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Abstract. Models of coastal barrier geomorphic and ecologic change are valuable tools for understanding and predicting when, 10 

where, and how barriers evolve and transition between ecogeomorphic states. Few existing models of barrier systems are 

designed to operate over spatiotemporal scales congruous with effective management practices (i.e., decades/kilometers, 

referred to herein as “mesoscales”), incorporate important ecogeomorphic feedbacks, and provide probabilistic projections of 

future change. Here, we present a new numerical model designed to address these gaps by explicitly yet efficiently simulating 

coupled aeolian, marine, vegetation, and shoreline components of barrier evolution over spatiotemporal scales relevant to 15 

management. The Mesoscale Explicit Ecogeomorphic Barrier model (MEEB) simulates subaerial ecomorphologic change of 

undeveloped barrier systems over kilometers and decades using meter-scale spatial resolution and weekly time steps. MEEB 

applies simplified parameterizations to represent and couple key ecogeomorphic processes: dune growth, vegetation expansion 

and mortality, beach and foredune erosion, barrier overwash, and shoreline and shoreface change. The model is parameterized 

and calibrated with observed elevation, vegetation, and water level data for a case study site of North Core Banks, NC, USA. 20 

Simulated ecogeomorphic change in model hindcasts agrees well with observations, demonstrating both favorable skill scores 

and qualitatively correct behavior. We also describe an additional model framework for producing probabilistic projections 

that account for uncertainties related to future forcing conditions and intrinsic stochastic dynamics and demonstrate the 

probabilistic framework’s utility with example forecast simulations. As a mesoscale model, MEEB is designed to investigate 

questions about future barrier ecogeomorphic change of moderate complexity, offering semi-qualitative predictions and semi-25 

quantitative explanations. For example, MEEB can be used to investigate how climate-induced shifts in ecological composition 

may alter the likelihood of morphologic impacts or to generate probabilistic projections of ecogeomorphic state change. 

1 Introduction 

Coastal barrier environments are of critical economic, ecologic, and cultural importance, but, as low-lying collections 

of mobile sediment, are constantly evolving under drivers of both chronic and event-based change. In the face of rising 30 
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atmospheric temperatures, projected accelerated relative sea-level rise (RSLR; Sweet et al., 2022), and anticipated changes in 

tropical storm activity (e.g., Knutson et al., 2020), future barrier evolution remains uncertain. This uncertainty is further 

complicated by transformations in ecological assemblages related to global climate warming, which have become increasingly 35 

apparent within barrier systems in recent decades (e.g., Goldstein et al., 2018; Zinnert et al., 2016) and have the potential to 

fundamentally alter the morphology and behavior of coastal barriers (e.g., Reeves et al., 2022; Zinnert et al., 2019). An 

understanding of when, where, and how ecogeomorphic change in barrier systems is most likely to occur remains of paramount 

importance to coastal communities looking to prepare for and adapt to future change. Furthermore, the ability to capture future 

changes to barrier systems can help inform broader understanding of both the functional transformations we may anticipate 40 

across the broader coastal landscape, as well as whether protections coastal barriers provide to mainland settings will persist 

in the future. 

Numerical models capable of simulating across a range of scenarios and conditions offer possibly the best opportunity 

to predict and understand coastal change and behavior. Prediction of historically unprecedented behavior will be important 

given uncertainties in future forcing conditions (e.g., RSLR, storm intensity) coupled with inherently complex nonlinear 45 

interactions (e.g., feedbacks, multistability) and stochasticity (e.g., storm occurrence, seed dispersal). Numerical models can 

inform active planning and management strategies for “undeveloped” barrier systems (i.e., those without sustained residential 

and/or commercial infrastructure and activity) that are typically intended to preserve and protect ecosystems, infrastructure, 

and natural resources; provide for human use; mitigate hazards; and inform public expectations.  

Coastal management practices usually consider timescales of several decades into the future – often with regard to 50 

milestones of 2050 and 2100 CE defined by climate change science – over multiple kilometers of coastline. Amongst coastal 

managers and decision-makers, there is increasing demand for model projections that both explicitly take into account these 

spatiotemporal horizons and at the same time provide reliable and sufficiently quantitative predictions (French et al., 2016; 

Martin et al., 2023). Many models of barrier geomorphology and ecology exist as powerful tools for predicting event-based 

change or understanding fundamental behaviors and processes (Hoagland et al., 2023; Piercy et al., 2023). While these models 55 

provide useful insight to planning and decision-making processes, they tend to lack important features and components that 

are particularly relevant to the typical goals of management endeavors: management-relevant spatiotemporal scales (decades 

and kilometers) and resolutions (meters and weeks), feedbacks between key ecologic and geomorphic processes, and the ability 

to provide probabilistic projections of future change. 

Numerical models of barrier evolution can be arranged along a continuum between micro and macro scales (Hoagland 60 

et al., 2023; Murray, 2003). What we herein consider microscale models (e.g., XBeach, Roelvink et al., 2009; Delft3D, Lesser 

et al., 2004; COAWST, Warner et al., 2008), also commonly referred to as event-based or simulation models, typically simulate 

coastal change over hours to years and up to hundreds of meters. These models tend to be built upon highly realistic expressions 

of the underlying physics and incorporate as many system processes as practical while striving to simulate a particular place 

or set of conditions with as much quantitative accuracy (predictive skill) as possible (Murray, 2003; Sherwood et al., 2022). 65 

As such, microscale models typically require relatively large computational resources, observational or experimental data for 
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model initialization and testing, and careful calibration of important model coefficients (e.g., Windsurf, Itzkin et al., 2022). In 

contrast, macroscale models (e.g., CoastMorpho2D, Mariotti, 2021; Barrier3D, Reeves et al., 2021; BIT, Masetti et al., 2008; 

BRIE, Nienhuis and Lorenzo-Trueba, 2019a), often referred to as exploratory or reduced-complexity models, operate over 

temporal scales of decades to millennia and over spatial scales up to thousands of meters, typically with coarse spatial 70 

resolutions ≥ 10 m. Macroscale models simplify systems to focus on essential, emergent processes, often with the goal of 

exploring and explaining large-scale behavior (Murray, 2003). As such, larger-scale models tend to use synthesized 

representations of natural phenomena that average over ecogeomorphic processes and features occurring at much smaller 

spatiotemporal scales, providing the most direct explanations and likely the most reliable predictions of larger-scale 

phenomena (Murray, 2007). Macroscale models also tend to use idealized (e.g., LTA14, Lorenzo-Trueba and Ashton, 2014) 75 

or equilibrium (e.g., GEOMBEST, Stolper et al., 2005) morphologies meant to represent generalized conditions or behaviors 

rather than specific real-world locations. 

There is a dearth, however, of mesoscale models that occupy the continuum between micro- and macroscale 

endmembers. Few models or model frameworks of coastal barrier environments are designed to simulate over years to decades 

and hundreds to thousands of meters and with meter-scale spatial resolution. Notable exceptions include DUBEVEG (Keijsers 80 

et al., 2016) and the Coastal Dune Model (Durán Vinent & Moore, 2015), which simulate decadal ecologic and geomorphic 

evolution of beach and dune environments, and ISLAND (Rastetter, 1991) and the model of Robson et al. (2024), which model 

decadal vegetation-habitat interactions across a barrier; however, these models lack full representation of the entire barrier 

system and/or key processes (e.g., overwash) needed for holistic assessments and relevant mesoscale projections of barrier 

evolution. The polarity of spatiotemporal scales among existing coastal barrier models likely exists because of contrasting 85 

goals, assumptions, and modeling techniques of micro- and macroscale models (Murray, 2003); the sheer number of processes 

that could be important for driving coastal change (van Maanen et al., 2016); a lack of decadal observational data needed to 

develop mesoscale parameterizations and evaluate mesoscale models (French et al., 2016; Hoagland et al., 2023); and nascent 

theory on model up-scaling and down-scaling, with up-scaling approaches (i.e., using microscale models in meso- or 

macroscale applications) particularly limited by high computational costs and the potential for imperfections in reductionist 90 

microscale parameterizations compounding over much larger scales, thereby preventing reliable quantitative results (Murray, 

2007; French et al., 2016). However, coastal management practices typically consider timescales on the order of several 

decades into the future, stemming largely from the well-established climate and sea-level rise horizons of 2050 and 2100 CE. 

Additionally, continuous, spatially explicit coverage of an area of interest in both the cross-shore and alongshore dimensions, 

as well as weekly to annual (temporal) and meter to decameter (spatial) resolutions, are needed to inform comprehensive 95 

management scenarios (e.g., Martin et al., 2023). As such, barrier models operating at mesoscales are perhaps most promising 

for addressing the needs of strategic coastal planning and decision-making (French et al., 2016; van Maanen et al., 2016; 

Woodroffe and Murray-Wallace, 2012). 

Incorporation of ecological dynamics and their feedbacks with geomorphic processes is also underrepresented in 

models of coastal barrier evolution (Hoagland et al., 2023; Piercy et al., 2023). Bidirectional physical-ecological feedbacks 100 
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within coastal barrier environments are especially relevant at mesoscales, where vital ecogeomorphic behaviors tend to emerge. 

At much smaller scales (i.e., years and 101 meters, or smaller), spatiotemporal change in the size, location, or type of 

herbaceous and woody vegetation found in coastal barrier environments tends to be prohibitively small for generating dynamic 

ecogeomorphic interactions and feedbacks; at much larger spatiotemporal scales (i.e., centuries or millennia and 101 105 

kilometers, or larger), the influence of vegetation on geomorphic processes tends to become increasingly difficult to recognize 

(Larsen et al., 2021). It is well documented that ecogeomorphic interactions and feedbacks are fundamental to coastal barrier 

systems, from the stimulation of dune-growing grasses in response to sand deposition (e.g., Zarnetske et al., 2012) to woody 

shrubs obstructing overwash flow (Reeves et al., 2022; Zinnert et al., 2019), yet these interactions are often neglected in barrier 

models. Modeling approaches that implicitly incorporate the effects of vegetation through static parameterizations, such as 110 

landcover roughness coefficients (e.g., Passeri et al., 2018), are typically not appropriate for addressing questions related to 

meso- or macroscale evolution where the configuration of vegetation is expected to change across space and time. However, 

some models of barrier systems have begun to include physical-biological feedbacks by explicitly simulating the 

spatiotemporal variation of vegetation communities across coastal barrier landscapes and their couplings with physical 

processes (e.g., ISLAND, Rastetter, 1991; Barrier3D, Reeves et al., 2022; DUBEVEG, Keijsers et al., 2016; Coastal Dune 115 

Model, Durán Vinent & Moore, 2015; GEOMBEST++Seagrass, Reeves et al., 2020). Given the sensitivity of coastal 

ecosystems to changes in climatic forcings and potential ecological transformations arising from global climate change (e.g., 

Goldstein et al., 2018; Jackson et al., 2019; Zinnert et al., 2016; Lucas and Carter, 2010), ecogeomorphic interactions are likely 

to play an increasingly prominent role over the next century. Including dynamic ecogeomorphic couplings within coastal 

barrier models therefore improves the performance of mesoscale projections and confidence in their findings. 120 

Most barrier-evolution models provide only deterministic projections, despite often considerable uncertainty in 

projections of macroscale drivers of coastal change (e.g., sea-level rise, storminess, atmospheric temperature) and the inherent 

randomness of natural phenomena (e.g., storm timing). Significant uncertainties also arise from future human activities and 

decision-making (e.g., McNamara and Lazarus, 2018), but coupled human–natural considerations are beyond the present scope 

of this model. While deterministic models inherit the uncertainties of model input forcings, model approaches that account for 125 

the probabilistic nature of the drivers of barrier evolution (e.g., Lentz et al., 2016; Bamunawala et al., 2021; Wainwright et al., 

2015) can potentially provide a more holistic assessment of future change to better inform management activities (e.g., van 

der Lugt, 2019). 

Here we present the Mesoscale Explicit Ecogeomorphic Barrier model (MEEB), which simulates the spatially explicit 

ecogeomorphic change of undeveloped barrier systems over several decades and kilometers. MEEB tackles the separation of 130 

scales among pre-existing barrier models by explicitly yet efficiently simulating aeolian, marine, shoreline, and vegetation 

components of a coastal barrier segment. Additionally, the model incorporates uncertainties related to future drivers and the 

inherent stochasticity of natural processes to produce probabilistic projections of future change across space and time. The 

goal of MEEB is to balance management needs for spatially explicit, quantitative predictions with mesoscale (multi-decadal 

and multi-kilometer) projections and related uncertainties while accounting for real feedbacks between ecosystems, 135 
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geomorphology, and hydrodynamic processes. To accomplish this, we use a hybrid model architecture that incorporates certain 

model parameterizations of higher mechanistic complexity, only as far as to produce mesoscale behaviors anticipated to be 

important, with more simplified, larger-scale parameterizations that most reliably capture the collective effects of many 

processes happening at much smaller scales (Thornhilll et al., 2015; French et al., 2016; Murray, 2007). As an important part 140 

of our hybrid approach, we also explicitly and robustly test and calibrate the relatively simple model parametrizations with 

observational data. MEEB is not suitable for predicting subtle shifts in elevation or vegetation, nor for explaining the 

reconfiguration of a landscape or its behaviors. Rather, MEEB is designed to answer questions of moderate complexity 

regarding when, where, and how ecogeomorphic change is likely to occur, with correspondingly moderate levels of both 

predictive (quantitative) and explanatory (qualitative) power. In the sections that follow, we provide a description of the model 145 

processes and parameterizations; detail data integration and calibration procedures; and assess and discuss model performance, 

parameter sensitivities, and appropriate use.  

2 MEEB 

The Mesoscale Explicit Ecogeomorphic Barrier model (MEEB; Reeves, 2025a) resolves cross-shore and alongshore 

variations in topography and ecology to simulate the ecogeomorphic evolution of an undeveloped barrier or barrier segment 150 

(Fig. 1). MEEB operates with a planform grid resolution on the order of meters and 0.02-y (7.3-d) timesteps, and can run for 

years to decades over 100–101 km of barrier shoreline. We use a grid resolution of 1 m as herbaceous species in barrier 

ecosystems typically grow in clusters on the order of 1 m2 in size, though the model produces qualitatively similar output with 

resolutions up to 2 m (resolutions outside this range have not been tested). Spatial resolution of the model is dictated in large 

part by the typical size of the vegetation growth pattern, as the vegetation imposes a characteristic length scale on the resultant 155 

aeolian morphology (Nield & Baas, 2008a). Therefore, we do not suggest adopting a grid resolution outside the 1 to 2 m range. 

The model is written in Python and can be run on PC, Macintosh, and Linux operating systems. The typical runtime for a 10-

year simulation of a 1-km-long barrier segment with 1-m grid resolution is approximately 40 to 80 min, or approximately 10 

to 20 min with a grid resolution of 2 m. Memory usage depends strongly on domain size, grid resolution, and the frequency 

and type of saved model output. An individual deterministic simulation in MEEB is run on an individual core, while our 160 

probabilistic framework runs batches of deterministic simulations in parallel across multiple cores (as many as allocated); a 

high-performance computing cluster is recommended for probabilistic simulations spanning >10 km of shoreline. The relative 

balance between spatiotemporal resolution, spatiotemporal extent, and efficiency makes the model ideal for studying 

mesoscale barrier evolution. 

The model tracks changes in elevation and vegetation density and type through space and time across separate 165 

elevation and vegetation domains. Ecogeomorphic evolution in MEEB is limited to areas above the mean high water (MHW) 

elevation; intertidal and subaqueous environments are therefore not explicitly modeled. The MHW elevation changes each 

model iteration according to the RSLR rate, which is constant through time (given that RSLR projections up to the year 2050  
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Figure 1: MEEB model configuration. (a) Example model elevation domain, annotated with the foredune crestline (red) and ocean 
shoreline (purple), and (b) corresponding vegetation density domain. (c) Schematic diagram of sand slab transport in the Aeolian 
component of MEEB, wherein slabs are stochastically entrained, transported downwind, and either deposited or transported 
further; each of these processes is affected by vegetation, shadow zones, and the water table. (d) Probabilities of slab erosion and 
deposition as a function of vegetation density. (e) Annual vegetation growth for burial-tolerant and burial-intolerant species types 180 
as a function of the annual net sedimentation balance. 
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can be closely approximated as linear). A groundwater lens is modeled as a function of the subaerial topography and may 

intersect depressions in the land surface as ponds. Due to complexities in modeling inlet dynamics, MEEB is not capable of 

simulating portions of a barrier chain with or directly influenced by active tidal inlets or shoals from recently abandoned inlets. 

Additionally, MEEB assumes the barrier system is composed entirely of unconsolidated sand. MEEB is initialized with  185 

elevation, vegetation cover, and high-water event climatology data, which we discuss in Sect. 3 below. All model parameters 

and dependent variables, along with their units and values, are listed in Appendix A. 

2.1 Model Framework and Time-stepping 

Four components comprise the MEEB framework: Aeolian, Marine, Shoreline, and Vegetation. These four 

components operate in succession within a model timestep but act at different timescales, so not all components are involved 190 

in each model iteration (Fig. 2). A model year begins with the Aeolian component, which occurs every model timestep (∆𝑡௔ = 

0.02 y or ~7.3 d). The Aeolian component determines the entrainment, transport, and deposition of sand across the barrier 

surface resulting from wind and dependent on the vegetation cover and topography. This Aeolian process repeats itself twice, 

updating the elevation domain each iteration, and is then followed by the Marine component, which occurs every second model 

timestep (∆𝑡௠ = 0.04 y or ~14.6 d) to correspond to a spring–neap tidal cycle and because storm systems can potentially last 195 

more than 7 days. The Marine component determines how sediment is transported across the beach, dune, and barrier interior 

from swash, collision, and overwash processes during a high-water event (HWE), defined as an event in which the total water 

level (TWL; the sum of tide, surge, and wave runup) exceeds MHW. These HWE-induced processes are influenced by the 

topography, vegetation cover, and HWE water elevation and duration. In addition to updating the elevation domain, the Marine 

component also updates the vegetation domain by converting previously vegetated cells to bare wherever inundated. The 200 

Shoreline component, which also occurs every second model timestep (∆𝑡௦ = 0.04 y or ~14.6 d), directly follows the Marine 

component. The Shoreline component determines the position of the MHW ocean shoreline according to RSLR and cross-

shore and alongshore sediment transport, and adjusts the shoreline by adding (accretion) or removing (erosion) elevation. This 

sequence of two Aeolian iterations, one Marine iteration, and one Shoreline iteration repeats for a total of 25 times in the model 

year. Thereafter, the full model year is completed with execution of the Vegetation component, which occurs every 50 model 205 

timesteps (∆𝑡௩ = 1.0 y or 365 d). The Vegetation component determines the expansion of plants into previously bare cells and 

changes in vegetation density (growth or decay), the latter of which is dependent upon the net erosion/deposition over the 

course of the preceding year. The cycle then restarts with the updated elevation and vegetation domains for the next model 

year (Fig. 2). 

2.2 Aeolian 210 

MEEB uses a cellular model of aeolian morphologic development in which slabs of sand are probabilistically 

entrained, transported, and deposited based on a set of rules that capture the effects of real-world aeolian processes. Our 

Aeolian component stems from the aeolian side of the DUBEVEG model (Dune, BEach, and VEGetation; Keijsers et al.,  
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Figure 2: Flow diagram and schematic illustrations of model process domains across one model year in MEEB. 
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2016), which itself builds upon earlier cellular slab-based dune models (Baas, 2002; Baas & Nield, 2007; Werner, 1995). The 

Aeolian component in MEEB updates the topography 50 times a year (time step ∆𝑡௔ = 0.02 y or ~7.3 d). 225 

During each Aeolian iteration, every cell in the domain is polled once for entrainment based on a probability of 

erosion (𝑃௘) ranging from zero to one, as discussed below. If entrainment in a cell is probabilistically determined to occur, a 

slab of sand with a fixed height (𝐻௦) is removed from the entrainment site and transported downwind according to the saltation  

length (𝐿௦). A probability of deposition (𝑃ௗ) at the receiving cell determines whether the slab will deposit or be transported 

downwind again (Fig. 1c). As a proxy for weekly time-varying wind speeds, we stochastically vary 𝐿௦ each Aeolian iteration 230 

by drawing from a simple uniform distribution centered around a mean (here, 5 ± 2 m). As a proxy for the longer-term (annual- 

or decadal-scale) average strength of the wind climate, the maximum potential aeolian transport volume flux (𝑞௔,௠௔௫) can be 

calculated following Nield and Baas (2008a) as: 

 

𝑞௔,௠௔௫ = 𝐻௦𝐿௦

𝑃௘

𝑃ௗ

1

∆𝑡௔

 . (1) 235 

 

Changing the values 𝑃௘ and 𝑃ௗ , as well as 𝐻௦ and 𝐿௦, therefore captures the effects of stronger or weaker wind climates. Wind 

direction – onshore, alongshore down, offshore, or alongshore up across the gridded domain – is determined by weighted 

random choice for each Aeolian iteration, with the probability of each of the 4 directions (𝑃ௐ஽) summing to 1. The collective 

effects of oblique winds are roughly captured with asymmetric multidirectional transport directions (cf. Nield & Baas, 2008a). 240 

At the end of each Aeolian iteration, angles of repose for bare and vegetated cells are maintained by avalanching slabs in the 

direction of steepest descent. The Aeolian component uses open boundary conditions wherein slabs of sediment can be 

transported out of the lateral edges of the model domain (sediment can be imported into the domain within the Marine 

component of the model, as described below). 

Probabilities of erosion and deposition vary across the landscape as function of ecological and physical factors. Wind 245 

shadow zones, wherein 𝑃௘ = 0 and 𝑃ௗ = 1, extend from the lee side of topographic peaks as determined by the shadow angle 

𝜂 (Fig. 1c). Where elevation is below MHW or the elevation of a groundwater lens, 𝑃௘ = 0 and 𝑃ௗ = 1. Assuming that the 

groundwater surface typically resembles a subdued reflection of the topography, the groundwater surface in MEEB is 

determined as a proportion of the topographic surface height above MHW (Fig. 1c; Galiforni Silva et al., 2018) that has been 

smoothed by a Gaussian filter (with a standard deviation for the Gaussian kernel, 𝜎, of 12 m). Groundwater can intersect 250 

topographic depressions as surface ponds (MEEB does not flatten the water surface in ponds given that 𝑃௘ = 0 and 𝑃ௗ = 1 

regardless). Additionally, the presence of vegetation cover reduces the probability that a slab will be eroded and increases the 

probability that a slab will be deposited in proportion to the vegetation density (𝜌) of each cell (Fig. 1d). 𝑃௘  decreases linearly 

from its maximum (𝑃௘,଴) when 𝜌 = 0 to 0 when 𝜌 = 𝜌௤଴ , the vegetation density at which entrainment of sand becomes 

effectively negligible. Where vegetation is present in cells between the entrainment site and receiving site along the transport 255 

path, entrained slabs are polled for deposition at each intermediary vegetated cell if 𝜌 is greater than a threshold value 𝜌௩  
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(Teixeira et al., 2023). To account for the effects of vegetated cells on the local wind field of neighboring unvegetated cells, 

the Aeolian component of MEEB uses a copy of the current vegetation density domain that has been lightly smoothed with a 

Gaussian filter (𝜎 = 3 m). 

2.3 Marine 

High-water events (HWEs) occur intermittently in MEEB, causing changes to the subaerial morphology and ecology. 265 

We define HWEs as all events in which the total water level exceeds MHW. As discussed below, MEEB uses separate – but 

coupled – model formulations seaward and landward of the dynamic foredune crestline (described in Sect. 2.3.1 below) to 

simulate ecogeomorphic change from HWEs. The model can run hindcast simulations using time series of observed HWEs as 

input or run forecast simulations with a stochastic HWE environment developed from the time series of observed HWEs. Our 

methodology for the observational HWE time series and stochastic HWE environment is described in Sect. 3.3, below. 270 

Every 25-1 y (∆𝑡௠ = 0.04 y or ~14.6 d), MEEB determines whether a HWE occurs depending on the observed time 

series (for hindcasts) or a probability of occurrence dependent on the time of year (for forecasts). If no HWE is determined to 

occur for a Marine iteration, no marine processes take place (i.e., the landscape remains unaltered) and MEEB proceeds directly 

to the Shoreline component of the model. If a HWE is determined to occur for a Marine iteration, the HWE is described by a 

total water level (TWL), which can vary alongshore according to the local beach slope, and a duration (in hours). In the 275 

stochastic HWE environment, the conditions of each event are chosen randomly from a list of synthetic HWEs; the probability 

of occurrence and average intensity (TWL and duration) of the list of synthetic HWEs, however, remain constant over the 

course of each simulation. For simplicity, and because our identification of HWEs tend to lump multiple tidal cycles of an 

event together, MEEB allows a maximum of one HWE to occur during each 0.04-y (14.6-d) interval. 

2.3.1 Dune crest location 280 

MEEB uses separate formulations for HWE-driven morphologic change landward and seaward of the foredune crest, 

therefore requiring the alongshore-continuous location of the foredune ridge. MEEB identifies the cross-shore locations of the 

foredune crest (𝑥஽) for every d𝑦 alongshore – the foredune crestline – using a multi-step process that considers the general 

trend of the foredune crest location to identify gaps in the crestline where the dune would be most likely to (re)form. First, the 

algorithm finds the cross-shore locations of the elevation maximum for an elevation domain that has been smoothed in the 285 

alongshore dimension using a large-window (150-m) moving average. This maximum elevation crestline is smoothed again 

with a Savitzky-Golay filter (window length = 75 m), resulting in a demarcation that gives the broad, general trend of where 

the foredune crest is or would tend to be (in the case of gaps in the foredune) located within the barrier domain. Next, using 

the original non-smoothed elevation domain, the algorithm finds the cross-shore location of the dune-crest peaks within a 25-

m buffer of this broad crest trendline. Dune-crest peaks are selected as the most-seaward peak of a profile with a minimum 290 

backshore drop of 0.6 m (Itzkin et al., 2020; Mull and Ruggiero, 2014). If no peak is found within a profile, the algorithm 

selects the location from the nearest neighboring peak and the location alongshore is considered a gap in the foredune crestline. 
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Lastly, a Savitzky-Golay filter is applied again with a smaller window length (11 m) to produce the continuous foredune 

crestline. 

2.3.2 Ocean shoreline to foredune crest 310 

MEEB uses an equation for cross-shore net sediment transport between the surf-swash boundary and the foredune 

crest to simulate HWE processes seaward of the foredune crest. Based on Duran & Moore (2015) and, by extension, Larson 

et al. (2004a), the deposited volume of sediment at cross-shore location 𝑥, 𝑞௫, each iteration is equal to 

 

𝑞௫ = ൫𝛽௘௤ − 𝛽௫൯(𝑍௧௪௟ − 𝑍௫)ଶ𝑇௘
ିଵ, (2) 315 

 

with 𝛽௘௤  the representative equilibrium slope of the beach, 𝛽௫  the local slope at the cross-shore location 𝑥, 𝑍௧௪௟  the TWL 

elevation, 𝑍௫  the elevation at the cross-shore location 𝑥 , and 𝑇௘  a calibration coefficient for the erosive timescale (see 

Appendix A for a list of model parameters and dependent variables, their units, and values used herein). Sediment transport 

for each HWE iteration is calculated from the ocean shoreline up to either the first cross-shore location at which 𝑍௫ exceeds 320 

𝑍௧௪௟ , beyond which 𝑞௫ = 0, or the crestline, beyond which sediment flux follows the overwash flow routing scheme described 

in Sect. 2.3.3. Transport depends on deviation from the equilibrium beach slope, as these local interactions nudge the beach 

volume towards a linear equilibrium configuration over time. As Eq. (2) calculates only cross-shore sediment fluxes, sediment 

flux in the alongshore dimension is not incorporated. Change in elevation (∆𝑍௫/∆𝑡) is calculated as the divergence of 𝑞௫  in 

the cross-shore dimension: 325 

 

∆𝑍௫

∆𝑡
=

−∆𝑞௫

∆𝑥
 . (3) 

2.3.3 Foredune crest to back-barrier shoreline 

To simulate HWE processes landward of the foredune crest, MEEB utilizes a version of the overwash flow routing 

formulation from Barrier3D (Reeves et al., 2021). Water introduced at overtopped dune cells is transported landward cell-by-330 

cell, carrying sediment with it. After water and sediment have been routed across the barrier interior, the elevation of the barrier 

interior is updated according to the sediment flux into and out of each cell. This process occurs iteratively with hourly time 

steps for the duration of the HWE. 

 Water discharge is introduced at each overtopped dune crest cell (𝑄ௗ௖) according to 

 335 

𝑄ௗ௖ = 𝑈(𝑍௧௪௟ − 𝑍஽), (4) 
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with 𝑍஽ the dune-crest elevation, 𝑔 gravitational acceleration, and U the velocity of the water overtopping the dune crest based 

on simple ballistics theory for the wave bore (Larson et al., 2004b): 

 

𝑈 = ඥ2𝑔(𝑍௧௪௟ − 𝑍஽) . (5) 

 345 

where 𝑔 = 9.81 m s-2 is gravitational acceleration. Water is distributed to the three neighboring cells in the next landward row 

of the domain in proportion to the local slope. If any of the slopes to the 3 landward neighbors are downhill, the neighbor with 

the steepest downhill slope will receive the most water: 

 

𝑄௜ =
(𝑄଴ − 𝑅ௗ)𝑆௜

௡

∑ 𝑆௜
௡ , (6) 350 

 

where 𝑄଴ is the discharge at the distributing cell, 𝑄௜  is the discharge and 𝑆௜ the directional slope from the distributing cell to 

the landward neighbor 𝑖, 𝑅ௗ is a parameter to represent infiltration and drag, and 𝑛 is a constant equal to 0.5 (derived from the 

equation for motion of uniform flow; Murray and Paola, 1997). If all of the slopes to the three landward neighbors are uphill, 

the neighbor with the least steep uphill slope receives the most discharge, and the total discharge from 𝑄଴ to 𝑄௜  is reduced 355 

linearly with increasing uphill steepness to the extent of the uphill slope limit (𝑆ொ௟௜௠): 

 

𝑄௜ = ቐ

(𝑄଴ − 𝑅ௗ)|𝑆௜|ି௡

∑|𝑆௜|
ି௡ ቆ1 −

|𝑆௜|

𝑆ொ௟௜௠
ቇ , 𝑆௜ < 𝑆ொ௟௜௠

0, 𝑆௜ ≥ 𝑆ொ௟௜௠

 . (7) 

 

Neighboring cells with adverse slopes steeper than 𝑆ொ௟௜௠ will therefore receive no discharge. 360 

 The depositional volume of sediment transported each iteration (i.e., the volumetric sediment flux) from the 

distributing cell to landward neighbor 𝑖, 𝑞௦௜, depends on the discharge and local slope (i.e., the stream power index, 𝑄𝑆; Murray 

and Paola, 1997): 

 

𝑞௦௜ = 𝐾௢௪[𝑄௜(𝑆௜ + 𝐶௦)]௠ , (8) 365 

 

where 𝐾௢௪  is a dimensional sediment-transport coefficient, 𝐶௦ is a non-dimensional constant roughly representing the effect 

of flow momentum (on the order of several times the average slope of the barrier interior), and 𝑚 is a constant greater than or 

equal to 1. In contrast to the formulation in Barrier3D, MEEB allows upslope sediment transport and does not distinguish 

between different overwash regimes (i.e., run-up versus inundation) when determining parameter values and transport 370 

equations. 
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 Where overwash reaches the back-barrier shoreline, the sediment load into the subaqueous back-barrier environment 

is distributed in an exponentially decaying fashion, with the landward neighbor with the most discharge receiving the most 

sediment, which produces steeply dipping delta-like foreset deposits typically observed when overwash flows into standing 380 

bodies of water (Schwartz, 1982; Shaw et al., 2015): 

 

𝑞௦௜ =
(𝑞௦଴𝐶௕௕)𝑄௜

∑ 𝑄௜

, (9) 

 

with 𝑞௦଴ the flux of sediment transported into the distributing cell, and 𝐶௕௕ the decay coefficient. MEEB assumes that the 385 

bottom of the back-barrier bay is flat and that depositional and erosional processes can maintain a constant equilibrium back-

barrier depth (𝐷௕௕) relative to MHW over the course of the simulation (Marani et al., 2007). This assumption excludes the 

potential for back-barrier depth to change over space and time, for example via complex tidal bathymetry or the expansion of 

subtidal and/or intertidal landforms, but these dynamics are outside the present scope of the model. 

2.3.4 Temporal discretization 390 

To avoid instabilities, we compute each hourly storm iteration with a finer substep, smaller than some upper bound, 

for both the landward (𝑡௦_௟) and seaward (𝑡௦_௦) formulations of the Marine component. Our method involves simply dividing 

the resulting elevation change at each substep by the number of substeps within the hour. Smaller substeps maximize model 

skill (up to a point), while larger substeps (still small enough to avoid instabilities) maximize model speed. The size of substeps 

chosen for simulations herein (𝑡௦_௟ = 0.02 h and 𝑡௦_௦ = 0.04 h) tend more towards model skill than efficiency, though significant 395 

improvements in model speed are likely possible with larger substeps while sacrificing comparatively little model skill. 

2.3.5 Coupling Marine formulations across the foredune crest boundary 

Although MEEB uses separate formulations for HWE-driven morphologic change landward and seaward of the foredune 

crest, the formulations are coupled to produce a smooth transition across this boundary. This coupling is accomplished by 

sequentially exchanging sediment fluxes and elevations at the foredune crest boundary each hourly timestep as the HWE 400 

progresses: 

1) The current location of the foredune crestline is determined (Sect. 2.2.1). 

2) Morphologic change landward of the foredune crest occurs (Sect. 2.2.3). 

3) Morphologic change seaward of the foredune crest occurs (Sect. 2.2.2). 

4) Sediment fluxes out of and into the dune crest cells (from steps 2 and 3, respectively) determine the change in 405 

elevation at the dune crest boundary. 

5) The next hour of the HWE event begins with the updated elevation domain. 
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2.4 Shoreline 

In MEEB, change in the cross-shore position of the ocean shoreline (∆𝑥௦) is the sum of cross-shore (∆𝑥௦,௖) and 

alongshore (∆𝑥௦,௔) shoreline change components: 

 415 

∆𝑥௦

∆𝑡௦

=
∆𝑥௦,௖

∆𝑡௦

+
∆𝑥௦,௔

∆𝑡௦

 . (10) 

 

Ocean shoreline change is applied following every Marine iteration (∆𝑡௦ = 0.04 y or ~14.6 d) to sections of the shoreline with 

a predetermined alongshore length ∆𝑦௔ (typically 25 m), and the shoreline position within each alongshore section is held 

uniform (Fig. 1a). The initial ocean shoreline position is taken as the intersection of the initial MHW with initial topography 420 

averaged in increments of ∆𝑦௔ alongshore. To implement shoreline erosion (landward change in 𝑥௦) topographically, previous 

beach cells are set to subaqueous elevations that follow a linear shoreface drawn between the new shoreline position at MHW 

and the shoreface toe, as described further in Sect. 2.4.1. MEEB implements shoreline accretion (seaward change) by setting 

new beach cells to an elevation equal to the average elevation of the previous five most seaward beach cells plus the RSLR for 

that Shoreline iteration. 425 

2.4.1 Cross-shore shoreline change 

MEEB follows the equations from the model of Lorenzo-Trueba and Ashton (2014) governing the cross-shore 

location of the ocean shoreline (𝑥௦) and the shoreface toe (𝑥௧), which together determine the slope of the active shoreface 

(𝑆௦௙): 

 430 

𝑆௦௙ =
𝐷௦௙

𝑥௦ − 𝑥௧

, (11) 

 

where 𝐷௦௙ is the shoreface depth. The shoreface slope is allowed to deviate from its equilibrium slope (𝑆௦௙,௘௤) in response to 

perturbations. When the shoreface steepens past its equilibrium configuration (e.g., as a result of RSLR; Bruun, 1962), 

shoreface fluxes are directed offshore; if the shoreface shallows past its equilibrium (which can occur when overwash and 435 

aeolian processes remove sediment from the upper shoreface), shoreface fluxes are directed onshore. Shoreface flux (𝑞௦௙) 

therefore depends on the deviations of the shoreface slope from its equilibrium: 

 

𝑞௦௙ = 𝑘௦௙൫𝑆௦௙ − 𝑆௦௙,௘௤൯, (12) 

 440 
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with 𝑘௦௙ a dimensional shoreface flux rate coefficient, wherein a larger (smaller) 𝑘௦௙ results in faster (slower) adjustment of 

the shoreline back towards its equilibrium configuration. 

 Following Lorenzo-Trueba and Ashton (2014), the cross-shore locations of the ocean shoreline and shoreface toe 

evolve as a function of RSLR, the cumulative volume of sediment added to or removed from the upper shoreface, and the net 445 

sediment exchange between the upper and lower shoreface: 

 

∆𝑥௦,௖ =
2(𝑞௢௪ + 𝑞௕ௗ)

𝐷௦௙

−
4𝑞௦௙

𝐷௦௙
(13) 

 

∆𝑥௧ =
4𝑞௦௙

𝐷௦௙

+
2(𝑅𝑆𝐿𝑅)

𝑆௦௙

, (14) 450 

 

where 𝑞௢௪  and 𝑞௕ௗ are the cumulative volumes of sediment per unit of alongshore length imported to or exported from the 

barrier interior as overwash (landward of the foredune crest) and beach and dune system (seaward of the foredune crest), 

respectively, during HWEs as determined by comparing pre- and post-event topography. The cross-shore locations of 𝑥௦,௖ and 

𝑥௧ will therefore change at relatively similar (dissimilar) rates with a larger (smaller) shoreface flux coefficient 𝑘௦௙. Unlike 455 

Lorenzo-Trueba and Ashton (2014), we do not extend the effective shoreface above MHW to include the subaerial barrier 

height in our formulations for the shoreface mass balance given that MEEB explicitly simulates subaerial morphologic 

evolution. 

 MEEB allows the user to optionally estimate 𝐷௦௙ , 𝑆௦௙,௘௤ , and 𝑘௦௙  as a function of wave climate and sediment 

characteristics following the method of Nienhuis and Lorenzo-Trueba (2019a). From Hallermeier (1981), 460 

 

𝐷௦௙ = 0.018𝐻௦𝑇ඨ
𝑔

𝑅𝐷ହ଴

, (15) 

where 𝐻௦ and 𝑇 are the average deepwater wave height and period, 𝑅 the submerged specific gravity of sediment, and 𝐷ହ଴ the 

median sediment grain size. The equilibrium shoreface slope can be estimated as 

 465 

𝑆௦௙,௘௤ =
3𝑤௦

4ඥ𝑔𝐷௦௙

ቆ5 +
3𝑇ଶ𝑔

4𝜋ଶ𝐷௦௙
ቇ , (16) 

 

 

where 𝑤௦ is the settling velocity according to Ferguson and Church (2004): 

 470 
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𝑤௦ =
𝑅𝑔𝐷ହ଴

ଶ

18 ∙ 10ି଺ + ට
3
4

𝑅𝑔𝐷ହ଴
ଷ

 . (17) 

 

The shoreface response rate can be estimated as 

 475 

𝑘௦௙ = (3600 ∙ 24 ∙ 365) ∙
𝑒௦𝑐௦𝑔

ଵଵ
ସ 𝐻௦

ହ𝑇
ହ
ଶ

960𝑅𝜋
଻
ଶ𝑤௦

ଶ

∙

1

ቀ
11
4 ቁ 𝑧଴

ଵଵ
ସ

−
1

ቀ
11
4 ቁ 𝐷்

ଵଵ
ସ

𝐷் − 𝑧଴

, (18)
 

 

with 𝑧଴ the breaking wave depth (𝐻௦/0.4), 𝑒௦ the suspended-sediment transport efficiency factor, and 𝑐௦ the friction factor 

(Nienhuis and Lorenzo-Trueba, 2019a). 

2.4.2 Alongshore shoreline change 480 

MEEB uses a nonlinear, wave-climate-averaged alongshore diffusion equation for deepwater wave conditions and 

non-complex coastlines from Nienhuis and Lorenzo-Trueba (2019a), based upon the formulations of Ashton and Murray 

(2006). Shoreline change from alongshore diffusion (∆𝑥௦,௔) is computed using an implicit Crank-Nicholson scheme as: 

 

𝑥௦,௔௝
௧ାଵ − 𝑥௦,௔௝

௧

∆𝑡௦

=
𝐷௝

2

ቀ𝑥௦௝ାଵ
௧ାଵ − 2𝑥௦௝

௧ାଵ +  𝑥௦௝ିଵ
௧ାଵቁ + ቀ𝑥௦௝ାଵ

௧ − 2𝑥௦௝
௧ + 𝑥௦௝ିଵ

௧ ቁ

∆𝑦௔
ଶ , (19) 485 

 

where 𝑡  and 𝑗  denote relative time and location of each alongshore section, respectively. 𝐷  is the shoreline diffusivity 

computed as a function of wave climate: 

 

𝐷(𝜃) =
𝑘ௗ

𝐷௦௙

𝐻௦

ଵଶ
ହ 𝑇

ଵ
ହ[𝐸(𝜙଴) ∙ Ψ(𝜙଴ − 𝜃)], (20) 490 

 

where 𝜃 is the angle of the coastline, which varies in space; 𝜙଴ is the offshore wave angle; and 𝑘ௗ  is an alongshore sediment–

transport constant set equal to ~0.06 m3/5 s-6/5 from Nienhuis et al. (2015). Ψ sets the dependence of the diffusivity to the wave 

angle, equal to: 

 495 

Ψ(𝜙଴ − 𝜃) = cos
ଵ
ହ(𝜙଴ − 𝜃) ൤cosଶ(𝜙଴ − 𝜃) −

6

5
sinଶ(𝜙଴ − 𝜃)൨ , (21) 
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which, averaging over a long-term interannual wave climate, can be convolved with the normalized angular distribution of 

wave energy 𝐸(𝜙଴), 505 

 

𝐸(𝜙଴) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑎 ∙ ℎ, −

1

2
𝜋 < 𝜙଴ < −

1

4
𝜋

𝑎(1 − ℎ), −
1

4
𝜋 < 𝜙଴ < 0

(1 − 𝑎)(1 − ℎ), 0 < 𝜙଴ <
1

4
𝜋

(1 − 𝑎)ℎ,
1

4
𝜋 < 𝜙଴ <

1

2
𝜋

, (22) 

 

where 𝑎 is the proportion of waves approaching from the left when looking offshore relative to the regional shoreline trend 

(i.e., wave climate asymmetry), and ℎ is the proportion of waves with an approach angle greater than 45° (i.e., proportion of 510 

high-angle waves), resulting in the long-term, averaged ocean shoreline diffusivity for each section 𝑗 alongshore. MEEB uses 

single representative values of 𝑎 and ℎ for the entire shoreline, which, along with 𝐻௦ and 𝑇, are derived from hindcast offshore 

wave conditions (described in Sect. 3.4). The nonlinear dependence of shoreline diffusion on wave angle mostly affects the 

overall magnitude of shoreline diffusivity, with a secondary dependence on shoreline angle 𝜃, as demonstrated in calculations 

of the wave-climate averaged shoreline diffusivity for NCB (Fig. 4c).  515 

For simplicity, MEEB assumes zero-diffusivity boundary conditions, which in effect holds shoreline positions at the 

edges of the model domain in place within the alongshore component of shoreline change, ∆𝑥௦,௔ (the shoreline positions at the 

edges of the domain, however, can still change within the cross-shore component of shoreline change, ∆𝑥௦,௖).Therefore, the 

alongshore diffusion will tend to smooth the ocean shoreline towards a linear shape between the two endpoints of the domain 

over time, while alongshore variability in cross-shore sediment transport (e.g., overwash) counteracts this tendency by creating 520 

or sustaining perturbations in shoreline shape over time and can also move the endpoints in the cross-shore direction. 

2.5 Vegetation 

Vegetation dynamics in MEEB follow the vegetation module in DUBEVEG (Keijsers et al., 2016), with the 

vegetation updating once every year (∆𝑡௩ = 1 y or 365 d). Each cell in the model domain is described by a vegetation density 

𝜌 ranging from 0 (bare) to 1 (fully vegetated); this measure of density is taken as a proxy for the “effectiveness” of the 525 

vegetation in its ecogeomorphic interactions (Baas, 2002). In the model, multiple species types with varying ecogeomorphic 

behaviors can be used concurrently across the domain and may occupy the same cell at any given time. We determine initial 

vegetation density from remotely sensed imagery (described in Sect. 3.2.2, below). 

The establishment of vegetation into previously bare cells occurs via two mechanisms, either dispersal of seeds and 

rhizome fragments randomly across the domain or via lateral expansion from neighboring vegetated cells. During each annual 530 

iteration, vegetation establishment in previously bare cells is stochastically determined based on the probability of successful 

Deleted: +

Deleted:  

Formatted: Indent: First line:  0.5"

Deleted: will tend 

Deleted: with 

Deleted: any perturbations to the shoreline shape (e.g., from 
overwash) smoothed out

Formatted: English (United States)

Deleted: using classified landcover datasets 



18 
 

germination from seeds or rhizome fragments (𝑃௚௘௥௠ ). For subaqueous cells or cells below a species-specific minimum 

elevation relative to MHW ( 𝑉௭,௠௜௡ ), 𝑃௚௘௥௠ = 0  (MEEB does not simulate the growth and morphodynamics of marsh 540 

vegetation). Lateral expansion, or the establishment of vegetation within previously bare cells that neighbor previously 

vegetated cells (8-cell neighborhood), is stochastically determined based on the probability of lateral expansion (𝑃௟௔௧). 

 Growth of established vegetation is modeled as a function of the depositional balance of each vegetated cell (Fig. 1e), 

capturing a key ecogeomorphic coupling of coastal dune systems. The growth functions vary according to the species type. 

Here, we model a “burial-tolerant” species type representative of typical dune-building grasses (e.g., Ammophila spp., Uniola 545 

paniculata) that are stimulated by moderate rates of net accretion (Fig. 1e). This positive feedback between plant growth and 

deposition can give rise to logistic growth behavior of vegetation density in the model (Nield & Baas, 2008b). We also model 

a “burial-intolerant” species type that is representative of woody vegetation (e.g., Morella spp.), which are most productive in 

the absence of net erosion or accretion and grow more slowly than the burial-tolerant species type (Fig. 1e). Growth functions 

are defined by the x-coordinates of their five vertices (𝑉௫,௔ି௘) as well as the peak growth of the middle vertex (𝑉௬,௖; Fig. 1e). 550 

Negative growth (i.e., decay) can ultimately result in plant mortality. Vegetation mortality also occurs directly following HWEs 

wherever vegetated cells are inundated. These present mortality rules are a broad simplification in the model due to 

complexities in determining vegetation response to overwash disturbances, which depends on species-specific threshold levels 

of exposure to moisture, salinity, sediment deposition/erosion, and wave action; they also do not distinguish between dead and 

buried vegetation, which may allow vegetation in overwashed areas to reestablish more quickly. After an individual plant’s 555 

density 𝜌 reaches 0, representing mortality, no memory of the plant is preserved; this is a particularly suitable assumption for 

herbaceous species types which are easily decomposed and/or carried away by wind or water after death, but less so for woody 

species types that can remain in place and potentially impact barrier ecomorphodynamics years following mortality (Reeves 

et al., 2022). Nevertheless, plant mortality in the model captures the fundamental response of vegetation to important 

environmental stressors. 560 

The presence of vegetation in MEEB influences not only aeolian sediment transport but also overwash sediment 

transport. Following Barrier3D (Reeves et al., 2022), the effective discharge leaving vegetated cells (𝑄௜,௘௙௙ ) is reduced 

according to the species-specific flow reduction coefficient, Λ, and vegetation density 𝜌: 

 

𝑄௜,௘௙௙ = 𝑄௜(1 − Λ𝜌) (23) 565 

 

where 𝑄௜  is the calculated discharge leaving neighboring cell i in the absence of vegetation. As such, discharge through 

vegetated cells is reduced relative to unvegetated cells, with denser vegetation causing more reduction, which in turn tends to 

cause greater net deposition of sediment within the cell. Future work could upgrade the Vegetation component to incorporate 

the effects of seasonality, climate forcing, and more robust representations of environmental filters and plant mortality. 570 
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2.6 Probabilistic framework 

MEEB optionally can be used with a simple probabilistic framework to account for uncertainties related to external 

and intrinsic stochastic dynamics (Fig. 3). External stochasticity can arise from uncertainty in future forcing conditions, such 

as RSLR, storm frequency, or mean storm intensity, and is incorporated by running the model across discrete probability 575 

distributions of external drivers, i.e., simulating across a set of values for a particular external forcing variable, each with a 

specific probability of occurrence that collectively sum to 1. Intrinsic stochasticity within the model simulations arises from 

inherent randomness of natural phenomena – namely, the probabilistic nature of the storm sequence (timing, water level, 

duration) and the Aeolian and Vegetation model formulations – and is incorporated with a Monte Carlo method that runs 

multiple duplicate simulations for each bin of the external forcing probability distribution. Duplicate simulations use the same 580 

exact model inputs, yet differ in their ecogeomorphic evolution because of the internal model stochasticity. The larger the 

number of duplicate simulations (𝑛௉), the more accurately the sampled distribution represents the theoretical distribution; in 

our examples below, 𝑛௉ = 32. Uncertainties of multiple external forcing parameters (e.g., RSLR and storm intensity) can be 

considered together by determining the joint probability of occurrence for scenarios that encompass all possible parameter 

value combinations, akin to the basic Joint Probability Method (JPM) commonly employed in storm and flood impact analyses 585 

(e.g., FEMA, 2016). In the probabilistic framework used herein, RSLR is the only external forcing parameter considered, and 

we utilize a discrete probability distribution for RSLR by the year 2050 CE (Fig. 3a) according to the Intergovernmental Panel 

on Climate Change Shared Socioeconomic Pathway SSP5-8.5 (Fox-Kemper et al., 2021); see Sect. 3.5 for details. 

For each bin of the external forcing probability distribution, the probabilistic framework in MEEB runs a batch of 𝑛௉ 

duplicate simulations and determines the class (in this case, the range of elevation change) for each cell in the domain at every 590 

timestep for all 𝑛௉ simulations (Fig. 3c). These data are then used to form relative frequency distributions of class type across 

space and time for the intrinsic stochastic elements. Next, these distributions are weighted (multiplied) by the probability of 

their external forcing bin. The weighted probability distributions are then summed elementwise to produce a joint external-

intrinsic probability distribution of class type for each cell of the model domain across all timesteps (Fig. 3c). 

In this work, we use the likelihood of elevation change (relative to the simulation start) as an example of an outcome 595 

that can be explored with MEEB. Elevation change is categorized into classes of major deposition, minor deposition, negligible 

change, minor erosion, and major erosion (Fig. 3b). Other outcomes and categorizations can be developed to suit the goals of 

the modeling investigation, such as the presence of vegetation or flooding (simple), or ecosystem state (more complex). 

3 Data integration and calibration 

Data integration and parameter calibration allows the user to explicitly explore the evolution of a particular setting 600 

through time within MEEB. To ensure MEEB best represents a real-world system of interest, thorough data integration and 

calibration specific to each study location is critical. MEEB integrates empirical data to set initial model conditions and 

determine the characteristics of the forcing environment. Furthermore, given the myriad process domains, many of which  
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 605 

Figure 3: Probabilistic model framework. (a) Discrete probability distribution for the rate of RSLR between 2020 and 2050 for 
North Core Banks, NC, USA, under IPCC SSP5-8.5. (b) Classification scheme for net elevation change used in probabilistic 
framework examples. (c). Annotated flowchart of the probabilistic framework in MEEB. 

  



21 
 

employ poorly constrained parameters, comparison of simulated output to observations is used to both evaluate model 610 

performance and, importantly, calibrate process parameter values; similar calibration procedures are typical of microscale 

models. Scripts for calibrating model parameters and comparing simulated results with observations are included with the 

model. Data integration and calibration is, of course, dependent on the availability of data, which varies significantly depending 

upon location and timeframe. Therefore, sources or forms of data different than those described herein can be used as 

necessary, so long as they are processed to satisfy the same requirements detailed below. 615 

3.1 Case study location 

MEEB can theoretically be applied to any sandy barrier system that satisfies the minimal data requirements as 

described in the following subsections. As a case study, we parameterized and calibrated MEEB for North Core Banks, NC, 

USA using data from 2014-2018 (National Geodetic Survey, 2024; NCFMP, 2018; USACE NCMP, 2024; USDA Farm 

Service Agency, 2019; Ritchie et al., 2021; Sturdivant et al., 2019). North Core Banks is a sandy, wave-dominated barrier 620 

island 36 km in length, expressing a broad spectrum of ecogeomorphic states from tall, well-developed foredune fields (~5 m 

above MHW) to frequently inundated overwash flats (Hovenga et al., 2021). Part of the Cape Lookout National Seashore, the 

barrier is minimally developed and managed to preserve endemic coastal ecosystems and natural ecogeomorphic processes. 

The regional rate of RSLR from 1994-2024 was approximately 6.3 mm yr-1 (NOAA Tides & Currents, 2024) and dune 

vegetation is dominated by Ammophila breviligulata, a burial-tolerant dune-building species (Jay et al., 2022). 625 

3.2 Initial conditions 

MEEB requires a digital elevation model (DEM) as initial elevation input, paired with contemporaneous spatial rasters 

of initial vegetation density and species type (Figs. 1a, 1b). Sufficiently concurrent datasets (< 0.5 y apart) ensure that initial 

vegetation conditions are representative of initial elevation conditions, and vice versa. All elevation and vegetation input raster 

datasets were resampled to the adopted model grid resolution (here, 1 m) if necessary, clipped to a specified bounding box that 630 

defines the spatial domain, and rotated such that the domain axes are parallel with the approximate trend of the barrier 

shoreline. In order to calibrate model parameter values, a minimum of two sets of observed elevation and vegetation cover 

datasets are needed to serve as the pre-hindcast initial conditions and the post-hindcast observations for comparison with 

simulation results. Our methods for satisfying these general data requirements in this case study are described in the following 

subsections. 635 

3.2.1 Elevation 

Initial topobathymetric DEMs were developed from three high-resolution lidar datasets for 2014 (NCFMP, 2018), 

2017 (USACE NCMP, 2024), and 2018 (Ritchie et al., 2021). In the absence of bathymetry, and to conform with the model 

assumption of a linear shoreface geometry, we processed the DEMs by adding the shoreface slope by linearly increasing depth 

in the cross-shore dimension for all cells seaward of the ocean MHW shoreline according to 𝑆௦௙,௘௤. A small back-barrier slope 640 
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(0.05) was also added by setting the first 30 m landward of the back-barrier MHW shoreline (in the cross-shore dimension) to 

increase linearly in depth from MHW to 𝐷௕௕. The back-barrier cells beyond the back-barrier slope are set uniformly to 𝐷௕௕. 

3.2.2 Vegetation 

We derived rasters of initial species type from supervised landcover classification datasets for 2014 (Sturdivant et al., 

2019) and 2018 (S. Zeigler & A. Evans, U.S. Geological Survey, unpublished data, 2024), generated from orthoimagery 645 

captured within the same months as their corresponding elevation datasets. The original landcover datasets were reclassified 

into three landcover classes: herbaceous vegetation, woody vegetation, and no vegetation. Using the orthoimagery from 

January to April 2014 (National Geodetic Survey, 2024) and October 2018 (USDA Farm Service Agency, 2019), rough 

approximations of initial vegetation density for the vegetated classes were derived via the Normalized Difference Vegetation 

Index, with thresholds set qualitatively for four classes corresponding to 𝜌 values of 0.4, 0.6, 0.8, and 1.0 with random noise 650 

perturbations of ±0.1. In qualitatively setting NDVI thresholds, we were able to roughly control for the effect of image 

seasonality on the NDVI values. 

3.3 High-water event climatology 

MEEB uses a time series of modeled HWE total water level, duration, and timing for simulation hindcasts. For 

simulation forecasts, the observed HWE time series serves as the basis for a stochastic HWE environment, which consists of 655 

a list of synthetic storms and a probability distribution of storm occurrence based on the time of year, as described in the 

following. 

3.3.1 Hindcast HWE time series 

A modeled HWE time series (Fig. 4a) was created using hindcast hourly wave and water level conditions offshore of 

North Core Banks from 1979 to 2022 (Aretxabaleta et al., 2023), which include significant wave height (𝐻௦), wave period 660 

(𝑇௣), water level, and direction. The TWL (i.e., the representative highest elevation of the landward margin of runup) was 

calculated for each hour as the sum of the maximum 2% exceedance of wave runup, following Stockdon et al. (2006), and the 

contemporaneous water-level elevation, which includes tides, storm surge, and other low-frequency fluctuations. Following 

Wahl et al. (2016) and Reeves et al. (2021), we extracted HWEs from the wave and water-level time series by conditioning 

upon 𝐻௦ : HWEs were identified as periods of 8 or more consecutive hours with 𝐻௦ > 2.05 m, which is the minimum monthly 665 

averaged wave height for periods in which water levels exceeded the 25th percentile of dune toe elevations (1.78 m NAVD88) 

at North Core Banks measured from 2005 to 2018 (Doran et al., 2017). If two (or more) periods of 8 or more consecutive hours 

with 𝐻௦  > 2.05 m occurred less than 24 hours apart, the two periods were considered part of the same large-scale weather 

system and therefore lumped together as single HWE; new HWEs were identified after 𝐻௦ remained below the 2.05 m  

 670 
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Figure 4: Hindcast high water event (HWE) climatology for model input and shoreline diffusivity. (a) Total water level timeseries of 675 
HWEs (blue dots) off North Core Banks (NCB), NC, USA from 1979 to 2022; vertical orange bars indicate the dates of capture for 
the lidar datasets used in this study. Total water level is the sum of tide, surge, and wave runup. (b) Historic (1979-2022) probability 
of HWE occurrence by time of year; bins are sized according to the Marine component timestep (∆𝒕𝒎 = 0.04 y). (c) Wave-climate-
averaged shoreline diffusivity as a function of shoreline angle 𝜽 calculated for a given 𝒂, 𝒉, 𝑯𝒔, and 𝑻 representative of NCB; vertical 
orange bar indicates the range of shoreline angles from the initial 2024 NCB shoreline.   680 

 
 
 
 
threshold for 24 hours or longer (Li et al., 2014). Each HWE from the hindcast record is described by its maximum TWL; 𝐻௦ 685 

and 𝑇௣ concurrent with the maximum TWL; duration; and beginning and ending date/time. 

3.3.2 Stochastic HWE environment 

The timing and characteristics (TWL and duration) of HWEs are determined stochastically in model forecasts. For 

each Marine iteration in the model (∆𝑡௠ = 0.04 y), a HWE may occur based upon the historical probability of HWE occurrence 

for each iteration in the observed HWE record, which was calculated as the number of years in which one or more HWEs 690 

occurred during each Marine timestep divided by the total length (in years) of the observational record (Fig. 4b). If a HWE is 

determined to occur, the TWL and duration is chosen from a list of 10,000 synthetic HWEs generated using the copula-based, 

multivariate sea-storm model from Wahl et al. (2016), which identifies interdependencies among relevant sea-storm parameters 
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(water level, 𝐻௦, 𝑇௣, and duration) using the observed HWE record as required input. MEEB assumes that the probability of 

HWE occurrence for each iteration, as well as the characteristics of the synthetic HWEs (i.e., the average TWL and duration 695 

of the 10,000 synthetic HWEs), remain constant over the course of a simulation. 

3.4 Wave climatology 

MEEB requires estimates for long-term (multidecadal) averaged wave climate characteristics to drive alongshore 

shoreline diffusion, as described in Sect. 2.4.2. We used the same hindcast hourly wave and water-level conditions offshore of 

North Core Banks from 1979 to 2022 (Aretxabaleta et al., 2023) to derive the mean offshore significant wave height, mean 700 

wave period, and the wave climate asymmetry and proportion of high-angle waves (relative to the barrier shoreline trend) for 

the time period, which allows for computation of multidecadal shoreline change. 

3.5 Probabilistic distribution of future RSLR 

We developed a probabilistic distribution of RSLR for the year 2050 (Fig. 3a) from the IPCC AR6 SSP5-8.5 sea-

level projections (Fox-Kemper et al., 2021; data available from Garner et al., 2021) for the grid tile encompassing North Core 705 

Banks at 34º N 77º W. Following others (Wainwright et al., 2014; Bamunawala et al., 2021), a triangular probability 

distribution of RSLR was created using the 5, 50, and 95 quantiles of the projected RSLR for the year 2050 under SSP5-8.5. 

This triangular distribution was then transformed into a discrete probability distribution with three bins. 

 SSP5-8.5 represents a “very high” greenhouse gas emissions pathway, and the accompanying sea-level rise projection 

follows a trajectory most similar to the NOAA “Intermediate” scenario from Sweet et al. (2022). Users can run the same 710 

probabilistic model framework with different RSLR probability distributions representative of other SSPs, and the results of 

multiple pathways can thereby be compared. For example, users can select and make projections for two pathways that 

correspond to “most likely” and “worst case” scenarios. For the year 2050, however, there is relatively little difference in 

projected sea levels between the highest and lowest IPCC SSPs, with considerable overlap of ranges. The relative convergence 

of RSLR to greenhouse gas emissions over the next three decades suggests a single SSP for a “very high” emissions pathway 715 

(i.e., SSP5-8.5) is sufficient for probabilistic projections up to the year 2050, in alignment with findings from the 2022 NOAA 

Interagency Technical Report for sea-level rise (Sweet et al., 2022). 

3.6 Skill assessment and parameter optimization 

We define model performance primarily through the direct cell-by-cell comparison of simulated and observed 

elevation with the Brier Skill Score (BSS), which measures how much the simulated change improves a prediction relative to 720 

the baseline of predicting no change at all: 
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where 𝐽 is the total number of cells in the skill determination, 𝑠𝑖𝑚௝ is the simulated final elevation at cell 𝑗, 𝑜𝑏𝑠௝ is the observed 725 

final elevation at cell 𝑗, and 𝑏௝  is the baseline prediction equal to the initial elevation at cell 𝑗 (i.e., assumes no change). When 

specifically assessing the aeolian performance of the model, we also determined the BSS of the change in foredune crest 

elevation. While our skill assessment used a conventional cell-by-cell, point-based approach, future model calibration may 

benefit from alternative metrics that capture more qualitative behaviors or states (French et al., 2016; Murray, 2003). 

 We used particle swarm optimization (PSO) to calibrate 15 free parameters to maximize model skill. PSO is a 730 

metaheuristic computational method to search iteratively for the global optimum within a given parameter space. PSO seeds 

the parameter space with particles (i.e., specific sets of parameter values) that make up a swarm (i.e., a population of candidate 

solutions). The movement of each particle is guided both by its own local best-known position within the parameter space as 

well as the best-known position of the entire swarm. Over many iterations, the swarm tends to descend upon the global 

optimum set of parameter values that maximizes the model skill, while tending to avoid local optima. A minimum and 735 

maximum value for each parameter defines the calibration space; see Table A1 for the range of values used for each calibrated 

free parameter. 

 We optimized Aeolian and Marine parameters separately to reduce the number of free parameters calibrated at once 

and improve potential calibration. First, Marine parameters alone were optimized using only the Marine component of MEEB 

over a single HWE event: Hurricane Florence, which made landfall as a Category 1 hurricane in September 2018 south of 740 

Wrightsville Beach, NC, USA, was used for Marine calibration because of extensive overwash on North Core Banks and the 

availability of lidar captured 3 weeks after the event (Ritchie et al., 2021). We used a skill score for change in elevation that 

was designed to be representative of the barrier as a whole, calculated as the average BSS of elevation change across five 

ecogeomorphologically diverse, 300-m-long training sites characterized by a small and large overwash fan, a small and large 

overwash flat, and a tall continuous dune ridge (Figs. 5, 6). To best ensure that the observed change is representative of HWE 745 

impacts, determination of skill was limited to subaerial cells that fall seaward of the dune crest or within either the simulated 

or observed overwash extent. Observed overwash extent was digitized by hand with pre- (Jun to Sep 2017; USACE NCMP, 

2024) and post-Florence (Oct 2018; Ritchie et al., 2021) imagery and lidar as reference. 

Next, Aeolian parameters were optimized by running the model over a period of relatively limited HWE activity (16 

April 2014 to 16 September 2017), thereby controlling for the effects of marine processes on the Aeolian calibration. Results 750 

from the preceding Marine parameter calibration were used to set the Marine parameter values for the Aeolian calibration, and 

all components of MEEB (Aeolian, Marine, Shoreline, and Vegetation) were utilized and active. The RSLR rate was set to 6 

mm yr-1 for these hindcasts, representative of historical conditions. We used a multi-objective skill score calculated as the 

average of the BSS for cell-by-cell elevation change and the BSS for dune crest height change. Including dune height as part 
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of the multi-objective skill score helps prioritize accurate representation of vertical foredune growth over other characteristics, 765 

particularly as foredune height has a large impact on barrier response to HWEs. To focus calibration on foredune growth and 

to exclude interior areas with error in the lidar DEMs associated with reflectance off the vegetation surface, determination of 

skill was also limited to cells within a specified foredune field (Fig. 6). This multi-objective score was averaged again across 

three diverse, 200-m-long training sites to produce a single score representative for North Core Banks as a whole. To calibrate 

the four wind-direction probabilities (𝑃ௐ஽) that collectively sum to 1, we used three parameters that can be tuned independently 770 

from each other: 1) the wind axis ratio, which is the ratio of wind directed cross-shore relative to alongshore; 2) the onshore 

wind ratio, which is the ratio of cross-shore wind directed onshore relative to offshore; and 3) the down-shore wind ratio, 

which is the ratio of alongshore wind directed down the coastline relative to up. The four values of 𝑃ௐ஽  were calculated from 

the three resulting calibrated wind parameters. While historical wind direction data from North Core Banks is available for 

input into MEEB, we found calibrating the wind direction probabilities directly produced significantly better agreement with 775 

observations. This may be because the dominant historical wind directions at North Core Banks run oblique to the shoreline 

and therefore our model grid orientation, coupled with the fact that aeolian transport in the model is constricted to directions 

directly parallel with model gridlines (i.e., not diagonal), suggesting limitations to the relatively simple aeolian algorithm 

employed in MEEB (see also Nield & Baas, 2008a). Future research into incorporating wind direction observations, 

particularly with oblique wind directions, could prove fruitful. 780 

Due to challenges in generating effective skill scores for hindcasts of vegetation cover, we did not calibrate Vegetation 

free parameters; instead, Vegetation parameter values roughly follow those of Nield and Baas (2008a) and Keijsers et al. 

(2016). Shoreline parameters, with perhaps the exception of the alongshore sediment transport constant 𝑘ௗ , can be directly 

estimated and therefore do not necessitate optimization. 

 785 

3.7 Sensitivity analyses 

We investigated the global sensitivity of model output to input parameter variations for the purpose of ranking 

variables according to their relative contribution to output variability and screening variables that have minimal effect on 

output variability. We used the Method of Morris test (Morris, 1991), also known as the Elementary Effects Test, which is 

well-suited for models like MEEB with numerous input variables and/or relatively long run times (Pianosi et al., 2016). The 790 

Method of Morris determines both the overall importance of a parameter (𝜇∗; the mean of the absolute value of the elementary 

effects) and its degree of interaction with other input parameters (𝜎∗; the standard deviation of the absolute value of the 

elementary effects). As in the calibration workflow, we performed sensitivity analyses on the Aeolian and Marine components 

of the model separately, and used the same experimental setup, skill scores, and input parameter ranges. Because the Method 

of Morris depends on the range of input parameter values and because several parameters in MEEB are poorly constrained and 795 

abstract, conclusions drawn from our sensitivity analyses are relevant only with regards to the estimated ranges of parameter 

values used herein (Table A1). Our sampling strategy used six grid levels (which controls the sampling grid and variation  
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Figure 5: Hindcast simulations testing performance of the MEEB Marine component with calibrated Marine parameters. (a-d) 
Observed and simulated post-Florence elevation and pre- to post-Florence elevation change at 4 test locations across North Core 
Banks, NC, USA. Locations of each marine testing site, as well as each marine training site used in calibration, are indicated in the 
top map. The Brier Skill Score for each hindcast (a-d) is given in the gray boxes and Table 1.  805 
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Figure 6: Hindcast simulations (for the period of April 2014 to September 2017) testing MEEB performance with calibrated Aeolian 
parameters. (a-d) Observed and simulated post-simulation elevation and pre- to post-simulation elevation change at 4 test locations 
across North Core Banks, NC, USA. Locations of each aeolian testing site, as well as each aeolian training site used in calibration, 815 
are indicated in the top map. The Brier Skill Score for each hindcast (a-d) is given in the gray boxes and Table 1. Skill determination 
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is confined to the area between the dashed lines at each location to focus calibration on foredune growth and exclude error in the 
lidar DEMs associated with reflectance off the vegetation surface. Areas of apparent significant accretion landward of the foredune 
field in panels a-d are artefacts of the post-Florence lidar capturing the shrub canopy elevations versus the true surface elevation in 
the pre-Florence lidar. 

 825 
 
 
 
 
 830 
 
 

 

 

Figure 7: Sensitivity analyses of model parameters for the (a) Marine and (b) Aeolian model components. Marine and Aeolian 835 
parameters are analyzed separately following the same design and parameter ranges as the parameter calibration simulations. 
Unitless values for the overall importance of a parameter (𝝁∗) and its degree of interaction with other parameters (𝝈∗) are given in 
orange and blue, respectively. Black lines represent the 95% confidence interval. 
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sizes; Morris, 1991; Pianosi et al., 2016), with 75 aeolian and 115 marine trajectories resulting in 900 and 1150 combinations 
of parameter values evaluated for the Aeolian and Marine components of the model, respectively. 

4 Example simulations and results 

4.1 Parameter sensitivity analyses 

Our parameter sensitivity analyses suggest that the Marine component of MEEB is most sensitive to the erosive 845 

timescale calibration coefficient (𝑇௘ ) and equilibrium beach slope (𝛽௘௤ ), followed by the overwash infiltration and drag 

parameter (𝑅ௗ) and sediment transport coefficients (𝐾௢௪ , 𝑚; Fig. 7a). These parameters also display the highest degree of 

interaction with each other (Fig. 7a). The Marine component in MEEB is insensitive to the vegetation flow-reduction 

coefficient (Λ), which controls the degree to which vegetation impacts the overwash flow, for both types of vegetation; we 

therefore did not include these parameters in our final calibration. Perhaps unsurprisingly, marine evolution in the model is 850 

particularly sensitive to poorly constrained coefficients (𝑇௘ , 𝐾௢௪ , 𝑚) that have limited relevance to real-world measurements 

or observations. That overwash in the model is particularly sensitive to infiltration and drag of the flow across the barrier 

interior (𝑅ௗ) suggests continued study and measurement of these factors across the barrier landscape could be especially 

beneficial. 

The Aeolian component of MEEB is most sensitive, by far, to the probabilities of deposition (𝑃ௗ,଴) and erosion (𝑃௘,଴) 855 

in the absence of vegetation (Fig. 7b). These parameters also display the highest degree of interaction with other parameters. 

The model is insensitive to both the unvegetated and vegetated angles of repose (𝜃௥,௨, 𝜃௥,௩), and we therefore exclude them 

from the model optimization. Overall, aeolian evolution in the model is most sensitive to parameters controlling the volumetric 

sediment flux, as opposed to the exact specifications of the way in which vegetation density and type alter this flux. 

4.2 Hindcasts: comparisons to observations 860 

To assess model skill, we ran hindcast simulations using the calibrated parameter values and the same simulation set-

up as in calibration except at testing sites that differ from the training sites (Figs. 5, 6). Simulation results were compared to 

observed elevation change and the resulting model skill scores are given in Table 1. Our testing sites each span 0.5 km in 

length alongshore to demonstrate the variability of model performance in different geomorphic settings; with increasingly 

larger model domain extents, the skill scores would tend to approach the mean score of the entire barrier. 865 

Hindcast simulations of Hurricane Florence using calibrated Marine parameters produce good to excellent agreement 

with observations (following the BSS categorization from Sutherland et al., 2004) for pre- to post-storm elevation change at 

four test sites across North Core Banks (Fig. 5; Table 1). Good to excellent agreement is also found when considering elevation 

change landward of the foredune crest in isolation, as well as fair to excellent agreement seaward of the foredune crest (Table 

1). MEEB does particularly well in capturing overwash deposition patterns and washover thicknesses. Naturally, the model is 870 

more skillful at some test sites across the barrier than others. In particular, the model tends to overestimate dune scarping in  
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Table 1: Model skill scores for elevation change from MEEB hindcast simulations. BSS = cell-by-cell Brier Skill Score; BSS_Seaward 
= BSS of all cells seaward of the post-storm foredune crest; BSS_Landward = BSS of all cells landward of the post-storm foredune 
crest; BSS_DuneElev = BSS of change in elevation of all foredune crest cells; Multi_Obj_BSS = average of BSS and BSS_DuneElev. 
Brier Skill Score qualitative classification follows Sutherland et al. (2004). 880 

Marine 

Location Classification BSS BSS_Seaward BSS_Landward 

Fig. 5a Excellent 0.65 0.69 0.46 

Fig. 5b Excellent 0.64 0.64 0.40 

Fig. 5c Good 0.22 0.19 0.20 

Fig. 5d Excellent 0.79 0.79 0.56 

Aeolian 

Location Classification BSS BSS_DuneElev Multi_Obj_BSS 

Fig. 6a Good 0.24 0.04 0.14 

Fig. 6b Poor 0.03 0.03 0.03 

Fig. 6c Good 0.23 0.22 0.23 

Fig. 6d Good 0.23 -0.03 0.10 

 

 

certain areas, particularly where overwash flows through gaps in the foredune line (Figs. 5a, 5c). MEEB also tends to 

underestimate lateral spreading of overwash flow in areas with confined or channelized topography (Fig. 5b), a direct 

consequence of the simplified flow-routing algorithm that directs flow only to the three landward neighboring cells.  885 

Testing the skill of calibrated Aeolian parameters, hindcast simulations from April 2014 to September 2017 (a period 

of minimal storm activity) at four test sites across North Core Banks result in good to poor agreement with observed 

topographic change (Fig. 6; Table 1). As in calibration, the skill assessment was applied only to cells within the predetermined 

dune field (Fig. 6). While beach change is predicted poorly in some of the hindcasts (Figs. 6b, 6c), it is beyond the intent of 

the model to predict fluctuations in beach state on a monthly or seasonal timescale. Importantly, the model appears to do 890 

qualitatively well in capturing the location and/or pattern of dune growth. This includes the one hindcast with a poor (0.04) 

BSS (Fig. 6b), suggesting that our simple multi-objective BSS could be improved to better identify and prioritize important 

qualitatively correct behaviors (French et al., 2016) and better align with subjective judgements of similarity (Bosboom and 

Reniers, 2014). In our tests, the model tends to underestimate the vertical extent of dune growth. Additionally, aeolian 

reworking of the barrier interior (landward of the foredune crest) is overestimated in some areas (Figs. 6a, 6d), suggesting that 895 

the model is sensitive to the initial vegetation conditions. 

Deleted: 3

Deleted: aeolian 

Deleted: 3



32 
 

4.3 Forecasts: probability of future change 900 

MEEB was developed to provide useful projections at spatiotemporal scales relevant to coastal management. Here, 

the model is exercised in a predictive application using the probabilistic framework described in Sect. 2.6 and the RSLR 

probability distribution described in Sect. 3.5. We run example probabilistic projections of elevation change for the year 2050 

at an initially overwash-prone site and an initially overwash-resistant site on North Core Banks. While these sites span only 

0.5 km in length alongshore for the purpose of providing a clear and concise demonstration of model output, MEEB can handle 905 

model domains up to tens of kilometers in alongshore length. Fig. 8 plots the most likely range of net elevation change across 

the model domain from 2018 to 2050 for these projections. At the initially overwash-prone site (Figs. 8a-c), the model 

projection suggests that major deposition is most likely at the proximal parts of the overwash fans with minor deposition most 

likely on the more distal portions (Fig. 8b). Repeated overwash events will tend to prevent vegetation from recolonizing the 

overwash fans over the course of the simulation. Consequentially, aeolian deflation of the sparsely vegetated overwash fans, 910 

and resulting minor deposition along the landward vegetated fringes of the fans (cf. Rodriguez et al., 2013), is also predicted 

to be likely. The model also predicts the high likelihood of major accretion around the seaward slope and toe of the present 

foredunes, reflecting the steeping of the beach profile with net seaward growth of the foredune system and likely net seaward 

expansion of vegetation cover. This probabilistic projection suggests that the areas encompassing the washover fans are likely 

to remain vulnerable to persistent overwash through the year 2050, while foredune areas are likely to not only be stable but 915 

expand. 

At the initially overwash-resistant site (Figs. 8d-f), the probabilistic projection suggests that major lateral dune erosion 

via scarping is likely to occur but that the foredune ridge will most likely persist (Fig. 8e). Aeolian deposition near the initial 

foredune crest is likely to offset some of the height and volume lost from dune scarping. As a result of this persistent and 

resistant topography, dense vegetation will tend to cover the barrier interior and prevent aeolian reworking landward of the 920 

dune crest. Although the model predicts negligible elevation change is most likely landward of the foredune crest, uncertainty 

in this prediction – particularly near the left (Southwest) edge of the model domain – reflects the small but very real possibility 

of minor to major overwash deposition in the event of foredune overtopping and/or loss (Fig. 8f). Overall, this projection 

indicates that vulnerability to HWE-driven change is low through 2050 landward of the initial 2018 foredune crest, though the 

high probability of major dune width loss in this period suggests that the likelihood of a shift in morphologic regime from 925 

overwash-resistant to overwash-prone may increase rapidly in the subsequent decades. Potential increases in future HWE 

intensity (e.g., Knutson et al., 2020) could also enhance the likelihood of more fundamental morphological and ecological 

regime changes by 2050 – such fundamental changes would also be likely to occur by the end of the century. 
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 945 

Figure 8: Example probabilistic projections of elevation change for the year 2050, at two sites on North Core Banks, NC, USA: (a-
c) an initially overwash-prone site and (d-f) an initially overwash-resistant site. Locations of both sites are indicated in the top map. 
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(a, d) Initial 2018 topography for the overwash-prone and overwash-resistant sites, respectively. (b, e) Most likely net change in 
elevation between 2018 and 2050 classified into five elevation ranges. (c, f) Certainty in most likely elevation change predictions, 
taken as the proportion of all model runs resulting in the most likely class of elevation change. 950 

 

5 Discussion and conclusions 

MEEB was developed to simulate spatially explicit, ecogeomorphic, probabilistic evolution of coastal barrier systems 

over spatiotemporal scales of greatest interest to coastal managers and decision-makers. The goal of the model is to reconcile 

management needs for projections that are both quantitative/place-specific and multi-decadal/multi-kilometer (i.e., mesoscale) 955 

while accounting for ecogeomorphic feedbacks and uncertainties in the forces driving future change. In our approach for 

modeling mesoscale barrier ecogeomorphic evolution, we a) integrated model parameterizations of varying mechanistic 

complexity, representing certain processes or interactions with relatively higher complexity (only as far as needed to produce 

mesoscale behaviors anticipated to be important) within an otherwise synthesist framework, and b) thoroughly tested and 

calibrated these parameterizations with observational data. Because many of these relatively simple and heuristic algorithms 960 

involve calibration coefficients and poorly constrained independent variables, we have made a substantial effort to determine 

which of these parameters are most influential to model outcomes and assign values that provide the best model agreement 

with observations, as evaluated by our multi-objective skill scores for hindcasts on North Core Banks. While the model has 

yet to be applied to other sites, North Core Banks is an ideal case study location given its relative lack of human influence, 

multiple ecosystem types and barrier states, history of ecogeomorphic change, and availability of high-quality data, and 965 

therefore may be representative of other undeveloped barrier environments. Given the demonstrated skill of our hindcasts of 

North Core Banks, as well as our holistic and simplistic model representations of ecogeomorphic processes and interactions, 

we expect MEEB to be widely adaptable to most minimally-engineered barrier systems along the U.S. East and Gulf coasts. 

The model may be less applicable to barrier environments strongly influenced by tidal inlet dynamics, complex shoreline 

change, or human management, though in the future a human management module could be added to MEEB (e.g., Anarde et 970 

al., 2024a,b) to explore the ecogeomorphic effects of coupled human–natural interactions. 

 As with any numerical model, appropriate interpretation of the results depends on the scale and complexity of the 

model parameterizations. As a mesoscale model, MEEB is not suitable for investigations with the goal of predicting subtle 

changes in elevation or vegetation cover; nor is it an appropriate tool for explaining the large-scale behaviors of landscape 

configuration, such as the drowning of a barrier chain. Instead, MEEB is designed to answer questions about barrier 975 

ecogeomorphic change of moderate complexity by offering semi-qualitative predictions and semi-quantitative explanations. 

For example, MEEB can be used to investigate the effects of climate-induced shifts in ecological composition by adjusting 

Vegetation parameters over time to represent transitions in vegetation assemblages. Such transitions could affect the likelihood 

of coastal hazard impacts by altering aeolian growth rates and/or patterns and therefore landscape vulnerability to HWEs. As 

another example application, MEEB could be used to predict where and when overwash along a barrier is most likely to occur 980 
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by generating probabilistic projections of overwash inundation through time and identifying ecogeomorphic indicators of 

overwash vulnerability. Future work could compare MEEB simulations with micro- (e.g., XBeach, Roelvink et al., 2009) or 

macro-scale (e.g. LTA14, Lorenzo-Trueba and Ashton, 2014) models to explicitly determine when, where, and how the 

trajectories of the models overlap in their respective utility. 990 

 To simulate spatially explicit ecological and geomorphological processes across an entire subaerial barrier landscape 

over several decades, MEEB employs many synthesized parameterizations and simplifying assumptions. Inevitably, MEEB 

bears several important limitations arising from this modeling approach. For example, MEEB assumes the barrier system is 

composed entirely of unconsolidated sand, whereas grain sizes and characteristics can vary over meters to kilometers in ways 

that affect dune growth (e.g., Hovenga et al., 2023) and barrier transgression (e.g., Brenner et al., 2015). Tidal inlet and 995 

breaching processes, including outwash events (Sherwood et al., 2023), are neglected in MEEB, despite the significant 

ecomorphodynamic changes associated with these processes and their importance to long-term transgressive sediment flux 

(e.g., Nienhuis and Lorenzo-Trueba, 2019b; Leatherman, 1979; Passeri et al., 2020; Sherwood et al., 2023). Therefore, we 

exclude portions of a barrier within several hundred meters of active tidal inlets and breaches from the model domain, rendering 

the model less relevant to tide-dominated barrier systems where barriers are frequently segmented by inlet channels. Further, 1000 

MEEB models the long-term, wave-climate-averaged shoreline diffusivity by assuming the diffusive wave climate does not 

change over the course of a simulation, which may average over variability in shoreline diffusion that could potentially 

feedback with coupled ecogeomorphic processes (e.g., dune erosion). MEEB also presently assumes that no shoreline changes 

resulting from alongshore transport gradients occur at the domain boundaries (i.e., shoreline change at these cells only occurs 

from cross-shore processes). As such, if the MEEB model domain were part of a curved coastline eroding or accreting due to 1005 

persistent alongshore transport gradients (Ashton & Murray, 2006), local shoreline change rates would be underpredicted. 

Lastly, the Vegetation component presently lacks finer temporal resolution needed to capture seasonal variations in vegetation 

density and growth, which could play an important role in how a barrier responds to and recovers from HWEs. Additionally, 

the simplified Vegetation component lacks many of the environmental filters (e.g., temperature, groundwater depth, elevation, 

salinity) that could affect the zonation and density of vegetation, with implications for aeolian and overwash sediment transport 1010 

and thereby projections of future change. To improve the utility of MEEB for addressing the ecogeomorphic effects of climate-

induced shifts in ecology, the model would require the addition of seasonality and species zonation dynamics. 

 Despite these limitations, comparisons of MEEB hindcast simulations to observations demonstrate that our relatively 

simple set of parameterizations for coupled aeolian, marine, vegetation, and shoreline processes can skillfully capture 

important mesoscale dynamics of barrier systems. This is achieved in large part through thorough calibration of the most 1015 

sensitive free parameters, with integration of topographic, ecologic, and storm climatology data to set initial conditions and 

assess model performance. A single set of calibrated parameter values performs well at ecogeomorphologically diverse test 

sites spread across the nearly 30 km domain and in hindcast simulations spanning multiple continuous years, leading to 

confidence in model projections of future mesoscale change. 
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Appendix A: Model parameters and dependent variables 1020 

 

Table A1: MEEB parameters and their definitions. 

Parameter Units Value Calibration 
and Sensitivity 
Analysis 
Range 

Description 

∆𝑡௔ y 0.02  Aeolian iteration duration 
∆𝑡௠ y 0.04  Marine iteration duration 
∆𝑡௦ y 0.04  Shoreline iteration duration 
∆𝑡௩ y 1  Vegetation iteration duration 

RSLR m yr-1 
0.006 (hindcasts), 
0.0068 to 0.0124 
(projections) 

 Relative sea-level rise 

MHW m NAVD88 0.39  Initial mean high water 
Aeolian 

𝑃௘,଴ - 0.10 0.02 to 0.5 
Maximum probability of erosion in the complete 
absence of vegetation cover (𝜌 = 0) 

𝑃ௗ,଴ - 0.22 0.02 to 0.5 
Probability of deposition in the complete absence of 
vegetation cover (𝜌 = 0) 

𝑃ௗ,ଵ - 0.54 0.05 to 0.5 
Probability of deposition with full effective 
vegetation cover (𝜌 = 1) 

𝜂 deg 12 8 to 18 Shadow angle 

𝜌௤଴ - 0.10 0.05 to 0.55 
Vegetation density at which entrainment of sand 
becomes effectively negligible 

𝜌௩ - 0.35 0.05 to 0.4 
Threshold vegetation density at which cells are 
considered vegetated 

𝜃௥,௨ deg 20 15 to 30 Angle of repose for unvegetated cells (𝜌 < 𝜌௩) 
𝜃௥,௩ deg 30 20 to 40 Angle of repose for vegetated cells (𝜌 ≥ 𝜌௩) 

𝑃ௐ஽ - 
(0.81, 0.04, 0.06, 
0.09) 

0.5 to 1 (wind 
axis ratio); 0.5 
to 1 (onshore 
wind ratio); 0 to 
1 (down-shore 
wind ratio) 

Wind direction probability (onshore, alongshore 
down, offshore, alongshore up) 

𝐻௦ m 0.02  Aeolian slab height 
𝐿௦ m 5  Saltation length 

𝐷௚௪  - 0.4  
Proportion of the smoothed topography above 
MHW for determining elevation of the freshwater 
lens 

Marine 
𝛽௘௤ - 0.022 0.01 to 0.04 Equilibrium beach slope 

𝑇௘ - 0.68 0.33 to 1.0 
Erosive timescale calibration coefficient for 
sediment flux seaward of the foredune crest  

𝑅ௗ m3 h-1 249 50 to 280 
Parameter representing infiltration and drag of 
overwash flow 
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𝑆ொ௟௜௠ - 1.5 0.5 to 2.0 Maximum slope water can flow uphill 
𝐾௢௪  - 0.0001684 0.00005 to 0.01 Overwash sediment transport coefficient 

𝐶௦ - 0.0283 0.01 to 0.04 
Constant representing momentum of the overwash 
flow 

𝑚 - 1.04 1.01 to 1.12 
Constant for nonlinear relationship between 
sediment flux and discharge 

𝑔 m s-2 9.81  Gravitational acceleration 
𝑛 - 0.5  Constant for flow routing 

𝐶௕௕ - 0.7  
Coefficient for exponential decay of sediment load 
entering subaqueous back-barrier environment 

𝐷௕௕ m 1.5  Equilibrium depth of back-barrier basin 

𝑡௦_௟ hr 0.0016  
Time-substep for computing an hourly iteration of 
Marine HWE morphological change landward of 
the dune crest 

𝑡௦_௦ hr 0.04  
Time-substep for computing an hourly iteration of 
Marine HWE morphological change seaward of the 
dune crest 

Vegetation 

Λ - 
0.02 (burial-
tolerant); 0.05 
(burial-intolerant) 

0.02 to 0.4 
(burial-
tolerant); 0.05 
to 0.5 (burial-
intolerant) 

Vegetation-overwash flow reduction coefficient 

𝑃௚௘௥௠ - 0.05  
Probability of vegetation establishment via 
germination from seeds or rhizome fragments  

𝑃௟௔௧ - 0.2  
Probability of vegetation establishment via lateral 
expansion from neighboring vegetated cells 

𝑉௭,௠௜௡  m MHW 
0.25 (burial-
tolerant); 0.25 
(burial-intolerant) 

 
Minimum elevation (relative to MHW) for 
vegetation 

𝑉௫,௔ି௘ m y-1 

[-1.5, -0.05, 0.5, 
1.5, 2.2] (burial-
tolerant); [-1.6, -
0.7, 0, 0.2, 2.1] 
(burial-intolerant) 

 X-coordinates of the 5 growth function vertices a-e 

𝑉௬,௖ y-1 
0.2 (burial-
tolerant); 0.05 
(burial-intolerant) 

 Peak growth of the growth function middle vertex c 

Shoreline 
𝐷௦௙ m 20.07  Shoreface depth 
𝑆௦௙,௘௤ - 0.00822  Equilibrium shoreface slope 
𝑘௦௙ m3 m-1 y-1 5926  Shoreface flux rate coefficient 
𝑦௔ m 25  Alongshore length of shoreline sections 
𝐻௦ m 0.98  Average deepwater wave height 
𝑇 s 6.6  Average deepwater wave period 
𝑅 - 1.65  Submerged specific gravity of shoreface sediment 
𝐷ହ଴ m 2e-4  Median grain size of shoreface sediment 

𝑒௦ - 0.01  
Shoreface suspended sediment transport efficiency 
factor 
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𝑐௦ - 0.01  Shoreface friction factor 
𝑘ௗ  m3/5 s-6/5 0.06  Shoreline diffusivity constant 

𝑎 - 0.6  
Wave climate asymmetry, i.e., proportion of waves 
approaching from the left when looking offshore of 
the regional shoreline trend 

ℎ - 0.39  
Proportion of high-angle waves, i.e., waves with an 
approach angle greater than 45º 

 
 1030 
 
Table A2: MEEB dependent variables and their definitions. 

Variable Units Description 

Aeolian 

𝑃௘  - Probability of erosion 

𝑃ௗ  - Probability of deposition  

𝑞௔,௠௔௫  m3 m-1 ∆𝑡௔
ିଵ Maximum potential aeolian transport flux 

𝜌 - Vegetation density 

Marine 

𝑍௧௪௟ m NAVD88 Total water level elevation of high-water event 

𝑍௫ m NAVD88 Elevation at cross-shore location 𝑥 

𝑥஽ m Cross-shore location of the foredune crest 

𝑞௫  m3 s-1 Flux of sediment at cross-shore location 𝑥 seaward of the foredune crest 

𝛽௫ - Local slope 

𝑄ௗ௖  m3 h-1 Discharge over the foredune crest 

𝑍஽ m NAVD88 Foredune crest elevation 

𝑈 m h-1 Velocity of water at the dune crest 

𝑄଴ m3 h-1 Overwash discharge at distributing cell 

𝑄௜  m3 h-1 Overwash discharge at receiving cell 𝑖 

𝑆௜ - Local directional slope from distributing cell to receiving cell 𝑖 

𝑞௦௜ m3 h-1 Overwash sediment volumetric flux from distributing cell to receiving cell 𝑖 

Vegetation 

𝑄௜,௘௙௙  m3 h-1 Effective discharge leaving vegetated cells 

Shoreline 

𝑥௦ m Cross-shore position of the ocean shoreline 

𝑥௧ m Cross-shore position of the shoreface toe 
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𝑆௦௙ - Slope of the active shoreface 

𝑞௦௙ m3 m-1 ∆𝑡௦
ିଵ Shoreface sediment flux 

𝑞௢௪  m3 m-1 ∆𝑡௦
ିଵ 

Cumulative volume of overwash deposition deposited on and behind the barrier interior for 

1 Shoreline iteration 

𝑞௕ௗ m3 m-1 ∆𝑡௦
ିଵ 

Cumulative volume of sediment imported from or exported to the beach and dune system 

during HWEs for 1 Shoreline iteration 

𝑤௦ m s-1 Settling velocity of shoreface sediment 

𝑧଴ m Breaking wave depth 

𝐷 m2 s-1 Shoreline diffusivity 

𝜃 - Shoreline angle relative to the regional shoreline trend 

𝜙଴ - Wave angle relative to the regional shoreline trend 

𝛹 - Dependence of the diffusivity to the wave angle 

𝐸 - Normalized angular distribution of wave energy 

 

Code availability 

MEEB v1.0 source code and documentation are available for download from Reeves (2025a), the official USGS 1035 

software release, under a CC0 1.0 Universal license. A public copy of the MEEB v1.0 code and documentation is also archived 

on Zenodo (Reeves, 2025b). 

Data availability 

All elevation and vegetation input files used in the calibration procedures and simulations presented in this work are 

stored within the archived MEEB v1.0 software release (Reeves, 2025a, 2025b) at /MEEB/Input. Hindcast hourly wave and 1040 

water level conditions offshore of North Core Banks from 1979 to 2022, used to develop the observed HWE timeseries and 

stochastic HWE environment, are available from the Renaissance Computing Institute (Blanton et al., 2024) and stored within 

the MEEB v1.0 software release at /MEEB/Data/NorthCoreBanks. 
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