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Abstract 20 

While paleoclimate simulations have been a priority for Earth system modelers over the past 21 

three decades, little attention has been paid to the period between the mid-Holocene and the Last 22 

Millennium, although this is an important period for the emergence of complex societies. Here, 23 

we consider the climate of 2500 BP (550 BCE), a period when compared to late preindustrial 24 

time, greenhouse gas concentrations were slightly lower, and orbital forcing led to a stronger 25 

seasonal cycle in high latitude insolation. To capture the influence of land cover on climate, we 26 

asynchronously coupled the NASA GISS ModelE Earth system model with the LPJ-LMfire 27 

dynamic global vegetation model. We simulated global climate and assessed our results in the 28 

context of independent paleoclimate reconstructions. We also explored a set of combinations of 29 

model performance parameters (bias and variability) and demonstrated their importance for the 30 

asynchronous coupling framework. The coupled model system shows substantial vegetation 31 

albedo feedback to climate. In the absence of a bias correction, while driving LPJ-LMfire in the 32 

coupling process, ModelE drifts towards colder conditions in the high latitudes of the Northern 33 

Hemisphere in response to land cover simulated by LPJ-LMfire. A regional precipitation 34 

response is also prominent in the various combinations of the coupled model system, with a 35 

substantial intensification of the Summer Indian Monsoon and a drying pattern over Europe. 36 

Evaluation of the simulated climate against reconstructions of temperature from multiple proxies 37 

and the isotopic composition of precipitation (δ18Op) from speleothems demonstrated the skill of 38 

ModelE in simulating past climate. A regional analysis of the simulated vegetation-climate 39 

response further confirmed the validity of this approach. The coupled model system is sensitive 40 

to the representation of shrubs and this land cover type requires particular attention as a 41 

potentially important driver of climate in regions where shrubs are abundant. Our results further 42 

demonstrate the importance of bias correction in coupled paleoclimate simulations.  43 
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1. Introduction 44 

Earth system models (ESMs) are widely applied in paleoclimate experiments as an “out of 45 

sample” exercise to evaluate the overall quality of the model, and to better understand climate 46 

system responses to external forcings. In many paleoclimate modeling studies, it has been 47 

demonstrated that inclusion of biogeophysical and biogeochemical feedbacks between land and 48 

atmosphere feedbacks are essential to simulate the magnitude and spatial pattern of climate 49 

change that is consistent with independent reconstructions (Betts, 2000; Claussen, 1997; Cox et 50 

al., 2000; Doherty et al., 2000; Strandberg et al., 2014). The importance of land-atmosphere 51 

feedbacks for past climate has shown particularly to be true in the context of the mid-Holocene 52 

and last glacial inception periods (Braconnot et al., 2012; Collins et al., 2017; Harrison et al., 53 

2015; Jahn et al., 2005; Kubatzki and Claussen, 1998; Sha et al., 2019; Shanahan et al., 2015; 54 

Tierney et al., 2017). For example, for the African Humid Period of the mid-Holocene, numerous 55 

studies demonstrated that greenhouse gases (CO2, N2O, CH4) and orbital forcing are alone not 56 

sufficient for models to simulate climate that is consistent with independent paleoclimate 57 

reconstructions. The inclusion of land-atmosphere feedbacks via interactive dynamic vegetation 58 

modeling or prescribed vegetation distributions helps improves model-proxy discrepancies 59 

(Chandan and Peltier, 2020; Charney, 1975; Dallmeyer et al., 2021; Pausata et al., 2016; 60 

Rachmayani et al., 2015; Singh et al., 2023; Thompson et al., 2021; Tiwari et al., 2023; 61 

Velasquez et al., 2021). For this reason, more recent protocols (PMIP4; Otto-Bliesner et al., 62 

2017) for simulations of the mid-Holocene specify that the land cover boundary condition should 63 

include shrub vegetation in northern Africa with greater extent than the present (the so-called 64 

“Green Sahara”), as well as an expansion of trees and shrubs at high northern latitudes. 65 

  66 

Instead of prescribing land cover boundary conditions in an earth system model, it may be 67 

desirable to employ a coupled model where that allows interaction between climate and 68 

vegetation. While several modern earth system models include a dynamic representation of land 69 

cover, in climate models (regional and global) that lack a coupled dynamic vegetation 70 

component a well-established technique to capture land-atmosphere feedbacks is to use 71 

asynchronous coupling. In this type of coupling, climate model output is used to drive an offline 72 

vegetation model that then returns a land cover boundary condition to the climate model.  73 
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To quantify the feedback between land and atmosphere and improve the fidelity of the 74 

paleoclimate simulation, asynchronous coupling typically involves running a climate model 75 

simulation for a period of a few decades, after which the mean climate state is passed to a 76 

vegetation model that in-turn produces a land cover boundary condition for the climate model. 77 

This process is repeated until climate reaches equilibrium, defined as insignificant changes in 78 

key outputs, e.g., 2m temperature, from one cycle to the next.  79 

 80 

Texier et al. (1997) used the iterative asynchronous coupling between the LMD Atmospheric 81 

General Circulation Model (AGCM) and the BIOME1 vegetation model to produce an improved 82 

climate for the mid-Holocene (6ka) period and found that inclusion of land-atmosphere 83 

feedbacks led to simulations of temperatures at high latitudes and precipitation over West Africa 84 

that were more consistent with independent paleoclimate reconstructions compared to 85 

atmosphere-only simulations. de Noblet et al. (1996) used a similar coupling to highlight the role 86 

of biogeophysical feedback in glacial initiation around 115ka ago. Asynchronous coupling has 87 

also been used with regional climate models (RCMs). Kjellstrom et al. (2008) and Velasquez et 88 

al. (2021) both used asynchronous coupling between an RCM and land cover model to simulate 89 

the climate of Europe at the Last Glacial Maximum. Both studies demonstrated the importance 90 

of land cover in improving the agreement with reconstructions and paleoenvironmental proxies. 91 

 92 

This study has two objectives. First, we present a generalized design for asynchronously 93 

coupling the NASA GISS ModelE2.1 climate model (Kelley et al., 2020) with the LPJ-LMfire 94 

DGVM (Pfeiffer et al., 2013) to simulate climate including biogeophysical land-atmosphere 95 

feedbacks. Second, we demonstrate the utility of this asynchronous coupling framework for a 96 

paleoclimate period that has not been the traditional focus of paleoclimate modeling (2.5 ka) and 97 

evaluate the model results against independent paleoclimate reconstructions for that period. 98 

 99 

2.5 ka represents a time that is nearest to the present day among the different periods selected 100 

under the coordinated effort of the Paleoclimate Model Intercomparison Project (PMIP4). It is 101 

interesting because it represents an important period for the emergence of complex societies 102 

across Eurasia (Iron Age, Classical Antiquity, early Imperial China) and elsewhere. During this 103 

era, favorable climate conditions around the Mediterranean might have influenced the emergence 104 
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of the golden age of Greece, the Roman classical period, and other empires of the Southern 105 

Europe, North Africa, and southwest Asia (Lamb, 1982; Reale and Dirmeyer, 2000). On the 106 

other hand, adverse climate conditions due to volcanic eruptions and a series of arid phases 107 

during this period may have had a negative impact on Egyptian civilization around the Nile and 108 

Mesopotamian civilization around the Euphrates and Tigris rivers. 2.5ka is thus a key period for 109 

the study of human-environment interactions and the history of climate and society, where we 110 

may assess societal vulnerability to climate change (Ludlow and Manning, 2021; Manning et al., 111 

2017; Mikhail, 2015; Petit-Maire and Guo, 1998; Singh et al., 2023). 112 

 113 

We evaluate the climate of 2.5 ka simulated with the ModelE-LPJ asynchronous coupling 114 

framework against multi-proxy temperature reconstructions (Kaufman et al., 2020) and 115 

additionally utilize the model’s capabilities to simulate the isotopic composition of water in 116 

precipitation (𝛿18Op) to compare with the Speleothem Isotope Synthesis and Analysis (SISAL) 117 

version 2 database (Comas-Bru et al., 2020). 118 

 119 

2. Models and Methodology 120 

2.1.1 NASA GISS ModelE2.1: NASA GISS ModelE2.1 (Kelley et al., 2020), is the climate model 121 

of the NASA Goddard Institute for Space Studies (GISS) currently used in Climate Model 122 

Intercomparison Project (CMIP) phase 6 (Eyring et al., 2016). We used the NINT (Non-123 

Interactive; physics version 1 in CMIP6) GISS ModelE2.1 version where aerosols and ozone are 124 

precomputed from the prognostic, but much more computationally demanding, chemistry and 125 

aerosols version of the model OMA (One Moment Aerosols; physics version 3 in CMIP6; (Bauer 126 

et al., 2020)). In our simulations, the GISS ModelE2.1 atmosphere has a horizontal resolution of 127 

2°x2.5° (latitude/longitude) with 40 vertical layers, and the top of the atmosphere at 0.1 hPa. The 128 

ModelE2.1 atmosphere has a smooth transition from sigma layers to constant pressure layers 129 

centered at 100hPa. The atmosphere is coupled to the GISS Ocean v1 model, which runs at a 130 

resolution of 1°x1.25° (latitude/longitude) with 40 depth layers to the ocean bottom. While the 131 

biogeophysical properties of land cover are simulated with the Ent Terrestrial Biosphere Model 132 

(Ent TBM; Kiang 2012; (Kim et al., 2015)), as part of ModelE2.1 (Ito et al., 2020), Ent relies on 133 

a prescribed vegetation map and as such does not simulate changes in land cover over time. To 134 

capture the influence of climate change on land cover and biogeophysical feedbacks between land 135 
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and atmosphere, asynchronous coupling with LPJ-LMfire (or any other DGVM) is currently 136 

required. 137 

 138 

2.1.2 LPJ-LMfire: We used the LPJ-LMfire DGVM (v1.4.0) to simulate the land cover 139 

boundary conditions in our experiments. LPJ-LMfire (Kaplan et al., 2022; Pfeiffer et al., 2013) is 140 

an evolution of LPJ (Sitch et al., 2003) and is a process-based, large-scale representation of plant 141 

growth and decay, vegetation demographics and ecological disturbance, and water and carbon 142 

exchanges between the land and the atmosphere. For this study, we simulated land cover 143 

boundary conditions at a horizontal resolution 0.5°x0.5°. LPJ-LMfire is driven by monthly fields 144 

of climate (temperature, precipitation, cloud cover, wind, and lightning), static maps of 145 

topography and soil texture, and an annual global value of atmospheric CO2 concentration. LPJ-146 

LMfire simulates land cover in the form of fractional coverages of nine plant functional types 147 

(PFTs), including tropical, temperate, and boreal trees, and tropical and extratropical herbaceous 148 

vegetation (Table 1). CO2, soil texture and topography data used to drive LPJ-LMfire are 149 

described in Pfeiffer et al. (2013, Table 3). For 2.5ka simulations, we set atmospheric CO2 150 

concentrations to 271.4 ppm (Krumhardt and Kaplan, 2012).  The sum of PFT fractional cover 151 

per grid box does not need to equal unity; when it is less than one the remainder is considered 152 

bare ground. 153 

  154 
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Table 1: - Summary of climate and PFT variables exchanged between NASA GISS ModelE and 157 

LPJ-LMFire model for asynchronous coupling process. Column 1 and 2 shows lists the output and 158 

input climate variables from GISS ModelE to LPJ-LMFire models, whereas the columns 3 and 4 159 

lists the output and input plant function types (PFTs) from LPJ-Lmfire to GISS ModelE.  160 

 161 

2.2. 2.5ka Simulation setup (ModelE)  162 

We started the 2.5ka and preindustrial (PI) control experiments following the PMIP4 and CMIP6 163 

protocols (Eyring et al., 2016; Kageyama et al., 2018). The PI simulation uses preindustrial (year 164 

1850) GHG concentrations and a modern continental configuration and serves as the reference 165 

experiment for designing the boundary conditions for past time slices studied in PMIP4. GHG and 166 

orbital forcings for the preindustrial (PI) control experiment correspond to levels observed in 167 

1850 CE (CO2: 284 ppm, N2O: 273 ppb, CH4: 808 ppb). For the 2.5 ka control experiment, orbital 168 

parameters (Berger et al., 2006) were specified for 2,500 years BP (~550 BCE), and greenhouse 169 

gas CO2, N2O, and CH4 were set to ~279 ppm, ~266 ppb, and 610 ppb respectively (Loulergue et 170 

al., 2008; Otto-Bliesner et al., 2017; Schneider et al., 2013; Siegenthaler et al., 2005). We 171 

considered only natural emissions as sources of aerosols in the atmosphere, zeroing-out any 172 

anthropogenic contribution to aerosol and aerosol precursors. For biomass burning, in the absence 173 

of any better estimate, we assumed that the emissions provided by CEDS (Hoesly et al., 2018) for 174 

the year 1750 are all natural. Land cover consists of the fractional coverages of 13 plant functional 175 

types (PFTs) and includes vegetation height and leaf area index (LAI). For the PI and initial (0th 176 

order) simulations, land cover type and monthly-varying LAI were derived from satellite (MODIS) 177 

data (Gao et al., 2008; Kattge et al., 2011; Myneni et al., 2002; Tian et al., 2002a, b; Yang et al., 178 

2006) and vegetation heights from (Simard et al., 2011). We also used the mid-Holocene (6k) 179 

vegetation under PMIP4 protocol, which is linearly interpolated to 2.5ka period and details of 180 

vegetation cover changes (Singh et al., 2023; Figure S1) and associated impacts on the northern 181 

hemisphere climate due to the inclusion of scaled PMIP4 vegetation using the interactive chemistry 182 

version of NASA GISS ModelE2.1 (MATRIX) are discussed in (Singh et al., 2023). 183 

 184 

2.3 Asynchronous Coupling Framework  185 

The asynchronous coupling between ModelE and LPJ-LMfire is summarized in Figure 1. For each 186 

iteration, ModelE simulated climate is used by LPJ-LMfire, which, returns the PFT fractional 187 

8

https://doi.org/10.5194/gmd-2024-219
Preprint. Discussion started: 17 December 2024
c© Author(s) 2024. CC BY 4.0 License.



cover, LAI, and vegetation height that are used as boundary conditions for the next ModelE 188 

simulation. 189 

 190 
 191 

Figure 1: Flow diagram for the asynchronous coupling between GISS ModelE2.1 and LPJ-LMfire 192 

models. For the climate fields input to LPJ-LMfire refer to (Table 1, Column 1) and LPJ-LMfire 193 

PFTs (Table 1, Column 3) 194 

 195 

2.3.1 GISS ModelE2.1 simulations: Climatological monthly mean climate (Table 1, Column 1) 196 

for a 100-year period were extracted from a well equilibrated ModelE simulation. To assess 197 

interannual variability with monthly resolution, we calculated the standard deviation of the decadal 198 

mean data for each month across the 100-year equilibrium period. 199 

2.3.2. LPJ-LMfire simulations: All climate variables except diurnal temperature range, wet days, 200 

and lightning density were provided directly from the ModelE output. For derived climate 201 

variables, the additional processing steps are described below. 202 

 203 

Diurnal temperature range was calculated as the difference of the monthly-mean daily maximum 204 

and minimum temperatures as simulated by ModelE. Wet days were calculated from modelled 205 

precipitation based on an empirical relationship between present-day monthly total precipitation 206 
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and the number of wet days per month. To quantify this relationship, we performed a nonlinear 207 

regression between monthly total precipitation and number of days with measurable precipitation 208 

using the CRU TS 4.0 gridded climate fields (Harris et al., 2020). Using those data, we developed 209 

a set of regression coefficients for every land gridcell that allowed us to estimate wet days for any 210 

paleoclimate period based only on monthly total precipitation. Lightning density was estimated 211 

based on modelled convective mass flux following Magi (2015).  212 

 213 

Because LPJ-LMfire requires a timeseries of interannually varying climate forcing to run, we 214 

processed the climatological monthly mean climate produced by the ModelE for use with the 215 

vegetation model. In brief, ModelE climate was converted into anomalies by differencing the 216 

paleoclimate simulation with ModelE simulated climate for the late 20th century (1951-2000). The 217 

resulting climate anomalies were linearly interpolated to a 0.5°x0.5° grid and added to a baseline 218 

climate based on observations over 1951-2000. The resulting climatology was expanded to a 1020-219 

year-long time series by adding interannual variability in the form of detrended and randomized 220 

climate anomalies from the 20th Century Reanalysis (Compo et al., 2011). For further details on 221 

this process, see (Hamilton et al., 2018). Because LPJ-LMfire is computationally inexpensive, we 222 

ran each simulation for 1020 years. While the composition and characteristics of aboveground 223 

vegetation comes into equilibrium with climate after a few centuries of simulation, a millennium-224 

long simulation brings the terrestrial carbon pools into equilibrium as well. The land cover 225 

boundary conditions returned to the climate model represent the mean modeled vegetation cover 226 

over the final 250 years of the LPJ-LMfire simulation. 227 

 228 

2.3.3. LPJ-LMfire to GISS ModelE vegetation mapping: LPJ-LMfire simulates land cover in 229 

the form of nine PFTs, while in GISS ModelE the vegetation component (Ent TBM) recognizes 230 

13 PFTs. We mapped the LPJ-LMfire generated PFT cover, LAI, LAIMAX, and vegetation height 231 

to the GISS ModelE2.1 (Ent) PFTs in order to feed it to the ModelE (Table 1, Column 3 & 4). The 232 

main points for the LPJ-LMfire to GISS vegetation mapping are the following: 233 

 234 

- Early and late-successional PFTs were approximated from the LPJ-LMfire output using 235 

the model simulated fire frequency and monthly burned area fraction. However, because 236 

successional state is indistinguishable in the satellite-driven reference vegetation for the 237 
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historical period used as the boundary condition for ModelE, we combined early & late 238 

successional PFTs in our simulations.  239 

- LPJ-LMfire does not have a specific PFT for shrubs (arid and cold), while Ent does. To 240 

estimate shrub cover in LPJ-LMfire, we used LPJ-LMfire simulated tree height for the 241 

tropical broadleaf raingreen, temperate broadleaf summergreen, and boreal summergreen 242 

PFTs and specified that trees with height lower than a predefined threshold were considered 243 

to be shrubs (Table S1).  244 

- Ent has an Arctic grass PFT while LPJ-LMfire does not. To estimate Arctic grass cover we 245 

used the C3 grass PFT in LPJ-LMfire and specified it as Arctic grass in regions where the 246 

boreal summergreen PFT was also present. LPJ-LMfire also does not distinguish between 247 

annual and perennial grasses, and so to map these to Ent we assumed that these were 248 

present in equal fractions among the simulated C3 grass in the LPJ-LMfire simulation. 249 

- The non-vegetated fraction of a grid cell is assigned to the bare soil, and the distribution of 250 

bright and dark soil color heterogeneity is classified/redistributed based on the present-day 251 

structure of soils over a grid cell. 252 

 253 

Of particular importance to our coupled model simulations was that the PFTs simulated by LPJ-254 

LMfire do not explicitly include a shrub type. To approximately distinguish tree from shrub cover, 255 

we generated three LPJ-to-GISS mapping schemes that differed on how shrubs are specified. A 256 

set of possible changes in various PFT classifications are adopted based on the comparison with 257 

GISS vegetation distribution and categorized the mapping methodologies. These mappings, 258 

summarized in table S1, differ in the height threshold of trees to be re-categorized as cold and arid 259 

shrubs, and the fraction of perennial grass re-categorized into perennial and arctic grasses. Also, 260 

the monthly leaf area index (LAI) and vegetation height readjusted using the weighted mean for 261 

remapped LPJ-LMfire vegetation PFTs. 262 

 263 

2.3.4. Step 4. Post-processing of vegetation files: LPJ-LMfire model generates output at a 264 

horizontal resolution of 0.5°x0.5°. We resampled the output vegetation information to the 265 

2.0°x2.5° grid used by ModelE2.1, In a few cases, land cover extrapolated using a nearest-neighbor 266 

approach was to cover all the gridcells identified as land in the ModelE standard land-sea mask.  267 

 268 
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3 Experimental Design 269 

Apart from evaluating the framework for the PI control period, we designed a set of experiments 270 

to evaluate various aspects of the simulated climate, including model bias, and variability in both 271 

the climate vegetation models. For example, one known limitation in the current version of 272 

ModelE is a wintertime cold bias over the Arctic in simulations covering the historical period 273 

(Kelley et al., 2020). 274 

 275 

Table 2 shows the combinations of the model metrics selected to explore the utility of the 276 

asynchronous coupling framework and their impact on simulated climate. Run names are 277 

designated using Time (1850, 2.5k), Vegetation source (PI, GS), Bias Correction (BC) and 278 

Interannual Variability (LPJ, GISS) separated by “_”. For example, ‘1850_PI_ctrl’ and 279 

‘2.5k_PI_ctrl’ denote the 1000-year-long PI and 2.5k runs with GISS PI vegetation. GS stands for 280 

Green Sahara and PI = Pre-Industrial. An “x” denotes the absence of a particular criterion (default 281 

state). Runs ‘2.5k_PI_BC_LPJ’, ‘2.5k_PI_x_x’, and ‘2.5k_PI_x_GISS’ are three branches 282 

extended from ‘2.5k_PI_ctrl’ with the combinations of bias correction and interannual variability 283 

from LPJ and GISS models. For the ‘2.5k_GS_x_GISS’ and ‘2.5k_GS_BC_GISS’ simulations, 284 

we initialized the land cover boundary conditions to approximate 2.5 ka by linearly interpolating 285 

cover fractions between the 6 ka land cover prescribed under the PMIP4 protocol (Otto-Bliesner 286 

et al., 2017) and the PI reference dataset. Details of the 6 ka land cover boundary conditions under 287 

for PMIP4 and associated impacts on Northern Hemisphere climate using the interactive chemistry 288 

version of NASA GISS ModelE2.1 (MATRIX) are discussed by (Singh et al., 2023). 289 

  290 
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Table 2: - Summary of experiment designs followed to explore and evaluate the GISS ModelE -291 

LPJ-LMFire model asynchronous coupling framework. See text for an explanation on the run 292 

naming convention. 293 

Run Name Initial 

Vegetation 

Cover 

Bias 

 

correc

tion 

Interannual 

Variability 

Number of 

Iterations/tot

al number of 

years 

Remark 

1850_PI_ctrl Used to evaluate the LPJ to GISS vegetation mapping schemes 

2.5k_PI_ctrl 1000-year-long control; base run to branch out the other simulations 

2.5k_PI_BC_LPJ GISS PI 

vegetation 

YES LPJ 5/750 years converged 

2.5k_PI_x_x GISS PI 

vegetation 

No No 2/270 years Too cold 

in 3rd 

iteration 

diverging 

2.5k_PI_x_GISS GISS PI 

vegetation 

No GISS ModelE 

(100years) 

4/550 years Too cold 

diverging 

2.5k_GS_x_GISS GISS PI 

vegetation + 

Green Sahara+ 

Boreal Forest 

No GISS ModelE 

(100years) 

5/1150 years Too cold 

diverging 

2.5k_GS_BC_GISS GISS PI 

vegetation + 

Green Sahara+ 

Boreal Forest 

YES GISS ModelE 

(100years) 

4/1000 years converged 

* Convergence means the final model simulation has a similar climatology with the previous 294 

iteration, whereas divergence means the model is drifting away from the expected states. 295 

 296 

  297 
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3.1 Evaluation & Validation of LPJ-GISS Mapping Methodologies 298 

We used the standard present-day land cover boundary conditions described for ModelE2.1 299 

(Kelley et al., 2020) for the initial 0th-order iteration of the pre-industrial and 2.5ka control 300 

climate simulations. This land cover dataset is based on satellite observations (Gao et al., 2008; 301 

Myneni et al., 2002; Tian et al., 2002a, 2002b; Yang et al., 2006) from the Moderate Resolution 302 

Imaging Spectroradiometer (MODIS), with leaf area index (LAI) from the TRY database (Kattge 303 

et al. 2011), and vegetation height (Simard et al. 2011) from the Geoscience Laser Altimeter 304 

System (GLAS). Branches of the 2.5ka run for green Sahara conditions are started using the 305 

linearly interpolated vegetations for 2.5ka from the 6ka vegetation distribution defined based on 306 

the PMIP4 protocol (Otto-Bliesner et al., 2017; Singh et al., 2023). These land cover boundary 307 

conditions are shown as the fractional coverage of 13 PFTs (including bare soils) (Figs. S1.A and 308 

S1.B). In these figures, bare dark and bare bright are merged into a single bare soil fractional 309 

cover. 310 

 311 

The ModelE2.1 pre-industrial (PI) control run initialized with the present-day land cover boundary 312 

condition is processed through the asynchronous coupling framework to evaluate the mapping 313 

scheme for converting LPJ PFTs to GISS (Ent) PFTs. We tested three sets of LPJ-to-GISS 314 

mapping schemes as required in the asynchronous coupling framework. Differences among the 315 

mapping schemes are described in supplementary table TS1. Three parallel control runs are 316 

performed for 100 years, each initialized with the vegetation distribution that corresponds to the 317 

corresponding mapping scheme and compared to the mean climate state of the parent PI control 318 

run. 319 

 320 
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 321 
Figure 2. Comparison of seasonal mean climate metrics when using different vegetation mapping 322 

schemes with that of the origin PI control. Top row shows the mean climatology for precipitation 323 

(mm/day; JJAS), surface air temperature (°C; ANN) and ground albedo (%; ANN) and row 2 to 4 324 

differences in mean climate for LtoG_M0, LtoG_M1 and LtoG_M2, respectively. 325 

 326 

The mapping schemes LtoG_M1 and LtoG_M2 (supplementary table TS1) generate a similar 327 

spatial structure of annual surface air temperature with broadly similar regional characteristics 328 

(Fig. 2). A shift towards colder climates of 2-3 °C in mean annual temperature over the higher 329 

latitudes of the Northern hemisphere is simulated when using the mapping scheme LtoG_M0, 330 

which is not present when using the other mapping schemes (LtoG_M1 and LtoG_M2). We 331 

selected forests into shrubs to match the missing PFTs in ModelE vegetation distributions based 332 

upon the tree height (Table S1). In these mapping schemes, the fraction of boreal tree PFTs 333 

assigned to cold shrubs depends on simulated tree height, which is, in turn, influenced by surface 334 

temperature (Thomas and Rowntree, 1992; Bonan et al., 1992; 2008; Li et al., 2013). In the 335 
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mapping LtoG_M0, the fractional cover of boreal tree PFTs was reduced significantly, leading to 336 

an increase in ground albedo (up to 10%), which led to the model drifting towards comparatively 337 

colder climate conditions. When using the other two mapping schemes (LtoG_M1 and 338 

LtoG_M2) the assignment of boreal tree PFTs to shrub types is limited by a higher tree height 339 

threshold and partially because other PFTs (perennial grass) are substituted for cold shrubs. 340 

Regional patches of increased ground albedo and surface cooling over the higher latitudes of the 341 

Northern Hemisphere are also evident when using the LtoG_M1 and LtoG_M2 translation 342 

schemes.  343 

 344 

Precipitation during the Northern Hemisphere summer monsoon season (JJAS; June-July-345 

August-September) appears similar among the three mapping schemes, as the larger changes are 346 

confined to the equatorial regions. A drying pattern over Europe appears in all three translation 347 

schemes, but it is comparatively more substantial under LtoG_M0 and LtoG_M1 than LtoG_M2. 348 

 349 

All translation schemes also lead to increased precipitation over equatorial South America. 350 

Annual mean river runoff for the Amazon River is simulated at 305, 297, and 308 km3/month for 351 

LtoG_M0, LtoG_M1 and LtoG_M2, respectively, a slight improvement to the original 352 

Preindustrial (PI) run runoff of 280 km3/month with using the standard present-day land cover 353 

boundary condition. Compared to observations, ModelE2.1 shows a substantial deficit in 354 

Amazon River runoff in present-day simulations because of insufficient precipitation over the 355 

watershed (Fekete et al., 2001; Kelley et al., 2020).  356 

 357 

Based on this evaluation of the different ways of translating LPJ PFTs to GISS PFTs, we found 358 

that LtoG_M2 was the scheme that simulates global precipitation and surface temperature most 359 

consistent with observations, and ground albedo that is closest to the standard pre-industrial 360 

boundary conditions dataset used usually used to drive ModelE. Figure 3 shows the difference in 361 

PFT cover fraction using LPJ-LMfire with the LtoG_M2 scheme compared to the standard 362 

ModelE boundary condition land cover data set for the late preindustrial time (PI; 1850 CE). 363 

Compared to the ModelE standard land cover dataset for PI, LPJ-LMfire simulates increased 364 

extent and fraction of most trees (drought broadleaf, evergreen needleleaf, and evergreen 365 

broadleaf). Despite selecting a relatively high threshold for tree height to be classified as shrubs 366 
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(up to 11 meters for both arid and cold types) the simulated cover fraction of shrubs is low 367 

compared to the standard PI land cover dataset for ModelE. The coverage of both annual and 368 

perennial C3 grasses is greater in LPJ-LMfire in extratropical and polar regions, similarly, C4 369 

grasses, which are not present in cooler climates, shows greater coverage in LPJ-LMfire in 370 

equatorial regions. LPJ-LMfire simulates some vegetation cover in the Sahara and Arabian 371 

deserts while the standard PI boundary conditions dataset suggests that most of this region is 372 

bare soil. 373 

 374 

 375 
Figure 3. Differences between the LPJ-LMfire simulated vegetation distribution (PFTs and land 376 

cover type) and satellite-based land cover boundary conditions used in ModelE for PI control 377 

period under the selected mapping schemes (LtoG_M2). 378 

 379 

3.3 Vegetation Cover Changes under various combinations 380 
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We chose a set of five model configurations (Table 2) to quantify the model bias and interannual 381 

variability in our asynchronous coupling framework for the 2.5ka period. Figures S2.A, S2.B, 382 

S2.C, S2D, and S2.E show the spatial differences between prescribed land cover boundary 383 

conditions maps and land cover interactively simulated by our LPJ-LMfire-ModelE coupled 384 

model, which is henceforth referred to as the “coupled model system”. These land cover 385 

difference maps are shown for each of the different model configurations described above, 386 

following the final iteration of the asynchronous coupling when the coupled model system is 387 

assumed to be either equilibrated or the process was truncated due to instability (Table 2). 388 

Figures S2.A, S2.B, and S2.C show the changes in the land cover from the default ModelE land 389 

cover boundary conditions map for PI (Fig S1.A); Figures S2.D and S2.E show the differences 390 

calculated from the modified vegetation following the PMIP4 protocols (Fig S1.B). 391 

 392 

Across all configurations, most of the tree PFTs show an increase in cover in the coupled model 393 

system relative to the prescribed land cover maps. However, in simulations where bias correction 394 

to the climate model was not applied, deciduous needleleaf tree cover is reduced in the high 395 

latitudes of the Northern Hemisphere (2.5k_PI_x_x, 2.5k_PI_x_GISS and 2.5k_GS_x_GISS) 396 

and this, in turn, has a substantial impact on regional climate. The coupled model system 397 

simulates increased annual and perennial C3 grass cover across all configurations relative to the 398 

prescribed maps, while the Arctic C3 grass shows a mixed regional response. Increased C4 grass 399 

cover is mostly confined to the equatorial region and Southern Hemisphere; over the Northern 400 

Hemisphere C4 grass cover decreases, irrespective of the inclusion and exclusion of interannual 401 

variability or bias correction. As discussed previously, the extent of arid and cold shrubs is 402 

reduced significantly in the coupled model system relative to the prescribed maps, even when the 403 

threshold height to separate trees shrubs was set at a relatively tall limit of 11 m. A similar 404 

reduction in shrub cover relative to the land cover map used to initialize the simulation 405 

vegetation distributions is also simulated under all configurations. 406 

 407 

In Figures 4 and 5 we present heatmap-type diagrams of the mean land cover fraction over 408 

selected regions to demonstrate and understand the pattern of change in vegetation distribution 409 

simulated by the coupled model system. These figures depict changes in land cover under the 410 

different asynchronous coupling experimental configurations used in this study. Vegetation 411 
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fraction changes averaged over northern Asia (NAS) (Fig. 4) and eastern Africa (Fig. 5; see Fig. 412 

9 for the region boundaries; NAS: magenta; EAF: blue). Deciduous needleleaf tree cover over 413 

northern Asia (60°N-77°N, 70°E-135°E) is replaced by bare soil in all experimental 414 

configurations where bias correction of the climate model output was not applied. A similar 415 

disappearance of evergreen needleleaf late-successional forests, as well as a quick disappearance 416 

(within the first iteration) of cold shrubs, was also noticed. This suggests that, in the absence of 417 

bias correction the model’s drift towards colder conditions strongly influences vegetation growth 418 

in subsequent iterations over higher latitudes, which is inconsistent with the standard land cover 419 

boundary condition dataset used with ModelE (Kelley et al., 2020). On the other hand, when bias 420 

correction is applied along with interannual variability from either model (2.5K_PI_BC_LPJ and 421 

2.5K_GS_BC_GISS), boreal forests are present in the northern Asia region along with cold 422 

shrubs and grasses. 423 

 424 

 425 
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Figure 4. Area average of fractional land cover over Northern Asia (60°N-77°N, 70°E-135°E) 426 

under the range of experimental configurations used in this study. 427 

 428 

Over eastern Africa (EAF: 0° N-18° N, 25° E-46° E) the impact of bias correction is less 429 

important than over the high latitudes of the Northern Hemisphere. The presence of broadleaf 430 

tree PFTs (drought broadleaf and evergreen broadleaf) and C4 grasses is consistent across all the 431 

experimental configurations we used. However, the cover fraction arid shrubs decreased 432 

substantially, associated with a slight increase in the bare soil fraction. 433 

 434 

 435 
Figure 5. Same as Figure 4A, but for eastern Africa (0°N-18°N, 25°E-46°E). 436 

 437 

4. Global climate response  438 

To evaluate the spatial features of the equilibrium climate simulated by ModelE, we analyzed the 439 

last 100 years of the final iteration of each coupled model system experimental configuration. We 440 
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aimed to understand the biogeophysical feedback due to vegetation cover changes as well as the 441 

role of model configuration on climate. Figure 6 shows surface albedo (%) for ModelE in its initial 442 

PI state, and differences between this initial state and simulated albedo for 2.5ka using the coupled 443 

model system. We used student’s t-tests to estimate if the albedo differences were statistically 444 

significant at 95% confidence interval. The coupled model system shows substantial vegetation 445 

cover change over the high latitudes of the Northern Hemisphere. As expected, most of the 446 

significant changes occur over land, while changes in albedo over the oceans are largely 447 

insignificant. The spatial pattern of albedo change differs between simulations where bias 448 

correction was applied (2.5k_PI_BC_LPJ and 2.5k_GS_BC_GISS) and those where it was not 449 

(2.5k_PI_x_x, 2.5k_PI_x_GISS, and 2.5k_GS_x_GISS). Albedo over the high latitudes of the 450 

Northern Hemisphere decreases up to 10% caused by increased tree cover fraction (deciduous 451 

needleleaf and evergreen needleleaf) in the coupled model system relative to standard PI land 452 

cover dataset. 453 

 454 

 455 
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Figure 6. Annual mean (top left; 2.5k_PI_ctrl) and change (all other panels) of surface albedo (%) 456 

for the various configurations listed in Table 2. Stippling indicates the region over which change 457 

is statistically insignificant at a 95% confidence interval (student’s t-test).  458 

 459 

This increased tree cover fraction subsequently absorbs more incoming solar radiation and raises 460 

surface temperature by 2-4 °C over high latitude regions compared to the control run (Fig. 7 top-461 

right and bottom-right panels). In experiments where bias correction was not applied 462 

(2.5k_PI_x_x, 2.5k_PI_x_GISS and 2.5k_GS_x_GISS), the relatively cold conditions simulated 463 

by the coupled model system shows an opposite albedo-vegetation response (> 3 °C cooling over 464 

Northern Hemisphere high latitudes). This strong drift towards a colder climate in the absence of 465 

bias correction resulted in the continuous formation of sea ice that ultimately reaches the 466 

(shallow) seabed, effectively creating land ice and eliminating the ocean from the gridcell. In 467 

coupled model system experiments without bias correction, we terminated the iterative processes 468 

when this freezing of the ocean to the seabed occurred, because this condition caused the model 469 

to crash (2.5k_PI_x_x, 2.5k_PI_x_GISS, and 2.5k_GS_x_GISS).  470 

 471 

At lower latitudes, albedo tends to show decreases relative to the standard boundary conditions 472 

in all experiments, particularly over the forested areas of the equatorial regions and temperate 473 

latitudes of the Northern Hemisphere. Over the northern Africa and the Indian subcontinent 474 

changes in both albedo and surface temperature are more mixed. Albedo change in central and 475 

northern Africa driven by a reduction in the area occupied by shrubs and an increase in bare soil 476 

fraction. This pattern of increased albedo is more prevalent in simulations that were initialized 477 

with Green Sahara land cover boundary conditions. 478 

 479 
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 480 
Figure 7. Same as figure 6 for Surface air temperature (°C) mean and change on an annual scale 481 

(ANN season).  482 

 483 

In experiments that were initialized with “Green Sahara” land cover boundary conditions where 484 

interannual variability from GISS ModelE is included with and without adopting the bias 485 

correction, comparison of the surface temperature response between simulations with 486 

(2.5k_GS_x_GISS; Figure 7, bottom-left) and without bias correction (2.5k_GS_BC_GISS; 487 

Figure 7, bottom-right) reveal the significance of bias correction for the asynchronous coupling 488 

process. Broadly, we can observe that bias correction induces a warming of 0.7-0.8 °C, and 489 

exclusion leads to a cooling of 0.9-1.1 °C, at the global scale, predominantly over the northern 490 

hemisphere land regions.  491 

 492 

Precipitation change across the model configurations is shown for Northern Hemisphere summer 493 

(JJAS) at global scale in Figure 8. The significance of bias correction is noticeable over the high 494 
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latitudes of the Northern Hemisphere. Simulations with bias correction (2.5k_PI_BC_LPJ, 495 

2.5k_GS_BC_GISS) lead to an increase in JJAS season precipitation relative to the initial 496 

boundary conditions, while those experiments without bias correction (2.5k_PI_x_x, 497 

2.5k_PI_x_GISS) show reductions in precipitation. Reductions in precipitation relative to initial 498 

conditions are visible in Europe in all configurations and are greater in experiments where bias 499 

correction was not applied. Another common feature among the experiments was the variable 500 

spatial pattern of JJAS precipitation change over tropical regions. All configurations showed 501 

increased precipitation over south and east Asia. Over the Nile headwaters in East Africa 502 

(Melesse et al., 2011) precipitation increased, particularly in those experiments where bias 503 

correction was applied. Interestingly, increased Northern Hemisphere summer monsoon 504 

precipitation season (JJAS) over the Asian continent was simulated across all configurations. In 505 

contrast, only a marginal northward procession of ITCZ over tropical Africa was simulated. 506 

 507 

 508 
 509 
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Figure 8. Same as figure 6 for precipitation (mm/day) mean and change on an annual scale (JJAS 510 

season).  511 

 512 

4.1 Regional climate 513 

The spatial pattern of changes in climatic features for 2.5ka using our coupled model system 514 

shows several prominent and robust regional signatures of climate change. We selected nine 515 

regions over land (Fig. 9; Table 3) to analyze regional temperature and precipitation changes in 516 

our simulations. Area-averaged time-series anomalies with respect to the 2.5ka control run 517 

(2.5k_PI_ctrl) for the various experiments performed are calculated for these different regions.  518 

 519 

 520 
 521 

Figure 9. Boundaries for the regions used for regional analysis. The inset map shows the Nile 522 

River basin in high resolution, which is superimposed upon the ModelE resolution to generate 523 

the grid-specific weights for the Nile River basin. The EAF and AUS regions are used in 524 

Figs. 4A and 11.  525 

 526 

  527 
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Table 3: - Regions details including the boundary co-ordinates for all the regions. 528 

Region  

 

(long name) 

Region  

 

(short name) 

Region 

boundary 

(Latitudes) 

Region 

boundary 

(Longitudes) 

North America NAM 30°-50° N 115°-85° W 

Amazon Rainforest Region AMZ 0°-18° S 37°-70° W 

Northern Asia (Siberia) NAS 60°-77° N 70°-135° E 

North Africa NAF 15°-35° N 15° W-20° E 

Europe EUR 40°-60° N 5° W-45° E 

Indian Region IND 15°-30° N 70°-90° E 

Nile River Basin Nile 5° S-31° N 21°-41° E 

East Africa EAF 5°-15° N 25°-45° E 

Australia AUS 20°-30° S 120°-150° E 

 529 

Figure 10 shows box-and-whisker plots of mean and median annual surface temperature (top) 530 

and JJAS seasonal precipitation (bottom) change, as well as the 5-95 percentile range along with 531 

the upper and lower quartiles (25th and 75th percentiles) of the anomaly time series for each 532 

region. As suggested from the global analyses of spatial patterns, the shift towards relatively 533 

warmer or colder climate as a result of applying bias correction is evident. Bias correction leads 534 

to strong warming over northern Asia (NAS region) of 3-4 °C, while without bias correction this 535 

region cools by 5-6 °C. The partition between experiments with and without bias correction is 536 

also apparent over selected regions of the mid-latitudes between 35°-60° N (NAS and EUP). 537 

 538 

Except for northern Asia (NAS), all regions show approximately similar interannual variability 539 

in mean annual surface temperature. In northern Asia interannual variability is greater, especially 540 

in simulations where bias correction was not applied. Our results show that interannual 541 

variability in summer temperature in northern Asia is sensitive to changes in land cover, with 542 

greater variability in simulations where bias correction was not applied.  543 

 544 
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 545 
Figure 10. Regional change in surface air temperature (top panel, °C, annual mean) and 546 

precipitation (bottom panel, %, JJAS) for the various simulations with respect to the 2.5ka control 547 

run (2.5k_PI_ctrl). Regions name as listed in table 3.  548 

 549 

Simulated 2.5ka precipitation for the Northern Hemisphere summer (JJAS) shows substantial 550 

changes in mean state relative to the 2.5ka control with PI vegetations, particularly for the 551 

tropical regions of northern Africa, India, and the Nile basin (Fig. 10, bottom panel). Interannual 552 

variability in precipitation is comparable to the initial control run (black line). However, the 553 

magnitude of variability differs across the regions; it is more prominent in tropical regions than 554 

in the extratropics. An increase in mean precipitation of order of 20-30% without bias correction 555 

and up to 40% with bias correction is simulated in JJAS season precipitation for the Indian 556 

summer monsoon region (IND and it is in a range of 10-25% increase over the Nile basin region. 557 

A drying pattern over Europe (EUR) ranges from 10-25% and is consistent for all the 558 

simulations; a greater decrease in European precipitation was simulated when bias correction is 559 
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not adopted. A similar drying pattern was also simulated over the North America (NAM) and 560 

northern Africa (NAF) regions. The relatively small magnitude of interannual variability in 561 

precipitation over Europe and North America suggests that model does not produce high 562 

variability across these regions and that it is not sensitive to the different experimental 563 

configurations. Despite the large changes in both mean state and variability in temperature, 564 

precipitation over northern Asia (NAS) changes little from the control state and across 565 

simulations. In the Amazon region (AMZ), precipitation changes were small and not 566 

significantly different between simulations. Without bias correction, the coupled model system 567 

suggests a modest increase in mean seasonal precipitation up to 10%. We also noticed a similar 568 

response of slightly increased precipitation in Southern Hemisphere summer (DJF) over 569 

Australia (not shown here).  570 

 571 

We further investigated the way our experiments influenced the seasonal cycle of temperature 572 

and precipitation over the regions discussed above. Our results show that the seasonal cycle of 573 

surface temperature is broadly similar across experiments for all the equatorial regions except the 574 

Amazon (AMZ) region, where surface temperature is reduced by 0.5 °C in experiments where 575 

bias correction was not applied (Fig. S3). Over the northern Asia (NAS) region, we see a 576 

considerable difference in the seasonal cycle of temperature of 5-15 °C between runs with and 577 

without bias correction. The seasonal cycle of temperature in the 2.5ka control (2.5k_PI_ctrl) 578 

simulation over NAS is intermediate to the experiments but tracks closer to the simulations 579 

where bias correction was applied, particularly in Northern Hemisphere winter, where, as noted 580 

above, simulations without bias correction result in very cold conditions in this region. 581 

 582 
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 583 
Figure 11. Seasonality of precipitation averaged over the selected regions. 584 

 585 

Compared to temperature, the seasonal cycle of precipitation shows greater differences among 586 

simulations over several of the regions (Fig. 11). An increase of 2-3 mm/day over the Indian 587 

region (IND) is simulated during the Indian Summer Monsoon months (JJAS) when using LPJ-588 

LMfire-generated land cover for both types of experiments (with and without bias correction), 589 

with the bias-corrected simulations showing a larger increase in precipitation than the non-bias-590 

corrected ones. When bias correction is applied, the seasonal peak of precipitation shifts from 591 

July to August. Over Europe, we observe a decrease of up to 0.5 mm/day in summer 592 

precipitation relative to the control simulation in all simulations that use the LPJ-LMfire PFTs. 593 

Precipitation decreases even more when the bias correction was not applied. The North Africa 594 

region (NAF) also shows a slight decrease in precipitation relative to the control over most of the 595 

seasonal cycle, while in North America (NAM) we see an increase in precipitation outside of the 596 

JJAS summer months. The Amazon rainforest region (AMZ) shows no change in the seasonal 597 

cycle of precipitation in all experiments. The Nile River basin (Nile) and Australian (AUS) 598 
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regions also show small increases in precipitation relative to the control in their respective 599 

monsoon seasons (JJAS and DJF). 600 

 601 

5.0 Comparison with paleoclimate-proxy records for 2.5ka 602 

To evaluate the coupled model system’s skill in representing past climate, we compared our 603 

simulations for 2.5ka with multiproxy temperature reconstructions and speleothem-based oxygen 604 

isotope records. 605 

 606 

5.1 Comparisons with reconstructed temperature 607 

Kaufman et al. (2020) used five different statistical methods to reconstruct temperature at 1319 608 

globally distributed sites covering part or all or Holocene from a range of proxy types. For each 609 

method, a 500-member ensemble of plausible reconstructions was presented. For comparison 610 

with our model output, we extracted temperature anomalies for 2.5ka (relative to the value 611 

reconstructed for the late preindustrial Holocene) from the ensemble reconstructions which we 612 

binned into six latitude bands between the North and South Poles (each 30 degrees wide). We 613 

computed the mean and median zonal anomaly using all 500 estimates of mean surface 614 

temperature (MST) over each band for each of the five methodologies (total 2500), along with 615 

the 5-95 percentile interval to represent uncertainty/variability among the sites in the zone and 616 

across reconstruction methods (black bar in Figure 12) as suggested (Kaufman et al. 2020). 617 

 618 
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 619 
Figure 12: Comparison of model simulated annual surface temperature anomalies and interannual 620 

variability for 2.5ka (with LPJ-LMfire vegetation) against the independent proxy-based 621 

temperature reconstructions (black, Kaufman et al., 2020). Mean (circle), median (line) along with 622 

5-95 percentile range as variability bars (whiskers) and different colors represent our different 623 

experiments.  624 

 625 

On global mean and in all latitude bands except the most southern one, proxy reconstructed 626 

surface temperature is slightly warmer at 2.5ka relative to the late preindustrial. Model 627 

simulations where bias correction was not applied show colder conditions than the 628 

reconstructions globally and in the Northern Hemisphere. These differences between model and 629 

proxy are very large in the high latitudes of the Northern Hemisphere and statistically significant 630 

throughout the extra-tropics. In the Southern Hemisphere, the differences between model and 631 

proxy reconstructions are smaller and insignificant, and there is less difference between 632 

simulations with and without bias correction. It should be noted that the larger uncertainty in 633 

reconstructed temperature over the southern polar band is due to a noticeably lower number of 634 

available proxy records (157 records; Kaufman et al., 2020). 635 

 636 
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5.2 Comparisons with speleothem oxygen isotope ratios 637 

ModelE2.1 includes a representation of the stable water isotopologues as passive tracers and the 638 

isotopic composition of precipitation can be diagnosed from the model output. We compared the 639 

simulated mean annual isotopic composition of precipitation (δ18Op) with oxygen isotope records 640 

from the Speleothem Isotope Synthesis and Analysis (SISAL) version 2 database (Comas-Bru et 641 

al., 2020). Using the published chronologies for each speleothem record we extracted all samples 642 

dated between 3-2 ka, which resulted in 163 measurements from 111 sites. Depending on their 643 

mineralogy (i.e., calcite or aragonite), the mean δ18O values (VPDB) were converted to their drip 644 

water equivalents that could be compared to simulated δ18Op (VSMOW) (Comas-Bru et al., 645 

2020). We used simulated mean surface air temperature obtained from the grid points nearest 646 

each cave sites to estimate the cave temperature required to convert mineral δ18O to an 647 

equivalent the drip water value. For each of our model experiments, we extracted simulated 648 

δ18Op nearest to each cave site and compared it with the estimated drip-water δ18O.  649 

Overall, the mean δ18Op spatial distribution in all 2.5ka simulations is in excellent agreement 650 

with the proxies, showing better pattern correlations (rpat) than 0.83 (Figure 13), with 651 

the 2.5k_PI_x_x iteration marginally showing the highest skill (i.e., rpat = 0.85 and RMSE = 652 

1.90; shown in supplementary Fig S4). For comparison, the worst simulation using this metric, 653 

2.5k_GS_BC_GISS, is almost as equally skillful (rpat = 0.84 and RMSE = 1.92; Fig. S4), 654 

demonstrating that none of the different configurations we presented here were significantly 655 

different. 656 

 657 
Figure 13. Comparison of simulated δ18Op with speleothem δ18O. Left: global distribution (70° S-658 

70° N) of simulated δ18Op (background) and speleothem δ18O (circles), converted to their drip 659 

water equivalents (see text) for the 2.5k_PI_ctrl simulation. Right: scatterplots between simulated 660 

and proxy δ18Op. Black line represents the least squares regression fits to data points while the gray 661 
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dashed line represents the 1:1 line. rpat and RMSE are reported in the lower right corner of the 662 

scatterplot. For comparison against each model experiment, see Fig. S4 663 

 664 

Regionally, we similarly found that most simulations show no significant deviation with each 665 

other (Figure 14, Figure 15). We note, however, that over Europe (Figure 15E), variability may 666 

be explained by the observed change in magnitude on both SAT and summer precipitation 667 

among simulations (Figure 7, 8, 10). Over India and Central Asia (Figure 15F), simulations with 668 

bias correction show lower correlation and higher RMSE values compared to other models 669 

against proxy δ18Op. This is likely related to the observed increase in mean summer precipitation 670 

over this region (Figure 10) that were not reflected in the proxy sites. 671 

   672 

Compared to proxy δ18Op, simulations over certain regions show better agreement. Europe, 673 

which is the most densely sampled region, show the best agreement with the proxies (i.e., high 674 

correlation, closest to the reference point, Figure 15E) with the 2.5k_PI_x_GISS iteration best 675 

capturing the spatial δ18Op pattern (i.e., rpat = 0.94 and RMSE = 1.26). In contrast, simulations 676 

over Central America, South America and Africa show the least skill where the magnitude of 677 

δ18Op change are consistently underestimated (i.e., moderate to high correlation but farthest away 678 

from the reference point).  This may largely be due to inadequate sampling in these regions, 679 

especially for Africa, and/or both precipitation and SAT influencing δ18O may be underestimated 680 

at these proxy locations, resulting in a generally muted δ18O response across simulations. Cave-681 

specific factors that alter speleothem δ18O (e.g., groundwater mixing, fractionation, (Baker et al., 682 

2019; Hartmann and Baker, 2017; Lachniet, 2009) are also not effectively reproduced in the 683 

models, contributing to the proxy-model mismatch. Regions where the largest simulated SAT, 684 

precipitation, and δ18Op change relative to the 2.5k_PI_ctrl are observed, such as northern Africa, 685 

the Amazon basin and Siberia, are not adequately represented by reconstructions, highlighting 686 

the need to expand the proxy network to marine-based records and polar regions over the period 687 

of interest to capture the full range of isotopic variation. 688 
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 689 
Figure 14. Demarcation of each geographical region. Labels A to J correspond to the respective 690 

Taylor diagram plots in Figure 15.  691 

34

https://doi.org/10.5194/gmd-2024-219
Preprint. Discussion started: 17 December 2024
c© Author(s) 2024. CC BY 4.0 License.



 692 

35

https://doi.org/10.5194/gmd-2024-219
Preprint. Discussion started: 17 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 15. Taylor diagrams showing the r, SD and RMSE values between the proxy-derived and 693 

simulated 𝛿18Op for each 2.5k iteration globally (A) and at each subregion (B to J). Subregions are 694 

demarcated in supporting figure 14. 695 

6.0 Discussion and Conclusions 696 

Here we presented a generalized technical framework for asynchronously coupling a climate 697 

model (NASA GISS ModelE2.1) with a dynamic vegetation model (LPJ-LMfire) i.e., the “coupled 698 

model system”, and demonstrate its skill in reconstructing climate in the late preindustrial 699 

Holocene and for 2.5ka. We examined the role of bias and interannual variability corrections in 700 

this process, and showed how they influence simulated land cover and climate. We demonstrated 701 

the importance of considering such metrics in such a framework in our experimental design and 702 

global and regional scale analyses. We performed a detailed evaluation and comparison of the 703 

climate simulated by the coupled model system with reconstructions of air temperature (Kaufman 704 

et al., 2020) and the isotopic composition of precipitation (δ18Op) based on speleothems (Comas-705 

Bru et al., 2020). Similarly to previous studies that used asynchronous coupling to simulate 706 

regional and global paleoclimate ( Kjellstrom et al., 2008; Texier et al., 1997; Noblet et al., 1997; 707 

Velasquez et al., 2021; Claussen, 2009; Strandberg et al., 2011, 2014), we assessed the influence 708 

of the biogeophysical feedback between land and atmosphere. 709 

Our results demonstrate the strong influence of including bias correction when passing simulated 710 

climate to the land surface model. To correct biases inherent in the climate model, in selected 711 

experiments we passed climate anomalies relative to a control simulation to the land model that 712 

were added to a standard baseline climatology based on contemporary observations. In simulations 713 

without this bias correction, raw simulated climate was passed directly from ModelE to LPJ-714 

LMfire. Where bias correction was applied ModelE drifts towards warmer climate; simulations 715 

without bias correction drift towards colder climate. This effect was especially apparent in the high 716 

latitudes of the Northern Hemisphere, particularly over Asia. With bias correction, high latitude 717 

vegetation is dominated by tree plant functional types, while without it, cold shrubs and arctic 718 

grasses are the predominant form of land cover. These results are characteristic of the well-known 719 

vegetation-albedo feedback that is important at high latitudes (Charney et al., 1977; Charney, 720 

1975; Doughty et al., 2012, 2018; Pang et al., 2022; Stocker et al., 2013; Swann et al., 2010; Zeng 721 

et al., 2021). 722 

 723 
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The effects of bias correction on precipitation were less apparent and confined to regional scale. 724 

We simulated a greater Indian summer monsoon season (JJAS) precipitation with bias correction 725 

(>1 mm/day), and a nominal increase of ~0.5 mm/day across east China, Africa, and the North 726 

American monsoon region. In other regions, the patterns of precipitation change were similar 727 

across all experiments except for Europe where drier conditions are simulated in summer (up to –728 

1 mm/day) in simulations where bias correction was not applied.  729 

 730 

The high latitudes of the Northern Hemisphere were also the region with the largest disagreement 731 

between model and independent, multi-proxy temperature reconstructions. These comparisons 732 

also highlighted the important role of bias correction; experiments with correction were much more 733 

similar to reconstructions than those without. Simulations of the isotopic composition of 734 

precipitation (δ18Op) shows an excellent agreement with speleothem records with a pattern 735 

correlation greater than 0.8. However, the difference in the magnitude of model simulated δ18Op 736 

from proxies over various regions indicates an underestimation of relationship between surface 737 

temperature and δ18Op variability (Henderson et al., 2006; Kurita et al., 2004). A global evaluation 738 

of model skill is hindered by the difference in the number of independent paleoclimate 739 

reconstructions available for different regions, particularly in north Asia where we see the greatest 740 

sensitivity of the coupled model system to the experimental setup. When examining modeled and 741 

reconstructed δ18Op, in Europe, which is the region with the greatest number of records, we see a 742 

stronger pattern correlation with lower RMS values as compared to other regions.  743 

 744 

In this study, we confirmed the importance of the land surface for simulating paleoclimate, even 745 

for the late Holocene where land surface conditions were not as different from present as they were 746 

during, e.g., the last glacial cycle or even mid-Holocene. We demonstrated that asynchronous 747 

coupling can be a computationally inexpensive way of capturing land-atmosphere feedbacks and 748 

improving the fidelity of the simulated climate. We noted that correcting bias present in the climate 749 

model is essential for simulating climate that is consistent with independent reconstructions, 750 

particularly for the high latitudes of the Northern Hemisphere. Future work with the coupled model 751 

system will include quantification of the influence of major volcanic eruptions for regional and 752 

global paleoclimate (Singh et al., 2024, in preparation) and the influence of past climate on the 753 

dynamics of complex civilizations in prehistory. 754 
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Code/Data availability 755 

Details to support the results in the manuscript is available as supplementary information is 756 

provided with the manuscript. GISS Model code snapshots are available at 757 

https://simplex.giss.nasa.gov/snapshots/ (National Aeronautics and Space Administration, 2024), 758 

LPJ-LMFire (https://zenodo.org/records/5831747), and important codes, calculated diagnostics as 759 

well as other relevant details are available at zenodo repository 760 

(https://doi.org/10.5281/zenodo.13626434) (Singh et al., 2024). However, raw model outputs data 761 

and codes are available on request from author due to large data volume.   762 
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Short Summary 786 

This study presents and demonstrates an experimental framework for asynchronous land-787 

atmosphere coupling using the NASA GISS ModelE and LPJ-LMfire models for the 2.5ka period. 788 

This framework addresses the limitation of NASA ModelE, which does not have a fully dynamic 789 

vegetation model component. It also shows the role of model performance metrics, such as model 790 

bias and variability, and the simulated climate is evaluated against the multi-proxy paleoclimate 791 

reconstructions for the 2.5ka climate. 792 

 793 

References 794 

Baker, A., Hartmann, A., Duan, W., Hankin, S., Comas-Bru, L., Cuthbert, M. O., Treble, P. C., 795 
Banner, J., Genty, D., Baldini, L. M., Bartolomé, M., Moreno, A., Pérez-Mejías, C., and Werner, 796 
M.: Global analysis reveals climatic controls on the oxygen isotope composition of cave drip 797 
water, Nat Commun, 10, 2984, https://doi.org/10.1038/s41467-019-11027-w, 2019. 798 

Bauer, S. E., Tsigaridis, K., Faluvegi, G., Kelley, M., Lo, K. K., Miller, R. L., Nazarenko, L., 799 
Schmidt, G. A., and Wu, J.: Historical (1850–2014) Aerosol Evolution and Role on Climate 800 
Forcing Using the GISS ModelE2.1 Contribution to CMIP6, Journal of Advances in Modeling 801 
Earth Systems, 12, e2019MS001978, https://doi.org/10.1029/2019MS001978, 2020. 802 

Berger, A., Loutre, M. F., and Mélice, J. L.: Equatorial insolation: from precession harmonics to 803 
eccentricity frequencies, Climate of the Past, 2, 131–136, https://doi.org/10.5194/cp-2-131-2006, 804 
2006. 805 

Betts, R. A.: Offset of the potential carbon sink from boreal forestation by decreases in surface 806 
albedo, Nature, 408, 187–190, https://doi.org/10.1038/35041545, 2000. 807 

Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, 808 
A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data, 809 
Nature Clim Change, 2, 417–424, https://doi.org/10.1038/nclimate1456, 2012. 810 

Chandan, D. and Peltier, W. R.: African Humid Period Precipitation Sustained by Robust 811 
Vegetation, Soil, and Lake Feedbacks, Geophysical Research Letters, 47, e2020GL088728, 812 
https://doi.org/10.1029/2020GL088728, 2020. 813 

Charney, J., Quirk, W. J., Chow, S., and Kornfield, J.: A Comparative Study of the Effects of 814 
Albedo Change on Drought in Semi–Arid Regions, Journal of the Atmospheric Sciences, 34, 815 
1366–1385, https://doi.org/10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2, 1977. 816 

Charney, J. G.: Dynamics of deserts and drought in the Sahel, Quarterly Journal of the Royal 817 
Meteorological Society, 101, 193–202, https://doi.org/10.1002/qj.49710142802, 1975. 818 

Claussen, M.: Modeling bio-geophysical feedback in the African and Indian monsoon region, 819 
Climate Dynamics, 13, 247–257, https://doi.org/10.1007/s003820050164, 1997. 820 

39

https://doi.org/10.5194/gmd-2024-219
Preprint. Discussion started: 17 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Collins, J. A., Prange, M., Caley, T., Gimeno, L., Beckmann, B., Mulitza, S., Skonieczny, C., 821 
Roche, D., and Schefuß, E.: Rapid termination of the African Humid Period triggered by 822 
northern high-latitude cooling, Nat Commun, 8, 1372, https://doi.org/10.1038/s41467-017-823 
01454-y, 2017. 824 

Comas-Bru, L., Atsawawaranunt, K., Harrison, S., and members, S. working group: SISAL 825 
(Speleothem Isotopes Synthesis and AnaLysis Working Group) database version 2.0, 826 
https://doi.org/10.17864/1947.256, 2020. 827 

Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Acceleration of global 828 
warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184–187, 829 
https://doi.org/10.1038/35041539, 2000. 830 

Dallmeyer, A., Claussen, M., Lorenz, S. J., Sigl, M., Toohey, M., and Herzschuh, U.: Holocene 831 
vegetation transitions and their climatic drivers in MPI-ESM1.2, Climate of the Past, 17, 2481–832 
2513, https://doi.org/10.5194/cp-17-2481-2021, 2021. 833 

Doherty, R., Kutzbach, J., Foley, J., and Pollard, D.: Fully coupled climate/dynamical vegetation 834 
model simulations over Northern Africa during the mid-Holocene, Climate Dynamics, 16, 561–835 
573, https://doi.org/10.1007/s003820000065, 2000. 836 

Doughty, C. E., Loarie, S. R., and Field, C. B.: Theoretical Impact of Changing Albedo on 837 
Precipitation at the Southernmost Boundary of the ITCZ in South America, Earth Interactions, 838 
16, 1–14, https://doi.org/10.1175/2012EI422.1, 2012. 839 

Doughty, C. E., Santos-Andrade, P. E., Shenkin, A., Goldsmith, G. R., Bentley, L. P., Blonder, 840 
B., Díaz, S., Salinas, N., Enquist, B. J., Martin, R. E., Asner, G. P., and Malhi, Y.: Tropical forest 841 
leaves may darken in response to climate change, Nat Ecol Evol, 2, 1918–1924, 842 
https://doi.org/10.1038/s41559-018-0716-y, 2018. 843 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: 844 
Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design 845 
and organization, Geoscientific Model Development, 9, 1937–1958, 846 
https://doi.org/10.5194/gmd-9-1937-2016, 2016. 847 

Fekete, B. M., Vörösmarty, C. J., and Lammers, R. B.: Scaling gridded river networks for 848 
macroscale hydrology: Development, analysis, and control of error, Water Resources Research, 849 
37, 1955–1967, https://doi.org/10.1029/2001WR900024, 2001. 850 

Gao, F., Morisette, J. T., Wolfe, R. E., Ederer, G., Pedelty, J., Masuoka, E., Myneni, R., Tan, B., 851 
and Nightingale, J.: An Algorithm to Produce Temporally and Spatially Continuous MODIS-852 
LAI Time Series, IEEE Geoscience and Remote Sensing Letters, 5, 60–64, 853 
https://doi.org/10.1109/LGRS.2007.907971, 2008. 854 

Hamilton, D. S., Hantson, S., Scott, C. E., Kaplan, J. O., Pringle, K. J., Nieradzik, L. P., Rap, A., 855 
Folberth, G. A., Spracklen, D. V., and Carslaw, K. S.: Reassessment of pre-industrial fire 856 
emissions strongly affects anthropogenic aerosol forcing, Nat Commun, 9, 3182, 857 
https://doi.org/10.1038/s41467-018-05592-9, 2018. 858 

40

https://doi.org/10.5194/gmd-2024-219
Preprint. Discussion started: 17 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-859 
resolution gridded multivariate climate dataset, Sci Data, 7, 109, https://doi.org/10.1038/s41597-860 
020-0453-3, 2020. 861 

Harrison, S. P., Bartlein, P. J., Izumi, K., Li, G., Annan, J., Hargreaves, J., Braconnot, P., and 862 
Kageyama, M.: Evaluation of CMIP5 palaeo-simulations to improve climate projections, Nature 863 
Clim Change, 5, 735–743, https://doi.org/10.1038/nclimate2649, 2015. 864 

Hartmann, A. and Baker, A.: Modelling karst vadose zone hydrology and its relevance for 865 
paleoclimate reconstruction, Earth-Science Reviews, 172, 178–192, 866 
https://doi.org/10.1016/j.earscirev.2017.08.001, 2017. 867 

Henderson, K., Laube, A., Gäggeler, H. W., Olivier, S., Papina, T., and Schwikowski, M.: 868 
Temporal variations of accumulation and temperature during the past two centuries from 869 
Belukha ice core, Siberian Altai, Journal of Geophysical Research: Atmospheres, 111, 870 
https://doi.org/10.1029/2005JD005819, 2006. 871 

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, 872 
J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J., 873 
Li, M., Liu, L., Lu, Z., Moura, M. C. P., O’Rourke, P. R., and Zhang, Q.: Historical (1750–2014) 874 
anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data 875 
System (CEDS), Geoscientific Model Development, 11, 369–408, https://doi.org/10.5194/gmd-876 
11-369-2018, 2018. 877 

Jahn, B., Schneider, R. R., Müller, P.-J., Donner, B., and Röhl, U.: Response of tropical African 878 
and East Atlantic climates to orbital forcing over the last 1.7 Ma, Geological Society, London, 879 
Special Publications, 247, 65–84, https://doi.org/10.1144/GSL.SP.2005.247.01.04, 2005. 880 

Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, 881 
B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., 882 
Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., 883 
Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., 884 
Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: The PMIP4 contribution to CMIP6 – Part 1: 885 
Overview and over-arching analysis plan, Geoscientific Model Development, 11, 1033–1057, 886 
https://doi.org/10.5194/gmd-11-1033-2018, 2018. 887 

Kaplan, J. O., Koch, A., and Vitali, R.: ARVE-Research/LPJ-LMfire: LPJ-LMfire (tropical 888 
forest restoration), , https://doi.org/10.5281/zenodo.5831747, 2022. 889 

Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Garnier, E., Westoby, 890 
M., Reich, P. B., Wright, I. J., Cornelissen, J. H. C., Violle, C., Harrison, S. P., Van BODEGOM, 891 
P. M., Reichstein, M., Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand, M., Atkin, 892 
O., Bahn, M., Baker, T. R., Baldocchi, D., Bekker, R., Blanco, C. C., Blonder, B., Bond, W. J., 893 
Bradstock, R., Bunker, D. E., Casanoves, F., Cavender-Bares, J., Chambers, J. Q., Chapin Iii, F. 894 
S., Chave, J., Coomes, D., Cornwell, W. K., Craine, J. M., Dobrin, B. H., Duarte, L., Durka, W., 895 
Elser, J., Esser, G., Estiarte, M., Fagan, W. F., Fang, J., Fernández-Méndez, F., Fidelis, A., 896 
Finegan, B., Flores, O., Ford, H., Frank, D., Freschet, G. T., Fyllas, N. M., Gallagher, R. V., 897 
Green, W. A., Gutierrez, A. G., Hickler, T., Higgins, S. I., Hodgson, J. G., Jalili, A., Jansen, S., 898 

41

https://doi.org/10.5194/gmd-2024-219
Preprint. Discussion started: 17 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Joly, C. A., Kerkhoff, A. J., Kirkup, D., Kitajima, K., Kleyer, M., Klotz, S., Knops, J. M. H., 899 
Kramer, K., Kühn, I., Kurokawa, H., Laughlin, D., Lee, T. D., Leishman, M., Lens, F., Lenz, T., 900 
Lewis, S. L., Lloyd, J., Llusià, J., Louault, F., Ma, S., Mahecha, M. D., Manning, P., Massad, T., 901 
Medlyn, B. E., Messier, J., Moles, A. T., Müller, S. C., Nadrowski, K., Naeem, S., Niinemets, 902 
Ü., Nöllert, S., Nüske, A., Ogaya, R., Oleksyn, J., Onipchenko, V. G., Onoda, Y., Ordoñez, J., 903 
Overbeck, G., et al.: TRY – a global database of plant traits, Global Change Biology, 17, 2905–904 
2935, https://doi.org/10.1111/j.1365-2486.2011.02451.x, 2011. 905 

Kaufman, D., McKay, N., Routson, C., Erb, M., Dätwyler, C., Sommer, P. S., Heiri, O., and 906 
Davis, B.: Holocene global mean surface temperature, a multi-method reconstruction approach, 907 
Sci Data, 7, 201, https://doi.org/10.1038/s41597-020-0530-7, 2020. 908 

Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell, G. L., Ackerman, 909 
A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto, V., Cesana, G., Cheng, Y., Clune, T. L., Cook, 910 
B. I., Cruz, C. A., Del Genio, A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y., Kim, D., Lacis, 911 
A. A., Leboissetier, A., LeGrande, A. N., Lo, K. K., Marshall, J., Matthews, E. E., McDermid, 912 
S., Mezuman, K., Miller, R. L., Murray, L. T., Oinas, V., Orbe, C., García-Pando, C. P., 913 
Perlwitz, J. P., Puma, M. J., Rind, D., Romanou, A., Shindell, D. T., Sun, S., Tausnev, N., 914 
Tsigaridis, K., Tselioudis, G., Weng, E., Wu, J., and Yao, M.-S.: GISS-E2.1: Configurations and 915 
Climatology, Journal of Advances in Modeling Earth Systems, 12, e2019MS002025, 916 
https://doi.org/10.1029/2019MS002025, 2020. 917 

Kim, Y., Moorcroft, P. R., Aleinov, I., Puma, M. J., and Kiang, N. Y.: Variability of phenology 918 
and fluxes of water and carbon with observed and simulated soil moisture in the Ent Terrestrial 919 
Biosphere Model (Ent TBM version 1.0.1.0.0), Geoscientific Model Development, 8, 3837–920 
3865, https://doi.org/10.5194/gmd-8-3837-2015, 2015. 921 

Kubatzki, C. and Claussen, M.: Simulation of the global bio-geophysical interactions during the 922 
Last Glacial Maximum, Climate Dynamics, 14, 461–471, 923 
https://doi.org/10.1007/s003820050234, 1998. 924 

Kurita, N., Yoshida, N., Inoue, G., and Chayanova, E. A.: Modern isotope climatology of Russia: 925 
A first assessment, Journal of Geophysical Research: Atmospheres, 109, 926 
https://doi.org/10.1029/2003JD003404, 2004. 927 

Lachniet, M. S.: Climatic and environmental controls on speleothem oxygen-isotope values, 928 
Quaternary Science Reviews, 28, 412–432, https://doi.org/10.1016/j.quascirev.2008.10.021, 929 
2009. 930 

Lamb, P. J.: Persistence of Subsaharan drought, Nature, 299, 46–48, 931 
https://doi.org/10.1038/299046a0, 1982. 932 

Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, 933 
J.-M., Raynaud, D., Stocker, T. F., and Chappellaz, J.: Orbital and millennial-scale features of 934 
atmospheric CH4 over the past 800,000 years, Nature, 453, 383–386, 935 
https://doi.org/10.1038/nature06950, 2008. 936 

42

https://doi.org/10.5194/gmd-2024-219
Preprint. Discussion started: 17 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Ludlow, F. and Manning, J. G.: Volcanic Eruptions, Veiled Suns, and Nile Failure in Egyptian 937 
History: Integrating Hydroclimate into Understandings of Historical Change, in: Climate Change 938 
and Ancient Societies in Europe and the Near East: Diversity in Collapse and Resilience, edited 939 
by: Erdkamp, P., Manning, J. G., and Verboven, K., Springer International Publishing, Cham, 940 
301–320, https://doi.org/10.1007/978-3-030-81103-7_10, 2021. 941 

Magi, B. I.: Global Lightning Parameterization from CMIP5 Climate Model Output, Journal of 942 
Atmospheric and Oceanic Technology, 32, 434–452, https://doi.org/10.1175/JTECH-D-13-943 
00261.1, 2015. 944 

Manning, J. G., Ludlow, F., Stine, A. R., Boos, W. R., Sigl, M., and Marlon, J. R.: Volcanic 945 
suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient 946 
Egypt, Nat Commun, 8, 900, https://doi.org/10.1038/s41467-017-00957-y, 2017. 947 

Mikhail, A.: Ottoman Iceland: A Climate History, Environmental History, 20, 262–284, 948 
https://doi.org/10.1093/envhis/emv006, 2015. 949 

Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y., Wang, Y., Song, 950 
X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M., Morisette, J. T., Votava, P., Nemani, R. R., 951 
and Running, S. W.: Global products of vegetation leaf area and fraction absorbed PAR from 952 
year one of MODIS data, Remote Sensing of Environment, 83, 214–231, 953 
https://doi.org/10.1016/S0034-4257(02)00074-3, 2002. 954 

Otto-Bliesner, B. L., Braconnot, P., Harrison, S. P., Lunt, D. J., Abe-Ouchi, A., Albani, S., 955 
Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., 956 
Haywood, A., Joos, F., LeGrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., 957 
Nehrbass-Ahles, C., Pausata, F. S. R., Peterschmitt, J.-Y., Phipps, S. J., Renssen, H., and Zhang, 958 
Q.: The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and 959 
experimental design for Holocene and Last Interglacial simulations, Geoscientific Model 960 
Development, 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, 2017. 961 

Pang, G., Chen, D., Wang, X., and Lai, H.-W.: Spatiotemporal variations of land surface albedo 962 
and associated influencing factors on the Tibetan Plateau, Science of The Total Environment, 963 
804, 150100, https://doi.org/10.1016/j.scitotenv.2021.150100, 2022. 964 

Pausata, F. S. R., Messori, G., and Zhang, Q.: Impacts of dust reduction on the northward 965 
expansion of the African monsoon during the Green Sahara period, Earth and Planetary Science 966 
Letters, 434, 298–307, https://doi.org/10.1016/j.epsl.2015.11.049, 2016. 967 

Petit-Maire, N. and Guo, Z. T.: Mid-Holocene climatic change and man in the present-day 968 
Sahara desert, in: Quaternary Deserts and Climatic Change, CRC Press, 1998. 969 

Pfeiffer, M., Spessa, A., and Kaplan, J. O.: A model for global biomass burning in preindustrial 970 
time: LPJ-LMfire (v1.0), Geoscientific Model Development, 6, 643–685, 971 
https://doi.org/10.5194/gmd-6-643-2013, 2013. 972 

43

https://doi.org/10.5194/gmd-2024-219
Preprint. Discussion started: 17 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Rachmayani, R., Prange, M., and Schulz, M.: North African vegetation–precipitation feedback in 973 
early and mid-Holocene climate simulations with CCSM3-DGVM, Climate of the Past, 11, 175–974 
185, https://doi.org/10.5194/cp-11-175-2015, 2015. 975 

Reale, O. and Dirmeyer, P.: Modeling the effects of vegetation on Mediterranean climate during 976 
the Roman Classical Period: Part I: Climate history and model sensitivity, Global and Planetary 977 
Change, 25, 163–184, https://doi.org/10.1016/S0921-8181(00)00002-3, 2000. 978 

Schneider, R., Schmitt, J., Köhler, P., Joos, F., and Fischer, H.: A reconstruction of atmospheric 979 
carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum 980 
to the last glacial inception, Climate of the Past, 9, 2507–2523, https://doi.org/10.5194/cp-9-981 
2507-2013, 2013. 982 

Sha, L., Ait Brahim, Y., Wassenburg, J. A., Yin, J., Peros, M., Cruz, F. W., Cai, Y., Li, H., Du, 983 
W., Zhang, H., Edwards, R. L., and Cheng, H.: How Far North Did the African Monsoon Fringe 984 
Expand During the African Humid Period? Insights From Southwest Moroccan Speleothems, 985 
Geophysical Research Letters, 46, 14093–14102, https://doi.org/10.1029/2019GL084879, 2019. 986 

Shanahan, T. M., McKay, N. P., Hughen, K. A., Overpeck, J. T., Otto-Bliesner, B., Heil, C. W., 987 
King, J., Scholz, C. A., and Peck, J.: The time-transgressive termination of the African Humid 988 
Period, Nature Geosci, 8, 140–144, https://doi.org/10.1038/ngeo2329, 2015. 989 

Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., 990 
Barnola, J.-M., Fischer, H., Masson-Delmotte, V., and Jouzel, J.: Stable Carbon Cycle�Climate 991 
Relationship During the Late Pleistocene, Science, 310, 1313–1317, 992 
https://doi.org/10.1126/science.1120130, 2005. 993 

Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping forest canopy height globally with 994 
spaceborne lidar, Journal of Geophysical Research: Biogeosciences, 116, 995 
https://doi.org/10.1029/2011JG001708, 2011. 996 

Singh, R., Tsigaridis, K., LeGrande, A. N., Ludlow, F., and Manning, J. G.: Investigating 997 
hydroclimatic impacts of the 168–158&thinsp;BCE volcanic quartet and their relevance to the 998 
Nile River basin and Egyptian history, Climate of the Past, 19, 249–275, 999 
https://doi.org/10.5194/cp-19-249-2023, 2023. 1000 

Singh, R., Koch, A., LeGrande, A. N., Tsigaridis, K., Ramos, R. D., Ludlow, F., Aleinov, I., 1001 
Ruedy, R., and Kaplan, J. O.: Modelling framework for asynchronous land-atmosphere coupling 1002 
using NASA GISS ModelE and LPJ-LMfire: Design, Application and Evaluation for the 2.5ka 1003 
period, https://doi.org/10.5281/zenodo.13626434, 2024. 1004 

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, 1005 
S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, 1006 
plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, 1007 
Global Change Biology, 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003. 1008 

Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., 1009 
Xia, Y., Bex, V., Midgley, P. M., Alexander, L. V., Allen, S. K., Bindoff, N. L., Breon, F.-M., 1010 

44

https://doi.org/10.5194/gmd-2024-219
Preprint. Discussion started: 17 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Church, J. A., Cubasch, U., Emori, S., Forster, P., Friedlingstein, P., Gillett, N., Gregory, J. M., 1011 
Hartmann, D. L., Jansen, E., Kirtman, B., Knutti, R., Kumar Kanikicharla, K., Lemke, P., 1012 
Marotzke, J., Masson-Delmotte, V., Meehl, G. A., Mokhov, I. I., Piao, S., Plattner, G.-K., Dahe, 1013 
Q., Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D., Stocker, T. F., 1014 
Talley, L. D., Vaughan, D. G., Xie, S.-P., Allen, M. R., Boucher, O., Chambers, D., Hesselbjerg 1015 
Christensen, J., Ciais, P., Clark, P. U., Collins, M., Comiso, J. C., Vasconcellos de Menezes, V., 1016 
Feely, R. A., Fichefet, T., Fiore, A. M., Flato, G., Fuglestvedt, J., Hegerl, G., Hezel, P. J., 1017 
Johnson, G. C., Kaser, G., Kattsov, V., Kennedy, J., Klein Tank, A. M. G., Le Quere, C., Myhre, 1018 
G., Osborn, T., Payne, A. J., Perlwitz, J., Power, S., Prather, M., Rintoul, S. R., Rogelj, J., 1019 
Rusticucci, M., Schulz, M., Sedlacek, J., Stott, P. A., Sutton, R., Thorne, P. W., and Wuebbles, 1020 
D.: Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the 1021 
Fifth Assessment Report of the Intergovernmental Panel on Climate Change - Abstract for 1022 
decision-makers; Changements climatiques 2013. Les elements scientifiques. Contribution du 1023 
groupe de travail I au cinquieme rapport d’evaluation du groupe d’experts intergouvernemental 1024 
sur l’evolution du CLIMAT - Resume a l’intention des decideurs, 2013. 1025 

Strandberg, G., Kjellström, E., Poska, A., Wagner, S., Gaillard, M.-J., Trondman, A.-K., Mauri, 1026 
A., Davis, B. a. S., Kaplan, J. O., Birks, H. J. B., Bjune, A. E., Fyfe, R., Giesecke, T., Kalnina, 1027 
L., Kangur, M., van der Knaap, W. O., Kokfelt, U., Kuneš, P., Lata\l owa, M., Marquer, L., 1028 
Mazier, F., Nielsen, A. B., Smith, B., Seppä, H., and Sugita, S.: Regional climate model 1029 
simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation, 1030 
Climate of the Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, 2014. 1031 

Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B., and Doney, S. C.: Changes in Arctic 1032 
vegetation amplify high-latitude warming through the greenhouse effect, Proceedings of the 1033 
National Academy of Sciences, 107, 1295–1300, https://doi.org/10.1073/pnas.0913846107, 1034 
2010. 1035 

Thompson, A. J., Tabor, C. R., Poulsen, C. J., and Skinner, C. B.: Water isotopic constraints on 1036 
the enhancement of the mid-Holocene West African monsoon, Earth and Planetary Science 1037 
Letters, 554, 116677, https://doi.org/10.1016/j.epsl.2020.116677, 2021. 1038 

Tian, Y., Woodcock, C. E., Wang, Y., Privette, J. L., Shabanov, N. V., Zhou, L., Zhang, Y., 1039 
Buermann, W., Dong, J., Veikkanen, B., Häme, T., Andersson, K., Ozdogan, M., Knyazikhin, 1040 
Y., and Myneni, R. B.: Multiscale analysis and validation of the MODIS LAI product: I. 1041 
Uncertainty assessment, Remote Sensing of Environment, 83, 414–430, 1042 
https://doi.org/10.1016/S0034-4257(02)00047-0, 2002a. 1043 

Tian, Y., Woodcock, C. E., Wang, Y., Privette, J. L., Shabanov, N. V., Zhou, L., Zhang, Y., 1044 
Buermann, W., Dong, J., Veikkanen, B., Häme, T., Andersson, K., Ozdogan, M., Knyazikhin, 1045 
Y., and Myneni, R. B.: Multiscale analysis and validation of the MODIS LAI product: II. 1046 
Sampling strategy, Remote Sensing of Environment, 83, 431–441, 1047 
https://doi.org/10.1016/S0034-4257(02)00058-5, 2002b. 1048 

Tierney, J. E., Pausata, F. S. R., and deMenocal, P. B.: Rainfall regimes of the Green Sahara, 1049 
Science Advances, 3, e1601503, https://doi.org/10.1126/sciadv.1601503, 2017. 1050 

45

https://doi.org/10.5194/gmd-2024-219
Preprint. Discussion started: 17 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Tiwari, S., Ramos, R. D., Pausata, F. S. R., LeGrande, A. N., Griffiths, M. L., Beltrami, H., 1051 
Wainer, I., de Vernal, A., Litchmore, D. T., Chandan, D., Peltier, W. R., and Tabor, C. R.: On 1052 
the Remote Impacts of Mid-Holocene Saharan Vegetation on South American Hydroclimate: A 1053 
Modeling Intercomparison, Geophysical Research Letters, 50, e2022GL101974, 1054 
https://doi.org/10.1029/2022GL101974, 2023. 1055 

Velasquez, P., Kaplan, J. O., Messmer, M., Ludwig, P., and Raible, C. C.: The role of land cover 1056 
in the climate of glacial Europe, Climate of the Past, 17, 1161–1180, https://doi.org/10.5194/cp-1057 
17-1161-2021, 2021. 1058 

Yang, W., Tan, B., Huang, D., Rautiainen, M., Shabanov, N. V., Wang, Y., Privette, J. L., 1059 
Huemmrich, K. F., Fensholt, R., Sandholt, I., Weiss, M., Ahl, D. E., Gower, S. T., Nemani, R. 1060 
R., Knyazikhin, Y., and Myneni, R. B.: MODIS leaf area index products: from validation to 1061 
algorithm improvement, IEEE Transactions on Geoscience and Remote Sensing, 44, 1885–1898, 1062 
https://doi.org/10.1109/TGRS.2006.871215, 2006. 1063 

Zeng, Z., Wang, D., Yang, L., Wu, J., Ziegler, A. D., Liu, M., Ciais, P., Searchinger, T. D., 1064 
Yang, Z.-L., Chen, D., Chen, A., Li, L. Z. X., Piao, S., Taylor, D., Cai, X., Pan, M., Peng, L., 1065 
Lin, P., Gower, D., Feng, Y., Zheng, C., Guan, K., Lian, X., Wang, T., Wang, L., Jeong, S.-J., 1066 
Wei, Z., Sheffield, J., Caylor, K., and Wood, E. F.: Deforestation-induced warming over tropical 1067 
mountain regions regulated by elevation, Nat. Geosci., 14, 23–29, 1068 
https://doi.org/10.1038/s41561-020-00666-0, 2021. 1069 

 1070 

46

https://doi.org/10.5194/gmd-2024-219
Preprint. Discussion started: 17 December 2024
c© Author(s) 2024. CC BY 4.0 License.


