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Reviewer #1  

RC: This study has trained a neural network to automatically detect landslides part of multiple landslide events using 
satellite synthetic aperture radar data. The paper describes the processing of the satellite data and the setup of the 
neural network. Evaluation of the model is done through a qualitative analysis of 2 unseen events. The idea and setup 
of the research is interesting and fits within the scope of GMD. However, the implementation and evaluation of the 
machine learning model requires major revisions, as described below. The language and structure of the paper should 
also be improved: Many sentences are unclear; paragraphs are too long; and the information is not clearly structured. 

AR: Thank you for the time and effort you put into reviewing our manuscript. We really appreciate it. We have 
thoroughly revised the manuscript to improve clarity, structure, and language, as suggested. 

RC: Line 6: If you hide 2 events for validation, the model is only informed by 9 events, not 11? 

AR: We clarified the sentence to avoid ambiguity. The manuscript now states that the models are trained and tested 
using 11 earthquake-induced widespread landslide events, covering about 73,000 landslides across diverse geologic and 
climatic settings. 

RC: Line 6-7: I cannot find any F1 scores, or any other statistics, for the unseen events in the paper? The F1 score given 
here seems to be from the test dataset? This dataset does not contain any unseen events, and thus this statistic should 
not be used to substantiate claims on model transferability. 

AR: Thank you for highlighting this. We agree that quantitative scores for completely unseen events are important. For 
Sumatra, we now provide full performance metrics. For Haiti, the existing inventory was point-based, which was limiting 
quantitative evaluation. To address this, we re-digitized the inventory using post-event Sentinel-2 imagery to create a 
polygon-based dataset, which will allow us to report quantitative scores alongside improved qualitative assessment in 
the revised manuscript. 

We show here the metrics for Sumatra: 
 
Descending orbit: 912 negatives, 89 positives 
Accuracy: 0.9481 
Precision: 0.7229 
Recall: 0.6742 
F1-score: 0.6977 
Ascending orbit: 874 negatives, 94 positives 
Accuracy: 0.9556 
Precision: 0.7629 
Recall: 0.7872 
F1-score: 0.7749 

And as follows the metrics for Haiti: 

Descending orbit: 4620 negatives, 462 positives 
Accuracy : 0.9425 
Precision: 0.8148 
Recall   : 0.4762 
F1-score : 0.6011 
 
Ascending orbit: 4680 negatives, 468 positives 
Accuracy : 0.9415 
Precision: 0.7449 
Recall   : 0.5427 
F1-score : 0.6279 
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RC: Line 67, 72: full transferability requires meeting a very high bar. Based on your discussion I feel you do not clear this 
bar. You (rightly) mention events where the model would perform poorly and types of events for which you have no data. 
The performance of the model on the Haiti events show that the learned patterns are not fully transferable. 

AR: We agree that we cannot claim full transferability and have moderated our wording accordingly. For the Haiti event, 
the evaluation is less straightforward. The available inventory is point-based and does not provide information on 
landslide size, which limits the reliability of quantitative assessment. If many of the mapped landslides are smaller than 
5% of the patch, the model would fail to detect them due to scale limitations rather than poor transferability. In contrast, 
for the Sumatra event, landslide dimensions are available and the evaluation is more interpretable: when landslides are 
sufficiently large, the model detects them reliably. In Haiti, performance is stronger in high-density areas, which further 
suggests that transferability is not uniformly limited. We plan to revise the discussion to clarify these points. 

We are also re-digitizing the inventory using post-event Sentinel-2 imagery to create a polygon-based dataset, which 
will allow us to report quantitative scores. 

RC: Google earth engine (GEE): Google earth engine is a very powerful tool for accessing and combining datasets. 
However, it comes with challenges for future reproducibility of research. The platform may be discontinued, or datasets 
could be removed or changed. Relevant for this research in particular is that is likely the pre-processing done by GEE will 
be changed in the future. Furthermore, code syntax may change which could break scripts. For future reproducibility it 
is important to describe the entire pipeline in a way that could be reproduced without access to any of the cloud tools 
you used during this research. I do not feel like I would be able to do this with the information provided in this publication. 

AR: Thank you for raising this important point. We agree that relying on cloud platforms such as GEE can introduce long-
term reproducibility concerns, for example if APIs or pre-processing routines change. However, in our case the 
preprocessing relies on relatively low-level operations on Sentinel-1 data that can be replicated outside GEE (e.g., using 
SNAP or openEO) without major difficulty. Once the images are pre-processed, the subsequent steps in the pipeline 
(patch extraction, model training, and inference) are fully independent of the platform. We will clarify this in the 
manuscript to make it clear that while future API changes might require reimplementation, they would not affect the 
scientific reproducibility of the workflow. 

RC: Section 2.1 could probably be replaced by extending table 1. this would make the paper more concise and makes it 
easier to compare events. 

AR: We thank you for the suggestion. Section 2.1 has been replaced by an extended Table 1. 

RC: Line 128-130: No need for a reference if you explain the mechanism behind the revisit frequencies. 

AR: Thank you. We have removed it.  

RC: Line 134-137: If I understand correctly from the provided link, the pre-processing is part of the GEE dataset. You may 
present it as such. 

AR: Yes. We now state explicitly that all Sentinel-1 scenes used in this study had been pre-processed by the provider. 
We have kept the key details to ensure reproducibility even if the API changes in the future (as you also suggest in a 
previous comment).  

RC: Section 2.2: There should be a clear separation between the description of the Sentinel1 data/satellite and the 
dataset you used (GEE). 134-140 should probably have its own paragraph, or you may even add a section on 
preprocessing. 

AR: We thank the reviewer for this suggestion. We have clarified that the preprocessing mentioned in this section refers 
to the standard operations already applied to the Sentinel-1 scenes by the data provider, not to additional steps 
performed by us. The revised text now makes this distinction explicit. Since this clarification already improves 
readability, we consider the current structure sufficient and have kept the two parts within the same section to avoid 
fragmenting the paragraphs. 
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RC: Section 2.2: pre-processing should be part of the method. 

AR: Yes, good point. We have removed “and preprocessing” from the subsection title, since preprocessing is not 
performed by us but is part of the dataset description. Rather than moving the content, we plan to clarify this explicitly 
in the text. 

RC: Line 163: To me it is unclear which combinations result in 28 datasets. 

AR: We agree that this was unclear. The number results from 2 polarization combinations × 2 orbits × 10 temporal buffer 
combinations, but since this detail is not central to the study we have removed it from the text. 

RC: 179-184: You mention the percentage of pixels classified as landslides within your image influences model behaviour 
and performance. Why have you chosen 5%? And why not include this variable within hyperparameter optimization? 

AR: Thank you for this comment. We did not choose a higher threshold (e.g., 10%) because a 5% landslide coverage 
already corresponds to a relatively dense signal within a 64×64 patch (~0.02 km²). Increasing this proportion would limit 
the training set to patches almost entirely covered by landslides, rare situations that would bias the model toward 
learning unrealistic, “pure landslide” signatures and reduce its ability to generalize to mixed terrain.  

Conversely, lowering the threshold (e.g., to 1–2%) is not constrained by SAR detectability per se, but by signal reliability. 
At 10 m resolution, smaller landslides often fragment across pixels and mix with stable terrain, producing scattered, 
incoherent backscatter responses that the model cannot learn from effectively (see figure below, from figure 6). The 
5% value thus reflects a practical balance: it typically corresponds to several small landslides within the same patch, an 
arrangement to capture the characteristic texture of landslide-affected areas as well as than large isolated landslide 
features. 

 

RC: Another question I have here is if and how you include this category in the test data? Some of the false positives you 
find may actually be true positives. 

AR: In our study a false positive is defined at the patch level as a prediction where no mapped landslide pixels fall within 
the patch. In fact, while we use the >5% threshold to select landslide patches, we use = 0 to select the non landslide 
patches. So FP cannot be TP within the dataset. 

RC: Line 187: Note here that a larger bounding box increases the baseline chance of the box containing a landslide. 
Looking at Figure 3, randomly drawing a 64x64 box already gives decent odds of “finding” a landslide. A larger box 
makes it easier for the model to make correct prediction. 

AR: We agree that a larger bounding box increases the baseline chance of containing a landslide, but at the same time 
it reduces spatial precision (larger bounding box). Hence, we selected 64×64 as a trade-off between detection accuracy 
and localization detail. This corresponds to a 640x640 m bounding box. 

RC: Section3.1, dataset design: In the results, discussion and supplement sections you show the model can have same 
difficulties based on environmental variables such as the slope, aspect and land cover. What happens if you give this 
information to the model? 
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AR: We thank you for this interesting suggestion. In principle, adding variables such as slope, aspect, or land cover could 
help the model in specific cases, but it also risks reducing transferability by encouraging overfitting to terrain conditions 
present in the training events and their specific topographical signatures. In practice we have not tested this 
systematically for the current study. In earlier exploratory work on  single events, including slope information appeared 
beneficial (Nava et al., 2022a, Nava et al., 2022b), but since this was not across events it is not directly comparable. We 
will note this point in the discussion as a possible direction for future research. 

RC: Section 3.3: It would be very helpful to have a figure that represent the architecture of the neural network. The figure 
from the supplement should be in the paper. The model description in the text is not entirely clear. 

AR: We thank you for this comment. We increased clarity in the description of the model and we will add a figure 
showing the model architecture. 

We will add: Convolutional neural networks (CNNs) are widely used for image classification, including SAR applications 
(Nava et al., 2022b, Tang et al., 2021, Zhang et al., 2017, Zhou et al., 2022). Here, we use a lightweight CNN with three 
convolutional blocks. Each block consists of a convolution layer, batch normalization, and max pooling. The outputs of 
the three blocks are resized and concatenated to retain multi-level features. A dropout layer is then applied, followed 
by flattening and a fully connected layer. Finally, a single sigmoid unit outputs the binary classification. 

This design is a simplified adaptation of (Nava et al., 2022b). 

RC: Section 3.3: The architecture and reasoning behind the model may be of particular interest to the readers of the 
GMD journal. You can elaborate more on your choices in choosing this architecture, and why you decided to modify the 
model from your previous publication. Why not use a simpler or more complex setup? Especially because your model 
architecture was not part of your hyperparameter optimization. 

AR: We thank you for this comment. We also tested more advanced architectures from the literature, such as CBAM 
and ResNet, and found their performance to be comparable to our simple CNN (see Supplementary Materials). Given 
the lack of clear improvement, we preferred the simpler architecture for its usabitlity and efficiency. While it would be 
possible to keep testing alternative models indefinitely, we believe this would not add substantial insight for the present 
study. We will discuss this point in Discussion and report the comparison in the Supplement. 

RC: Line 200: Because this is the only place where you describe an activation function it seems like there is only one 
activation function within the network. I assume there are more. 

AR: We understand that the previous description was unclear. We have restructured and streamlined this section and 
revised the explanation of the network to clearly state the activation functions used. We agree the earlier version was 
confusing. 

RC: Training validation and test split (line 208-214): The main goal of this publication is to create a generalizable neural 
network to detect MLEs. However, the setup of the training, validation and test data is unfit for generalizability, because 
you validate, test and optimize your model with events the model has seen during training. 

The validation partition is used to determine when to stop training the model to prevent overfitting. But because the 
validation partition is sampled from the same events as your training partition you will keep training for a long time, 
seemingly without overfitting. However, the unknown events you are trying to predict are different from the known 
events in your training and validation partition; as a result, you have (significantly) overfitted your model to the training 
and validation and test data. A similar problem occurs with the hyperparameter optimization, where you are overfitting 
the hyperparameters to the known events. 

You have recognized this problem, and you have hidden 2 events from the model to evaluate the final performance. But 
by this point the model is already overfitted and overoptimized. This means there is performance left on the table. The 
paper does not contain metrics for the predictions on the unknown events, these should be included. Traditionally metrics 
on the unseen data are used to evaluate the generalizability of the model. If there is a large difference in model 
performance between the seen and unseen events the model generalizes poorly and vice versa. Such metrics allow the 
reader to judge the generalizability of the model. 
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To train a generalized model the training, validation and test should consist of different events, otherwise you are unable 
to recognize when the model or hyperparameter optimization is overfitting to your known events. The validation dataset 
can even be rotated such that every non-testing event has been used for validation. 

The method should be repeated while training, validating and testing your model with such a train/validation/test split. 
Consider adding a train + validation loss curve to your appendix or supplement. This allows the reader to see how you 
prevent overfitting the model and hyperparameters. 

Even with this setup full generalizability is difficult to prove as your dataset is missing data for various locations and 
environments. 11 events just are not enough data to support such a broad claim. 

AR: We agree that claiming full generalizability was too strong and have moderated our wording to “generalized to 
these cases.” We also agree that performance on unseen events is essential for assessing transferability; therefore, we 
now report quantitative metrics for the Sumatra and Haiti cases (see above). 

While we cannot fully exclude overfitting, several measures, including early stopping, dropout, and non-overlapping 
patch sampling, were applied to mitigate it. In addition, even within a single earthquake event, landslides occur under 
highly heterogeneous geological, geomorphological, and environmental conditions. For instance, the Papua New 
Guinea inventory includes debris flows, debris slides, and mudslides across markedly different lithologies such as 
limestones of the Darai Formation and volcaniclastics of the Kerewa and Sisa formations (Tanyas et al., 2022). This intra-
event variability exposes the model to a broad range of signal–response patterns, helping it learn features that are not 
tied to a single terrain type or event. 

We will revise the description of the data split in the Methods (Data partitioning) and clarify that the model generalizes 
to the tested cases. 

RC: Training data (table 1): How does the different number of landslides per event influence your training? Some 
landslides have a very low number of events, such as: Capellades, Milin, Mestas. Thus, learning to predict these events 
will be of little value for the model. Yet, learning these events may be crucial for generalizability. It is like a class 
imbalance, but for events instead of prediction classes. It may be interesting to experiment with some class imbalance 
techniques such as oversampling the data from the small events. 

AR: We agree with you that there is a population bias, as some events contribute hundreds of patches while others 
contribute thousands. Given the scarcity of available data we chose to use all events, despite this imbalance. We will 
acknowledge that this may influence model behavior and note in the discussion that exploring how event-level 
imbalance affects performance is an interesting direction for future work. 

RC: Hyperparameter optimization, Line 221: Testing only 2-3 values during hyperparameter optimization does not 
provide much insight into the effect of the hyperparameter on the model. Also, you are unlikely to find the (near) optimal 
configuration for any parameter. With the small range of values tested, you may as well have picked a value based on 
expert judgment. Consider increasing the range for the parameters you optimize, even if you must decrease the number 
of parameters you optimize. 

Currently there is no way for the reader to assess the sensitivity of the model to the choice in hyperparameters, consider 
adding a table/figure to the appendix or supplement. 

Essentially temporal buffer lengths are just another hyperparameter you have optimized. For the structure of the paper, 
it may be nice to have a section on hyperparameter optimization, including the temporal buffer lengths. 

AR: We thank you for this suggestion. In this study, we focused on testing a limited but representative set of 
hyperparameter values to ensure reproducibility and stable training. While exploring a wider search space may 
potentially yield marginal improvements, we expect only minor performance changes that would not alter our overall 
conclusions. Moreover, extensive optimization would require a prohibitive number of additional runs, with large 
computational costs, for little expected performance gain. We therefore consider the current level of hyperparameter 
testing sufficient for the purposes of this paper.  
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As for the temporal buffers, we acknowledge your point that they can be considered hyperparameters, but we 
emphasize that their role here is different: the choice of buffer length carries practical/operational value, since knowing 
which temporal configurations work best is directly adaptable to other studies attempting similar approaches (unlike 
the classic hyperparameters). 

RC: Section 3.4: The title does not provide much information on the contents of the section. 

AR: We agree. We have restructured the entire section / subsections.  

RC: Line 257: There is no table 3.1, you probably mean table 4? 

AR: Thank you for picking this up. Yes, we ment table 4.  

RC: Table 4: Considering the objective of you model for use in rapid assessment keeping a 12 day post event stack is 
probably a good decision. Even though model performance improves significantly with a longer post event stack 

AR: We agree. The choice of a 12-day post-event stack is dictated by Sentinel-1’s revisit time, but the key result is that 
increasing the post-event stack improves model performance. For missions with shorter revisit times, such as ICEYE 
(close to daily), a 12-day stack in our setup would correspond to less than one day, a 24-day stack to roughly two days, 
and so on, indicating that the trend we observe is directly transferable to those systems. Operationally, this also means 
that with Sentinel-1 we can generate preliminary maps immediately within 12 days and progressively refine them as 
additional acquisitions become available, with the most complete configuration ultimately providing the most reliable 
assessment. This time constraint will also soon improve within the Sentinel constellation itself, as Sentinel-1C is already 
in orbit and Sentinel-1D will be launched shortly. 

RC: Section 4.2: The performance of the VV models is significantly lower than the VV_VH models. Can this all be attributed 
to the inclusions of the extra datasets? 

AR: From our experiments and experience thus far, the difference is mainly due to the higher discriminative power of 
using two polarizations compared to one. Additional polarizations provide complementary information and help the 
model separate landslides from background more effectively. For instance, the VV channel is more sensitive to surface 
roughness (and soil moisture), while VH captures changes in volume scattering from vegetation. By the same reasoning, 
having access to four polarizations would likely yield further improvements. We will clarify this point in the discussion. 

RC: Section 4.2: Please provide metrics for the Sumatra and Haiti events. Also, a quantative analysis in addition to the 
qualitative analysis would be helpful. This provides a more objective way to assess the performance of the model in 
unseen situations. 

AR: We agree with you. For Sumatra we now provide quantitative metrics, which will be added to the revised 
manuscript. For Haiti, however, this was not possible since the available inventory is point-based and lacks polygon 
information, preventing us from applying the same sampling strategy. To solve this issue, we are now re-digitizing the 
inventory using post-event Sentinel-2 imagery to create a polygon-based dataset, which will allow us to report 
quantitative scores in the revised version of the manuscript. 

RC: Figure 3&4: The outline of the landslide inventory is difficult to see on the green and grey background. 

AR: We thank you for pointing this out. We have adjusted the figures by increasing the contrast so that the outlines are 
clearer against the background. 

RC: Figure 4: Why is the model failing to predict so many of the landslides on the eastern part of the island? 

RC: Line 266: It is may also be the case that the environment was poorly represented in the training data. Together with 
the aforementioned overfitting on the training data this can (partly) explain the poor performance of the model in this 
case. 
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RC: Line 268: It is also likely these overpredictions result from the model overfitting to the training data, where it has 
learned to associate some patters with landslides, that shouldn’t be. 

AR: These are all good points. The overall recall for the Haiti event is relatively low across both orbits (descending: 
precision = 0.81, recall = 0.48, F1 = 0.60; ascending: precision = 0.75, recall = 0.54, F1 = 0.63). This indicates that the 
model tends to miss a portion of true landslides rather than overpredicting, suggesting conservative rather than 
overfitted behavior. The low recall likely reflects the small size and sparse distribution of many landslides throughout 
the affected area, which makes them difficult to capture reliably with SAR at 10 m resolution. 

In Figure 4b, pronounced amplitude discrepancies are visible along ridge crests in the western part of the island. These 
variations are unlikely to correspond to true mass movements but instead arise from geometric inconsistencies between 
the pre- and post-event Sentinel-1 acquisitions. In this area, the two image stacks partially overlap different sub-swaths 
and therefore mix far- and near-range viewing geometries. The resulting difference in local incidence angle alters the 
backscatter response, producing patterns that resemble slope failures and leading to apparent overpredictions. This 
issue is not a sign of model overfitting but rather of inconsistent acquisition geometry. It highlights the need for change-
detection approaches that are robust to imperfect orbital overlap or, alternatively, for preprocessing routines that can 
identify and mask zones affected by such angular discrepancies. To mitigate this in operational applications, we are now 
updating the tool to isolate acquisitions from individual orbits when deploying the model. 

Overall, the model clearly loses some performance when applied to unseen events such as Haiti, which is expected in a 
cross-event evaluation. Despite this, the predictions seem to remain spatially coherent where satellite acquisitions 
overlap closely in space and time and capture many of the main landslide clusters. Given such results we can say that 
the model generalizes enough to be helpful in response to such MLEs.  
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RC: Section 5: I’d like to see some discussion (and quantification) about the performance of your SAR model against more 
traditional optical models; How does this relate to their applications? 

AR: We thank you for the suggestion. A detailed comparison with optical models is outside the scope of this paper. This 
topic is indeed interesting and important, and already covered in Nava et al. (2022a) and Nava et al. (2025) in actual 
disaster response, which we refer in the manuscript. 
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RC: Figure 6: Looking at the pixel contribution maps even the true positives are missing some of the landslides from the 
inventory. In the case of 6b the pattern of the pixel contribution is also different from the landslide. How accurate is the 
inventory? 

AR: We do not believe the main issue here is the accuracy of the inventory (although we acknowledge that some 
mapping errors may exist; which is normal), but rather the nature of SAR. While these inventories align well with optical 
imagery, SAR backscatter does not always overlap perfectly with mapped landslide polygons, despite filtering and 
corrections. This is a known characteristic of SAR data. We considered this carefully in our design, which bore a strong 
reason as to why we adopted a patch-based sampling strategy (with 5% threshold) and an object detection approach 
rather than segmentation. We will make this point clearer and apparent in the discussion. Thank you for helping us note 
this in the manuscript. 

RC: Figure 6: A True negative and a false positive may also provide some interesting insight into the workings of the 
model. 

AR: We agree this could provide additional insights. Given space constraints we have decided not added further 
subplots/figures. 

RC: Line 327: This statement should be supported and consistent with your results, not by a citation to another paper. 

AR: We agree. Citation removed. 

RC: Line 330: The model has difficulties in predicting landslides of the Haiti event. Your statement here seems inconsistent 
with your results. 

AR: Thank you for pointing this out. We agree that our original phrasing was unclear. The difficulties we showed for the 
Haiti event in the ascending orbit are not due to poor generalization of the model but stems from inconsistencies 
between the pre- and post-event acquisitions (likely geometric or correction issues). Since the ascending and 
descending data are trained with patches derived from the same inventories, their performance should be consistent. 
The example was mainly intended to illustrate how acquisition-related artifacts can occasionally degrade predictions, 
and that such instances should be considered/well planned for during operational uses. Importantly, the Haiti results 
overall remain positive, as the descending orbit performs well. 

To strengthen the analysis and avoid ambiguity, we are re-digitised the Haiti inventory using the first cloud-free Sentinel-
2 images after the earthquake. Sentinel-2 provides a spatial resolution comparable to Sentinel-1, making it more directly 
suitable for quantitative assessment. With this new inventory, we plan to provide updated maps and quantitative scores 
in the revision. Interestingly, many of the points in the eastern part of the island are not visible in Sentinel-2, which 
suggests they may also be absent in Sentinel-1, and hence out of the scope of this work. Please see as follows figures 
documenting this statement with Sentinel-2 images from 1st January 2022 as background.  
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RC: Line 331: In your discussion you mention there are various environments without a proper landslide inventory. This 
seems contradictory to the statement in this line. 
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AR: We thank you for pointing this out and agree. We now specify: “We aim to ensure robustness within the available 
data by training and evaluating the model across areas exhibiting diverse landslide occurrences and environmental 
variations, while recognizing that some environments remain underrepresented due to the lack of suitable inventories.” 

RC: Line 349: Why is this pixel threshold not part of hyperparameter optimization? 

AR: As noted above, we fixed the 5% threshold to maintain a consistent balance between landslide and non-landslide 
pixels while keeping the training manageable. Treating it as a hyperparameter would require a prohibitive number of 
additional experiments and would mostly shift the apparent performance, since higher proportions tend to inflate 
metrics without necessarily improving model usefulness or transferability. 

RC: Line 359: You mention there is no apparent bias given by the landcover. However, figure S2 shows a much higher 
False negative and False positive rate for herbaceous vegetation and open forest compared to closed forest. For these 
landcovers the False negative and False positive rate is higher than the True positive and True negative rate; It seems 
that for herbaceous vegetation and closed forests the model performs worse than chance. 

AR: We thank you for this observation which indeed is a very interesting angle.. We will add a note in the discussion to 
acknowledge this and to highlight it as an open question for future investigation. Overall, these higher error rates in 
herbaceous and open forest areas are difficult to attribute to a single factor. They likely reflect a combination of 
increased backscatter variability, partial canopy effects, and inventory limitations, which together make landslides 
harder to detect reliably in such environments. 

RC: Line 361-370: Interesting section about the impact of slope on the classification Section 5.3: How about additional / 
improved landslide inventory datasets? 

AR: We thank the reviewer for the suggestion. Our study uses all available landslide inventories that met the following 
criteria:(i) Sentinel-1 data were available in both orbits, (ii) the inventory provided complete coverage, which was 
necessary to reliably sample the non-landslide class (many open-source inventories have only partial coverage and 
therefore could not be used), (iii) the landslides were mapped as polygons, allowing proper sampling for training, and 
(iv) the landslides were earthquake-triggered, matching the focus of this study. 

While additional inventories would of course be welcomed, the dataset we used already satisfies all of these criteria 
and represents a high-quality basis for the analysis. 

RC: A2&A3: In the figure it is not clear what configuration you have decided to use. 

AR: We thank the reviewer for the comment. Figures A2 and A3 display the results for all tested configurations; no 
additional filtering or selection was applied. 

RC: A2&A3: Separate metrics for final predictions on the unseen data should also be added. (could also be separate, or 
part of the next suggestion) 

AR: We thank the reviewer for the suggestion. We will add the quantitative scores for the final predictions on the unseen 
data in the revised manuscript.  

SUMATRA: 
Descending orbit: 912 negatives, 89 positives 
 Accuracy: 0.9481 
 Precision: 0.7229 
 Recall: 0.6742 
 F1-score: 0.6977 
 
Ascending orbit: 874 negatives, 94 positives 
 Accuracy: 0.9556 
 Precision: 0.7629 
 Recall: 0.7872 
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 F1-score: 0.7749 

HAITI: 

Descending orbit: 4620 negatives, 462 positives 
Accuracy : 0.9425 
Precision: 0.8148 
Recall   : 0.4762 
F1-score : 0.6011 
 
Ascending orbit: 4680 negatives, 468 positives 
Accuracy : 0.9415 
Precision: 0.7449 
Recall   : 0.5427 
F1-score : 0.6279 

RC: Appendix: A classification confusion matrix of prediction from the final model on the test data and the unseen data 
would be interesting addition. 

AR: We thank the reviewer for the suggestion. We will include confusion matrices for the final model in the appendix 
alongside the reported metrics. 

RC: Corrections.  

AR: We thank the reviewer for pointing these out. All suggested corrections will be implemented in the revised 
manuscript. 
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