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1. Copernicus Global Land Cover Layers (CGLS-LC100) Collection 3 

The Copernicus Global Land Cover Layers (CGLS-LC100) Collection 3 (https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global#dois) provides a comprehensive 

land cover classification system with 23 main discrete classes. This classification is aligned with the UN Food 

and Agriculture Organization's (FAO) Land Cover Classification System 

(https://www.fao.org/documents/card/en/c/c41f08a4-e612-45d8-b569-b751f27a3542/).  

 

2. Models Description and Comparison 

2.1 ResNet-Based Model 

The ResNet-based model employs residual learning to mitigate the vanishing gradient problem, enabling effective 

training of deep neural networks. Its architecture is built around Residual Blocks, which utilize skip connections 

to bypass intermediate layers and facilitate gradient flow. Each Residual Block contains two convolutional layers 

with 3×3 kernels, followed by Batch Normalization and ReLU activation. The output of the second convolutional 

layer is added to the block’s input via the skip connection, allowing the network to learn residual mappings. A 

ReLU activation is then applied to the summed output, enhancing non-linear feature learning. The network begins 

with a convolutional layer for initial feature extraction, followed by a sequence of Residual Blocks interspersed 

with MaxPooling layers to reduce spatial dimensions. A Dropout layer is incorporated after the feature extraction 

process to prevent overfitting. The model concludes with a fully connected layer, which uses a sigmoid activation 

function to produce a binary classification output.  

 

2.2 CBAM-Based Model 

The CBAM-based model enhances feature learning by integrating the Convolutional Block Attention Module 

(CBAM) into a convolutional architecture. CBAM refines feature maps through a combination of Channel 

Attention and Spatial Attention, enabling the model to focus adaptively on the most relevant regions and channels 

of the input. This attention mechanism significantly improves the network’s ability to capture salient patterns, 

particularly in tasks where feature importance varies spatially or across channels. The architecture begins with 

standard convolutional layers for hierarchical feature extraction, each followed by Batch Normalization and ReLU 

activation for training stability. MaxPooling layers are interspersed to downsample spatial dimensions while 
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retaining essential features. Intermediate feature maps are resized and concatenated to create a rich representation 

of the input, which is then passed through the CBAM module for adaptive refinement. Channel Attention 

emphasizes the most critical feature channels by computing global spatial statistics using average pooling, 

followed by dense layers to generate attention weights. These weights are applied to the input feature maps to 

enhance relevant channels while suppressing less important ones. Spatial Attention further refines these features 

by identifying important spatial regions using pooled information from all channels, which is processed through 

a 7×7 convolutional layer to produce spatial attention weights. The CBAM-refined feature maps are then passed 

through a Dropout layer for regularization, followed by dense layers to learn high-level abstractions. The final 

output layer uses a sigmoid activation for binary classification. The model is trained using the Adam optimizer 

and binary cross-entropy loss, ensuring efficient learning and robust generalization. The integration of CBAM 

introduces minimal computational overhead while substantially enhancing the model’s representational power. 

This architecture is particularly effective in tasks requiring selective focus on significant features or regions, 

resulting in improved classification performance (Tang et al., 2021). 

 

2.3 Performance Evaluation of Architectures 

 

Table S1: Median and standard deviation of the accuracy, precision, recall, and F1-score of the different 

architectures trained on the 60-12 combination of the VV_VH dataset. They are derived from the hyperparameters 

and training imbalance tuning computed comparing the predictions against the unseen composite test set. 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

CNN 96.04 ± 0.2 81.58 ± 2.4 80.17 ± 2.5 80.94 ± 1.3 

CBAM 95.92 ± 0.2 80.75 ± 2.8 80.41 ± 3.1 80.47 ± 0.8 

ResNet 96.43 ± 0.2 84.17 ± 3.4 81.94 ± 2.3 82.53 ± 0.9 

 

Table A1 presents the median and standard deviation of accuracy, precision, recall, and F1-score for the CNN, 

CBAM, and ResNet architectures, evaluated on the 60-12 combination of the VV_VH dataset. These metrics were 

derived from hyperparameter-tuned models and adjusted for training imbalances, with predictions compared 

against the unseen composite test set. Among the architectures, ResNet achieved the highest performance across 

all metrics, with an accuracy of 96.43 ± 0.2%, precision of 84.17 ± 3.4%, recall of 81.94 ± 2.3%, and an F1-score 

of 82.53 ± 0.9%. The CNN, however, performed competitively, with an accuracy of 96.04 ± 0.2%, precision of 

81.58 ± 2.4%, recall of 80.17 ± 2.5%, and an F1-score of 80.94 ± 1.3%, slightly outperforming CBAM in both 

accuracy and F1-score. CBAM achieved an accuracy of 95.92 ± 0.2%, precision of 80.75 ± 2.8%, recall of 80.41 

± 3.1%, and an F1-score of 80.47 ± 0.8%. Despite ResNet’s superior overall performance, the decision to use the 

baseline CNN for iterative sensitivity experiments was driven by several factors. First, the simpler architecture of 

the CNN makes it computationally more efficient for large-scale experiments, requiring less training time and 

memory compared to CBAM and ResNet. This efficiency is particularly advantageous when conducting extensive 

parameter sweeps or testing on diverse datasets, as it allows for rapid iteration and experimentation without 

significant resource overhead. Additionally, the CNN provides a strong baseline with consistent and competitive 

performance across all metrics, demonstrating its ability to generalize well without the additional complexity of 

attention mechanisms or residual learning. By utilizing the CNN, we ensure that our experimental framework 

remains accessible and reproducible while maintaining robust performance. The comparative analysis highlights 

the incremental benefits of advanced architectures such as CBAM and ResNet, particularly for tasks requiring 

high precision and F1-scores. However, for the purposes of this study, the balance between simplicity, 

computational efficiency, and reliable performance positions the baseline CNN as the preferred choice for the 

majority of experiments. 
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Additional Figures 
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Figure S1: Distribution of slope, aspect, and landcover in the landslide scars used for the descending orbit 

datasets in the training dataset for the 60_12 temporal stack combination in the six study areas used to perform 

the comparison between the VV and VV_VH combinations. 

 

 

 
Figure S2: Distribution of majority class of landcover in the test dataset for the classification results of the 60_12 

temporal stack combination in the six study areas used to perform the comparison between the VV and VV_VH 

combinations.  
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Figure S3: CNN model architecture used.  
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