several
decades into the future, stemming largely from the well-established climate and sea-level rise horizons of 2050 and 2100 CE.
Additionally, continuous, spatially explicit coverage of an area of interest in both the cross-shore and alongshore dimensions,
as well as weekly to annual (temporal) and meter to decameter (spatial) resolutions, are needed to inform comprehensive
management scenarios (e.g., Martin et al., 2023). As such, barrier models operating at mesoscales are perhaps most promising
for addressing the needs of strategic coastal planning and decision-making (French et al., 2016; van Maanen et al., 2016;
Woodroffe and Murray-Wallace, 2012).

Incorporation of ecological dynamics and their feedbacks with geomorphic processes is also underrepresented in

models of coastal barrier evolution (Hoagland et al., 2023; Piercy et al., 2023). Bidirectional physical-ecological feedbacks
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within coastal barrier environments are especially relevant at mesoscales, where vital ecogeomorphic behaviors tend to emerge.
At much smaller scales (i.e., years and 10' meters, or smaller), spatiotemporal change in the size, location, or type of
herbaceous and woody vegetation found in coastal barrier environments tends to be prohibitively small for generating dynamic
ecogeomorphic interactions and feedbacks; at much larger spatiotemporal scales (i.e., centuries or millennia and 10!
kilometers, or larger), the influence of vegetation on geomorphic processes tends to become increasingly difficult to recognize
(Larsen et al., 2021). It is well documented that ecogeomorphic interactions and feedbacks are fundamental to coastal barrier
systems, from the stimulation of dune-growing grasses in response to sand deposition (e.g., Zarnetske et al., 2012) to woody
shrubs obstructing overwash flow (Reeves et al., 2022; Zinnert et al., 2019), yet these interactions are often neglected in barrier
models. Modeling approaches that implicitly incorporate the effects of vegetation through static parameterizations, such as
landcover roughness coefficients (e.g., Passeri et al., 2018), are typically not appropriate for addressing questions related to
meso- or macroscale evolution where the configuration of vegetation is expected to change across space and time. However,
some models of barrier systems have begun to include physical-biological feedbacks by explicitly simulating the
spatiotemporal variation of vegetation communities across coastal barrier landscapes and their couplings with physical
processes (e.g., ISLAND, Rastetter, 1991; Barrier3D, Reeves et al., 2022; DUBEVEG, Keijsers et al., 2016; Coastal Dune
Model, Duran Vinent & Moore, 2015; GEOMBEST++Seagrass, Reeves et al., 2020). Given the sensitivity of coastal
ecosystems to changes in climatic forcings and potential ecological transformations arising from global climate change (e.g.,
Goldstein et al., 2018; Jackson et al., 2019; Zinnert et al., 2016; Lucas and Carter, 2010), ecogeomorphic interactions are likely
to play an increasingly prominent role over the next century. Including dynamic ecogeomorphic couplings within coastal
barrier models therefore improves the performance of mesoscale projections and confidence in their findings.

Most barrier-evolution models provide only deterministic projections, despite often considerable uncertainty in
projections of macroscale drivers of coastal change (e.g., sea-level rise, storminess, atmospheric temperature) and the inherent
randomness of natural phenomena (e.g., storm timing). Significant uncertainties also arise from future human activities and
decision-making (e.g., McNamara and Lazarus, 2018), but coupled human—natural considerations are beyond the present scope
of this model. While deterministic models inherit the uncertainties of model input forcings, model approaches that account for
the probabilistic nature of the drivers of barrier evolution (e.g., Lentz et al., 2016; Bamunawala et al., 2021; Wainwright et al.,
2015) can potentially provide a more holistic assessment of future change to better inform management activities (e.g., van
der Lugt, 2019).

Here we present the Mesoscale Explicit Ecogeomorphic Barrier model (MEEB), which simulates the spatially explicit
ecogeomorphic change of undeveloped barrier systems over several decades and kilometers. MEEB tackles the separation of
scales among pre-existing barrier models by explicitly yet efficiently simulating aeolian, marine, shoreline, and vegetation
components of a coastal barrier segment. Additionally, the model incorporates uncertainties related to future drivers and the
inherent stochasticity of natural processes to produce probabilistic projections of future change across space and time. The
goal of MEEB is to balance management needs for spatially explicit, quantitative predictions with mesoscale (multi-decadal

and multi-kilometer) projections and related uncertainties while accounting for real feedbacks between ecosystems,
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geomorphology, and hydrodynamic processes. To accomplish this, we use a hybrid model architecture that incorporates certain
model parameterizations of higher mechanistic complexity, only as far as to produce mesoscale behaviors anticipated to be
important, with more simplified, larger-scale parameterizations that most reliably capture the collective effects of many
processes happening at much smaller scales (Thornhilll et al., 2015; French et al., 2016; Murray, 2007). As an important part
of our hybrid approach, we also explicitly and robustly test and calibrate the relatively simple model parametrizations with
observational data. MEEB is not suitable for predicting subtle shifts in elevation or vegetation, nor for explaining the
reconfiguration of a landscape or its behaviors. Rather, MEEB is designed to answer questions of moderate complexity
regarding when, where, and how ecogeomorphic change is likely to occur, with correspondingly moderate levels of both
predictive (quantitative) and explanatory (qualitative) power. In the sections that follow, we provide a description of the model
processes and parameterizations; detail data integration and calibration procedures; and assess and discuss model performance,

parameter sensitivities, and appropriate use.

2 MEEB

The Mesoscale Explicit Ecogeomorphic Barrier model (MEEB; Reeves, 2025a) resolves cross-shore and alongshore
variations in topography and ecology to simulate the ecogeomorphic evolution of an undeveloped barrier or barrier segment
(Fig. 1). MEEB operates with a planform grid resolution on the order of meters and 0.02-y (7.3-d) timesteps, and can run for
years to decades over 10°-10! km of barrier shoreline. We use a grid resolution of 1 m as herbaceous species in barrier
ecosystems typically grow in clusters on the order of 1 m? in size, though the model produces qualitatively similar output with
resolutions up to 2 m (resolutions outside this range have not been tested). Spatial resolution of the model is dictated in large
part by the typical size of the vegetation growth pattern, as the vegetation imposes a characteristic length scale on the resultant
aeolian morphology (Nield & Baas, 2008a). Therefore, we do not suggest adopting a grid resolution outside the 1 to 2 m range.
The model is written in Python and can be run on PC, Macintosh, and Linux operating systems. The typical runtime for a 10-
year simulation of a 1-km-long barrier segment with 1-m grid resolution is approximately 40 to 80 min, or approximately 10
to 20 min with a grid resolution of 2 m. Memory usage depends strongly on domain size, grid resolution, and the frequency
and type of saved model output. An individual deterministic simulation in MEEB is run on an individual core, while our
probabilistic framework runs batches of deterministic simulations in parallel across multiple cores (as many as allocated); a
high-performance computing cluster is recommended for probabilistic simulations spanning >10 km of shoreline. The relative
balance between spatiotemporal resolution, spatiotemporal extent, and efficiency makes the model ideal for studying
mesoscale barrier evolution.

The model tracks changes in elevation and vegetation density and type through space and time across separate
elevation and vegetation domains. Ecogeomorphic evolution in MEEB is limited to areas above the mean high water (MHW)
elevation; intertidal and subaqueous environments are therefore not explicitly modeled. The MHW elevation changes each

model iteration according to the RSLR rate, which is constant through time (given that RSLR projections up to the year 2050
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Figure 1: MEEB model configuration. (a) Example model elevation domain, annotated with the foredune crestline (red) and ocean
shoreline (purple), and (b) corresponding vegetation density domain. (¢) Schematic diagram of sand slab transport in the Aeolian
component of MEEB, wherein slabs are stochastically entrained, transported downwind, and either deposited or transported
further; each of these processes is affected by vegetation, shadow zones, and the water table. (d) Probabilities of slab erosion and
deposition as a function of vegetation density. (¢) Annual vegetation growth for burial-tolerant and burial-intolerant species types
as a function of the annual net sedimentation balance.
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can be closely approximated as linear). A groundwater lens is modeled as a function of the subaerial topography and may
intersect depressions in the land surface as ponds. Due to complexities in modeling inlet dynamics, MEEB is not capable of
simulating portions of a barrier chain with or directly influenced by active tidal inlets or shoals from recently abandoned inlets.
Additionally, MEEB assumes the barrier system is composed entirely of unconsolidated sand. MEEB is initialized with

elevation, vegetation cover, and high-water event climatology data, which we discuss in Sect. 3 below. All model parameters

and dependent variables, along with their units and values, are listed in Appendix A.

2.1 Model Framework and Time-stepping

Four components comprise the MEEB framework: Aeolian, Marine, Shoreline, and Vegetation. These four
components operate in succession within a model timestep but act at different timescales, so not all components are involved
in each model iteration (Fig. 2). A model year begins with the Aeolian component, which occurs every model timestep (At, =
0.02 y or ~7.3 d). The Aeolian component determines the entrainment, transport, and deposition of sand across the barrier
surface resulting from wind and dependent on the vegetation cover and topography. This Aeolian process repeats itself twice,
updating the elevation domain each iteration, and is then followed by the Marine component, which occurs every second model
timestep (At,, = 0.04 y or ~14.6 d) to correspond to a spring—neap tidal cycle and because storm systems can potentially last
more than 7 days. The Marine component determines how sediment is transported across the beach, dune, and barrier interior
from swash, collision, and overwash processes during a high-water event (HWE), defined as an event in which the total water
level (TWL; the sum of tide, surge, and wave runup) exceeds MHW. These HWE-induced processes are influenced by the
topography, vegetation cover, and HWE water elevation and duration. In addition to updating the elevation domain, the Marine
component also updates the vegetation domain by converting previously vegetated cells to bare wherever inundated. The
Shoreline component, which also occurs every second model timestep (Aty = 0.04 y or ~14.6 d), directly follows the Marine
component. The Shoreline component determines the position of the MHW ocean shoreline according to RSLR and cross-
shore and alongshore sediment transport, and adjusts the shoreline by adding (accretion) or removing (erosion) elevation. This
sequence of two Aeolian iterations, one Marine iteration, and one Shoreline iteration repeats for a total of 25 times in the model
year. Thereafter, the full model year is completed with execution of the Vegetation component, which occurs every 50 model
timesteps (At, = 1.0 y or 365 d). The Vegetation component determines the expansion of plants into previously bare cells and
changes in vegetation density (growth or decay), the latter of which is dependent upon the net erosion/deposition over the
course of the preceding year. The cycle then restarts with the updated elevation and vegetation domains for the next model

year (Fig. 2).

2.2 Aeolian

MEEB uses a cellular model of aeolian morphologic development in which slabs of sand are probabilistically
entrained, transported, and deposited based on a set of rules that capture the effects of real-world aeolian processes. Our

Aeolian component stems from the aeolian side of the DUBEVEG model (Dune, BEach, and VEGetation; Keijsers et al.,
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2016), which itself builds upon earlier cellular slab-based dune models (Baas, 2002; Baas & Nield, 2007; Werner, 1995). The
Aeolian component in MEEB updates the topography 50 times a year (time step At, =0.02 y or ~7.3 d).

During each Aeolian iteration, every cell in the domain is polled once for entrainment based on a probability of
erosion (P,) ranging from zero to one, as discussed below. If entrainment in a cell is probabilistically determined to occur, a
slab of sand with a fixed height (Hy) is removed from the entrainment site and transported downwind according to the saltation
length (Lg). A probability of deposition (P;) at the receiving cell determines whether the slab will deposit or be transported
downwind again (Fig. 1c). As a proxy for weekly time-varying wind speeds, we stochastically vary L; each Aeolian iteration
by drawing from a simple uniform distribution centered around a mean (here, 5 =2 m). As a proxy for the longer-term (annual-
or decadal-scale) average strength of the wind climate, the maximum potential aeolian transport volume flux (g4 mqx) can be

calculated following Nield and Baas (2008a) as:

P, 1

Qamax = HsLs P_dA_ta . (1)

Changing the values P, and P, as well as H; and Ly, therefore captures the effects of stronger or weaker wind climates. Wind
direction — onshore, alongshore down, offshore, or alongshore up across the gridded domain — is determined by weighted
random choice for each Aeolian iteration, with the probability of each of the 4 directions (Py,p) summing to 1. The collective
effects of oblique winds are roughly captured with asymmetric multidirectional transport directions (cf. Nield & Baas, 2008a).
At the end of each Aeolian iteration, angles of repose for bare and vegetated cells are maintained by avalanching slabs in the
direction of steepest descent. The Acolian component uses open boundary conditions wherein slabs of sediment can be
transported out of the lateral edges of the model domain (sediment can be imported into the domain within the Marine
component of the model, as described below).

Probabilities of erosion and deposition vary across the landscape as function of ecological and physical factors. Wind
shadow zones, wherein P, = 0 and P; = 1, extend from the lee side of topographic peaks as determined by the shadow angle
n (Fig. 1c). Where elevation is below MHW or the elevation of a groundwater lens, P, = 0 and P; = 1. Assuming that the
groundwater surface typically resembles a subdued reflection of the topography, the groundwater surface in MEEB is
determined as a proportion of the topographic surface height above MHW (Fig. 1c; Galiforni Silva et al., 2018) that has been
smoothed by a Gaussian filter (with a standard deviation for the Gaussian kernel, g, of 12 m). Groundwater can intersect
topographic depressions as surface ponds (MEEB does not flatten the water surface in ponds given that P, = 0 and P; = 1
regardless). Additionally, the presence of vegetation cover reduces the probability that a slab will be eroded and increases the
probability that a slab will be deposited in proportion to the vegetation density (p) of each cell (Fig. 1d). P, decreases linearly
from its maximum (P,,) when p = 0 to 0 when p = py, the vegetation density at which entrainment of sand becomes
effectively negligible. Where vegetation is present in cells between the entrainment site and receiving site along the transport

path, entrained slabs are polled for deposition at each intermediary vegetated cell if p is greater than a threshold value p,,

9



245

250

255

260

265

270

(Teixeira et al., 2023). To account for the effects of vegetated cells on the local wind field of neighboring unvegetated cells,
the Aeolian component of MEEB uses a copy of the current vegetation density domain that has been lightly smoothed with a

Gaussian filter (6 = 3 m).

2.3 Marine

High-water events (HWEs) occur intermittently in MEEB, causing changes to the subaerial morphology and ecology.
We define HWESs as all events in which the total water level exceeds MHW. As discussed below, MEEB uses separate — but
coupled — model formulations seaward and landward of the dynamic foredune crestline (described in Sect. 2.3.1 below) to
simulate ecogeomorphic change from HWEs. The model can run hindcast simulations using time series of observed HWEs as
input or run forecast simulations with a stochastic HWE environment developed from the time series of observed HWEs. Our
methodology for the observational HWE time series and stochastic HWE environment is described in Sect. 3.3, below.

Every 257 y (At,, = 0.04 y or ~14.6 d), MEEB determines whether a HWE occurs depending on the observed time
series (for hindcasts) or a probability of occurrence dependent on the time of year (for forecasts). If no HWE is determined to
occur for a Marine iteration, no marine processes take place (i.e., the landscape remains unaltered) and MEEB proceeds directly
to the Shoreline component of the model. If a HWE is determined to occur for a Marine iteration, the HWE is described by a
total water level (TWL), which can vary alongshore according to the local beach slope, and a duration (in hours). In the
stochastic HWE environment, the conditions of each event are chosen randomly from a list of synthetic HWESs; the probability
of occurrence and average intensity (TWL and duration) of the list of synthetic HWEs, however, remain constant over the
course of each simulation. For simplicity, and because our identification of HWESs tend to lump multiple tidal cycles of an

event together, MEEB allows a maximum of one HWE to occur during each 0.04-y (14.6-d) interval.

2.3.1 Dune crest location

MEEB uses separate formulations for HWE-driven morphologic change landward and seaward of the foredune crest,
therefore requiring the alongshore-continuous location of the foredune ridge. MEEB identifies the cross-shore locations of the
foredune crest (xp) for every dy alongshore — the foredune crestline — using a multi-step process that considers the general
trend of the foredune crest location to identify gaps in the crestline where the dune would be most likely to (re)form. First, the
algorithm finds the cross-shore locations of the elevation maximum for an elevation domain that has been smoothed in the
alongshore dimension using a large-window (150-m) moving average. This maximum elevation crestline is smoothed again
with a Savitzky-Golay filter (window length = 75 m), resulting in a demarcation that gives the broad, general trend of where
the foredune crest is or would tend to be (in the case of gaps in the foredune) located within the barrier domain. Next, using
the original non-smoothed elevation domain, the algorithm finds the cross-shore location of the dune-crest peaks within a 25-
m buffer of this broad crest trendline. Dune-crest peaks are selected as the most-seaward peak of a profile with a minimum
backshore drop of 0.6 m (Itzkin et al., 2020; Mull and Ruggiero, 2014). If no peak is found within a profile, the algorithm

selects the location from the nearest neighboring peak and the location alongshore is considered a gap in the foredune crestline.
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Lastly, a Savitzky-Golay filter is applied again with a smaller window length (11 m) to produce the continuous foredune

crestline.

2.3.2 Ocean shoreline to foredune crest

MEEB uses an equation for cross-shore net sediment transport between the surf-swash boundary and the foredune
crest to simulate HWE processes seaward of the foredune crest. Based on Duran & Moore (2015) and, by extension, Larson

et al. (2004a), the deposited volume of sediment at cross-shore location x, q,, each iteration is equal to

qx = (ﬁeq - ﬁx)(ztwl - Zx)zTe_l' (2)

with B, the representative equilibrium slope of the beach, B, the local slope at the cross-shore location x, Zy,,, the TWL
elevation, Z, the elevation at the cross-shore location x, and T, a calibration coefficient for the erosive timescale (see
Appendix A for a list of model parameters and dependent variables, their units, and values used herein). Sediment transport
for each HWE iteration is calculated from the ocean shoreline up to either the first cross-shore location at which Z,, exceeds
Zw1, beyond which g, = 0, or the crestline, beyond which sediment flux follows the overwash flow routing scheme described
in Sect. 2.3.3. Transport depends on deviation from the equilibrium beach slope, as these local interactions nudge the beach
volume towards a linear equilibrium configuration over time. As Eq. (2) calculates only cross-shore sediment fluxes, sediment
flux in the alongshore dimension is not incorporated. Change in elevation (AZ,/At) is calculated as the divergence of g, in

the cross-shore dimension:

AZx _ _Aqx

At Ax 3

2.3.3 Foredune crest to back-barrier shoreline

To simulate HWE processes landward of the foredune crest, MEEB utilizes a version of the overwash flow routing
formulation from Barrier3D (Reeves et al., 2021). Water introduced at overtopped dune cells is transported landward cell-by-
cell, carrying sediment with it. After water and sediment have been routed across the barrier interior, the elevation of the barrier
interior is updated according to the sediment flux into and out of each cell. This process occurs iteratively with hourly time
steps for the duration of the HWE.

Water discharge is introduced at each overtopped dune crest cell (Q4.) according to

Qac = UZw1 — Zp), (4)
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with Zj, the dune-crest elevation, g gravitational acceleration, and U the velocity of the water overtopping the dune crest based

on simple ballistics theory for the wave bore (Larson et al., 2004b):

U=+29Zw —Zp) - (5)

where g = 9.81 m s? is gravitational acceleration. Water is distributed to the three neighboring cells in the next landward row
of the domain in proportion to the local slope. If any of the slopes to the 3 landward neighbors are downhill, the neighbor with

the steepest downhill slope will receive the most water:

(Qo — RS

So ©)

Q; =

where Q, is the discharge at the distributing cell, Q; is the discharge and S; the directional slope from the distributing cell to
the landward neighbor i, R; is a parameter to represent infiltration and drag, and n is a constant equal to 0.5 (derived from the
equation for motion of uniform flow; Murray and Paola, 1997). If all of the slopes to the three landward neighbors are uphill,
the neighbor with the least steep uphill slope receives the most discharge, and the total discharge from Q, to Q; is reduced

linearly with increasing uphill steepness to the extent of the uphill slope limit (Sgy;,):

(Qo — RDISI™ (1 |S; |

, Si < Sou
Qi = 21817 ) L Tetm

0, Si = Souim

()

SQlim

Neighboring cells with adverse slopes steeper than Sg;;,,, Will therefore receive no discharge.
The depositional volume of sediment transported each iteration (i.e., the volumetric sediment flux) from the
distributing cell to landward neighbor i, q;, depends on the discharge and local slope (i.e., the stream power index, QS; Murray

and Paola, 1997):
qsi = Kow [QL(SI. + Cs)]m: (8)

where K,,,, is a dimensional sediment-transport coefficient, C; is a non-dimensional constant roughly representing the effect
of flow momentum (on the order of several times the average slope of the barrier interior), and m is a constant greater than or
equal to 1. In contrast to the formulation in Barrier3D, MEEB allows upslope sediment transport and does not distinguish
between different overwash regimes (i.e., run-up versus inundation) when determining parameter values and transport

equations.
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Where overwash reaches the back-barrier shoreline, the sediment load into the subaqueous back-barrier environment
is distributed in an exponentially decaying fashion, with the landward neighbor with the most discharge receiving the most
sediment, which produces steeply dipping delta-like foreset deposits typically observed when overwash flows into standing

bodies of water (Schwartz, 1982; Shaw et al., 2015):

_ (q50Cpp)Q;
st >

9
with g4 the flux of sediment transported into the distributing cell, and Cp,;, the decay coefficient. MEEB assumes that the
bottom of the back-barrier bay is flat and that depositional and erosional processes can maintain a constant equilibrium back-
barrier depth (D)) relative to MHW over the course of the simulation (Marani et al., 2007). This assumption excludes the
potential for back-barrier depth to change over space and time, for example via complex tidal bathymetry or the expansion of

subtidal and/or intertidal landforms, but these dynamics are outside the present scope of the model.

2.3.4 Temporal discretization

To avoid instabilities, we compute each hourly storm iteration with a finer substep, smaller than some upper bound,
for both the landward (t; ;) and seaward (ts ;) formulations of the Marine component. Our method involves simply dividing
the resulting elevation change at each substep by the number of substeps within the hour. Smaller substeps maximize model
skill (up to a point), while larger substeps (still small enough to avoid instabilities) maximize model speed. The size of substeps
chosen for simulations herein (¢5 ; =0.02 h and t; ¢ = 0.04 h) tend more towards model skill than efficiency, though significant

improvements in model speed are likely possible with larger substeps while sacrificing comparatively little model skill.

2.3.5 Coupling Marine formulations across the foredune crest boundary

Although MEEB uses separate formulations for HWE-driven morphologic change landward and seaward of the foredune
crest, the formulations are coupled to produce a smooth transition across this boundary. This coupling is accomplished by
sequentially exchanging sediment fluxes and elevations at the foredune crest boundary each hourly timestep as the HWE
progresses:

1) The current location of the foredune crestline is determined (Sect. 2.2.1).

2) Morphologic change landward of the foredune crest occurs (Sect. 2.2.3).

3) Morphologic change seaward of the foredune crest occurs (Sect. 2.2.2).

4) Sediment fluxes out of and into the dune crest cells (from steps 2 and 3, respectively) determine the change in

elevation at the dune crest boundary.

5) The next hour of the HWE event begins with the updated elevation domain.
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2.4 Shoreline

In MEEB, change in the cross-shore position of the ocean shoreline (Ax;) is the sum of cross-shore (Ax,.) and

alongshore (Ax; ;) shoreline change components:

Axs  Axg.  Axg,
Aty Aty At

(10)

Ocean shoreline change is applied following every Marine iteration (Aty = 0.04 y or ~14.6 d) to sections of the shoreline with
a predetermined alongshore length Ay, (typically 25 m), and the shoreline position within each alongshore section is held
uniform (Fig. 1a). The initial ocean shoreline position is taken as the intersection of the initial MHW with initial topography
averaged in increments of Ay, alongshore. To implement shoreline erosion (landward change in x;) topographically, previous
beach cells are set to subaqueous elevations that follow a linear shoreface drawn between the new shoreline position at MHW
and the shoreface toe, as described further in Sect. 2.4.1. MEEB implements shoreline accretion (seaward change) by setting
new beach cells to an elevation equal to the average elevation of the previous five most seaward beach cells plus the RSLR for

that Shoreline iteration.

2.4.1 Cross-shore shoreline change

MEEB follows the equations from the model of Lorenzo-Trueba and Ashton (2014) governing the cross-shore

location of the ocean shoreline (x;) and the shoreface toe (x;), which together determine the slope of the active shoreface

(sz):

Dy

xs_xt’

Sep = (11)

where Dy is the shoreface depth. The shoreface slope is allowed to deviate from its equilibrium slope (Ssf ¢4) in response to
perturbations. When the shoreface steepens past its equilibrium configuration (e.g., as a result of RSLR; Bruun, 1962),
shoreface fluxes are directed offshore; if the shoreface shallows past its equilibrium (which can occur when overwash and

aeolian processes remove sediment from the upper shoreface), shoreface fluxes are directed onshore. Shoreface flux (qsf)

therefore depends on the deviations of the shoreface slope from its equilibrium:

dsp = ksp(Ssp — Sspeq): (12)
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with kgr a dimensional shoreface flux rate coefficient, wherein a larger (smaller) kg results in faster (slower) adjustment of
the shoreline back towards its equilibrium configuration.

Following Lorenzo-Trueba and Ashton (2014), the cross-shore locations of the ocean shoreline and shoreface toe
evolve as a function of RSLR, the cumulative volume of sediment added to or removed from the upper shoreface, and the net

sediment exchange between the upper and lower shoreface:

Ax — 2(qow + qbd) _ 4‘QSf
s,c Dsf Dsf

(13)

_ 49y , 2(RSLR)

Ax
L Dy Ssf

, (14)

where q,,, and q,4 are the cumulative volumes of sediment per unit of alongshore length imported to or exported from the
barrier interior as overwash (landward of the foredune crest) and beach and dune system (seaward of the foredune crest),
respectively, during HWEs as determined by comparing pre- and post-event topography. The cross-shore locations of x; . and
x; will therefore change at relatively similar (dissimilar) rates with a larger (smaller) shoreface flux coefficient k. Unlike
Lorenzo-Trueba and Ashton (2014), we do not extend the effective shoreface above MHW to include the subaerial barrier
height in our formulations for the shoreface mass balance given that MEEB explicitly simulates subaerial morphologic
evolution.

MEEB allows the user to optionally estimate D¢, Ssf0q, and kgr as a function of wave climate and sediment

characteristics following the method of Nienhuis and Lorenzo-Trueba (2019a). From Hallermeier (1981),

’ 9
Dsr = 0.018H,T |———, 15
sf s RD50 ( )

where Hg and T are the average deepwater wave height and period, R the submerged specific gravity of sediment, and D5, the

median sediment grain size. The equilibrium shoreface slope can be estimated as

Sypoq = —2s (543179 (16)
sf.eq — 4 gDsf 472 Dsf ,
where wg is the settling velocity according to Ferguson and Church (2004):
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Rg Dz,

W, = . (17)
18-10-° + ’%RgDS%
The shoreface response rate can be estimated as
1 _ 1

11 5 11y 1L 11 1

esCsg + H3T2 (T) %ot (T) Dr 4
kss = (3600 - 24 - 365) = . - , (18)

T — 40

960RTzW2

with z, the breaking wave depth (H;/0.4), e, the suspended-sediment transport efficiency factor, and c, the friction factor

(Nienhuis and Lorenzo-Trueba, 2019a).

2.4.2 Alongshore shoreline change

MEEB uses a nonlinear, wave-climate-averaged alongshore diffusion equation for deepwater wave conditions and
non-complex coastlines from Nienhuis and Lorenzo-Trueba (2019a), based upon the formulations of Ashton and Murray

(2006). Shoreline change from alongshore diffusion (Ax; ;) is computed using an implicit Crank-Nicholson scheme as:

t+1 __ t t+1 __ t+1 t+1 t _ t t
tsar™ = say D (%] — 207+ it o (e — 20 2
== > , (19)
At, 2 Ay,

where t and j denote relative time and location of each alongshore section, respectively. D is the shoreline diffusivity

computed as a function of wave climate:

kq
Dy

12z 4
D(6) = —H> TS[E(¢g) - ¥(do — 0], (20)

where 6 is the angle of the coastline, which varies in space; ¢, is the offshore wave angle; and k, is an alongshore sediment—
transport constant set equal to ~0.06 m*® s> from Nienhuis et al. (2015). ¥ sets the dependence of the diffusivity to the wave

angle, equal to:

W(go — ) = cosi(y — ) [cos(py — 6) ~ gsin( — 0)], (21)
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which, averaging over a long-term interannual wave climate, can be convolved with the normalized angular distribution of

wave energy E (¢,),
1 1
a-h, —§ﬂ<¢0<—zﬂ
1
a(l—h), —Zn<q,’)0<0
E(¢o) =4 1 , (22)
1-a)(d-h), 0<¢0<Zn
1 1
(1—a)h, ZT[<¢O<ETT

where a is the proportion of waves approaching from the left when looking offshore relative to the regional shoreline trend
(i.e., wave climate asymmetry), and h is the proportion of waves with an approach angle greater than 45° (i.e., proportion of
high-angle waves), resulting in the long-term, averaged ocean shoreline diffusivity for each section j alongshore. MEEB uses
single representative values of a and h for the entire shoreline, which, along with Hy and T, are derived from hindcast offshore
wave conditions (described in Sect. 3.4). The nonlinear dependence of shoreline diffusion on wave angle mostly affects the
overall magnitude of shoreline diffusivity, with a secondary dependence on shoreline angle 8, as demonstrated in calculations
of the wave-climate averaged shoreline diffusivity for NCB (Fig. 4c).

For simplicity, MEEB assumes zero-diffusivity boundary conditions, which in effect holds shoreline positions at the
edges of the model domain in place within the alongshore component of shoreline change, Ax; , (the shoreline positions at the
edges of the domain, however, can still change within the cross-shore component of shoreline change, Ax; ). Therefore, the
alongshore diffusion will tend to smooth the ocean shoreline towards a linear shape between the two endpoints of the domain
over time, while alongshore variability in cross-shore sediment transport (e.g., overwash) counteracts this tendency by creating

or sustaining perturbations in shoreline shape over time and can also move the endpoints in the cross-shore direction.

2.5 Vegetation

Vegetation dynamics in MEEB follow the vegetation module in DUBEVEG (Keijsers et al., 2016), with the
vegetation updating once every year (At, = 1 y or 365 d). Each cell in the model domain is described by a vegetation density
p ranging from 0 (bare) to 1 (fully vegetated); this measure of density is taken as a proxy for the “effectiveness” of the
vegetation in its ecogeomorphic interactions (Baas, 2002). In the model, multiple species types with varying ecogeomorphic
behaviors can be used concurrently across the domain and may occupy the same cell at any given time. We determine initial
vegetation density from remotely sensed imagery (described in Sect. 3.2.2, below).

The establishment of vegetation into previously bare cells occurs via two mechanisms, either dispersal of seeds and
rhizome fragments randomly across the domain or via lateral expansion from neighboring vegetated cells. During each annual

iteration, vegetation establishment in previously bare cells is stochastically determined based on the probability of successful
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germination from seeds or rhizome fragments (Fye.m). For subaqueous cells or cells below a species-specific minimum
elevation relative to MHW (Vi ), Pyerm = 0 (MEEB does not simulate the growth and morphodynamics of marsh
vegetation). Lateral expansion, or the establishment of vegetation within previously bare cells that neighbor previously
vegetated cells (8-cell neighborhood), is stochastically determined based on the probability of lateral expansion (P, ).

Growth of established vegetation is modeled as a function of the depositional balance of each vegetated cell (Fig. le),
capturing a key ecogeomorphic coupling of coastal dune systems. The growth functions vary according to the species type.
Here, we model a “burial-tolerant” species type representative of typical dune-building grasses (e.g., Ammophila spp., Uniola
paniculata) that are stimulated by moderate rates of net accretion (Fig. 1e). This positive feedback between plant growth and
deposition can give rise to logistic growth behavior of vegetation density in the model (Nield & Baas, 2008b). We also model
a “burial-intolerant” species type that is representative of woody vegetation (e.g., Morella spp.), which are most productive in
the absence of net erosion or accretion and grow more slowly than the burial-tolerant species type (Fig. 1e). Growth functions
are defined by the x-coordinates of their five vertices (V; ) as well as the peak growth of the middle vertex (¥}, .; Fig. le).
Negative growth (i.e., decay) can ultimately result in plant mortality. Vegetation mortality also occurs directly following HWEs
wherever vegetated cells are inundated. These present mortality rules are a broad simplification in the model due to
complexities in determining vegetation response to overwash disturbances, which depends on species-specific threshold levels
of exposure to moisture, salinity, sediment deposition/erosion, and wave action; they also do not distinguish between dead and
buried vegetation, which may allow vegetation in overwashed areas to reestablish more quickly. After an individual plant’s
density p reaches 0, representing mortality, no memory of the plant is preserved; this is a particularly suitable assumption for
herbaceous species types which are easily decomposed and/or carried away by wind or water after death, but less so for woody
species types that can remain in place and potentially impact barrier ecomorphodynamics years following mortality (Reeves
et al., 2022). Nevertheless, plant mortality in the model captures the fundamental response of vegetation to important
environmental stressors.

The presence of vegetation in MEEB influences not only aeolian sediment transport but also overwash sediment
transport. Following Barrier3D (Reeves et al., 2022), the effective discharge leaving vegetated cells (Q;¢r5) is reduced

according to the species-specific flow reduction coefficient, A, and vegetation density p:

Qierr = Qi(1 —Ap) (23)
where Q; is the calculated discharge leaving neighboring cell i in the absence of vegetation. As such, discharge through
vegetated cells is reduced relative to unvegetated cells, with denser vegetation causing more reduction, which in turn tends to

cause greater net deposition of sediment within the cell. Future work could upgrade the Vegetation component to incorporate

the effects of seasonality, climate forcing, and more robust representations of environmental filters and plant mortality.
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2.6 Probabilistic framework

MEEB optionally can be used with a simple probabilistic framework to account for uncertainties related to external
and intrinsic stochastic dynamics (Fig. 3). External stochasticity can arise from uncertainty in future forcing conditions, such
as RSLR, storm frequency, or mean storm intensity, and is incorporated by running the model across discrete probability
distributions of external drivers, i.e., simulating across a set of values for a particular external forcing variable, each with a
specific probability of occurrence that collectively sum to 1. Intrinsic stochasticity within the model simulations arises from
inherent randomness of natural phenomena — namely, the probabilistic nature of the storm sequence (timing, water level,
duration) and the Aeolian and Vegetation model formulations — and is incorporated with a Monte Carlo method that runs
multiple duplicate simulations for each bin of the external forcing probability distribution. Duplicate simulations use the same
exact model inputs, yet differ in their ecogeomorphic evolution because of the internal model stochasticity. The larger the
number of duplicate simulations (np), the more accurately the sampled distribution represents the theoretical distribution; in
our examples below, np = 32. Uncertainties of multiple external forcing parameters (e.g., RSLR and storm intensity) can be
considered together by determining the joint probability of occurrence for scenarios that encompass all possible parameter
value combinations, akin to the basic Joint Probability Method (JPM) commonly employed in storm and flood impact analyses
(e.g., FEMA, 2016). In the probabilistic framework used herein, RSLR is the only external forcing parameter considered, and
we utilize a discrete probability distribution for RSLR by the year 2050 CE (Fig. 3a) according to the Intergovernmental Panel
on Climate Change Shared Socioeconomic Pathway SSP5-8.5 (Fox-Kemper et al., 2021); see Sect. 3.5 for details.

For each bin of the external forcing probability distribution, the probabilistic framework in MEEB runs a batch of np
duplicate simulations and determines the class (in this case, the range of elevation change) for each cell in the domain at every
timestep for all np simulations (Fig. 3c). These data are then used to form relative frequency distributions of class type across
space and time for the intrinsic stochastic elements. Next, these distributions are weighted (multiplied) by the probability of
their external forcing bin. The weighted probability distributions are then summed elementwise to produce a joint external-
intrinsic probability distribution of class type for each cell of the model domain across all timesteps (Fig. 3c).

In this work, we use the likelihood of elevation change (relative to the simulation start) as an example of an outcome
that can be explored with MEEB. Elevation change is categorized into classes of major deposition, minor deposition, negligible
change, minor erosion, and major erosion (Fig. 3b). Other outcomes and categorizations can be developed to suit the goals of

the modeling investigation, such as the presence of vegetation or flooding (simple), or ecosystem state (more complex).

3 Data integration and calibration

Data integration and parameter calibration allows the user to explicitly explore the evolution of a particular setting
through time within MEEB. To ensure MEEB best represents a real-world system of interest, thorough data integration and
calibration specific to each study location is critical. MEEB integrates empirical data to set initial model conditions and

determine the characteristics of the forcing environment. Furthermore, given the myriad process domains, many of which
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Figure 3: Probabilistic model framework. (a) Discrete probability distribution for the rate of RSLR between 2020 and 2050 for
North Core Banks, NC, USA, under IPCC SSP5-8.5. (b) Classification scheme for net elevation change used in probabilistic

framework examples. (c). Annotated flowchart of the probabilistic framework in MEEB.
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employ poorly constrained parameters, comparison of simulated output to observations is used to both evaluate model
performance and, importantly, calibrate process parameter values; similar calibration procedures are typical of microscale
models. Scripts for calibrating model parameters and comparing simulated results with observations are included with the
model. Data integration and calibration is, of course, dependent on the availability of data, which varies significantly depending
upon location and timeframe. Therefore, sources or forms of data different than those described herein can be used as

necessary, so long as they are processed to satisfy the same requirements detailed below.

3.1 Case study location

MEEB can theoretically be applied to any sandy barrier system that satisfies the minimal data requirements as
described in the following subsections. As a case study, we parameterized and calibrated MEEB for North Core Banks, NC,
USA using data from 2014-2018 (National Geodetic Survey, 2024; NCFMP, 2018; USACE NCMP, 2024; USDA Farm
Service Agency, 2019; Ritchie et al., 2021; Sturdivant et al., 2019). North Core Banks is a sandy, wave-dominated barrier
island 36 km in length, expressing a broad spectrum of ecogeomorphic states from tall, well-developed foredune fields (~5 m
above MHW) to frequently inundated overwash flats (Hovenga et al., 2021). Part of the Cape Lookout National Seashore, the
barrier is minimally developed and managed to preserve endemic coastal ecosystems and natural ecogeomorphic processes.
The regional rate of RSLR from 1994-2024 was approximately 6.3 mm yr! (NOAA Tides & Currents, 2024) and dune

vegetation is dominated by Ammophila breviligulata, a burial-tolerant dune-building species (Jay et al., 2022).

3.2 Initial conditions

MEEB requires a digital elevation model (DEM) as initial elevation input, paired with contemporaneous spatial rasters
of initial vegetation density and species type (Figs. 1a, 1b). Sufficiently concurrent datasets (< 0.5 y apart) ensure that initial
vegetation conditions are representative of initial elevation conditions, and vice versa. All elevation and vegetation input raster
datasets were resampled to the adopted model grid resolution (here, 1 m) if necessary, clipped to a specified bounding box that
defines the spatial domain, and rotated such that the domain axes are parallel with the approximate trend of the barrier
shoreline. In order to calibrate model parameter values, a minimum of two sets of observed elevation and vegetation cover
datasets are needed to serve as the pre-hindcast initial conditions and the post-hindcast observations for comparison with
simulation results. Our methods for satisfying these general data requirements in this case study are described in the following

subsections.

3.2.1 Elevation

Initial topobathymetric DEMs were developed from three high-resolution lidar datasets for 2014 (NCFMP, 2018),
2017 (USACE NCMP, 2024), and 2018 (Ritchie et al., 2021). In the absence of bathymetry, and to conform with the model
assumption of a linear shoreface geometry, we processed the DEMs by adding the shoreface slope by linearly increasing depth

in the cross-shore dimension for all cells seaward of the ocean MHW shoreline according to Sgf .q. A small back-barrier slope
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(0.05) was also added by setting the first 30 m landward of the back-barrier MHW shoreline (in the cross-shore dimension) to

increase linearly in depth from MHW to Dy;,. The back-barrier cells beyond the back-barrier slope are set uniformly to Dy,,.

3.2.2 Vegetation

We derived rasters of initial species type from supervised landcover classification datasets for 2014 (Sturdivant et al.,
2019) and 2018 (S. Zeigler & A. Evans, U.S. Geological Survey, unpublished data, 2024), generated from orthoimagery
captured within the same months as their corresponding elevation datasets. The original landcover datasets were reclassified
into three landcover classes: herbaceous vegetation, woody vegetation, and no vegetation. Using the orthoimagery from
January to April 2014 (National Geodetic Survey, 2024) and October 2018 (USDA Farm Service Agency, 2019), rough
approximations of initial vegetation density for the vegetated classes were derived via the Normalized Difference Vegetation
Index, with thresholds set qualitatively for four classes corresponding to p values of 0.4, 0.6, 0.8, and 1.0 with random noise
perturbations of +0.1. In qualitatively setting NDVI thresholds, we were able to roughly control for the effect of image

seasonality on the NDVI values.

3.3 High-water event climatology

MEEB uses a time series of modeled HWE total water level, duration, and timing for simulation hindcasts. For
simulation forecasts, the observed HWE time series serves as the basis for a stochastic HWE environment, which consists of
a list of synthetic storms and a probability distribution of storm occurrence based on the time of year, as described in the

following.

3.3.1 Hindcast HWE time series

A modeled HWE time series (Fig. 4a) was created using hindcast hourly wave and water level conditions offshore of
North Core Banks from 1979 to 2022 (Aretxabaleta et al., 2023), which include significant wave height (H,), wave period
(T,), water level, and direction. The TWL (i.e., the representative highest elevation of the landward margin of runup) was
calculated for each hour as the sum of the maximum 2% exceedance of wave runup, following Stockdon et al. (2006), and the
contemporaneous water-level elevation, which includes tides, storm surge, and other low-frequency fluctuations. Following
Wahl et al. (2016) and Reeves et al. (2021), we extracted HWEs from the wave and water-level time series by conditioning
upon Hg: HWEs were identified as periods of 8 or more consecutive hours with Hg > 2.05 m, which is the minimum monthly
averaged wave height for periods in which water levels exceeded the 25" percentile of dune toe elevations (1.78 m NAVDS88)
at North Core Banks measured from 2005 to 2018 (Doran et al., 2017). If two (or more) periods of 8 or more consecutive hours
with Hg > 2.05 m occurred less than 24 hours apart, the two periods were considered part of the same large-scale weather

system and therefore lumped together as single HWE; new HWEs were identified after H; remained below the 2.05 m
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Figure 4: Hindcast high water event (HWE) climatology for model input and shoreline diffusivity. (a) Total water level timeseries of
HWE:s (blue dots) off North Core Banks (NCB), NC, USA from 1979 to 2022; vertical orange bars indicate the dates of capture for
the lidar datasets used in this study. Total water level is the sum of tide, surge, and wave runup. (b) Historic (1979-2022) probability
of HWE occurrence by time of year; bins are sized according to the Marine component timestep (At,, = 0.04 y). (c) Wave-climate-
averaged shoreline diffusivity as a function of shoreline angle 0 calculated for a given a, h, Hg, and T representative of NCB; vertical
orange bar indicates the range of shoreline angles from the initial 2024 NCB shoreline.

threshold for 24 hours or longer (Li et al., 2014). Each HWE from the hindcast record is described by its maximum TWL; H

and T, concurrent with the maximum TWL; duration; and beginning and ending date/time.

3.3.2 Stochastic HWE environment

The timing and characteristics (TWL and duration) of HWEs are determined stochastically in model forecasts. For
each Marine iteration in the model (At,,, = 0.04 y), a HWE may occur based upon the historical probability of HWE occurrence
for each iteration in the observed HWE record, which was calculated as the number of years in which one or more HWEs
occurred during each Marine timestep divided by the total length (in years) of the observational record (Fig. 4b). If a HWE is
determined to occur, the TWL and duration is chosen from a list of 10,000 synthetic HWEs generated using the copula-based,

multivariate sea-storm model from Wahl et al. (2016), which identifies interdependencies among relevant sea-storm parameters
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(water level, Hg, Ty, and duration) using the observed HWE record as required input. MEEB assumes that the probability of

HWE occurrence for each iteration, as well as the characteristics of the synthetic HWEs (i.e., the average TWL and duration

of the 10,000 synthetic HWEs), remain constant over the course of a simulation.

3.4 Wave climatology

MEEB requires estimates for long-term (multidecadal) averaged wave climate characteristics to drive alongshore
shoreline diffusion, as described in Sect. 2.4.2. We used the same hindcast hourly wave and water-level conditions offshore of
North Core Banks from 1979 to 2022 (Aretxabaleta et al., 2023) to derive the mean offshore significant wave height, mean
wave period, and the wave climate asymmetry and proportion of high-angle waves (relative to the barrier shoreline trend) for

the time period, which allows for computation of multidecadal shoreline change.

3.5 Probabilistic distribution of future RSLR

We developed a probabilistic distribution of RSLR for the year 2050 (Fig. 3a) from the IPCC AR6 SSP5-8.5 sea-
level projections (Fox-Kemper et al., 2021; data available from Garner et al., 2021) for the grid tile encompassing North Core
Banks at 34° N 77° W. Following others (Wainwright et al., 2014; Bamunawala et al., 2021), a triangular probability
distribution of RSLR was created using the 5, 50, and 95 quantiles of the projected RSLR for the year 2050 under SSP5-8.5.
This triangular distribution was then transformed into a discrete probability distribution with three bins.

SSP5-8.5 represents a “very high” greenhouse gas emissions pathway, and the accompanying sea-level rise projection
follows a trajectory most similar to the NOAA “Intermediate” scenario from Sweet et al. (2022). Users can run the same
probabilistic model framework with different RSLR probability distributions representative of other SSPs, and the results of
multiple pathways can thereby be compared. For example, users can select and make projections for two pathways that
correspond to “most likely” and “worst case” scenarios. For the year 2050, however, there is relatively little difference in
projected sea levels between the highest and lowest IPCC SSPs, with considerable overlap of ranges. The relative convergence
of RSLR to greenhouse gas emissions over the next three decades suggests a single SSP for a “very high” emissions pathway
(i.e., SSP5-8.5) is sufficient for probabilistic projections up to the year 2050, in alignment with findings from the 2022 NOAA

Interagency Technical Report for sea-level rise (Sweet et al., 2022).

3.6 Skill assessment and parameter optimization

We define model performance primarily through the direct cell-by-cell comparison of simulated and observed
elevation with the Brier Skill Score (BSS), which measures how much the simulated change improves a prediction relative to

the baseline of predicting no change at all:

24



660

665

670

675

680

685

: (24)
Tzz:l(b]' - Obsi)

where ] is the total number of cells in the skill determination, sim; is the simulated final elevation at cell j, obs; is the observed
final elevation at cell j, and b; is the baseline prediction equal to the initial elevation at cell j (i.e., assumes no change). When
specifically assessing the aeolian performance of the model, we also determined the BSS of the change in foredune crest
elevation. While our skill assessment used a conventional cell-by-cell, point-based approach, future model calibration may
benefit from alternative metrics that capture more qualitative behaviors or states (French et al., 2016; Murray, 2003).

We used particle swarm optimization (PSO) to calibrate 15 free parameters to maximize model skill. PSO is a
metaheuristic computational method to search iteratively for the global optimum within a given parameter space. PSO seeds
the parameter space with particles (i.e., specific sets of parameter values) that make up a swarm (i.e., a population of candidate
solutions). The movement of each particle is guided both by its own local best-known position within the parameter space as
well as the best-known position of the entire swarm. Over many iterations, the swarm tends to descend upon the global
optimum set of parameter values that maximizes the model skill, while tending to avoid local optima. A minimum and
maximum value for each parameter defines the calibration space; see Table A1 for the range of values used for each calibrated
free parameter.

We optimized Aeolian and Marine parameters separately to reduce the number of free parameters calibrated at once
and improve potential calibration. First, Marine parameters alone were optimized using only the Marine component of MEEB
over a single HWE event: Hurricane Florence, which made landfall as a Category 1 hurricane in September 2018 south of
Wrightsville Beach, NC, USA, was used for Marine calibration because of extensive overwash on North Core Banks and the
availability of lidar captured 3 weeks after the event (Ritchie et al., 2021). We used a skill score for change in elevation that
was designed to be representative of the barrier as a whole, calculated as the average BSS of elevation change across five
ecogeomorphologically diverse, 300-m-long training sites characterized by a small and large overwash fan, a small and large
overwash flat, and a tall continuous dune ridge (Figs. 5, 6). To best ensure that the observed change is representative of HWE
impacts, determination of skill was limited to subaerial cells that fall seaward of the dune crest or within either the simulated
or observed overwash extent. Observed overwash extent was digitized by hand with pre- (Jun to Sep 2017; USACE NCMP,
2024) and post-Florence (Oct 2018; Ritchie et al., 2021) imagery and lidar as reference.

Next, Aeolian parameters were optimized by running the model over a period of relatively limited HWE activity (16
April 2014 to 16 September 2017), thereby controlling for the effects of marine processes on the Aeolian calibration. Results
from the preceding Marine parameter calibration were used to set the Marine parameter values for the Aeolian calibration, and
all components of MEEB (Aeolian, Marine, Shoreline, and Vegetation) were utilized and active. The RSLR rate was set to 6
mm yr! for these hindcasts, representative of historical conditions. We used a multi-objective skill score calculated as the

average of the BSS for cell-by-cell elevation change and the BSS for dune crest height change. Including dune height as part
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of the multi-objective skill score helps prioritize accurate representation of vertical foredune growth over other characteristics,
particularly as foredune height has a large impact on barrier response to HWEs. To focus calibration on foredune growth and
to exclude interior areas with error in the lidar DEMs associated with reflectance off the vegetation surface, determination of
skill was also limited to cells within a specified foredune field (Fig. 6). This multi-objective score was averaged again across
three diverse, 200-m-long training sites to produce a single score representative for North Core Banks as a whole. To calibrate
the four wind-direction probabilities (P, ) that collectively sum to 1, we used three parameters that can be tuned independently
from each other: 1) the wind axis ratio, which is the ratio of wind directed cross-shore relative to alongshore; 2) the onshore
wind ratio, which is the ratio of cross-shore wind directed onshore relative to offshore; and 3) the down-shore wind ratio,
which is the ratio of alongshore wind directed down the coastline relative to up. The four values of Py, were calculated from
the three resulting calibrated wind parameters. While historical wind direction data from North Core Banks is available for
input into MEEB, we found calibrating the wind direction probabilities directly produced significantly better agreement with
observations. This may be because the dominant historical wind directions at North Core Banks run oblique to the shoreline
and therefore our model grid orientation, coupled with the fact that aeolian transport in the model is constricted to directions
directly parallel with model gridlines (i.e., not diagonal), suggesting limitations to the relatively simple aeolian algorithm
employed in MEEB (see also Nield & Baas, 2008a). Future research into incorporating wind direction observations,
particularly with oblique wind directions, could prove fruitful.

Due to challenges in generating effective skill scores for hindcasts of vegetation cover, we did not calibrate Vegetation
free parameters; instead, Vegetation parameter values roughly follow those of Nield and Baas (2008a) and Keijsers et al.
(2016). Shoreline parameters, with perhaps the exception of the alongshore sediment transport constant k;, can be directly

estimated and therefore do not necessitate optimization.

3.7 Sensitivity analyses

We investigated the global sensitivity of model output to input parameter variations for the purpose of ranking
variables according to their relative contribution to output variability and screening variables that have minimal effect on
output variability. We used the Method of Morris test (Morris, 1991), also known as the Elementary Effects Test, which is
well-suited for models like MEEB with numerous input variables and/or relatively long run times (Pianosi et al., 2016). The
Method of Morris determines both the overall importance of a parameter (u*; the mean of the absolute value of the elementary
effects) and its degree of interaction with other input parameters (o*; the standard deviation of the absolute value of the
elementary effects). As in the calibration workflow, we performed sensitivity analyses on the Aeolian and Marine components
of the model separately, and used the same experimental setup, skill scores, and input parameter ranges. Because the Method
of Morris depends on the range of input parameter values and because several parameters in MEEB are poorly constrained and
abstract, conclusions drawn from our sensitivity analyses are relevant only with regards to the estimated ranges of parameter

values used herein (Table Al). Our sampling strategy used six grid levels (which controls the sampling grid and variation
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Figure 5: Hindcast simulations testing performance of the MEEB Marine component with calibrated Marine parameters. (a-d)
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Banks, NC, USA. Locations of each marine testing site, as well as each marine training site used in calibration, are indicated in the
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is confined to the area between the dashed lines at each location to focus calibration on foredune growth and exclude error in the
lidar DEMs associated with reflectance off the vegetation surface. Areas of apparent significant accretion landward of the foredune
field in panels a-d are artefacts of the post-Florence lidar capturing the shrub canopy elevations versus the true surface elevation in
the pre-Florence lidar.
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Figure 7: Sensitivity analyses of model parameters for the (a) Marine and (b) Aeolian model components. Marine and Aeolian
parameters are analyzed separately following the same design and parameter ranges as the parameter calibration simulations.
Unitless values for the overall importance of a parameter (u*) and its degree of interaction with other parameters (¢*) are given in
orange and blue, respectively. Black lines represent the 95% confidence interval.
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sizes; Morris, 1991; Pianosi et al., 2016), with 75 aeolian and 115 marine trajectories resulting in 900 and 1150 combinations
of parameter values evaluated for the Aeolian and Marine components of the model, respectively.

4 Example simulations and results
4.1 Parameter sensitivity analyses

Our parameter sensitivity analyses suggest that the Marine component of MEEB is most sensitive to the erosive
timescale calibration coefficient (T,) and equilibrium beach slope (f,,), followed by the overwash infiltration and drag
parameter (R;) and sediment transport coefficients (K,,,, m; Fig. 7a). These parameters also display the highest degree of
interaction with each other (Fig. 7a). The Marine component in MEEB is insensitive to the vegetation flow-reduction
coefficient (A), which controls the degree to which vegetation impacts the overwash flow, for both types of vegetation; we
therefore did not include these parameters in our final calibration. Perhaps unsurprisingly, marine evolution in the model is
particularly sensitive to poorly constrained coefficients (T, K,,,, m) that have limited relevance to real-world measurements
or observations. That overwash in the model is particularly sensitive to infiltration and drag of the flow across the barrier
interior (R,) suggests continued study and measurement of these factors across the barrier landscape could be especially
beneficial.

The Aeolian component of MEEB is most sensitive, by far, to the probabilities of deposition (P, o) and erosion (P, g)
in the absence of vegetation (Fig. 7b). These parameters also display the highest degree of interaction with other parameters.
The model is insensitive to both the unvegetated and vegetated angles of repose (6,,,, 8;.,,), and we therefore exclude them
from the model optimization. Overall, acolian evolution in the model is most sensitive to parameters controlling the volumetric

sediment flux, as opposed to the exact specifications of the way in which vegetation density and type alter this flux.

4.2 Hindcasts: comparisons to observations

To assess model skill, we ran hindcast simulations using the calibrated parameter values and the same simulation set-
up as in calibration except at testing sites that differ from the training sites (Figs. 5, 6). Simulation results were compared to
observed elevation change and the resulting model skill scores are given in Table 1. Our testing sites each span 0.5 km in
length alongshore to demonstrate the variability of model performance in different geomorphic settings; with increasingly
larger model domain extents, the skill scores would tend to approach the mean score of the entire barrier.

Hindcast simulations of Hurricane Florence using calibrated Marine parameters produce good to excellent agreement
with observations (following the BSS categorization from Sutherland et al., 2004) for pre- to post-storm elevation change at
four test sites across North Core Banks (Fig. 5; Table 1). Good to excellent agreement is also found when considering elevation
change landward of the foredune crest in isolation, as well as fair to excellent agreement seaward of the foredune crest (Table
1). MEEB does particularly well in capturing overwash deposition patterns and washover thicknesses. Naturally, the model is

more skillful at some test sites across the barrier than others. In particular, the model tends to overestimate dune scarping in
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Table 1: Model skill scores for elevation change from MEEB hindcast simulations. BSS = cell-by-cell Brier Skill Score; BSS Seaward
= BSS of all cells seaward of the post-storm foredune crest; BSS_Landward = BSS of all cells landward of the post-storm foredune
crest; BSS_DuneElev = BSS of change in elevation of all foredune crest cells; Multi_Obj_BSS = average of BSS and BSS_DuneElev.
Brier Skill Score qualitative classification follows Sutherland et al. (2004).

Marine
Location Classification BSS BSS_Seaward BSS_Landward
Fig. 5a Excellent 0.65 0.69 0.46
Fig. 5b Excellent 0.64 0.64 0.40
Fig. 5¢ Good 0.22 0.19 0.20
Fig. 5d Excellent 0.79 0.79 0.56
Aeolian
Location Classification BSS BSS_DuneElev Multi_Obj_BSS
Fig. 6a Good 0.24 0.04 0.14
Fig. 6b Poor 0.03 0.03 0.03
Fig. 6¢ Good 0.23 0.22 0.23
Fig. 6d Good 0.23 -0.03 0.10

certain areas, particularly where overwash flows through gaps in the foredune line (Figs. 5a, 5c¢). MEEB also tends to
underestimate lateral spreading of overwash flow in areas with confined or channelized topography (Fig. 5b), a direct
consequence of the simplified flow-routing algorithm that directs flow only to the three landward neighboring cells.

Testing the skill of calibrated Aeolian parameters, hindcast simulations from April 2014 to September 2017 (a period
of minimal storm activity) at four test sites across North Core Banks result in good to poor agreement with observed
topographic change (Fig. 6; Table 1). As in calibration, the skill assessment was applied only to cells within the predetermined
dune field (Fig. 6). While beach change is predicted poorly in some of the hindcasts (Figs. 6b, 6¢), it is beyond the intent of
the model to predict fluctuations in beach state on a monthly or seasonal timescale. Importantly, the model appears to do
qualitatively well in capturing the location and/or pattern of dune growth. This includes the one hindcast with a poor (0.04)
BSS (Fig. 6b), suggesting that our simple multi-objective BSS could be improved to better identify and prioritize important
qualitatively correct behaviors (French et al., 2016) and better align with subjective judgements of similarity (Bosboom and
Reniers, 2014). In our tests, the model tends to underestimate the vertical extent of dune growth. Additionally, aeolian
reworking of the barrier interior (landward of the foredune crest) is overestimated in some areas (Figs. 6a, 6d), suggesting that

the model is sensitive to the initial vegetation conditions.

31



805

810

815

820

825

830

4.3 Forecasts: probability of future change

MEEB was developed to provide useful projections at spatiotemporal scales relevant to coastal management. Here,
the model is exercised in a predictive application using the probabilistic framework described in Sect. 2.6 and the RSLR
probability distribution described in Sect. 3.5. We run example probabilistic projections of elevation change for the year 2050
at an initially overwash-prone site and an initially overwash-resistant site on North Core Banks. While these sites span only
0.5 km in length alongshore for the purpose of providing a clear and concise demonstration of model output, MEEB can handle
model domains up to tens of kilometers in alongshore length. Fig. 8 plots the most likely range of net elevation change across
the model domain from 2018 to 2050 for these projections. At the initially overwash-prone site (Figs. 8a-c), the model
projection suggests that major deposition is most likely at the proximal parts of the overwash fans with minor deposition most
likely on the more distal portions (Fig. 8b). Repeated overwash events will tend to prevent vegetation from recolonizing the
overwash fans over the course of the simulation. Consequentially, acolian deflation of the sparsely vegetated overwash fans,
and resulting minor deposition along the landward vegetated fringes of the fans (cf. Rodriguez et al., 2013), is also predicted
to be likely. The model also predicts the high likelihood of major accretion around the seaward slope and toe of the present
foredunes, reflecting the steeping of the beach profile with net seaward growth of the foredune system and likely net seaward
expansion of vegetation cover. This probabilistic projection suggests that the areas encompassing the washover fans are likely
to remain vulnerable to persistent overwash through the year 2050, while foredune areas are likely to not only be stable but
expand.

At the initially overwash-resistant site (Figs. 8d-f), the probabilistic projection suggests that major lateral dune erosion
via scarping is likely to occur but that the foredune ridge will most likely persist (Fig. 8¢). Aeolian deposition near the initial
foredune crest is likely to offset some of the height and volume lost from dune scarping. As a result of this persistent and
resistant topography, dense vegetation will tend to cover the barrier interior and prevent aeolian reworking landward of the
dune crest. Although the model predicts negligible elevation change is most likely landward of the foredune crest, uncertainty
in this prediction — particularly near the left (Southwest) edge of the model domain — reflects the small but very real possibility
of minor to major overwash deposition in the event of foredune overtopping and/or loss (Fig. 8f). Overall, this projection
indicates that vulnerability to HWE-driven change is low through 2050 landward of the initial 2018 foredune crest, though the
high probability of major dune width loss in this period suggests that the likelihood of a shift in morphologic regime from
overwash-resistant to overwash-prone may increase rapidly in the subsequent decades. Potential increases in future HWE
intensity (e.g., Knutson et al., 2020) could also enhance the likelihood of more fundamental morphological and ecological

regime changes by 2050 — such fundamental changes would also be likely to occur by the end of the century.
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Figure 8: Example probabilistic projections of elevation change for the year 2050, at two sites on North Core Banks, NC, USA: (a-
¢) an initially overwash-prone site and (d-f) an initially overwash-resistant site. Locations of both sites are indicated in the top map.
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(a, d) Initial 2018 topography for the overwash-prone and overwash-resistant sites, respectively. (b, ¢) Most likely net change in
elevation between 2018 and 2050 classified into five elevation ranges. (¢, f) Certainty in most likely elevation change predictions,
taken as the proportion of all model runs resulting in the most likely class of elevation change.

5 Discussion and conclusions

MEEB was developed to simulate spatially explicit, ecogeomorphic, probabilistic evolution of coastal barrier systems
over spatiotemporal scales of greatest interest to coastal managers and decision-makers. The goal of the model is to reconcile
management needs for projections that are both quantitative/place-specific and multi-decadal/multi-kilometer (i.e., mesoscale)
while accounting for ecogeomorphic feedbacks and uncertainties in the forces driving future change. In our approach for
modeling mesoscale barrier ecogeomorphic evolution, we a) integrated model parameterizations of varying mechanistic
complexity, representing certain processes or interactions with relatively higher complexity (only as far as needed to produce
mesoscale behaviors anticipated to be important) within an otherwise synthesist framework, and b) thoroughly tested and
calibrated these parameterizations with observational data. Because many of these relatively simple and heuristic algorithms
involve calibration coefficients and poorly constrained independent variables, we have made a substantial effort to determine
which of these parameters are most influential to model outcomes and assign values that provide the best model agreement
with observations, as evaluated by our multi-objective skill scores for hindcasts on North Core Banks. While the model has
yet to be applied to other sites, North Core Banks is an ideal case study location given its relative lack of human influence,
multiple ecosystem types and barrier states, history of ecogeomorphic change, and availability of high-quality data, and
therefore may be representative of other undeveloped barrier environments. Given the demonstrated skill of our hindcasts of
North Core Banks, as well as our holistic and simplistic model representations of ecogeomorphic processes and interactions,
we expect MEEB to be widely adaptable to most minimally-engineered barrier systems along the U.S. East and Gulf coasts.
The model may be less applicable to barrier environments strongly influenced by tidal inlet dynamics, complex shoreline
change, or human management, though in the future a human management module could be added to MEEB (e.g., Anarde et
al., 2024a,b) to explore the ecogeomorphic effects of coupled human—natural interactions.

As with any numerical model, appropriate interpretation of the results depends on the scale and complexity of the
model parameterizations. As a mesoscale model, MEEB is not suitable for investigations with the goal of predicting subtle
changes in elevation or vegetation cover; nor is it an appropriate tool for explaining the large-scale behaviors of landscape
configuration, such as the drowning of a barrier chain. Instead, MEEB is designed to answer questions about barrier
ecogeomorphic change of moderate complexity by offering semi-qualitative predictions and semi-quantitative explanations.
For example, MEEB can be used to investigate the effects of climate-induced shifts in ecological composition by adjusting
Vegetation parameters over time to represent transitions in vegetation assemblages. Such transitions could affect the likelihood
of coastal hazard impacts by altering aeolian growth rates and/or patterns and therefore landscape vulnerability to HWEs. As

another example application, MEEB could be used to predict where and when overwash along a barrier is most likely to occur
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by generating probabilistic projections of overwash inundation through time and identifying ecogeomorphic indicators of
overwash vulnerability. Future work could compare MEEB simulations with micro- (e.g., XBeach, Roelvink et al., 2009) or
macro-scale (e.g. LTA14, Lorenzo-Trueba and Ashton, 2014) models to explicitly determine when, where, and how the
trajectories of the models overlap in their respective utility.

To simulate spatially explicit ecological and geomorphological processes across an entire subaerial barrier landscape
over several decades, MEEB employs many synthesized parameterizations and simplifying assumptions. Inevitably, MEEB
bears several important limitations arising from this modeling approach. For example, MEEB assumes the barrier system is
composed entirely of unconsolidated sand, whereas grain sizes and characteristics can vary over meters to kilometers in ways
that affect dune growth (e.g., Hovenga et al., 2023) and barrier transgression (e.g., Brenner et al., 2015). Tidal inlet and
breaching processes, including outwash events (Sherwood et al., 2023), are neglected in MEEB, despite the significant
ecomorphodynamic changes associated with these processes and their importance to long-term transgressive sediment flux
(e.g., Nienhuis and Lorenzo-Trueba, 2019b; Leatherman, 1979; Passeri et al., 2020; Sherwood et al., 2023). Therefore, we
exclude portions of a barrier within several hundred meters of active tidal inlets and breaches from the model domain, rendering
the model less relevant to tide-dominated barrier systems where barriers are frequently segmented by inlet channels. Further,
MEEB models the long-term, wave-climate-averaged shoreline diffusivity by assuming the diffusive wave climate does not
change over the course of a simulation, which may average over variability in shoreline diffusion that could potentially
feedback with coupled ecogeomorphic processes (e.g., dune erosion). MEEB also presently assumes that no shoreline changes
resulting from alongshore transport gradients occur at the domain boundaries (i.e., shoreline change at these cells only occurs
from cross-shore processes). As such, if the MEEB model domain were part of a curved coastline eroding or accreting due to
persistent alongshore transport gradients (Ashton & Murray, 2006), local shoreline change rates would be underpredicted.
Lastly, the Vegetation component presently lacks finer temporal resolution needed to capture seasonal variations in vegetation
density and growth, which could play an important role in how a barrier responds to and recovers from HWEs. Additionally,
the simplified Vegetation component lacks many of the environmental filters (e.g., temperature, groundwater depth, elevation,
salinity) that could affect the zonation and density of vegetation, with implications for acolian and overwash sediment transport
and thereby projections of future change. To improve the utility of MEEB for addressing the ecogeomorphic effects of climate-
induced shifts in ecology, the model would require the addition of seasonality and species zonation dynamics.

Despite these limitations, comparisons of MEEB hindcast simulations to observations demonstrate that our relatively
simple set of parameterizations for coupled aeolian, marine, vegetation, and shoreline processes can skillfully capture
important mesoscale dynamics of barrier systems. This is achieved in large part through thorough calibration of the most
sensitive free parameters, with integration of topographic, ecologic, and storm climatology data to set initial conditions and
assess model performance. A single set of calibrated parameter values performs well at ecogeomorphologically diverse test
sites spread across the nearly 30 km domain and in hindcast simulations spanning multiple continuous years, leading to

confidence in model projections of future mesoscale change.
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Appendix A: Model parameters and dependent variables

Table A1: MEEB parameters and their definitions.

Parameter | Units Value Calibration Description
and Sensitivity
Analysis
Range
At, y 0.02 Aeolian iteration duration
At,, y 0.04 Marine iteration duration
At y 0.04 Shoreline iteration duration
At, y 1 Vegetation iteration duration
0.006 (hindcasts),
RSLR m yr’! 0.0068 to 0.0124 Relative sea-level rise
(projections)
MHW m NAVDS88 | 0.39 Initial mean high water
Aeolian
P, ) 010 0021005 Maximum probabi'lity of erosion in the complete
’ absence of vegetation cover (p = 0)
P, ) 0.22 0.02t0 0.5 Probabi.lity of deposition in the complete absence of
’ vegetation cover (p = 0)
Py, ) 054 0051005 Probabillity of deposi_tion with full effective
’ vegetation cover (p = 1)
n deg 12 8to 18 Shadow angle
Vegetation density at which entrainment of sand
Pao ) 0.10 0.05100.55 becgomes effectivte}iy negligible
o, ) 035 0.05 t0 0.4 Thre§hold vegetation density at which cells are
considered vegetated
0y deg 20 15 to 30 Angle of repose for unvegetated cells (p < p,,)
0, deg 30 20 to 40 Angle of repose for vegetated cells (p = p,,)
0.5to 1 (wind
axis ratio); 0.5
P ) (0.81, 0.04, 0.06, | to 1 (onshore Wind direction probability (onshore, alongshore
WD 0.09) wind ratio); 0 to | down, offshore, alongshore up)
1 (down-shore
wind ratio)
H; m 0.02 Aeolian slab height
Lg m 5 Saltation length
Proportion of the smoothed topography above
Dy - 0.4 MHW for determining elevation of the freshwater
lens
Marine
Beq - 0.022 0.01 to 0.04 Equilibrium beach slope
Erosive timescale calibration coefficient for
Te ) 0.68 0.33t0 1.0 sediment flux seaward of the foredune crest
R, bl 249 50 to 280 Parameter representing infiltration and drag of

36

overwash flow



hr

hr

m MHW

my"

1.5
0.0001684

0.0283

1.04

9.81
0.5

0.7
1.5

0.0016

0.04

0.02 (burial-
tolerant); 0.05
(burial-intolerant)

0.05

0.2

0.25 (burial-
tolerant); 0.25
(burial-intolerant)
[-1.5,-0.05, 0.5,
1.5, 2.2] (burial-
tolerant); [-1.6, -
0.7,0,0.2, 2.1]
(burial-intolerant)
0.2 (burial-
tolerant); 0.05
(burial-intolerant)

20.07
0.00822
5926

25

0.98

6.6

1.65
2e-4

0.01

0.5t02.0
0.00005 to 0.01

0.01 to 0.04

1.01to 1.12

Vegetation
0.02to 0.4
(burial-
tolerant); 0.05
to 0.5 (burial-
intolerant)

Shoreline
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Maximum slope water can flow uphill

Overwash sediment transport coefficient

Constant representing momentum of the overwash
flow

Constant for nonlinear relationship between
sediment flux and discharge

Gravitational acceleration

Constant for flow routing

Coefficient for exponential decay of sediment load
entering subaqueous back-barrier environment
Equilibrium depth of back-barrier basin
Time-substep for computing an hourly iteration of
Marine HWE morphological change landward of
the dune crest

Time-substep for computing an hourly iteration of
Marine HWE morphological change seaward of the
dune crest

Vegetation-overwash flow reduction coefficient

Probability of vegetation establishment via
germination from seeds or thizome fragments
Probability of vegetation establishment via lateral
expansion from neighboring vegetated cells

Minimum elevation (relative to MHW) for
vegetation

X-coordinates of the 5 growth function vertices a-e

Peak growth of the growth function middle vertex ¢

Shoreface depth

Equilibrium shoreface slope

Shoreface flux rate coefficient

Alongshore length of shoreline sections

Average deepwater wave height

Average deepwater wave period

Submerged specific gravity of shoreface sediment
Median grain size of shoreface sediment
Shoreface suspended sediment transport efficiency
factor



Cs - 0.01 Shoreface friction factor
kg4 m?? 57 0.06 Shoreline diffusivity constant
Wave climate asymmetry, i.e., proportion of waves
a - 0.6 approaching from the left when looking offshore of
the regional shoreline trend
Proportion of high-angle waves, i.c., waves with an
h - 0.39 o
approach angle greater than 45

910 Table A2: MEEB dependent variables and their definitions.

Variable Units Description

Aeolian
P, - Probability of erosion
P, - Probability of deposition
Qa,max m>m™ At;1 | Maximum potential aeolian transport flux
p - Vegetation density

Marine
Zewl m NAVDS8S8 | Total water level elevation of high-water event
Zy m NAVDS8S8 | Elevation at cross-shore location x
Xp m Cross-shore location of the foredune crest
qyx m’s’! Flux of sediment at cross-shore location x seaward of the foredune crest
By - Local slope
Qac m? h! Discharge over the foredune crest
Zp m NAVDS88 | Foredune crest elevation
U m h! Velocity of water at the dune crest
Qo m? h! Overwash discharge at distributing cell
Q; m? h! Overwash discharge at receiving cell i
S - Local directional slope from distributing cell to receiving cell i
qsi m? h! Overwash sediment volumetric flux from distributing cell to receiving cell i

Vegetation
Qierr m? h! Effective discharge leaving vegetated cells
Shoreline

X m Cross-shore position of the ocean shoreline
X¢ m Cross-shore position of the shoreface toe
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920

Ssr - Slope of the active shoreface

qsf m® m! At;1 | Shoreface sediment flux
Cumulative volume of overwash deposition deposited on and behind the barrier interior for

Qow m® m' At;t
1 Shoreline iteration

- o o AL Cumulative volume of sediment imported from or exported to the beach and dune system
during HWEs for 1 Shoreline iteration

Wy ms’! Settling velocity of shoreface sediment

Zy m Breaking wave depth

D m? ! Shoreline diffusivity

0 - Shoreline angle relative to the regional shoreline trend

b0 - Wave angle relative to the regional shoreline trend

- Dependence of the diffusivity to the wave angle
E - Normalized angular distribution of wave energy

Code availability

MEEB v1.0 source code and documentation are available for download from Reeves (2025a), the official USGS
software release, under a CCO 1.0 Universal license. A public copy of the MEEB v1.0 code and documentation is also archived

on Zenodo (Reeves, 2025b).

Data availability

All elevation and vegetation input files used in the calibration procedures and simulations presented in this work are
stored within the archived MEEB v1.0 software release (Reeves, 2025a, 2025b) at /MEEB/Input. Hindcast hourly wave and
water level conditions offshore of North Core Banks from 1979 to 2022, used to develop the observed HWE timeseries and
stochastic HWE environment, are available from the Renaissance Computing Institute (Blanton et al., 2024) and stored within

the MEEB v1.0 software release at /MEEB/Data/NorthCoreBanks.
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