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Abstract. Accurately estimating self-recruitment (SR), the fraction of recruits in a location that originated locally, is critical13
for understanding population connectivity. Biophysical models have been typically applied to compute SR by releasing a14
certain number of larval particles from each assumed source location and tracking them forward in time. However, various15
strategies have been employed for releasing these larval particles: including randomly, consistently, or a number16
proportional to the location’s area or larval production, which causes ambiguous results. We demonstrate, using theoretical17
arguments and numerical simulations from Lake Whitefish (Coregonus clupeaformis) larvae in Lake Erie, that SR depends18
on larval production at each source location. This dependency suggests that SR may not be computed unambiguously in19
these models unless realistic larval production is released from all potential source locations. In contrast, parentage analysis20
studies typically computed SR by assessing the fraction of sampled juveniles that originate locally at a settlement location,21
instead of identifying larval production at all sources. Therefore, tracking larval particles backward from the settlement22
location is proposed as a straightforward approach for computing SR. Our findings demonstrate that SR is independent of the23
number of larval recruits at the settlement location, supporting the employment of backtracking models with randomly24
released larval particles. In this way, considerable effort and resources, that would otherwise be spent on identifying all25
potential sources and their larval output, in forward tracking can be saved. We believe this result will have important26
implications for studies on larval dispersal and recruitment in aquatic systems.27

1 Introduction28

Most marine species have a pelagic larval phase, during which larvae are transported by currents away from a source29
population and subsequently recruited into a receiving population, thereby regulating population connectivity (Cowen and30
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Sponaugle, 2009; Arevalo et al., 2023; Wood et al., 2014). Since Cowen et al. (2000) stated that marine populations may not31
be as open as previously thought, there has been accumulating evidence that the probability of dispersal declines rapidly with32
distance (Almany et al., 2013; Buston and D'aloia, 2013). Furthermore, high values of self-recruitment (SR) and local33
retention (LR) may be common in many fish populations (Cowen et al., 2000; James et al., 2002; Cowen et al., 2006;34
Almany et al., 2007; Hamilton et al., 2008; Hogan et al., 2012). This indicates that management decisions, based on open35
population models, might overestimate larval exchange, potentially leading to mismanagement of both local and downstream36
populations (Cowen et al., 2000; Nanninga et al., 2015). Therefore, measuring SR and LR is essential for quantifying37
localized recruitment, assessing the self-replenishment and persistence of populations, and designing effective fisheries38
management plans (D'aloia et al., 2013; Burgess et al., 2014; Lett et al., 2015).39

SR is defined as the fraction of all recruits at a location that originated locally (Botsford et al., 2009); it reflects40
regional replenishment and the openness to recruitment from other locations (Burgess et al., 2014; Lett et al., 2015). LR41
indicates the self-persistence of a population, in the absence of external propagule inputs (Burgess et al., 2014). LR has been42
defined as the ratio of locally produced setters to total local larval release (Botsford et al., 2009) or as the ratio of locally43
produced settlers to the total number of locally released larvae, that successfully settle in suitable nursery locations and44
survive (Hogan et al., 2012). Here, we define the latter, which includes only successfully settled larvae, as local retention,45
while the former, which encompasses both successful and unsuccessful settlers (those settling in unsuitable nursery46
locations), is termed “theoretical” local retention (TLR), as described by Shi et al. (2024). The three metrics (LR, TLR, and47
SR) share the same numerator, representing the number of local settlers, but differ in their denominators.48

Parentage analysis and/or larval tagging have been widely used to estimate LR, TLR and SR (Jones et al., 1999;49
Pinsky et al., 2012; D'aloia et al., 2013; Lett et al., 2015; Planes et al., 2009). By assigning sampled juveniles to their parents50
according to DNA relationships, researchers can identify their source locations and quantify the number of settlers51

originating from each source location. However, the total number of eggs/larvae produced at a source location i, ��
' , and their52

survival rates remain poorly understood, making it challenging to empirically assess LR and TLR (Lett et al., 2015).53
Consequently, biophysical models, typically coupled with forward-in-time Lagrangian particle tracking models (herein54
referred to as forward tracking models), have been widely applied to study larval dispersal and compute TLR and LR55

(Chaput et al., 2022; Saint-Amand et al., 2023; Sato et al., 2023; Gurdek-Bas et al., 2022). By assuming that �� larvae are56

produced at location i, i.e., assuming ��
' = �� , releasing �� larval particles from i and tracking them forward in time, TLR57

can be computed as the ratio of the number of larvae that settle at location i to ��. LR can also be computed by excluding the58

larvae that settle in unsuitable nursery locations from �� (Gurdek-Bas et al., 2022). It is worth noting that both LR and TLR59

at location i are independent of ��
' , making it effective to release a random number of larval particles �� from the location, as60

will be demonstrated in this research.61
Typically, SR has also been computed using biophysical models (Paris et al., 2005; Hiddink et al., 2013; Dubois et62

al., 2016; Klein et al., 2016; Faillettaz et al., 2018; Lequeux et al., 2018; Meerhoff et al., 2018; Hidalgo et al., 2019;63
Wolanski et al., 2021; Saint-Amand et al., 2023; Michie et al., 2024; Nadal et al., 2024; Corrochano-Fraile et al., 2022; Sato64
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et al., 2023). In this case, a certain number of larval particles are released from each assumed source location and tracked65
forward in time. SR at the settlement location j is then computed as the number of larvae both released from and settled at j,66
divided by the total number of larvae that settled at j. Notably, the denominator is related to the larval production from all67
source locations, which may transport larvae to j. In contrast, the numerator, representing the number of settlers originating68
from j itself, varies only with the larval production at j. Changes in larval production at any of the source locations can thus69
potentially alter the total number of settlers at j, resulting in variation in SR. However, simply identifying all potential source70
locations poses a challenge and it remains even less understood how many larval particles should be released from each71
source location.72

At least four distinct strategies have been employed for releasing larval particles. For example, Hiddink et al. (2013),73
Dubois et al. (2016), and Faillettaz et al. (2018) assumed that larval production was consistent across all source locations,74
where each location was assumed to produce 500 larvae (Dubois et al., 2016), 1500 larvae (Faillettaz et al., 2018), or 10,00075
larvae (Hiddink et al., 2013), respectively. In this strategy, the SR at a location of interest was computed independently of76
the larval production at each source location. Sato et al. (2023) assumed that 900 larvae were produced from each of the 8477
source locations at Puerto Galera (PG) in the Verde Island Passage. The 84 source locations were randomly divided into78
three regions, with 5 locations at PG, 45 locations east of PG, and 34 locations west of PG. Therefore, 4500 larval particles79
were released from PG, 40500 from the east and 30600 from the west, resulting in 17.9, 4.4, and 71.9 particles settled at PG,80
respectively, giving a value of SR at region PG as 17.9 / (17.9 + 4.4 + 71.9) = 0.19. However, if PG was divided into more81
locations, the number of local settlers at PG (i.e., 17.9) may be increased, altering the value of SR. D’agostini et al. (2015)82
assumed that larger locations produced proportionally more larvae than smaller ones, and Saint-Amand et al. (2023) assumed83
a constant density of 500 larvae/km2 and a minimum release of 100 larvae for the smallest location. The resultant SR at each84
location, therefore, depended on the location area. Nolasco et al. (2022) assumed larval production at each location was85
proportional to the product of the adult abundance score by the spawning intensity score. From these examples, it remains86
uncertain whether larval production at each location is constant or proportional to the area of the location. Accurately87
releasing the number of larvae produced at each location may yield a more precise estimation of SR; however, the realistic88
number of larval productions at each location remains a challenge to observe. Additionally, there may be unknown source89
locations contributing to unexpected recruitment that is not accounted for in these simulations, causing potentially90
misleading estimates of SR.91

Conversely, Shi et al. (2024) used backward-in-time Lagrangian particle tracking models (SWIM-V2.0, herein92
referred to as backtracking models) to estimate larval hatching locations of Lake Whitefish (Coregonus clupeaformis) and93
proposed that backtracking models may be more efficient in computing SR. Backtracking models, release larval particles94
from larval sampling locations and track them in reverse time, providing a straightforward approach to modeling recruitment95
that has been widely applied to study the spawning/hatching locations of fish larvae (Christensen et al., 2007; Thygesen,96
2011; Bauer et al., 2014; Gargano et al., 2022; Rowe et al., 2022; Chaput et al., 2023). In this case, the denominator of SR,97

the total number of settlers at location j, ��
' (which is unknown as well), is assumed to be �� , indicating that �� larval98
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particles will be released from j and tracked backward in time. It is no longer necessary to identify all potential source99
locations and their corresponding larval production for estimating the denominator. The SR at j is independent of the real100

number of recruits at j, making it effective to release a random number (�� ) of larval particles from j, as will be101

demonstrated.102
In this research, we show theoretically that in forward tracking simulations, LR and TLR are independent of the103

larval production from the source location, while SR is not. Moreover, using forward tracking models to compute SR can104
yield ambiguous results. This assertion brings into question the numerous estimates of SR from studies that have employed105
different strategies for releasing larval particles from each source location within forward tracking models. Additionally, we106
compute SR using backtracking models and show that this SR remains independent of the number of recruits at the107
settlement location. We validate these assertions by applying both forward and backtracking models to compute LR and SR108
associated with observations of Lake Whitefish (Coregonus clupeaformis) larvae sampled in Lake Erie. Our findings are109
applicable to both freshwater and marine species that undergo a pelagic larval phase.110

2 Theoretical Development111

2.1 Self-recruitment from forward tracking models112

Suppose that there are a set of n locations associated with larval hatching and larval settling or recruitment (locations 1, 2, …,113

i, j, …, n). Here, ��
' represents the realistic number of eggs spawned or newly hatched larvae at location i. The larvae become114

pelagic upon hatching and undergo a dispersal process, being transported away from the source location by water currents.115

The dispersal rate from patch i to patch j, denoted as ��� , is defined as the proportion of larvae released from location i that116

settle at location j. The theoretical local retention (TLR) at location i, commonly used in forward tracking simulations (Saint-117
Amand et al., 2023; Sato et al., 2023), is defined as follows, as per Shi et al. (2024):118

TLR� = �����
'

��
' = ��� , (1)119

At the end of larval dispersal, some larvae settle at suitable nursery locations, while some settle in unsuitable ones;120
the latter are referred to as ‘unsuccessful’ settlers (Almany et al., 2017). By excluding the unsuccessful settlers from the121
denominator of TLR, we obtain local retention (LR), which is also known as relative local retention (Hogan et al., 2012; Lett122
et al., 2015):123

LR� = �����
'

�=1
� ���� ��

' = ���

�=1
� ����

, (2)124

Self-recruitment (SR), the ratio of local larval recruitment to all the recruitment at the settlement location, at125
location i is (Botsford et al., 2009; Lett et al., 2015; Almany et al., 2017):126
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SR� = �����
'

�=1
� �����

'�
, (3)127

Assuming consistent larval production across all locations, i.e., �1
' = … = ��

' = ��
' = … = ��

' , the SR can be expressed as128

follows:129

SR� = ���

�=1
� ����

, (4)130

Here, both TLR and LR are theoretically independent of ��
' . When performing the forward tracking simulations,131

releasing a random number of larval particles, �� , from the location i, is demonstrated as an effective approach to compute132
the unambiguous values of TLR and LR. In practice, a sufficiently large number of particles is needed for the dispersal rate133

(�) to converge and accurately reflect the underlying processes. With more particles, the estimate of � stabilizes as it better134
captures the full distribution of trajectories. TLR provides a minimum value of LR as stated by Shi et al. (2024), as the135
denominator contains both successfully and unsuccessfully settlers. However, SR is shown to be dependent on larval136

production at each source location (�1
' , �2

' , …, ��
' , ��

' , …, ��
' ), demonstrating that any strategies for larval particle release137

other than releasing the realistic larval production from each source location in forward tracking may not unambiguously138
compute SR. Though assuming consistent larval production across all locations can make SR independent of larval139
production (Eq. 4), this assumption can lead to significant discrepancies in the estimated value of SR compared to using140
realistic value of larval production (Eq. 3), particularly when there are many source locations.141

2.2 Self-recruitment from backward tracking models142

An alternate approach is to release larval particles from the locations where larvae are recruited into the population143
(settlement locations) and track them backward-in-time. Suppose that there are a set of m locations associated with larval144

hatching and recruitment respectively (locations 1, 2, …, i, j, …, m). ��
' larvae are recruited into settlement location i. The145

recruitment rate ���
' is defined as the proportion of larvae recruited into the settlement location i that originated from the146

source location j. SR at location i can be written as:147

SR� = ���
' ��

'

��
' = ���

' , (5)148

SR at location i is theoretically equivalent to the recruitment rate at that location, independent of the number of149
recruits at i. This is reasonable; for instance, in parentage analysis studies, sampling all recruits at a location in the field is150
often challenging, SR is thus estimated as the number of sampled juveniles assigned to originate locally based on DNA151
relationships, divided by the total number of sampled juveniles at that location (D'aloia et al., 2013; Almany et al., 2017).152
This computation of SR, based on sampled recruits, can be used to reflect the overall recruitment dynamics, further153
supporting the notion that SR is independent of the number of recruits at the location of interest.154
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In backtracking simulations, a random number of larval particles �� are typically released from location i. It is155
important to note that by the end of the simulation, some particles will have settled in suitable hatching or source locations,156
while some will have settled in unsuitable locations, leading to what is termed ‘unreal’ recruitment (Shi et al., 2024). The157

settlement rate ���, is the ratio of the number of larval particles that settle at location j and originate from location i, divided158

by the total number of larval particles released from location i. The difference between ��� and ���
' lies in the denominator,159

which corresponds to �� and ��
' , respectively. Substituting ��� and �� for ���

' and ��
' in Eq. 5 does not yield SR, but rather160

the theoretical self-recruitment (TSR), which is the minimum value of SR, as its denominator contains unreal recruits (Shi et161
al., 2024):162

TSR� = �����
��

= ��� , (6)163

The SR at location i, in backtracking simulations, is obtained by excluding the unreal recruits from the denominator of TSR,164
expressed as:165

SR� = �����

�=1
� ������

= ���

�=1
� ����

, (7)166

Unlike Eq. (3), SR at location i, computed through backtracking models, is theoretically independent of the number167

of larval particles released from the location (�� ). This independence arises because the settlement rate remains constant168

regardless of �� ​ , as will be demonstrated later with numerical data. Consequently, it is effective to release a random169
number of particles from the settlement location of interest.170

The LR at location i in backtracking simulations is:171

LR� = �����

�=1
� ������

, (8)172

The LR, estimated by backtracking, is dependent on ��, unlike for forward tracking (Eq. 2). Moreover, backtracking cannot173
be used to compute TLR as there is no unsuccessful dispersal in the simulation, and similarly, forward tracking cannot174
compute TSR as there is no unreal recruitment.175

2.3 Number of larvae produced and recruited at each location176

The number of larvae produced at each location ��
' may be computed for use in forward tracking simulations to obtain177

unbiased estimates of SR, based on the number of recruits to location i, ��
' .178

If �� particles are released from location i in backtracking simulations, �� ∙ �=1
� ���� particles are real recruits, as179

they settle in suitable hatching locations; correspondingly, �� ∙ (1 − �=1
� ���� ) are unreal recruits. Therefore, if ��

' recruits180

are sampled at a location �, the number of real recruits �� ∙ �=1
� ���� must equal ��

' , and ��=��
'

�=1
� ���� particles should be181
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released at the location for backtracking. The number of recruits, at location � , that originates from location � can thus be182
obtained as:183

���
' = ���∙��

'
�=1
� ���� , (9)184

From the dispersal rate ���, the number of larvae produced at location �, is:185

��
' =

���
'

���
= ��

' ∙ ���

���
∙ 1

�=1
� ����

, (10)186

Interestingly, if the number of recruits at another location a is ��
' , then the number of larvae produced at location � can also187

be written as:188

��
' = ��

' ∙ ���

���
∙ 1

�=1
� ����

, (11)189

Combining Eq. (10) and (11), we can obtain the number of recruits at location a as:190

��
' = ��

' ∙ ���

���
∙ ���

���
∙ �=1

� ���

���
� , (12)191

Both ��
' and ��

' are undefined when the dispersal, recruitment or settlement rates become zero.192

3 Putting Theory into Practice: Application to Lake Erie193

3.1 Study area194

Shi et al. (2024) identified the Lake Whitefish larval hatching locations in Lake Erie from backtracking simulations. The195
locations were primarily distributed along the western and southern flanks of the western basin. Considering that Lake196
Whitefish eggs incubate on hard substrates (Amidon et al., 2021), we selected four regions with hard substrates along the197
western and southern flanks of the western basin as potential hatching locations (Fig. 1). These were the release regions for198
larval particles in our forward tracking simulations. We refer to these locations as the Detroit River Mouth (region A),199
Western Shoreline (region B), Midlake Reefs (region C), and Bass Islands (region D). The Midlake Reef and Bass Island200
regions were also selected as settlement regions, where we released larval particles for backtracking simulations.201
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202
Figure 1: (a) Map showing the three basins of Lake Erie: western basin (WB), central basin (CB), and eastern basin (EB). The lake203
bathymetry was obtained from https://www.ngdc.noaa.gov/mgg/greatlakes/erie.html. (b) Substrate distributions in the western basin204
from side-scan sonar transects (Haltuch et al., 2000). (c) Color coded Lake Whitefish (Coregonus clupeaformis) hatching locations205
(Detroit River Mouth in red, region A; Western Shoreline in green, region B; Mid-Lake Reefs in yellow, region C; Bass Islands in206
black, region D), where larval particles were released at the centre of each 500 m × 500 m AEM3D grid (black cross-hatching).207

3.2 The hydrodynamic model208

Larval particles were transported using output from an application of the hydrostatic 3D Reynolds-averaged Navier-Stokes209
equation model, the Aquatic Ecosystem Model (AEM3D) (www.hydronumerics.com.au). The model simulated the water210
temperature and currents in Lake Erie during a continuous 2017-2019 hindcast run, using a 500 m × 500 m horizontal grid211
with 45 vertical layers (Shi et al., 2024; Lin et al., 2022). There was fine resolution (0.5 m) through the surface layer,212
metalimnion and bottom of the central basin, and coarser resolution layers (5 m) through the hypolimnion of the deeper213
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eastern basin. The model was forced with surface meteorological data (wind speed and direction, air temperature, relative214
humidity and long- and short-wave solar radiation) from four weather stations, had five inflows (Detroit, Maumee, Sandusky,215
Cuyahoga and Grand rivers) and the Niagara River outflow. Model calibration and validation were described in the216
supplemental material (tables S2-S4) of Shi et al. (2024).217

The AEM3D model, and its non-parallel predecessor the Estuary and Lake Computer Model (ELCOM), have been218
applied to Lake Erie to backtrack the present Lake Whitefish larval observations and determine hatching locations (Shi et al.,219
2024); to hindcast the thermal structure (León et al., 2005), internal wave dynamics (Valipour et al., 2015), surface wave /220
sediment transport (Lin et al., 2021), nutrient and chlorophyll-a distributions (Leon et al., 2011), seasonal succession of221
phytoplankton groups (Wang et al., 2024); and to forecast storm surge and upwelling/downwelling events (Lin et al., 2022).222

3.3 The Lagrangian particle tracking model223

We used a Matlab®-based Lagrangian particle tracking model (SWIM-v2.0) to study SR. An earlier version of this model224
was applied forward-in-time to track silver eel (Anguilla rostrata and Anguilla anguilla) migration (Béguer-Pon et al., 2016)225
and backward-in-time to determine the larval Lake Whitefish hatching locations used in this study (Shi et al., 2024). Diel226
vertical migration and active swimming behavior were not considered (Di Stefano et al., 2022; Rowe et al., 2022; Suca et al.,227
2022).228

A horizontal turbulent diffusivity Kh = 0.1 m2s-1 and timestep dtp = 600 s were used in both forward and backward229
tracking simulations and larval particles were released at a 3-m water depth and were removed if they encountered the lake230
boundary (Shi et al., 2024). In the forward tracking simulations, particles were released daily at 12:00-noon between 21231
March and 8 May 2018 (in four regions; Table A1, regions A, B, C and D) and were tracked for 12 days. In the backtracking232
simulations, particles were released daily at 12:00-noon between 2 April and 20 May 2018 (in two regions for 12 days; Table233
A1, regions C and D). Each release region was divided into 500 m × 500 m AEM3D grid cells, and particles were released at234
the centres of these cells.235

3.4 Nomenclature and data analysis236

In forward tracking, the number of larval particles released from location i was �� and the number of particles released from237

location i that settled at location j was ��� . For example, if �� particles were released from region A; ��� represents the238

number of particles that settled in region C that were released from region A. In backtracking, the number of particles239

released from location i was �� and the number of particles released from location i that settled at location j was ��� . For240

example, if �� particles were released from region C; ��� represents the number of particles that settled in location A that241
were released from region C.242

The dispersal rate ��� and settlement rate ��� are given by:243

��� = ��� �� , (13)244
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���=��� �� , (14)245

When computed from forward and backward simulations, local retention and self-recruitment are written as LR_F, LR_B,246

SR_F and SR_B, respectively. From Eqs. (11) and (14), the number of larvae produced at each location ��
' is:247

248

��
' = ��� ��� , (15)249

For example, ��
' is the number of larvae produced from region A. To estimate ��

' , from Eq. (11), requires both250

backward and forward tracking simulations, and the number of recruits to the location. Here, we only backtracked particles251

from region C and D; therefore, ��
' can be computed as ��� ��� or ��� ��� , which are referred to as ��_�

' and ��_�
' ,252

respectively. Dividing ��_�
' by the number of AEM3D grid cells in region A (or the total area of the 500 m × 500 m grid253

cells) gives the density ��_�
' .254

4 Results255

As examples of forward and backward trajectories, and to illustrate the validity of the tracking simulations, we show256
backtracked larval particles from the Midlake Reefs (region C, Fig. 2a) and forward tracked particles from the Western257
Shoreline (region B, Fig. 2b). When particles were released from region C and tracked backward for a period of 12 days,258
they mostly settled along the southern and western franks of the western basin (yellow dots in Fig. 2a), consistent with the259
settlement distributions in Shi et al. (2024). Most particles were backtracked to regions westward of the release locations260
with few travelling to regions eastward, following the predominant west-to-east flow patterns of water movement in the lake261
(Beletsky et al., 2013).262

When particles were released from region B and tracked forward for a period of 12 days, they were mostly263
transported to the east of the release locations (green dots in Fig. 2b), also consistent with the flow patterns moving particles264
from west to east in the lake. However, some of the particles were transported southeast and northeast of the release265
locations, which seems to be counter-intuitive but is not unreasonable given the complex topography and variability in the266
wind direction in the region. Adding the northeast release region to the backtracking simulations would, therefore, lead to267
backward trajectories to region B.268
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269
Figure 2: The settlement location distributions when (a) releasing particles from the red circles and tracking them backward, (b)270
releasing particles from the red stars and tracking them forward. Yellow circles indicate the settlement locations in backtracking271
and green circles indicate the settlement locations in forward tracking. Red lines show particle trajectories.272

In the forward tracking simulations, the number of settled larval particles (���) varied with the number of particles273

released (��) and the dispersal rate (���) was independent of �� (Table 1). Both TLR and LR had negligible variation with ��,274

for example TLR_F at region C equaled to ��� as ~ 0.13 and TLR_F at region D equaled to ��� as ~ 0.024. Based on Eq. 3,275
LR_F equaled to 0 for region A and region B, ~ 0.755 for region C, and ~ 0.99 for region D.276

The individual SR_F values are not given in Table 1, because there were 81 different SRs obtained at region C277

through changing �� , consistent with Eq. (3), ranging from 0.22 to 0.95. For example, when 151200 particles were released278
from A, 140000 particles from B, 19460 from C and 148400 from D, the SR_F at region C was279
2537 4668+4195+2537+37 =0.22 ; whereas when 16800 particles, 17500 particles, 155680 particles, and 18550280
particles were released from region A, B, C, and D respectively, SR_F at region C was281
20758 527+501+20758+2 =0.95. In other words, releasing more particles from region C and fewer particles from the282

other regions increased the SR at region C, as ��� was much larger than ���, ��� and ��� . Indeed, SR can approach 1 or 0283

through adjustment of ��. The true value of SR can only be obtained if the actual number of larvae produced at each location284

is released (i.e., �� = ��
' ); however, ��

' remains unknown.285

If all four regions released the same number of particles, SR_F would be only a function of ��� , and would be286

independent of �� . For example, the SR_F for region C was ��� ���+���+���+���= 0.68 and the SR_F for region D287

was ��� ���+���+���+���= 0.32.288
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In the backtracking simulations, the number of settled larval particles ��� varied with ��. The settlement rate ��� and289

SR_B had negligible variation with �� (Table 2); showing the SR calculated from backtracking to be independent of �� , as290
indicated by Eq. (7). The correct SR values from backtracking may be compared to the erroneous ones from forward291

tracking, which had assumed �� to be the same for all sources. SR_B at region C was larger than SR_F (0.97 vs. 0.68) and292
SR_B at region D was smaller (0.18 vs. 0.32) because of the variation in the number of particles released from each location293

�� . If the recruits to region C, ��
' , was equal to �� ∙ (��� + ��� + ��� + ���) , then the number of particles that should294

have been released in forward tracking from region C should be ~ 2 times greater than those from region D, ~ 10 times295

greater than those from region B, and ~ 50 times greater than those from region A (see ��_�
' , ��_�

' , ��_�
' , and ��_�

' in Table296

3); assuming the same ��
' increased the denominator of SR_F at region C, and decreased the denominator of SR_F at region297

D. When scaled by the number of cells in each region, the larval density from region C was roughly half that from region D,298

~4 times that from region B, and ~10 times that from region A (see ��_�
' , ��_�

' , ��_�
' , and ��_�

' in Table 3).299

300

Table 1. Number of particles released from the four regions �� , settled to four regions ��� , and the dispersal rate ��� in the301

forward tracking simulations. The regions are the Detroit River Mouth (region A), Western Shoreline (region B), Midlake302
Reefs (region C), and Bass Islands (region D).303

�� ��� ��� ��� ��� ��� ��� ��� ��� LR_F�

16800 0 0 527 140 0 0 0.0313 0.0083 0

84000 0 0 2587 665 0 0 0.0308 0.0079 0

151200 0 0 4668 1189 0 0 0.0309 0.0079 0

�� ��� ��� ��� ��� ��� ��� ��� ��� LR_F�

17500 0 0 501 0 0 0 0.029 0 0

70000 0 0 2097 0 0 0 0.030 0 0

140000 0 0 4195 0 0 0 0.030 0 0

�� ��� ��� ��� ��� ��� ��� ��� ��� LR_F�

19460 0 0 2537 843 0 0 0.130 0.0433 0.751

77840 0 0 10440 3327 0 0 0.134 0.0427 0.758

155680 0 0 20758 6739 0 0 0.133 0.0433 0.755

�� ��� ��� ��� ��� ��� ��� ��� ��� LR_F�

18550 0 0 2 435 0 0 0.0001 0.0235 0.995

74200 0 0 19 1800 0 0 0.0002 0.0242 0.990

148400 0 0 37 3648 0 0 0.0002 0.0246 0.990
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Table 2. Number of particles released from two regions �� and settled in four regions ��� , settlement rate ��� , and self-304

recruitment from the backtracking simulations. The regions are the Detroit River Mouth (region A), Western Shoreline305
(region B), Midlake Reefs (region C), and Bass Islands (region D).306

�� ��� ��� ��� ��� ��� ��� ��� ��� SR_B�

19460 17 94 3778 2 8.7×10-4 0.0048 0.194 0.0001 0.971

77840 75 337 15300 8 9.6×10-4 0.0043 0.196 0.0001 0.973

155680 137 685 30659 22 8.8×10-4 0.0044 0.197 0.0001 0.973

�� ��� ��� ��� ��� ��� ��� ��� ��� SR_B�

18550 0 0 1911 407 0 0 0.103 0.022 0.176

74200 0 0 7628 1718 0 0 0.102 0.023 0.184

148400 1 0 15302 3430 6.7×10-6 0 0.103 0.023 0.183

Table 3. The number of larvae and larval density (No. per cell) produced in the four regions. The regions are the Detroit307
River Mouth (region A), Western Shoreline (region B), Midlake Reefs (region C), and Bass Islands (region D).308

�� ��_�
' ��_�

' ��_�
' ��_�

' ��_�
' ��_�

' ��_�
' ��_�

'

19460 550 3133 28406 10000 22.9 62.7 51.1 94.3

77840 2427 11233 115038 40000 101.1 224.7 206.9 377.4

155680 4434 22833 230519 110000 184.8 456.7 414.6 1037.7

�� ��_�
' ��_�

' ��_�
' ��_�

' ��_�
' ��_�

' ��_�
' ��_�

'

18550 0 0 44134 16545 0 0 79.4 156.1

74200 0 0 176166 69837 0 0 316.8 658.8

148400 126 0 353395 139431 5.3 0 635.6 1315.4

5 Discussion309

We have shown, using both theoretical arguments and numerical data, that self-recruitment (SR) cannot be unambiguously310
computed using forward Lagrangian particle tracking models. In contrast, backward Lagrangian particle tracking models311
have demonstrated to be straightforward and effective in calculating SR.312

SR depends on the larval production at each source location (Eq. 3), as noted by Lett et al. (2015). This dependence313
suggests that using forward tracking models to compute SR may be invalid if any strategy for larval particle release, such as314
releasing a random number, an equal number, or a number proportional to the area of the location, is employed, rather than315
releasing the realistic larval production from each source location. Our numerical data confirmed that variations in the316
release of larval particles from any source location can lead to different values of SR. This is in addition to the likelihood317
that there are unknown source locations contributing unexpected recruitment that are not accounted for in the simulation.318
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Similarly, researchers do not need to measure the larval production and dispersal rates of every potential source location to319
estimate the SR at a given location. Instead, they can easily obtain the SR by estimating the number of local juveniles from320
the total sampled juveniles at a given location, based on DNA relationships (D'aloia et al., 2013; Almany et al., 2017).321

This shows that SR is independent of the number of larval recruits at the location of interest. This independence322
makes it effective to compute SR using backward tracking models by releasing a random number of larval particles from the323
location, as our numerical data demonstrated that SR had negligible variations with the number of larval particles released324
from the settlement location. Despite the increasing usage of backtracking models to estimate larval hatching/spawning325
locations and to study larval recruitment, few studies have used backtracking models to compute SR (Torrado et al., 2021).326
Considering the limitations of backtracking models, for example that they are diffusive backward-in-time rather than being327
convergent, comparisons with results from parentage analysis should be undertaken to further verify the validity of SR when328
computed using backtracking models.329

Local retention (LR) is typically more challenging to evaluate empirically, compared to SR, as sampling the330
eggs/larvae that successfully grow into juveniles is more difficult than sampling recruits/juveniles (Lett et al., 2015). While331
parentage analysis can identify the source of sampled juveniles, accurately accounting for the total number of juveniles332
originating from a given source remains a challenge, as some juveniles are inevitably transported to unknown locations and333
may be missed. For example, Almany et al. (2017) sampled adult and juvenile Amphiprion percula and Chaetodon334
vagabundus from eight different locations in Papua New Guinea and assigned juveniles to their parents according to DNA335
relationships. The location of their parents served as the source location of the juveniles, allowing the researchers to336
determine the number of juveniles produced from each source location. However, the total number of larvae produced337

(including those lost to mortality) remained unknown. The difficulty in sampling newly hatched larvae, i.e., measuring ��
' , is338

likely why it is common to apply different larval particle release strategies from each source location in forward tracking339
simulations.340

Knowing the number of recruits ��
' , or the larval production ��

' at one location, can allow us to estimate the number341

of recruits and larval production at all other locations from Eqs. (11) and (12) using forward and backward tracking342

simulations. An approach to estimate ��
' was proposed (Eq. 10), based on the number of recruits at a settlement location ��

' ,343

the settlement rate ��� and the dispersal rate ��� . From Eqs. (10) and (11), the ��
' values can be computed based on the344

recruits at different settlement locations and should be consistent. For example, ��
' computed from the recruits at regions C345

and D should be equal, such that ��_�
' = ��_�

' . However, large differences between ��_�
' and ��_�

' were modeled (Table 3).346

When ��� or ��� approaches zero, the computation of ��
' is undefined (section 2.3), which partly explains the difference.347

Moreover, random numbers of recruits �� were released from regions C and D, which also caused differences between ��_�
'348

and ��_�
' . These differences can be reconciled when ��� and ��� are non-zero by adjusting �� based on ��; ��_�

' would then349

equal ��_�
' . For example, if �� = 19460 particles released and backtracked from region C, the realistic number of recruits at350

region C is ��
' = �� ∙ ��� + ��� + ��� + ��� = 3887 , the realistic recruits at region D, ��

' =1514 would then be351
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estimated based on Eq. (12). The particles released and backtracked from region D should, therefore, be �� =352

��
' ���+���+���+��� = 12112 instead of 18550 in Table 3. The ��

' value based on the recruits at region C, ��_�
' ,353

would be equal to 28820 (from Eq. 11) and ��
' estimated from the recruits to region D, ��_�

' , would equal to 28811. The354

negligible difference between 28820 and 28811 indicates the correctness of Eqs. (11) and (12).355

6 Conclusions356

Our findings show that self-recruitment (SR) is dependent on larval production at each potential source location that may357
transport larvae to the location of interest. From this, we show theoretically and confirm using Lake Whitefish simulations,358
that SR may not be computed unambiguously in forward tracking models without first identifying all the potential source359
locations and their respective larval production. The latter becomes particularly evident given that four different strategies360
for releasing larval particles from each source location have been employed. In contrast, in parentage analysis studies, it is361
typically not necessary to measure the larval production and dispersal rates of every potential source location to estimate SR362
at a given settlement location. Instead, by directly identifying the proportion of locally originating juveniles among the363
sampled juveniles at a given location based on DNA relationships, SR can be determined more efficiently and accurately.364
Similarly, releasing larval particles at the settlement location and tracking them backward in time offers a straightforward365
approach to computing SR. Our findings demonstrated that SR is independent of the number of larval recruits at the366
settlement location, making it viable to release a random number of larval particles. SR can thus be easily obtained as the367
fraction of larval particles that settle locally, saving considerable effort and resources that would otherwise be spent368
identifying all potential sources and their larval output. Furthermore, we proposed an approach to estimate larval production369
at each source location by leveraging the connectivity between source and settlement locations, computed through370
combining forward and backward tracking models. When run in isolation, backtracking models are only able to compute SR371
(or theoretical SR) and the settlement rate, and forward tracking models are only able to compute LR (or theoretical LR) and372
the dispersal rate. Whereas using a combination of both models allows for the calculation of not only SR and LR, but also373
the larval production at each source location and the number of recruits at settlement locations. The ability to accurately374
compute these metrics will significantly improve understanding of population connectivity. The findings were validated375
using numerical data for the Lake Whitefish freshwater species but are also appliable to marine species with a pelagic larval376
phase.377

378
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Appendix A379

Table A1. Release regions, times and durations for forward and backward tracking simulations.380

Release regions Release times Tracking

periods (day)

Number of cells

Forward

Detroit River Mouth (Region

A)

21 March to 8 May 12 24

Western Shoreline (Region B) 21 March to 8 May 12 50

Midlake Reefs (Region C) 21 March to 8 May 12 556

Bass Islands (Region D) 21 March to 8 May 12 106

Backward
Midlake Reefs (Region C) 2 April to 20 May 12 556

Bass Islands (Region D) 2 April to 20 May 12 106

381
Table A2. The description of the notations in this research.382

Notation Description

��� Number of particles recruited to site j that were released from site i in backtracking

��
' Number of larvae per cell (500 m × 500 m) produced from site i

��_�
' Number of larvae per cell (500 m × 500 m) produced from site i estimated based on the recruits

to site j

��� Proportion of larvae released from site i that recruit into the juvenile population at site j

��� Number of particles recruited to site j that were released from site i in forward tracking

LR� Ratio of local larval recruitment at site i to the number of larvae released locally, that settled in

suitable nursery sites

�� Number of particles released from site i in the backtracking simulations

��
' Number of larval recruits to site i

�� Number of particles released from site i in forward tracking simulations

��
' Number of larvae produced at site i

��_�
' Number of larvae produced from site i estimated from the recruits to site j

���
' Number of recruits at site � that were released from site �

��� Proportion of particles released from patch i that settled in patch j in the backtracking simulations

SR� Ratio of local larval recruitment at site i to all recruitment at site i

TLR� Ratio of local larval recruitment to site i to local larvae released
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TSR� Ratio of particles that settled at site i to all the particles released from site i in backtracking

simulations

383
Code and data availability. The AEM3D executable was used as a black-box hydrodynamic transport code. The AEM3D384
source code was not modified in this application but is available with permission from HydroNumerics. The model setup for385
AEM3D are available at https://doi.org/10.5281/zenodo.14749408. The forward and backward particle tracking models were386
performed in Matlab. Their code and simulated date are all available at https://doi.org/10.5281/zenodo.14789098. The387
velocity output from AEM3D is also presented at https://doi.org/10.5281/zenodo.14789098.388
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