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Abstract 16 
Rice cultivation faces multiple challenges of rising food demand while increasing water 17 
scarcity and greenhouse gas emissions, intensifying the tension of the food-water-18 
climate nexus. Process-based modeling is pivotal for developing effective measures to 19 
balance these challenges. However, current models struggle to simulate their complex 20 
relationships under different water management schemes, primarily due to inadequate 21 
representation of critical physiological effects and lack of efficient spatially explicit 22 
modeling strategies. Here, we propose an advancing framework that addresses these 23 
problems by integrating a process-based soil-crop model with vital physiological 24 
effects, a novel method for model upscaling, and the NSGA-II multi-objective 25 
optimization algorithm at a parallel computing platform. Applying the framework 26 
accounted for 52%, 60%, 37%, and 94% of the experimentally observed variations in 27 
rice yield, irrigation water use, methane and nitrous oxide emissions in response to 28 
irrigation schemes. Compared with the origin model using traditional parameter 29 
upscaling methods, the advancing framework significantly reduced simulation errors 30 
by 35%−85%. Moreover, it well reproduced the multivariable synergies and tradeoffs 31 
observed in China’s rice fields and identified additional 18% areas feasible for 32 
irrigation optimization, along with an additional 11% and 14% reduction potentials of 33 
water use and methane emissions, without compromising production. Over 90% of the 34 
potentials could be realized at the cost of 4% less yield increase and 25% higher nitrous 35 
oxide emissions under multiple objectives. Overall, this study provides a valuable tool 36 
for multi-objective optimization of rice irrigation schemes at a large scale. The 37 
advancing framework also has implications for other process-based modelling 38 
improvements efforts. 39 
 40 
Key points 41 
 This study significantly improved rice yield simulations under various irrigation 42 

schemes by incorporating critical physiological processes into a process-based 43 
model. 44 

 This study developed a novel upscaling method of model parameterization that 45 
well reproduced observed synergies and tradeoffs among multiple objectives (i.e., 46 
rice yield, irrigation water use, methane emissions, and nitrous oxide emissions). 47 

 This study provides a practical tool for multi-objective optimization of water 48 
management to deliver co-benefits of ensuring food production, saving water, and 49 
reducing greenhouse gas emissions of rice fields. 50 
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 51 

1 Introduction 52 
 53 
Rice is the staple food for more than half of the world’s population and is also the most 54 
water-intensive cereal crop with a significant contribution to greenhouse gas emissions 55 
(GHGs) (Lampayan et al., 2015; Carlson et al., 2017). Rice cultivation currently 56 
accounts for 40% of global irrigation water use (IRR), 30% of methane (CH4), and 11% 57 
of nitrous oxide (N2O) emissions in agriculture (Yuan et al., 2021). To meet the demand 58 
of the growing population, a 50-60% increase in global rice production along with a 59 
15% increase in water use are required by 2050, potentially leading to higher 60 
greenhouse gas emissions and intensifying the food-water-climate tensions of rice 61 
fields (Flörke et al., 2018). Therefore, ensuring food security while conserving water 62 
resources and reducing GHGs in rice cultivation is essential for achieving multiple 63 
United Nations Sustainable Development Goals. 64 
 65 
Optimizing water management is promising to address the multiple challenges. 66 
However, different water management schemes can lead to a wide range of outcomes 67 

in rice yield (16.9% to 21.9%), IRR (68.0% to 0.3%), CH4 (85.5% to 0.1%) and 68 
N2O (0% to 364%) across climatic zones, reflecting complex interactions between 69 
environmental factors and management strategies (Bo et al., 2022). Process-based 70 
models are powerful tools for predicting and managing the complicated interactions in 71 
responses to water management, given their strength in simulating crop growth, water 72 
dynamics, and soil biogeochemical processes under diverse genotype × environment × 73 
management conditions (Tian et al., 2021; Chen et al., 2022; Yan et al., 2024). Despite 74 
with several relevant studies at site-scales, extrapolation of optimized water 75 
management schemes from limited sites to the broader rice growing regions is hindered 76 
by the diverse climate, soil, crop variety, field management, etc. (Yan et al., 2024; Liang 77 
et al., 2021). Region-specific simulations of the food-water-climate nexus are thus 78 
urgently needed to identify tailored solutions. Nevertheless, current models face 79 
challenges in accurately predicting yield responses to various water management 80 
practices and adequately reproducing the spatial heterogeneity of these responses. 81 
 82 
Despite extensive experimental research to understand critical physiological effects 83 
underlying yield responses, these processes have not been fully represented in models, 84 
especially the compensation mechanisms. Compared to continuous flooding, imposing 85 
moderate water deficit and then rewatering the field could increase both effective leaf 86 
area and net photosynthetic rate upon re-irrigation to enhance photosynthesis for 87 
biomass production (Yang and Zhang, 2010). In addition, harvest index could increase 88 
due to enhanced remobilization of assimilates and accelerated grain filling rate (Zhang 89 
et al., 2008). However, prevailing models (for example, ORYZA, DSSAT, APSIM, 90 
WHCNS) primarily focus on the negative impacts of water deficit (i.e., reduced 91 
photosynthesis or leaf rolling), while neglecting or indirectly simulating crop 92 
adaptation processes (e.g., enhanced root growth and water uptake in deeper soil layers) 93 
(Bouman et al., 2001; Li et al., 2017; Liang et al., 2021; Tsuji et al., 1998). As a 94 
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consequence, yield sensitivities to water management could be overestimated, as 95 
evidenced by evaluations of the ORYZA (v3) model (Xu et al., 2018). Moreover, 96 
physiological processes respond differently to water availability at different growth 97 
stages, while crop models generally use constant water effect coefficient throughout the 98 
rice growing season (Ishfaq et al., 2020). These imply model deficiencies in predicting 99 
yield response to water management, although no assessment across large scales exists. 100 
 101 
Accurate model parameters are essential for reproducing spatial heterogeneity of yield, 102 
IRR, and GHGs. Previous studies usually used either the same parameters at different 103 
pixels, calibrated against all observations, or the spatial proximity principle to 104 
extrapolate model parameters for regional simulations, as a result of lacking enough 105 
observations (Zhang et al., 2024; Zhang et al., 2016). However, critical model 106 
parameters varied considerably when calibrated under different environmental and 107 
management conditions, reflecting important impact of these factors on underlying 108 
physiological and biogeochemical processes (Tan et al., 2021). As a consequence, 109 
traditional model parameterization approaches are unlikely to capture variability of 110 
yield, IRR, and GHGs due to their neglect of the environmental and management-111 
related impacts (Song et al., 2023; Zhang et al., 2023). Besides, previous studies only 112 
evaluated simplified irrigation protocols (i.e., once drainage at midseason or alternative 113 
wetting and drying with constant threshold across the growing season) or only set bi-114 
objectives as optimization targets (Tian et al., 2021; Chen et al., 2022), which likely 115 
underestimated the regulation potentials. Therefore, an integrated framework composed 116 
of a reliable modelling platform, broader water management schemes and multi-117 
objective optimization targets are required for sustainable water management 118 
optimization. 119 
 120 
To address these challenges, this study proposed an advancing framework that 121 
integrated a process-based soil-crop model (Soil Water Heat Carbon Nitrogen Simulator, 122 
WHCNS) with key physiological effects, a novel model upscaling method, and a  123 
multi-objective optimization algorithm (Non-dominated Sorting Genetic Algorithm II, 124 
NSGA-II) at a parallel computing platform (see Fig.1 for workflow). This study focused 125 
on rice yield (Yield), irrigation water use (IRR), methane (CH4), and nitrous oxide 126 
emissions (N2O) of irrigated rice fields. First, three physiological effects were 127 
quantified and embedded into WHCNS to enhance the prediction of yield responses. 128 
Regionalized model parameters were then derived by developing parameter transfer 129 
functions for regional simulations. The model’s ability to reproduce the variations in 130 
the food-water-climate nexus was extensively validated against field observations. 131 
Multi-objective optimization was conducted using the NSGA-II algorithm to 132 
investigate tradeoffs within the food-water-climate nexus and assess the regulation 133 
potentials of water management optimization. This framework was applied to China’s 134 
rice cropping system as an example, considering its position as the world’s largest rice 135 
producer and the ongoing conflicts between production demand, water scarcity, and 136 
greenhouse gas emissions. This study aims to provide a valuable framework for 137 
predicting and regulating rice’s food-water-climate nexus towards sustainable water 138 
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management. 139 
 140 
2 Data and Methods 141 
2.1 WHCNS model and input data 142 
 143 
The soil Water Heat Carbon Nitrogen Simulator (WHCNS) model was improved and 144 
incorporated into the advancing framework in this study to simulate rice yield, irrigation 145 
water use (IRR), methane (CH4), and nitrous oxide (N2O) emissions of irrigated rice 146 
fields at each pixel. The WHCNS model is a process-based agroecosystem model that 147 
runs at a daily time step and comprises six major components: surface ponding water 148 
dynamic, soil water movements, soil heat transfer, soil N transformation and transport, 149 
soil organic turnover, and crop growth. Detailed model descriptions can be found in 150 
(Liang et al., 2022; Liang et al., 2023; Liang et al., 2021). This model was chosen for 151 
several considerations: (i) the model directly outputs all four target variables 152 
simultaneously. This avoids biogeochemical models relying on crop models for detailed 153 
physiological parameters to simulate yield and calculating IRR externally to obtain all 154 
four targets as previously done (Tian et al., 2021; Yan et al., 2024), (ii) the model has 155 
been proven to simulate frequent dry-wet cycles effect reasonably well in China rice 156 
fields, due to simulating water and nitrogen dynamics in surfacing ponding water layer 157 
that is specific for rice fields (Liang et al., 2021), (iii) the model is executable at both 158 
site and regional scales with high efficiency and performs well in capturing spatial 159 
variation in key processes (Liang et al., 2023), (iv) the model has a very flexible 160 
irrigation setup, which allows for the precise control of paddy field water surface levels 161 
by setting the minimum and maximum irrigation thresholds. It also enables calculating 162 
water usage for paddy field irrigation under various water management scenarios (Jiang 163 
et al., 2021). The model is particularly suitable for simulating the regional food-water-164 
climate nexus of rice fields.  165 
 166 
This study ran the model at both site and regional scales (0.5-degree spatial resolution). 167 
Model input data includes daily meteorological variables, soil properties by depth, and 168 
management variables related to planting, fertilization, and irrigation (Table S1). For 169 
site-scale simulations, these variables were obtained from experimental studies, if 170 
unreported, were extracted from spatial datasets according to geographical locations. 171 
All spatial datasets were all resampled to 0.5-degree spatial resolution for regional 172 
simulations. (1) Meteorological variables, including daily mean, maximum and 173 
minimum air temperature, wind speed, precipitation, humidity, and downward solar 174 
radiation, were obtained from the fifth generation ECMWF reanalysis (ERA5) at 0.25-175 
degree resolution (Hersbach et al., 2018). (2) Soil data including bulk density, clay 176 
contents, and soil hydraulic properties (i.e., saturated water content, field water capacity, 177 
wilting point, saturated hydraulic conductivity) at soil depths of 5, 15, 30, 60, 100, and 178 
200 cm was obtained from SoilGrids (10 km) (Han et al., 2015). (3) The planting and 179 
harvest dates were obtained from the crop calendar data of Global Gridded Crop Model 180 
Intercomparisons (GGCMI) Phase 3 (Jägermeyr et al., 2021). (4) Fertilization practices 181 
were conducted by the auto-fertilization component of the WHCNS model, assuming 182 
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no nitrogen stress (Liang et al., 2023). (5) Irrigation practices are defined by three 183 
variables at daily step, including upper threshold (UIRR), lower threshold (LIRR, with a 184 
positive value representing field water level and a negative value representing soil water 185 
potential at 15 cm below the soil surface) and maximum allowable field water level 186 
after rainfall (Hp, also refers to as bund height). Since there is no spatially explicit 187 
information about realistic water management schemes, daily irrigation thresholds were 188 
set following Chen et al. (2022) for regional simulations. The model simulates field 189 
water level of surface ponding layer and soil water potential of stratified layers at daily 190 
step. Irrigation would be triggered whenever field water level (LIRR >0) or soil water 191 
potential at 15 cm below the soil surface (LIRR <0) reach the predetermined LIRR. 192 
Irrigation demand is then calculated as the differences between LIRR and UIRR. 193 
 194 
 195 
2.2 Compilation of experimental observations 196 
 197 
Extensive literature reviews were conducted to collect experimental observations for 198 
model improvement and parameters calibration. Relevant studies should meet the 199 
following criteria: (1) only field experiments covering an entire growing season were 200 
included, while pot and laboratory experiments under controlled environmental 201 
conditions were excluded, (2) the control and treatments only differed concerning water 202 
management with continuous flooding (CF) as control and non-continuous flooding 203 
irrigation (NCF) as treatment, but not concerning other agronomic practices (e.g., 204 
cropping intensity, fertilizer management, and tillage). This was to isolate water 205 
management effects while avoiding confounding effects of other factors, (3) upper and 206 
lower irrigation thresholds were explicitly reported, and lower thresholds were 207 
indicated by soil water potential measured at the soil depth of 15-20 cm. Observations 208 
based on soil water potential at the other soil depth or the other soil-water indicators 209 
(e.g., soil water contents) were excluded, (4) at least one of target variables were 210 
observed, including rice yield (Yield), irrigation water use (IRR), methane emissions 211 
(CH4), nitrous oxide emissions (N2O), leaf area index (LAI), net photosynthetic rate 212 
(Pn), and harvest index (HI). For LAI and Pn, the growth stages of observations (i.e., 213 
tillering, booting, heading, and ripening stage) were recorded to account for growth 214 
stage-dependent effects. As a result, we collected observations of 119 experiments from 215 
37 studies covering 28 sites in 6 countries (i.e., China, India, Philippines, Japan, 216 
Bangladesh, and Peru) (Fig. S1). These observations were split into two datasets 217 
according to target variables. The first dataset including Yield, IRR, CH4, or N2O 218 
observations was used for calibration of model parameters. The second dataset of LAI, 219 
Pn, or HI observations was used to quantify water management effects on physiological 220 
processes for model improvement (Sect. 2.3). 221 
 222 
For each paired observation under the control and treatment, the effects of non-223 
continuous flooding irrigation were calculated as the ratio of observations under 224 
treatment to that under control (Equation 1). This yielded 251 records for RYield, 235 for 225 
RIRR, 37 for RCH4,14 for RN2O, 561 for RLAI (including 61 from tillering stage, 159 from 226 
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booting stage, 202 from heading stage and 139 from ripening stage), 84 for RPn 227 
(including 42 from tillering stage, and 42 from filling stage), and 351 for RHI.  228 
 229 

NCF

CF

X XR X                           (1) 230 

where RX represents non-continuous flooding effects (NCF) on target variables X 231 
(including Yield, IRR, CH4, N2O, LAI, Pn, and HI), XNCF and XCF represent variable 232 
values under non-continuous flooding (NCF) and continuous-flooding irrigation (CF), 233 
respectively. Relative changes of target variables were calculated as (RX-1)×100 for 234 

interpretation and representation (e.g., Yield, IRR, CH4, N2O). 235 
 236 
For each paired observation, four categories of information were also collected. First, 237 
climatic variables included mean daily air temperature (T), precipitation (P), and crop 238 
evapotranspiration (PETc) during growing season. The difference between P and PETc 239 
was further calculated to indicate climatological water availability (CWA). Second, soil 240 
variables included sand content, bulk density (BD), soil organic carbon (SOC), pH, and 241 
soil hydrological properties (e.g., saturated water content (SAT), field water capacity 242 
(FWC)). Third, management-related variables included nitrogen application rate and 243 
timing, as well as lower (LAWD) and upper (UAWD) irrigation thresholds. Fourth, 244 
experimental parameters included geographical location (latitude, longitude), dates of 245 
seeding (also transplanting date in transplanted systems), anthesis, and harvest. These 246 
variables were used for running WHCNS (Sect. 2.1) and conducting correlation 247 
analyses (Sect. 3.1). 248 
 249 
2.3 Model improvement 250 
2.3.1 Incorporation of physiological effects 251 
 252 

In the original WHCNS model, water management effects on crop growth were 253 
simulated by calculating water stress factor based on the Feddes reduction function 254 
(Feddes and Zaradny, 1978). Specifically, the water stress factor is calculated at daily 255 
step as a function of soil water potential to reduce root water uptake, assuming 70 kpa 256 
and 1500 kpa as thresholds of when root water uptake starts to decrease and approaches 257 
0 (Equation 2-3). The calculated water stress factor was used to reduce the simulated 258 
actual biomass production rate, which further indirectly impact produced biomass 259 
allocated for leaf growth and yield formation (Equation 4-6).  260 
 261 

( , , ) ( , ) ( , ) ( )
R R

a p w s
L L

T S h h z dz T a h z a h z b z dz                 (2) 262 
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 268 

where Ta and Tp are actual and potential root water uptake (cm d1). LR indicates root 269 
length (cm). aw(h,z) and as(h,z) are water and salt stress functions. b(z) is root 270 
distribution function. wc is the critical threshold of volumetric soil water content w  271 
above which root water uptake is reduced in water limited layers of the root zone, but 272 
the plant compensates by uptaking more water from other layers that have sufficient 273 
available water. Fgc is daily potential dry matter production accounting for the light 274 

interception, radiation use efficiency, and the CO2 effects (kg hm2 d1). AMAX is the 275 
maximum assimilation rate accounting for temperature effect (kg hm2 h1). DL, Ke, 276 
and CC indicate day length (h d1), extinction coefficient (-) and actual radiation use 277 
(kg hm2 h1). Fgass is daily actual dry matter production (kg hm2 d1) accounting 278 
for water (cf(w)) and nitrogen stress (cf(N)). GAA indicates produced biomass 279 

allocated to organs (leaf or grains) (kg hm2 d1) with the fraction of fr(org). 280 
 281 
To modify the WHCNS, NCF effects on leaf expansion, photosynthesis rate, and 282 
assimilate partition were quantified based on experimental observations and 283 
incorporated into WHCNS (Fig. S2). To do so, mean values of observed effects were 284 
first calculated by experimental gradient of soil water potential (SWP, negative values) 285 
and growth stages (RDS, 0-1) (Table S2-S4). RDS corresponds to planting, tillering, 286 
booting, heading, filling, and maturity stages was quantified as 0, 0.20, 0.40, 0.55, 0.75, 287 
and 1. Effects at other levels of SWP and RDS were then estimated by bilinear 288 
interpolation (i.e., FLAI(SWP, RDS), FPn(SWP, RDS), FHI(SWP)). Three functions were 289 
thus developed involving three new genetic parameters to account for differences in 290 
cultivar sensitivities (PLAI, PPn, PHI, Equations 7-9). The three functions were added to 291 
the origin crop growth module to modify simulations of leaf area index, net 292 
photosynthesis rate and biomass allocated into grains (Equation 10-12, Fig. 2a). 293 
 294 
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 ( , ) 1 ( , ) 1LAI LAI LAIR SWP RDS F SWP RDS P             (7) 295 

 ( , ) 1 ( , ) 1Pn Pn PnR SWP RDS F SWP RDS P               (8) 296 

( ) 1+ ( )-1HI HI HIR SWP F SWP P                      (9) 297 

' ( ) LAILAI GAA leaf SLA R                     (10) 298 

' PnAMAX AMAX R                           (11) 299 

'( ) ( ) HIGAA grains Fgass fr grains R                     (12) 300 

 301 
where RLAI, RPn, RHI represent NCF effects on leaf area index, net photosynthetic rate 302 
and harvest index, respectively. SWP represents soil water potential at 15-20 cm soil 303 
depth. RDS represents relative development stages (0-1). PLAI, PPn, and PHI are genetic 304 
parameters indicating cultivar sensitivities to irrigation regulation that were calibrated 305 

based on observations (Sect. 2.4). LAI and SLA are leaf area index (m2 m2) and 306 
specific leaf area (m2 kg1). LAI’, AMAX’ and GAA(grains)’ denote simulations of the 307 
modified model. It is worth noting that the three functions can be flexibly coupled to 308 
the other process-based crop models to modify the simulation of leaf area growth, 309 
biomass production, and allocation processes. The genetic parameters are needed to 310 
be recalibrated against observed yield responses considering different model 311 
structures.  312 
 313 
2.3.2 Contribution analysis 314 
 315 
Scenario simulations were conducted to isolate contributions of the three physiological 316 

effects on yield changes (Yield) (Table S5). Four scenarios were simulated by 317 
considering all the three effects (S1) and omitting one of the three effects at a time (S2-318 
S4). For each scenario, the model was run under CF and NCF conditions respectively 319 

to calculate Yield. The differences in the simulated Yield between S1 and S2-S4 320 
represent yield changes induced by changes in leaf expansion, photosynthesis rate and 321 

assimilate partition, respectively (i.e., YieldLAI, YieldPn, YieldHI). Relative 322 
contribution of each process was calculated as the ratio of the absolute yield change 323 
induced by the process to the sum of absolute yield change induced by the three 324 
processes (Equation 13). 325 

3

1

100
p

p
p

p

Yield

Yi
N

e d
C

l
O




 


                      (13) 326 

where p represents the three new physiological processes (i.e., p = 1, 2, 3), CONp 327 

indicates relative contribution of the process p to Yield, Yieldp is yield changes 328 
induced by the process p. 329 

 330 
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2.4 Parameters regionalization 331 
 332 
Spatially explicit model parameters are critical for reasonably reproducing spatial 333 
variabilities of target variables. In this study, seven key model parameters were selected 334 
and mapped at 0.5-degree spatial resolution due to their high influence on target 335 
variables, including accumulated temperature for crop maturity (Cumtemp), minimum 336 

assimilation rates (AMIN), the maximum CH4 production rate per soil weight at 30 C 337 
(MPmax), maximum portion of denitrification to N2O production (fN2O_d) and the three 338 
new genetic parameters (PLAI, PPn, PHI). These parameters were first finely calibrated at 339 
site-scales (Sect. 2.4.1) and then upscaled to regional scales (Sect. 2.4.2). To capture 340 
spatial variabilities of NCF effects, different parameters were used under CF and NCF 341 
conditions, except for genetic parameters. This was consistent with a previous 342 
modelling study, aiming to indicate different potentials of methane production and 343 
denitrification under different water management regimes (Song et al., 2023). 344 
 345 
2.4.1 Calibration of site-scale parameters 346 
 347 
Under CF conditions, the parameter Cumtemp was first determined by cultivar as the 348 

minimum cumulative daily temperature higher than 10C (base temperature for rice 349 
growth) across all experiments using the cultivar. Then AMIN, MPmax and fN2O_d were 350 
calibrated to achieve the best fit of predicted target variables with observations under 351 
continuous flooding conditions (i.e., experimental control). Under NCF conditions, 352 
Cumtemp and AMIN were the same with that calibrated from CF conditions. The other 353 
parameters (MPmax, fN2O_d PLAI, PPn and PHI) were then calibrated by minimizing the 354 
sum of simulated squared residuals under non-continuous flooding conditions (Table 355 
S6). To obtain more accurate parameter estimates, the advanced parameter estimation 356 
algorithm (PEST) was used (Doherty, 2010). As a result, 51 groups of genetic 357 
parameters (Cumtemp, AMIN, PLAI, PPn and PHI), 56 parameter values of MPmax (19 358 
for control and 37 for treatment) and 24 parameter values of fN2O_d (10 for control and 359 
14 for treatment) were calibrated. 360 
 361 
2.4.2 Parameters upscaling 362 
 363 
To upscale genetic parameters (AMIN, Cumtemp, PLAI, PPn, PHI) calibrated at site 364 
scales to regional scales, the rice cultivar for each grid was first determined. Then, the 365 
calibrated genetic parameters of the cultivar were used to create the grid. Since the 366 
spatial distribution of rice cultivar is unknown, cultivar of each grid cell was 367 
determined as follows. First, cultivars with Cumtemp lower than the effective 368 
accumulative temperature requirement of the grid were identified. This ensures the 369 
cultivar could reach maturity under the grid cell’s temperature conditions. The grid’s 370 
temperature requirement was calculated as Cumtemp during rice growing periods 371 
specified by the crop calendar data of GGCMI Phase 3 (Jägermeyr et al., 2021). 372 
Subsequently, cultivars with AMIN that closely match the baseline AMIN of the grid 373 
cell were selected. The baseline AMIN was estimated using PEST to achieve the best 374 
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fit of yield simulation with the records in county-scale statistical yearbooks of China 375 
(downscaled to 0.5-deg spatial resolution). These procedures were designed to ensure 376 
that yield simulations were aligned with cultivar’s genetic potential and spatially 377 
consistent with observations. 378 
 379 
To upscale parameters MPmax and fN2O_d, two parameter transfer functions (PTFs) 380 
were developed. Dependent variables were the ratio of site-calibrated parameters 381 
under treatment to that under control (i.e., RMPmax and RfN2O_d) (Equation 16-17). 382 
Independent variables were determined as field water capacity (FWC) for RMPmax and 383 
bulk density (BD) for RfN2O_d, due to their higher correlations with dependent 384 
variables. The function forms were determined as the form with the highest R2. As a 385 
result, the relationship between field water capacity and RMPmax was best fitted by an 386 
exponential function (R2 = 0.62, p < 0.001), and the relationship between bulk density 387 
and RfN2O_d was best fitted by a quadratic function (R2 = 0.91, p < 0.001) (Fig. S5). 388 
The importance of soil properties in regulating spatial heterogeneity of denitrification 389 
potentials aligns with previous studies (Tang et al., 2024). Parameters of the PTFs 390 
were calibrated using the least square method (Equation 16-17). With the calibrated 391 
PTFs, the ratio of parameters under NCF relative to CF (RMPmax and RfN2O_d) for each 392 
grid could be predicted by combining spatial dataset of FWC and BD. Then gridded 393 
MPmax

 and fN2O_d
 for CF conditions (MPmax

CF and fN2O_d
 CF) were estimated using PEST 394 

targeting CH4 from the EDYGA v8.0 dataset (Crippa et al., 2024) and N2O emissions 395 
estimated by Cui et al. (2024) (Fig. S4). These parameters were estimated for 2013 396 
and 2015 and subsequently validated for 2014 and 2016 to assess their ability to 397 
reproduce the spatial variability of target variables (Fig. S3). Finally, MPmax and fN2O_d 398 
for NCF conditions were calculated by multiplying MPmax

CF and fN2O_d
 CF with the 399 

predicted ratio (RMPmax and RfN2O_d). 400 
 401 

 402 

-26=98= / 6maxMP NCF CF
max max

FWCR MP MP e                       (16) 403 

2 _ 2
2 _ 2 _= / 268 +789 +581N O df NCF CF

N O d N O dR f f BD BD            (17) 404 

 405 
Where RMPmax and RfN2O_d represent the ratio of parameter MPmax and fN2O_d 406 
calibrated under non-continuous flooding (treatment) to that under continuous 407 

flooding (control). FWC and BD represent field water capacity (cm3 cm3) and soil 408 
bulk density (g cm3) obtained from SoilGrids (10 km) (Han et al., 2015). 409 
 410 
To prove the efficacy of the PTFs, two other parameter upscaling approaches were also 411 
used for comparison, including the mean parameters approach and the spatial proximity 412 
approach. These approaches were widely used in previous modelling studies to derive 413 
regional parameters and conduct regional simulations (Zhang et al., 2024). To adopt the 414 
mean parameter approach, mean value of the site-calibrated MPmax and fN2O_d (Sect. 415 
2.4.1) were calculated respectively for CF and NCF conditions, and then the two 416 
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constant mean parameters was used in regional simulations. To adopt the spatial 417 
proximity approach, the nearest site of a site was first identified according to 418 
geographical coordinates. Then both MPmax and fN2O_d calibrated from the nearest site 419 
were used for simulation of this site. The three approaches were compared in their 420 

performance to reproduce the observed variations in CH4 and N2O (Fig. 3). 421 
 422 
2.5 Regional scenario simulations and driver identification 423 
 424 
Scenario simulations were conducted to test whether the proposed framework could 425 
reasonably predict the response sensitivity of target variables and their relations under 426 
different irrigation schemes. To do so, the well-calibrated WHCNS model was run 427 
under baseline and a series of non-continuous irrigation scenarios using the parallel 428 
computing framework (Liang et al., 2023). For baseline condition, irrigation thresholds 429 
were set according to Chen et al. (2022). For non-continuous flooding irrigation 430 
scenarios, a range of the lowest irrigation threshold levels were set based on 431 

observations (5, 10, 15, 20, 30, 40 and 50 kpa). The upper irrigation thresholds 432 
were kept the same with baseline for consistency with experiments. NCF effects were 433 
then calculated from model simulations and compared with observed effects. Observed 434 
effects were obtained from two datasets. The first is the one compiled for this study 435 
(Sect. 2.2) using soil water potential to distinguish irrigation schemes. The second was 436 
obtained from Bo et al. (2022), who used the ratio of days with no surface water to total 437 
growing days (UFR) to differentiate irrigation schemes. To facilitate comparison, the 438 
UFR of each irrigation scenarios was also calculated and output by WHCNS (Fig. S9).  439 
 440 
To identify the dominant factor driving spatial patterns of NCF effects, correlation 441 
analyses between simulated NCF effects and variables were performed following Cui 442 
et al. (2021). Climatic, soil and management-related factors were selected as 443 
independent variables, including T, P, ET, Clay, BD, SOC and fertilizer rate. The 444 

analyses were conducted respective for Yield, IRR, CH4, and N2O using 3.5-by-445 
3.5 moving windows. The data resolution was 0.5 by 0.5, meaning the surrounding 446 
49 pixels were used for each grid. The correlation coefficient and its significance in 447 
each grid was first calculated, and the dominant driver was then defined as the factor 448 
with the largest absolute correlation coefficient. To assess the robustness of the results, 449 
similar analyses were done with moving windows at higher spatial resolutions (e.g., 450 

2.5 by 2.5).  451 
 452 
2.6 Single-objective and multi-objective optimizations 453 
 454 
Based on scenario simulations, four single-objectives and a multiple-objective were 455 
designed to identify optimal irrigation schemes. The four single-objective targets are (1) 456 
maxYield: maximizing rice yield, (2) minIRR: minimizing irrigation water use, (3) 457 
minCH4: minimizing CH4 emission, and (4) minN2O: minimizing N2O emissions. 458 
Under all targets, yield reduction compared to CF conditions was avoided. With optimal 459 
solution under the four single-objective scenarios, the largest regulation potentials to 460 
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increase yield and reduce IRR, CH4, and N2O emissions were assessed. For comparison, 461 
the scenario simulations and optimization were also conducted using the origin 462 
WHCNS model (Fig. 5). 463 
 464 
The multi-objective optimization was conducted by combining the improved WHCNS 465 
model and the NSGA-II algorithm (Deb et al., 2002). First, a set of 100 parental 466 
populations was initialized with random solutions. Each population includes 1993 467 
individuals, corresponding to 1993 grid cells of irrigated rice areas. Second, the 468 
objective functions were computed with each solution by executing the WHCNS model 469 
(Equation 18). Third, the performance of each population was evaluated by ranking the 470 
fitness of its objective functions. Fitness is a measure of how well a solution performs 471 
and is calculated based on the non-dominated sorting rank. Then, a new generation was 472 
generated through selection, crossover, and mutation based on fitness. Finally, Pareto 473 
fronts were generated after 100 generations had been evaluated (that is 10000 474 
populations).  475 
 476 
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where fobjective(yield, IRR, GWP) denotes the collection of objective functions, fmax 479 
denotes the objective that needs to be maximized (e.g., rice yield), and fmin denotes the 480 
objective that needs to be minimized (e.g., IRR, GWP). GWP is the integrated global 481 
warming potential of combined emissions of CH4 and N2O emissions and is 482 
calculated based on WHCNS simulations (Equation 19) (Forster et al., 2021). It 483 
should be noted that this study set equal weight for each target variable to evaluate the 484 
fitness of each solution. Decision-makers can simply set the weight values of different 485 
objectives according to their preferences, or adopt advanced multi-objective criteria 486 
decision-making methods such as the efficiency coefficient method (Guo et al., 2021). 487 
The regulation potentials of multiple-objective optimization were calculated as the 488 

averaged NCF effects (Yield, IRR, CH4, N2O, GWP) of all non-dominated 489 
solutions. The potentials were further compared with that from single-objective 490 
optimizations to investigate tradeoffs between target variables (Fig. 6). 491 
 492 
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 493 

Figure 1 Research framework of this study. The framework mainly combines data 494 
compilation, model improvement, parameter regionalization, scenario simulations, and 495 
multi-objective optimization. The framework can be flexibly adapted with alternative 496 
irrigation scenarios, optimization objectives, and optimization algorithms in other 497 
modelling studies. LAI, Pn, and HI represent leaf area index, net photosynthetic rate, 498 
and harvest index. AMIN, MPmax, fN2O_d, PLAI, PPn, and PHI are model parameters 499 
calibrated and mapped in this study (Sect. 2.4). CF and NCF represent continuous 500 
flooding and non-continuous flooding irrigation. SWP and UFR represent soil water 501 
potential and the ratio of unflooded days to total rice growing days, indicating different 502 
irrigation schemes. See the Appendix for detailed descriptions of parameters and 503 
variables. 504 
 505 
3 Results and discussion 506 
3.1 Performance of model improvement 507 
 508 
The origin WHCNS model was first evaluated in reproducing variabilities of rice yield 509 
and irrigation water use under various irrigation schemes. For rice yield, model 510 
performance is satisfying when mixing observations under continuous flooding (CF, 511 
experimental control) and non-continuous flooding (NCF, experimental treatments) 512 
irrigation schemes together (R2 = 0.41, normalized root mean square error nRMSE = 513 
11%) (Fig. S6). In particular, with fine-turned crop genetic parameters (i.e., Cumtemp 514 
and AMIN), the origin model performed well under CF condition (R2 = 0.74, nRMSE = 515 
1 3%), while had worse performance under NCF condition (R2 = 0.22, nRMSE = 13%) 516 
(Fig. S6). As a consequence, the origin model failed to reproduce variations in observed 517 

yield changes (Yield) (R2 = 0.03, nRMSE = 17%) (Fig. 2b). More importantly, the 518 
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simulations could not reproduce Yield sensitivities to soil water potentials presented 519 
in field experiments (Fig. 2d). In contrast to yield, model performance in simulating 520 

irrigation water use responses (IRR) variabilities and its sensitivities to soil water 521 
potentials was acceptable (Fig. 2c and 2e). These results highlight the primary 522 

modelling deficiency in simulating Yield. Given the satisfying model performance in 523 
simulating yield under CF and IRR, the underperformance is likely due to lacking 524 
critical physiological processes responsible for yield responses to NCF rather than 525 
uncertainties of crop parameters.  526 
 527 
After incorporating the three functions of NCF effects and fine calibration of genetic 528 
parameters (Sect. 2.3, Fig. 2a), the model performance was substantially improved. The 529 

explained variabilities of Yield increased from 3% to 52% and nRMSE decreased from 530 
17 % to 11% (Fig. 2b). The observed Yield sensitivities to soil water potential (9% 531 
kpa1, P < 0.001) could be reasonably reproduced by the modified model (13% kpa1, 532 
P < 0.001) rather than the origin mdoel (P > 0.05) (Fig. 2d). The cultivar differences of 533 
yield responses could also be simulated (R = 0.67) (Fig. S7). Across the three processes, 534 

leaf area growth (YieldLAI) was primarily responsible for yield losses, while net 535 
photosynthetic rate (YieldPn) and biomass translocation (YieldHI) contributed to yield 536 
increases (Sect. 2.3.2, Fig. S8). The positive contributions are larger in warmer and 537 
more humid areas, and in acidic soils with larger field water holding capacity and higher 538 

SOC. These findings conform with empirical relationships between Yield and 539 
environmental factors reported by previous meta-analysis (Carrijo et al., 2017). These 540 

results prove efficacy of the modified model to predict and regulate Yield under 541 
diverse irrigation schemes and environmental conditions. 542 
 543 
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 544 

Figure 2 Model improvements by incorporating water effects on physiological 545 
processes. (a) Schematic of critical physiological effects in response to different 546 
irrigation schemes and their representation in the WHCNS model. (b-c) Model 547 
performance for simulating Yield (b) and IRR (c) based on the origin (blue) and 548 
modified (orange) WHCNS model. Darker colored dots indicate lower soil water 549 

potential (unit: kpa). (d-e) Sensitivity of Yield and IRR to lower irrigation threshold 550 
of soil water potential. Black, blue, and orange colors show the results of observations 551 
and simulations based on the origin and modified WHCNS model, respectively. Circles 552 
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are mean values; error bars show the 25–75% interquartile range. The lines are the 553 
linear regression lines with dashed lines indicating non-significant relationships based 554 
on two-sided t-test (P > 0.05). The shaded areas around each line represent the 95% 555 
confidence interval.  556 
 557 
Besides being coupled to WHCNS as an integrated system, the new functions also 558 
contribute to advancing related modelling studies by directly involving positive 559 
physiological effects and considering stage-dependent response sensitivities (Li et al., 560 
2017). By contrast, most prevailing crop models only account for negative effects of 561 
soil drying and reduced transpiration, while does not incorporating direct compensation 562 
effects (such as increased photosynthesis rate upon rewatering) . Moreover, constant 563 
stress sensitivity parameters were generally used for all growth stages (such as ORYZA 564 
and DSSAT) (Bouman et al., 2001; Tsuji et al., 1998). These models could flexibly 565 
incorporate the three new functions and recalibrate the genetic parameters (i.e., PLAI, 566 
PPn, and PHI) following the procedures of this study to improve their performance in 567 
predicting yield responses. 568 
 569 
3.2 Performance of regionalized parameters 570 
 571 
To simulate regional NCF effects, the model was first run respectively for CF (baseline) 572 
and NCF conditions using the parallel computing framework at a spatial resolution of 573 
0.5-deg. NCF effects were then calculated using model simulations following Equation 574 
1 (Fig.1 and Sect. 2.4). Using the PEST-calibrated gridded model parameters for CF 575 
(Sect. 2.4.1), the nRMSE between model simulations and their spatial datasets were 20% 576 
to 29% for yield, ~7% for IRR, ~4% for CH4, and 4% to 6% for N2O during the 577 
validation period (year 2014 and 2016) (Fig.S2). It was noted that the nRMSE of rice 578 
yield was relatively larger than that of other target variables, despite being within an 579 
acceptable range (<30% for the validation periods). This could be caused by interannual 580 
cultivar changes, which was difficult to consider in large-scale simulations due to the 581 
lack  of spatial distribution of rice cultivars. Overall, these results reveal a satisfying 582 
model calibration to simulate baseline values and spatial variabilities of target variables.  583 
 584 
To reproduce observed variabilities of NCF effects on target variables, NCF effects on 585 
key model parameters (MPmax and fN2O_d) were incorporated for constraining model 586 
simulations. To do so, NCF effects on model parameters were first quantified from site-587 
scale calibrations and extrapolated to regional scale (Sect. 2.4). Three approaches of 588 
parameter extrapolation were tested and compared, including developing parameter 589 
transfer functions (PTFs), using mean site-calibrated parameters (mean), and using 590 
spatially nearest calibrated parameters (spatial) (Sect. 2.4.3). Results showed that 591 
developing PTFs performed the best to reproduce observed variabilities of ∆CH4 and 592 
∆N2O (Fig. 3). Model simulations using parameters estimated by PTFs explained 37% 593 
and 94% of variations in ∆CH4 and ∆N2O, with nRMSE being 25% for ∆CH4 and 10% 594 
for ∆N2O (Fig. 3a-b). By contrast, simulations based on the other two approaches could 595 
hardly reproduce observed variabilities of ∆CH4 and ∆N2O, with nRMSE achieving 66% 596 
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to 72% for ∆CH4 and 29% to 73% for ∆N2O (Fig. 3c-f). These results prove the efficacy 597 
of the developed PTFs and suggest soil variables as good predictors for spatial 598 
extrapolation of site-calibrated parameters to simulate CH4 and N2O. The PTFs could 599 
also be referred by other biogeochemical models for regional simulations of CH4 and 600 
N2O (such as the Denitrification-Decomposition model and the Dynamic Land 601 
Ecosystem Model) (Zhang et al., 2016).  602 
 603 

 604 
Figure 3 Comparison of model parameter upscaling approaches. Model 605 
performance in simulating methane and nitrous oxide emissions changes based on 606 
parameters derived from (a-b) parameter transfer functions (PTFs), (c-d) mean site-607 
calibrated parameters, and (e-f) spatially nearest parameters. The color of the dots 608 
indicates lower irrigation thresholds of soil water potential under non-continuous 609 
flooding irrigation (unit: kpa). The solid lines are regression lines with dashed lines 610 
indicating non-significant relationships (P > 0.05). Blue shading around each line 611 
represents the 95% confidence interval.  612 
 613 

Considering scarce observations of NCF effects across space, it was impractical to 614 
directly evaluate the regionalized parameters in reproducing spatial variability of NCF 615 
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effects. Therefore, the proposed framework was evaluated in terms of the response 616 
sensitivity of target variables and their relationships under different irrigation schemes 617 
(Sect. 2.5). Scenario simulations broadly conformed with observations regarding the 618 
magnitude of NCF effects and response sensitivity across soil water potential gradients 619 

(Fig. S9). With decreased soil water potential threshold, Yield decreased quasi-linearly, 620 
CH4 and IRR decreased at a decelerating rate, while N2O showed slight variabilities 621 
(Fig. S9a). The decelerating decrease in CH4 was also observed in experiments, 622 
suggesting the model ability to simulate maximum potentials of CH4 mitigation 623 
(Balaine et al., 2019). The response sensitivity was further validated using an alternative 624 
observation dataset (Fig. S9b). Besides, the observed synergy or tradeoffs of the yield-625 
IRR-GHGs nexus were broadly covered by scenario simulations using the modified 626 
model rather than using the origin model (Fig. S9c). Such bias could further impact 627 
assessment of regulation potentials of the food-water-climate nexus. 628 
 629 

3.3 Assessment of regional regulation potentials 630 
 631 

Scenario simulations revealed large spatial variabilities of NCF effects on all target 632 
variables (Fig. 4). Applying the same irrigation scheme (e.g., lower irrigation 633 

threshold of 15 or 30 kpa) could induce larger yield increase in the southwest 634 
single-rice region (XNS: 2.4% to 3.4%), while larger yield losses in northern regions 635 

(HHH: 3.2%) (Fig. 4a and b). The HHH region also showed larger yield sensitivity 636 
with decreased lower irrigation threshold (−0.24% kpa−1) (Fig. 4c). For IRR, 637 
relatively larger water saving benefits occurred in south regions, whereas response 638 
sensitivity was larger in northeast regions (−1.7% kpa−1). For CH4, north rice growing 639 
regions showed relatively higher reductions (NES: 64% to 82%, HHH: 77% to 88%) 640 
and higher response sensitivity to decreased soil water potential threshold. The 641 
findings about larger water saving benefits in south China and larger CH4 mitigation 642 
in north China were consistent with previous assessments (Tian et al., 2021). 643 
However, N2O emissions showed widespread increase regardless of lower irrigation 644 
threshold, except for northeast regions, indicating low opportunities to reduce N2O by 645 
only optimizing water management. 646 
 647 
To further understand the drivers shaping the spatial variations in NCF effects, 648 
correlation analyses were conducted for each target variable across varying lower 649 
irrigation threshold. Overall, climatic and edaphic variables were the most important 650 
drivers, while management-related variables were less important (Fig. 5). Exceptions 651 

occurred in the south double rice region (HND) for Yield and the southwest single 652 
rice region (XNS) for N2O, where higher fertilizer application rate was associated 653 
with larger yield increase but decreased N2O reduction potentials (Fig. S10 and S11). 654 

For both Yield and IRR, clay content was the most important driver at higher 655 
irrigation thresholds, while climate factors showed increasing importance with 656 
decreased irrigation thresholds (Fig. 5a and b). By contrast, reduction potentials for 657 
CH4 and N2O emissions were dominated by edaphic factors regardless of irrigation 658 
threshold (i.e., clay for CH4 and bulk density for N2O) (Fig. 5c and d). These findings 659 
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highlight the complex interplay of factors influencing regulation potentials of rice 660 
production, irrigation water use and greenhouse gas emissions through NCF adoption.  661 
 662 

 663 
Figure 4 Spatial pattern of relative changes in target variables under different 664 
irrigation schemes. The four columns correspond to the four target variables Yield, 665 
IRR, CH4, and N2O, respectively. (a) relative changes of target variables under a 666 
lower irrigation potential of 15 kpa, (b) relative changes of target variables under a 667 
lower irrigation potential of 30 kpa, (c) differences between (b) and (a), (d) results for 668 
different rice growing regions. NES, HHH, CJS, CJD, HND, and XNS indicate six rice 669 
growing areas of China, namely, Northeast Single rice, HuangHuaiHai single rice, 670 
Yangtze River single rice, Yangtze River double Rice, South China Double rice, and 671 
Southwest China Single rice, respectively. 672 
 673 
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 674 
Figure 5 Drivers regulating spatial variations in relative changes in yield (a), IRR 675 
(b), CH4 (c) and N2O (d). The numbers and colors indicate correlation coefficients, 676 
with gray indicating non-significant correlations (N.S., P > 0.05). The pie plots 677 
represent the proportion of irrigated rice areas (%) for which relative changes 678 
variation is regulated by the dominant drivers. The dominant driver is defined as the 679 
factor with the largest absolute correlation coefficient in each grid cell, identified from 680 
3.5°-by-3.5° moving windows. The numbers in blue, orange and green around the pie 681 
plots denote the area proportions dominated by climate (i.e., T + P + ET), soil (i.e., 682 
Clay + BD + SOC) and management-related (i.e., Fertilizer rate) factors under 683 
corresponding lower irrigation threshold. Spatial distributions of dominant drivers are 684 
shown in Fig. S10 and S11. 685 
 686 
To identify the largest regulation potentials from NCF adoption, four single objective 687 
targets were designed, including maximizing rice yield, minimizing IRR, CH4 688 
emissions, or N2O emissions (denoted as maxYield, minIRR, minCH4, min N2O, Sect. 689 

2.6). Results indicated that the largest regulation potentials of Yield, IRR, CH4 690 
and N2O were 4.6%, −61.0%, −64.2% and −10.9%, respectively (Fig. 6a). These 691 
potentials could be achieved respectively over 91%, 91%, 88% and 26% of national 692 
rice areas (Fig. 6b). Spatially, larger yield increase potential occurred in south (HND: 693 
7.7%) and southwest regions (XNS: 6.8%) (Fig. S12A). The reduction potential of 694 
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IRR and CH4 showed relatively slight spatial variabilities. In contrast, reduction 695 
potential of N2O primarily concentrated in northern regions (NES: −30%) due to 696 
increased N2O in southern regions (Fig. 5a and S12A). N2O increase in southern 697 
regions is associated with higher nitrogen application rates, providing substrate for 698 
nitrification and denitrification processes to facilitate N2O emissions (Jiang et al., 699 
2019). The results conform to previous studies in that irrigation and nitrogen should 700 
be co-regulated for these areas to avoid unintended N2O emissions from water 701 
management (Jiang et al., 2019; Kritee et al., 2018).  702 
 703 

The largest regulation potentials of Yield, IRR, CH4, and N2O are not likely to 704 
be achieved at the same time, as evidenced by different optimized irrigation strategies 705 
between single-objective targets (Fig. 6 and S13). For example, the lower irrigation 706 

threshold should be higher than 20kpa for most areas (84%) under maxYield, while 707 
lower than 20kpa over half areas under minIRR and minCH4. This suggests tradeoffs 708 
between yield increase and IRR/CH4 mitigation (Bo et al., 2022). To compare, using 709 
the origin model could overlook nearly 20% feasible areas for applying optimized 710 

irrigation schemes (Fig. 6). As a consequence, regulation potentials of Yield, IRR, 711 
CH4 and N2O could be underestimated by 4%, 11%, 14%, and 2%, especially for 712 
the southwest regions (XNS) (Fig. 6a). Moreover, optimal NCF strategies also 713 
differed from that identified by the improved model, particular under maxYield targets 714 
(Fig. 6b). These results showed important implications of the improved framework for 715 
prompting sustainable water management. 716 
 717 

 718 

Figure 6 Comparison of the origin and modified model from (a) regulation 719 
potentials and (b) optimized irrigation schemes under single-objective targets. 720 
The four columns show results under four single objective targets: maximizing rice 721 
yield (maxYield), minimizing irrigation water use (minIRR), minimizing CH4 722 
emissions (minCH4), and minimizing N2O emissions (maxN2O). (a) Area-weighted 723 
Yield, IRR, CH4, and N2O for China and six rice growing regions. Blue and 724 
orange indicate results from the origin and modified model, respectively. (b) 725 
Proportions of rice areas with corresponding optimized lower irrigation thresholds 726 
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(LIRR) to total irrigated rice areas under the four single objective targets. NES, HHH, 727 
CJS, CJD, HND, and XNS indicate six rice growing areas of China, namely, 728 
Northeast Single rice, HuangHuaiHai single rice, Yangtze River single rice, Yangtze 729 
River double Rice, South China Double rice, and Southwest China Single rice, 730 
respectively. 731 
 732 
3.4 Tradeoffs between food, water, and greenhouse gas emissions 733 
 734 
The NSGA-II algorithm was conducted to investigate synergies or tradeoffs of the food-735 
water-climate nexus (Fig. 7 and Sect. 2.6). There were evident tradeoffs between 736 
reducing CH4 (or IRR) and N2O (Fig. 7a). In contrast, synergies were noted between 737 
reducing IRR and CH4, as well as between inhibiting N2O emissions and increasing rice 738 
yield. The relationships between yield increase and CH4 (or IRR) reductions were more 739 
complicated due to the impacts of varying irrigation timing and no-flooded days (Yan 740 
et al., 2024). Adopting non-dominated solutions from multi-objective optimization 741 
could realize over 90% of the largest reduction potentials of IRR and CH4, while at the 742 
cost of 4% less yield increase (4.6% versus 0.5%) and 25% higher nitrous dioxide 743 

emissions (11% versus 14%). The N2O increase is because this study used integrated 744 
warming potentials of CH4 and N2O emissions (GWP) to indicate greenhouse gas 745 
emissions so that CH4 outweighed N2O due to large emission quantities (Sect. 2.6).  746 
 747 
Spatially, over 90% of the reduction potentials for IRR and CH4 could be achieved 748 
across 53% and 60% of the national rice areas, primarily in southern regions (Fig. 7 and 749 
S14). In these areas, N2O increase was inevitable, but yield increase could be expected. 750 
By contrast, stronger tradeoffs occurred in the northern regions, where the reduction 751 
potentials of IRR and CH4 were limited even with decreased yield and increased N2O 752 
emissions. Therefore, NCF adoption should be prioritized in southern regions (e.g, 753 
XND, CJD, CJS) to achieve a national optimum balance among rice production, water 754 
use, and greenhouse gas emissions mitigation. Noted that other objective functions 755 
could also be designed for multi-objective optimization, such as applying other 756 
indicators (e.g., water productivity, yield-scaled GWP), setting distinguished weights 757 
for each indicator or grid cell. 758 
 759 
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 760 
Figure 7 Regulation potentials of Yield, IRR, CH4, and N2O under single-761 
objective and multi-objective targets. (a) Synergies or tradeoffs between target 762 
variables with different solutions of multi-objective optimization. Dots color indicates 763 
probability density distributions of variable changes from all non-dominated solutions 764 
(N = 10000) of the NSGA II optimization. The vertical and horizontal dashed lines 765 
show national regulation potentials of the target variable under single-objective 766 
targets, with corresponding spatial distributions presented in panel (b). Note that the 767 

results of N2O potentials (11%) were not shown in the third, fifth, and sixth 768 
subplots for a clearer view. (b) Yield, IRR, CH4, and N2O under single-objective 769 
targets of maximizing rice yield (maxYield), minimizing irrigation water use 770 
(minIRR), minimizing CH4 emissions (minCH4), and minimizing N2O emissions 771 
(maxN2O). These results indicate the maximum benefits of each target variable from 772 
adopting non-continuous irrigation, which could not be necessarily realized 773 

simultaneously. (c) Yield, IRR, CH4, and N2O under multi-objective 774 
optimization. These figures show mean benefits from all non-dominated solutions of 775 
the NSGA II optimization (N = 10000). 776 
 777 
3.5 Uncertainties and future direction 778 
 779 
This framework is subject to several uncertainties, mainly sourced from observational 780 
gaps and management-related input data. First, the absence of field observations for 781 
baseline CH4 and N2O emissions across regional scales forced us to use estimates from 782 
inventory or data-driven approaches as a proxy for deriving gridded model parameters 783 
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of this study (Cui et al., 2021; Crippa et al., 2024). Despite uncertainties in predicting 784 
absolute values, these parameters could reasonably reproduce the spatial patterns and 785 
could be further refined given increased field observations. Second, the limited 786 
experimental observations of CH4 (n = 37) and N2O (n = 14) under various irrigation 787 
schemes have contributed to uncertainties in developing and applying parameter 788 
transfer functions (PTFs). The values of PTFs predictors (bulk density and field water 789 
capacity) in the observation dataset (1.34~1.48 g cm−3 and 0.25~0.30 cm3 cm−3) did not 790 
encompass the full range across national rice areas (1.24~1.48 g cm−3and 0.22~0.32 791 
cm3 cm−3), indicating potential extrapolation in parameters regionalization (Fig. S1). 792 
Despite these uncertainties, the PTFs significantly improved over previous approaches 793 
(constant parameters or spatial proximity approach). Lastly, current irrigation practices 794 
across large scales remain largely unknown, so that irrigation thresholds were set 795 
following previous recommendations. However, actual farmer practices are influenced 796 
by various factors and may not align with these recommendations. This discrepancy 797 
could lead to an overestimation or underestimation of target variables and further 798 
introduce uncertainties to the assessment of regulation potentials. 799 
 800 
These uncertainties provide insights to enlighten future research efforts, including 801 
conducting extensive observations and experiments and developing high-resolution 802 
input data. On the one hand, intensive GHGs monitoring networks are essential to 803 
reduce uncertainties associated with parametrization (Arenas-Calle et al., 2024). To 804 
better constrain the PTFs and reduce extrapolation uncertainty, field experiments 805 
combined with incubation experiments across a broader range of climate conditions 806 
(e.g., colder and more humid areas) and soil properties (e.g., areas with higher SOC or 807 
lower bulk density) should be conducted (Fig. S1). In addition, extensive field 808 
experiments with simultaneous measurements of yield, IRR, CH4, and N2O emissions 809 
across diverse environments are required to validate the framework further. On the other 810 
hand, developing a high-resolution dataset of current irrigation schemes is crucial for 811 
more accurate model parameter calibration and realistic assessment of regulation 812 
potentials. This could be achieved by integrating remote sensing technologies with 813 
extensive field investigations (Novick et al., 2022).  814 
 815 
4 Conclusion 816 
 817 
This study introduced an advancing framework for process-based modelling of the 818 
complex food-water-climate nexus in rice fields under various water management 819 
schemes. By integrating the Soil Water Heat Carbon Nitrogen Simulator (WHCNS) 820 
with key physiological effects, a novel model upscaling method, and the NSGA-II 821 
multi-objective optimization algorithm at a parallel computing platform, the framework 822 
provides a comprehensive approach to optimize irrigation strategies. Applying this 823 
framework to China’s rice cropping system, we assessed the largest regulation 824 

potentials of Yield, IRR, CH4, and N2O as 4.6%, −61.0%, −64.2%, and −10.9% 825 
from 91%, 91%, 88%, and 26% of national rice areas. However, these regulation 826 
potentials could not be simultaneously realized due to complicated tradeoffs among 827 
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food-water-GHGs. Based on NSGA II multi-objective optimization targeting food-828 
water-GHGs co-benefits, over 90% of the reduction potentials in water use and methane 829 
emissions could be realized, while at the cost of 4% less yield increase and 25% higher 830 
nitrous dioxide emissions. The proposed framework is a valuable tool for irrigation 831 
optimization in rice cultivation and also offers a transferable paradigm for incorporating 832 
other management effects into process-based models, thus supporting comprehensive 833 
assessments of sustainable management measures. 834 
 835 
Appendix A: Abbreviation table 836 

 837 

Type Abbreviation Description 

Target 
variables 

Yield Rice yield (kg ha1) 
IRR Irrigation water use (mm) 
CH4 Methane emissions (kg ha1) 
N2O Nitrous oxide emissions (kg ha1) 

GWP 
Integrated global warming potential of CH4 and 
N2O at 100-yearr scale, calculated as 27.2×CH4 
+273×N2O (kg ha1) 

LAI Leaf area index (m2 m2) 
Pn Net photosynthetic rate (kg ha1) 
HI Harvest index (-) 

Effect sizes 
RYield, RIRR, 
RCH4, RN2O, 

RLAI, RPn, RHI 

Effect size of non-continuous flooding irrigation 
(NCF) on target variables, calculated as the ratio 
of observations under NCF to that under 
continuous flooding (CF) (-) 

Relative 
changes 

Yield, IRR, 
CH4, N2O 

Relative changes of target variables under NCF 
compared to CF, calculated as (R-1)×100 (%) 

Model 
parameters 

Cumtemp accumulated temperature for crop maturity (◦C) 
AMIN Minimum assimilation rates (kg hm2 h1) 

PLAI, PPn, PHI 
Genetic parameters accounting for cultivar 
sensitivities to NCF effects on leaf area index, 
net photosynthetic rate, and harvest index 

MPmax Maximum CH4 production rate per soil weight 
at 30 C (g C g−1 d−1) 

fN2O_d 
Maximum portion of denitrification to N2O 
production (-) 

Environmental 
variables 

T Mean daily air temperature during rice growing 
season (◦C) 

P Total precipitation during rice growing season 
(mm) 

PETc Total crop evapotranspiration during rice 
growing season (mm) 

CWA Climatological water availability, calculated as 
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the difference between P and PETc (P-PETc, 
mm) 

Soil variables 

BD Bulk density (g cm3) 
Sand Sand content (%) 
Clay Clay content (%) 
SOC Soil organic carbon (%) 
SAT Saturated water content (cm3 cm3) 
FWC Field water capacity (cm3 cm3) 

Management 
variables 

LAWD Lower irrigation threshold, indicated by SWP 
(kpa) 

UAWD Upper irrigation threshold (cm) 
SWP Soil water potential (kpa) 

UFR Ratio of unflooded days to total growing days 
(%) 

Optimization 
objectives 

maxYield Maximizing rice yield 
minIRR Minimizing irrigation water use 
minCH4 Minimizing CH4 emission 
minN2O Minimizing N2O emissions 

 838 
Code and data availability 839 
The origin code of WHCNS model and required model input files are available at 840 
https://figshare.com/s/139f3ad8a70faa99724d. Spatial dataset of harvested area of 841 
irrigated rice is available from https://doi.org/10.7910/DVN/KAGRFI. Origin climate 842 
data is available from https://cds.climate.copernicus.eu/datasets/reanalysis-era5-843 
single-levels?tab=download. Origin soil data is available from 844 
https://doi.org/10.1002/2013MS000293. Processed climate and soil data for model 845 
running are included in the figshare repository (see Readme for detailed explanations 846 
of each file). Crop calendar data are available from 847 
https://zenodo.org/record/5062513. All other data that support the findings of this 848 
study are available in the main text or the Supplementary Information. 849 
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