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Abstract 16 

Rice cultivation faces multiple challenges of rising food demand while increasing water 17 

scarcity and greenhouse gas emissions, intensifying the tension of the food-water-18 

climate nexus. Process-based modeling is pivotal for developing effective measures to 19 

balance these challenges. However, current models struggle to simulate their complex 20 

relationships under different water management schemes, primarily due to inadequate 21 

representation of critical physiological effects and lack of efficient spatially explicit 22 

modeling strategies. Here, we propose an advancing framework that addresses these 23 

problems by integrating a process-based soil-crop model with vital physiological 24 

effects, a novel method for model upscaling, and the NSGA-II multi-objective 25 

optimization algorithm at a parallel computing platform. Applying the framework 26 

accounted for 52%, 60%, 37%, and 94% of the experimentally observed variations in 27 

rice yield, irrigation water use, methane and nitrous oxide emissions in response to 28 

irrigation schemes. Compared with the origin model using traditional parameter 29 

upscaling methods, the advancing framework significantly reduced simulation errors 30 

by 35%−85%. Moreover, it well reproduced the multivariable synergies and tradeoffs 31 

observed in China’s rice fields and identified additional 18% areas feasible for 32 

irrigation optimization, along with an additional 11% and 14% reduction potentials of 33 

water use and methane emissions, without compromising production. Over 90% of the 34 

potentials could be realized at the cost of 4% less yield increase and 25% higher nitrous 35 

oxide emissions under multiple objectives. Overall, this study provides a valuable tool 36 

for multi-objective optimization of rice irrigation schemes at a large scale. The 37 

advancing framework also has implications for other process-based modelling 38 

improvements efforts. 39 

 40 

Key points 41 

 This study significantly improved rice yield simulations under various irrigation 42 

schemes by incorporating critical physiological processes into a process-based 43 

model. 44 

 This study developed a novel upscaling method of model parameterization that 45 

well reproduced observed synergies and tradeoffs among multiple objectives (i.e., 46 

rice yield, irrigation water use, methane emissions, and nitrous oxide emissions). 47 

 This study provides a practical tool for multi-objective optimization of water 48 

management to deliver co-benefits of ensuring food production, saving water, and 49 

reducing greenhouse gas emissions of rice fields. 50 
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 51 

1 Introduction 52 

 53 

Rice is the staple food for more than half of the world’s population and is also the most 54 

water-intensive cereal crop with a significant contribution to greenhouse gas emissions 55 

(GHGs) (Lampayan et al., 2015; Carlson et al., 2017). Rice cultivation currently 56 

accounts for 40% of global irrigation water use (IRR), 30% of methane (CH4), and 11% 57 

of nitrous oxide (N2O) emissions in agriculture (Yuan et al., 2021). To meet the demand 58 

of the growing population, a 50-60% increase in global rice production along with a 59 

15% increase in water use are required by 2050, potentially leading to higher 60 

greenhouse gas emissions and intensifying the food-water-climate tensions of rice 61 

fields (Flörke et al., 2018). Therefore, ensuring food security while conserving water 62 

resources and reducing GHGs in rice cultivation is essential for achieving multiple 63 

United Nations Sustainable Development Goals. 64 

 65 

Optimizing water management is promising to address the multiple challenges. 66 

However, different water management schemes can lead to a wide range of outcomes 67 

in rice yield (16.9% to 21.9%), IRR (68.0% to 0.3%), CH4 (85.5% to 0.1%) and 68 

N2O (0% to 364%) across climatic zones, reflecting complex interactions between 69 

environmental factors and management strategies (Bo et al., 2022). Process-based 70 

models are powerful tools for predicting and managing the complicated interactions in 71 

responses to water management, given their strength in simulating crop growth, water 72 

dynamics, and soil biogeochemical processes under diverse genotype × environment × 73 

management conditions (Tian et al., 2021; Chen et al., 2022; Yan et al., 2024). Despite 74 

with several relevant studies at site-scales, extrapolation of optimized water 75 

management schemes from limited sites to the broader rice growing regions is hindered 76 

by the diverse climate, soil, crop variety, field management, etc. (Yan et al., 2024; Liang 77 

et al., 2021). Region-specific simulations of the food-water-climate nexus are thus 78 

urgently needed to identify tailored solutions. Nevertheless, current models face 79 

challenges in accurately predicting yield responses to various water management 80 

practices and adequately reproducing the spatial heterogeneity of these responses. 81 

 82 

Despite extensive experimental research to understand critical physiological effects 83 

underlying yield responses, these processes have not been fully represented in models, 84 

especially the compensation mechanisms. Compared to continuous flooding, imposing 85 

moderate water deficit and then rewatering the field could increase both effective leaf 86 

area and net photosynthetic rate upon re-irrigation to enhance photosynthesis for 87 

biomass production (Yang and Zhang, 2010). In addition, harvest index could increase 88 

due to enhanced remobilization of assimilates and accelerated grain filling rate (Zhang 89 

et al., 2008). However, prevailing models (for example, ORYZA, DSSAT, APSIM, 90 

WHCNS) primarily focus on the negative impacts of water deficit (i.e., reduced 91 

photosynthesis or leaf rolling), while neglecting or indirectly simulating crop 92 

adaptation processes (e.g., enhanced root growth and water uptake in deeper soil layers) 93 

(Bouman et al., 2001; Li et al., 2017; Liang et al., 2021; Tsuji et al., 1998). As a 94 
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consequence, yield sensitivities to water management could be overestimated, as 95 

evidenced by evaluations of the ORYZA (v3) model (Xu et al., 2018). Moreover, 96 

physiological processes respond differently to water availability at different growth 97 

stages, while crop models generally use constant water effect coefficient throughout the 98 

rice growing season (Ishfaq et al., 2020). These imply model deficiencies in predicting 99 

yield response to water management, although no assessment across large scales exists. 100 

 101 

Accurate model parameters are essential for reproducing spatial heterogeneity of yield, 102 

IRR, and GHGs. Previous studies usually used either the same parameters at different 103 

pixels, calibrated against all observations, or the spatial proximity principle to 104 

extrapolate model parameters for regional simulations, as a result of lacking enough 105 

observations (Zhang et al., 2024; Zhang et al., 2016). However, critical model 106 

parameters varied considerably when calibrated under different environmental and 107 

management conditions, reflecting important impact of these factors on underlying 108 

physiological and biogeochemical processes (Tan et al., 2021). As a consequence, 109 

traditional model parameterization approaches are unlikely to capture variability of 110 

yield, IRR, and GHGs due to their neglect of the environmental and management-111 

related impacts (Song et al., 2023; Zhang et al., 2023). Besides, previous studies only 112 

evaluated simplified irrigation protocols (i.e., once drainage at midseason or alternative 113 

wetting and drying with constant threshold across the growing season) or only set bi-114 

objectives as optimization targets (Tian et al., 2021; Chen et al., 2022), which likely 115 

underestimated the regulation potentials. Therefore, an integrated framework composed 116 

of a reliable modelling platform, broader water management schemes and multi-117 

objective optimization targets are required for sustainable water management 118 

optimization. 119 

 120 

To address these challenges, this study proposed an advancing framework that 121 

integrated a process-based soil-crop model (Soil Water Heat Carbon Nitrogen Simulator, 122 

WHCNS) with key physiological effects, a novel model upscaling method, and a  123 

multi-objective optimization algorithm (Non-dominated Sorting Genetic Algorithm II, 124 

NSGA-II) at a parallel computing platform (see Fig.1 for workflow). This study focused 125 

on rice yield (Yield), irrigation water use (IRR), methane (CH4), and nitrous oxide 126 

emissions (N2O) of irrigated rice fields. First, three physiological effects were 127 

quantified and embedded into WHCNS to enhance the prediction of yield responses. 128 

Regionalized model parameters were then derived by developing parameter transfer 129 

functions for regional simulations. The model’s ability to reproduce the variations in 130 

the food-water-climate nexus was extensively validated against field observations. 131 

Multi-objective optimization was conducted using the NSGA-II algorithm to 132 

investigate tradeoffs within the food-water-climate nexus and assess the regulation 133 

potentials of water management optimization. This framework was applied to China’s 134 

rice cropping system as an example, considering its position as the world’s largest rice 135 

producer and the ongoing conflicts between production demand, water scarcity, and 136 

greenhouse gas emissions. This study aims to provide a valuable framework for 137 

predicting and regulating rice’s food-water-climate nexus towards sustainable water 138 
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management. 139 

 140 

2 Data and Methods 141 

2.1 WHCNS model and input data 142 

 143 

The soil Water Heat Carbon Nitrogen Simulator (WHCNS) model was improved and 144 

incorporated into the advancing framework in this study to simulate rice yield, irrigation 145 

water use (IRR), methane (CH4), and nitrous oxide (N2O) emissions of irrigated rice 146 

fields at each pixel. The WHCNS model is a process-based agroecosystem model that 147 

runs at a daily time step and comprises six major components: surface ponding water 148 

dynamic, soil water movements, soil heat transfer, soil N transformation and transport, 149 

soil organic turnover, and crop growth. Detailed model descriptions can be found in 150 

(Liang et al., 2022; Liang et al., 2023; Liang et al., 2021). This model was chosen for 151 

several considerations: (i) the model directly outputs all four target variables 152 

simultaneously. This avoids biogeochemical models relying on crop models for detailed 153 

physiological parameters to simulate yield and calculating IRR externally to obtain all 154 

four targets as previously done (Tian et al., 2021; Yan et al., 2024), (ii) the model has 155 

been proven to simulate frequent dry-wet cycles effect reasonably well in China rice 156 

fields, due to simulating water and nitrogen dynamics in surfacing ponding water layer 157 

that is specific for rice fields (Liang et al., 2021), (iii) the model is executable at both 158 

site and regional scales with high efficiency and performs well in capturing spatial 159 

variation in key processes (Liang et al., 2023), (iv) the model has a very flexible 160 

irrigation setup, which allows for the precise control of paddy field water surface levels 161 

by setting the minimum and maximum irrigation thresholds. It also enables calculating 162 

water usage for paddy field irrigation under various water management scenarios (Jiang 163 

et al., 2021). The model is particularly suitable for simulating the regional food-water-164 

climate nexus of rice fields.  165 

 166 

This study ran the model at both site and regional scales (0.5-degree spatial resolution). 167 

Model input data includes daily meteorological variables, soil properties by depth, and 168 

management variables related to planting, fertilization, and irrigation (Table S1). For 169 

site-scale simulations, these variables were obtained from experimental studies, if 170 

unreported, were extracted from spatial datasets according to geographical locations. 171 

All spatial datasets were all resampled to 0.5-degree spatial resolution for regional 172 

simulations. (1) Meteorological variables, including daily mean, maximum and 173 

minimum air temperature, wind speed, precipitation, humidity, and downward solar 174 

radiation, were obtained from the fifth generation ECMWF reanalysis (ERA5) at 0.25-175 

degree resolution (Hersbach et al., 2018). (2) Soil data including bulk density, clay 176 

contents, and soil hydraulic properties (i.e., saturated water content, field water capacity, 177 

wilting point, saturated hydraulic conductivity) at soil depths of 5, 15, 30, 60, 100, and 178 

200 cm was obtained from SoilGrids (10 km) (Han et al., 2015). (3) The planting and 179 

harvest dates were obtained from the crop calendar data of Global Gridded Crop Model 180 

Intercomparisons (GGCMI) Phase 3 (Jägermeyr et al., 2021). (4) Fertilization practices 181 

were conducted by the auto-fertilization component of the WHCNS model, assuming 182 
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no nitrogen stress (Liang et al., 2023). (5) Irrigation practices are defined by three 183 

variables at daily step, including upper threshold (UIRR), lower threshold (LIRR, with a 184 

positive value representing field water level and a negative value representing soil water 185 

potential at 15 cm below the soil surface) and maximum allowable field water level 186 

after rainfall (Hp, also refers to as bund height). Since there is no spatially explicit 187 

information about realistic water management schemes, daily irrigation thresholds were 188 

set following Chen et al. (2022) for regional simulations. The model simulates field 189 

water level of surface ponding layer and soil water potential of stratified layers at daily 190 

step. Irrigation would be triggered whenever field water level (LIRR >0) or soil water 191 

potential at 15 cm below the soil surface (LIRR <0) reach the predetermined LIRR. 192 

Irrigation demand is then calculated as the differences between LIRR and UIRR. 193 

 194 

 195 

2.2 Compilation of experimental observations 196 

 197 

Extensive literature reviews were conducted to collect experimental observations for 198 

model improvement and parameters calibration. Relevant studies should meet the 199 

following criteria: (1) only field experiments covering an entire growing season were 200 

included, while pot and laboratory experiments under controlled environmental 201 

conditions were excluded, (2) the control and treatments only differed concerning water 202 

management with continuous flooding (CF) as control and non-continuous flooding 203 

irrigation (NCF) as treatment, but not concerning other agronomic practices (e.g., 204 

cropping intensity, fertilizer management, and tillage). This was to isolate water 205 

management effects while avoiding confounding effects of other factors, (3) upper and 206 

lower irrigation thresholds were explicitly reported, and lower thresholds were 207 

indicated by soil water potential measured at the soil depth of 15-20 cm. Observations 208 

based on soil water potential at the other soil depth or the other soil-water indicators 209 

(e.g., soil water contents) were excluded, (4) at least one of target variables were 210 

observed, including rice yield (Yield), irrigation water use (IRR), methane emissions 211 

(CH4), nitrous oxide emissions (N2O), leaf area index (LAI), net photosynthetic rate 212 

(Pn), and harvest index (HI). For LAI and Pn, the growth stages of observations (i.e., 213 

tillering, booting, heading, and ripening stage) were recorded to account for growth 214 

stage-dependent effects. As a result, we collected observations of 119 experiments from 215 

37 studies covering 28 sites in 6 countries (i.e., China, India, Philippines, Japan, 216 

Bangladesh, and Peru) (Fig. S1). These observations were split into two datasets 217 

according to target variables. The first dataset including Yield, IRR, CH4, or N2O 218 

observations was used for calibration of model parameters. The second dataset of LAI, 219 

Pn, or HI observations was used to quantify water management effects on physiological 220 

processes for model improvement (Section 2.3). 221 

 222 

For each paired observation under the control and treatment, the effects of non-223 

continuous flooding irrigation were calculated as the ratio of observations under 224 

treatment to that under control (Equation 1). This yielded 251 records for RYield, 235 for 225 

RIRR, 37 for RCH4,14 for RN2O, 561 for RLAI (including 61 from tillering stage, 159 from 226 
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booting stage, 202 from heading stage and 139 from ripening stage), 84 for RPn 227 

(including 42 from tillering stage, and 42 from filling stage), and 351 for RHI.  228 

 229 

NCF

CF

X X
R X                           (1) 230 

where RX represents non-continuous flooding effects (NCF) on target variables X 231 

(including Yield, IRR, CH4, N2O, LAI, Pn, and HI), XNCF and XCF represent variable 232 

values under non-continuous flooding (NCF) and continuous-flooding irrigation (CF), 233 

respectively. Relative changes of target variables were calculated as (RX-1)×100 for 234 

interpretation and representation (e.g., Yield, IRR, CH4, N2O). 235 

 236 

For each paired observation, four categories of information were also collected. First, 237 

climatic variables included mean daily air temperature (T), precipitation (P), and crop 238 

evapotranspiration (PETc) during growing season. The difference between P and PETc 239 

was further calculated to indicate climatological water availability (CWA). Second, soil 240 

variables included sand content, bulk density (BD), soil organic carbon (SOC), pH, and 241 

soil hydrological properties (e.g., saturated water content (SAT), field water capacity 242 

(FWC)). Third, management-related variables included nitrogen application rate and 243 

timing, as well as lower (LAWD) and upper (UAWD) irrigation thresholds. Fourth, 244 

experimental parameters included geographical location (latitude, longitude), dates of 245 

seeding (also transplanting date in transplanted systems), anthesis, and harvest. These 246 

variables were used for running WHCNS (Section 2.1) and conducting correlation 247 

analyses (Section 3.1). 248 

 249 

2.3 Model improvement 250 

2.3.1 Incorporation of physiological effects 251 

 252 

In the original WHCNS model, water management effects on crop growth were 253 

simulated by calculating water stress factor based on the Feddes reduction function 254 

(Feddes and Zaradny, 1978). Specifically, the water stress factor is calculated at daily 255 

step as a function of soil water potential to reduce root water uptake, assuming 70 kpa 256 

and 1500 kpa as thresholds of when root water uptake starts to decrease and approaches 257 

0 (Equation 2-3). The calculated water stress factor was used to reduce the simulated 258 

actual biomass production rate, which further indirectly impact produced biomass 259 

allocated for leaf growth and yield formation (Equation 4-6).  260 

 261 

( , , ) ( , ) ( , ) ( )
R R

a p w s

L L

T S h h z dz T a h z a h z b z dz                 (2) 262 
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K AMAX CC LAI K


  
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            (4) 264 

30
( ) ( )

44
Fgass Fgc cf w cf N                       (5) 265 

 266 

( ) ( )GAA org Fgass fr org                      (6) 267 

 268 

where Ta and Tp are actual and potential root water uptake (cm d1). LR indicates root 269 

length (cm). aw(h,z) and as(h,z) are water and salt stress functions. b(z) is root 270 

distribution function. wc is the critical threshold of volumetric soil water content w  271 

above which root water uptake is reduced in water limited layers of the root zone, but 272 

the plant compensates by uptaking more water from other layers that have sufficient 273 

available water. Fgc is daily potential dry matter production accounting for the light 274 

interception, radiation use efficiency, and the CO2 effects (kg hm2 d1). AMAX is the 275 

maximum assimilation rate accounting for temperature effect (kg hm2 h1). DL, Ke, 276 

and CC indicate day length (h d1), extinction coefficient (-) and actual radiation use 277 

(kg hm2 h1). Fgass is daily actual dry matter production (kg hm2 d1) accounting 278 

for water (cf(w)) and nitrogen stress (cf(N)). GAA indicates produced biomass 279 

allocated to organs (leaf or grains) (kg hm2 d1) with the fraction of fr(org). 280 

 281 

To modify the WHCNS, NCF effects on leaf expansion, photosynthesis rate, and 282 

assimilate partition were quantified based on experimental observations and 283 

incorporated into WHCNS (Fig. S2). To do so, mean values of observed effects were 284 

first calculated by experimental gradient of soil water potential (SWP, negative values) 285 

and growth stages (RDS, 0-1) (Table S2-S4). RDS corresponds to planting, tillering, 286 

booting, heading, filling, and maturity stages was quantified as 0, 0.20, 0.40, 0.55, 0.75, 287 

and 1. Effects at other levels of SWP and RDS were then estimated by bilinear 288 

interpolation (i.e., FLAI(SWP, RDS), FPn(SWP, RDS), FHI(SWP)). Three functions were 289 

thus developed involving three new genetic parameters to account for differences in 290 

cultivar sensitivities (PLAI, PPn, PHI, Equations 7-9). The three functions were added to 291 

the origin crop growth module to modify simulations of leaf area index, net 292 

photosynthesis rate and biomass allocated into grains (Equation 10-12, Fig. 2a). 293 

 294 
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 ( , ) 1 ( , ) 1LAI LAI LAIR SWP RDS F SWP RDS P             (7) 295 

 ( , ) 1 ( , ) 1Pn Pn PnR SWP RDS F SWP RDS P               (8) 296 

( ) 1+ ( )-1HI HI HIR SWP F SWP P                      (9) 297 

' ( ) LAILAI GAA leaf SLA R                     (10) 298 

' PnAMAX AMAX R                           (11) 299 

'( ) ( ) HIGAA grains Fgass fr grains R                     (12) 300 

 301 

where RLAI, RPn, RHI represent NCF effects on leaf area index, net photosynthetic rate 302 

and harvest index, respectively. SWP represents soil water potential at 15-20 cm soil 303 

depth. RDS represents relative development stages (0-1). PLAI, PPn, and PHI are genetic 304 

parameters indicating cultivar sensitivities to irrigation regulation that were calibrated 305 

based on observations (Section 2.4). LAI and SLA are leaf area index (m2 m2) and 306 

specific leaf area (m2 kg1). LAI’, AMAX’ and GAA(grains)’ denote simulations of the 307 

modified model. It is worth noting that the three functions can be flexibly coupled to 308 

the other process-based crop models to modify the simulation of leaf area growth, 309 

biomass production, and allocation processes. The genetic parameters are needed to 310 

be recalibrated against observed yield responses considering different model 311 

structures.  312 

 313 

2.3.2 Contribution analysis 314 

 315 

Scenario simulations were conducted to isolate contributions of the three physiological 316 

effects on yield changes (Yield) (Table S5). Four scenarios were simulated by 317 

considering all the three effects (S1) and omitting one of the three effects at a time (S2-318 

S4). For each scenario, the model was run under CF and NCF conditions respectively 319 

to calculate Yield. The differences in the simulated Yield between S1 and S2-S4 320 

represent yield changes induced by changes in leaf expansion, photosynthesis rate and 321 

assimilate partition, respectively (i.e., YieldLAI, YieldPn, YieldHI). Relative 322 

contribution of each process was calculated as the ratio of the absolute yield change 323 

induced by the process to the sum of absolute yield change induced by the three 324 

processes (Equation 13). 325 

3

1

100
p

p

p

p

Yield

Yi
N

e d
C

l
O




 


                      (13) 326 

where p represents the three new physiological processes (i.e., p = 1, 2, 3), CONp 327 

indicates relative contribution of the process p to Yield, Yieldp is yield changes 328 

induced by the process p. 329 

 330 
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2.4 Parameters regionalization 331 

 332 

Spatially explicit model parameters are critical for reasonably reproducing spatial 333 

variabilities of target variables. In this study, seven key model parameters were selected 334 

and mapped at 0.5-degree spatial resolution due to their high influence on target 335 

variables, including accumulated temperature for crop maturity (Cumtemp), minimum 336 

assimilation rates (AMIN), the maximum CH4 production rate per soil weight at 30 C 337 

(MPmax), maximum portion of denitrification to N2O production (fN2O_d) and the three 338 

new genetic parameters (PLAI, PPn, PHI). These parameters were first finely calibrated at 339 

site-scales (Section 2.4.1) and then upscaled to regional scales (Section 2.4.2). To 340 

capture spatial variabilities of NCF effects, different parameters were used under CF 341 

and NCF conditions, except for genetic parameters. This was consistent with a previous 342 

modelling study, aiming to indicate different potentials of methane production and 343 

denitrification under different water management regimes (Song et al., 2023). 344 

 345 

2.4.1 Calibration of site-scale parameters 346 

 347 

Under CF conditions, the parameter Cumtemp was first determined by cultivar as the 348 

minimum cumulative daily temperature higher than 10C (base temperature for rice 349 

growth) across all experiments using the cultivar. Then AMIN, MPmax and fN2O_d were 350 

calibrated to achieve the best fit of predicted target variables with observations under 351 

continuous flooding conditions (i.e., experimental control). Under NCF conditions, 352 

Cumtemp and AMIN were the same with that calibrated from CF conditions. The other 353 

parameters (MPmax, fN2O_d PLAI, PPn and PHI) were then calibrated by minimizing the 354 

sum of simulated squared residuals under non-continuous flooding conditions (Table 355 

S6). To obtain more accurate parameter estimates, the advanced parameter estimation 356 

algorithm (PEST) was used (Doherty, 2010). As a result, 51 groups of genetic 357 

parameters (Cumtemp, AMIN, PLAI, PPn and PHI), 56 parameter values of MPmax (19 358 

for control and 37 for treatment) and 24 parameter values of fN2O_d (10 for control and 359 

14 for treatment) were calibrated. 360 

 361 

2.4.2 Parameters upscaling 362 

 363 

To upscale genetic parameters (AMIN, Cumtemp, PLAI, PPn, PHI) calibrated at site 364 

scales to regional scales, the rice cultivar for each grid was first determined. Then, the 365 

calibrated genetic parameters of the cultivar were used to create the grid. Since the 366 

spatial distribution of rice cultivar is unknown, cultivar of each grid cell was 367 

determined as follows. First, cultivars with Cumtemp lower than the effective 368 

accumulative temperature requirement of the grid were identified. This ensures the 369 

cultivar could reach maturity under the grid cell’s temperature conditions. The grid’s 370 

temperature requirement was calculated as Cumtemp during rice growing periods 371 

specified by the crop calendar data of GGCMI Phase 3 (Jägermeyr et al., 2021). 372 

Subsequently, cultivars with AMIN that closely match the baseline AMIN of the grid 373 

cell were selected. The baseline AMIN was estimated using PEST to achieve the best 374 
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fit of yield simulation with the records in county-scale statistical yearbooks of China 375 

(downscaled to 0.5-deg spatial resolution). These procedures were designed to ensure 376 

that yield simulations were aligned with cultivar’s genetic potential and spatially 377 

consistent with observations. 378 

 379 

To upscale parameters MPmax and fN2O_d, two parameter transfer functions (PTFs) 380 

were developed. Dependent variables were the ratio of site-calibrated parameters 381 

under treatment to that under control (i.e., RMPmax and RfN2O_d) (Equation 16-17). 382 

Independent variables were determined as field water capacity (FWC) for RMPmax and 383 

bulk density (BD) for RfN2O_d, due to their higher correlations with dependent 384 

variables. The function forms were determined as the form with the highest R2. As a 385 

result, the relationship between field water capacity and RMPmax was best fitted by an 386 

exponential function (R2 = 0.62, p < 0.001), and the relationship between bulk density 387 

and RfN2O_d was best fitted by a quadratic function (R2 = 0.91, p < 0.001) (Fig. S5). 388 

The importance of soil properties in regulating spatial heterogeneity of denitrification 389 

potentials aligns with previous studies (Tang et al., 2024). Parameters of the PTFs 390 

were calibrated using the least square method (Equation 16-17). With the calibrated 391 

PTFs, the ratio of parameters under NCF relative to CF (RMPmax and RfN2O_d) for each 392 

grid could be predicted by combining spatial dataset of FWC and BD. Then gridded 393 

MPmax
 and fN2O_d

 for CF conditions (MPmax
CF and fN2O_d

 CF) were estimated using PEST 394 

targeting CH4 from the EDYGA v8.0 dataset (Crippa et al., 2024) and N2O emissions 395 

estimated by Cui et al. (2024) (Fig. S4). These parameters were estimated for 2013 396 

and 2015 and subsequently validated for 2014 and 2016 to assess their ability to 397 

reproduce the spatial variability of target variables (Fig. S3). Finally, MPmax and fN2O_d 398 

for NCF conditions were calculated by multiplying MPmax
CF and fN2O_d

 CF with the 399 

predicted ratio (RMPmax and RfN2O_d). 400 

 401 

 402 

-26=98= / 6maxMP NCF CF
max max

FWCR MP MP e                       (16) 403 

2 _ 2
2 _ 2 _= / 268 +789 +581N O df NCF CF

N O d N O dR f f BD BD            (17) 404 

 405 

Where RMPmax and RfN2O_d represent the ratio of parameter MPmax and fN2O_d 406 

calibrated under non-continuous flooding (treatment) to that under continuous 407 

flooding (control). FWC and BD represent field water capacity (cm3 cm3) and soil 408 

bulk density (g cm3) obtained from SoilGrids (10 km) (Han et al., 2015). 409 

 410 

To prove the efficacy of the PTFs, two other parameter upscaling approaches were also 411 

used for comparison, including the mean parameters approach and the spatial proximity 412 

approach. These approaches were widely used in previous modelling studies to derive 413 

regional parameters and conduct regional simulations (Zhang et al., 2024). To adopt the 414 

mean parameter approach, mean value of the site-calibrated MPmax and fN2O_d (Section 415 

2.4.1) were calculated respectively for CF and NCF conditions, and then the two 416 
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constant mean parameters was used in regional simulations. To adopt the spatial 417 

proximity approach, the nearest site of a site was first identified according to 418 

geographical coordinates. Then both MPmax and fN2O_d calibrated from the nearest site 419 

were used for simulation of this site. The three approaches were compared in their 420 

performance to reproduce the observed variations in CH4 and N2O (Fig. 3). 421 

 422 

2.5 Regional scenario simulations and driver identification 423 

 424 

Scenario simulations were conducted to test whether the proposed framework could 425 

reasonably predict the response sensitivity of target variables and their relations under 426 

different irrigation schemes. To do so, the well-calibrated WHCNS model was run 427 

under baseline and a series of non-continuous irrigation scenarios using the parallel 428 

computing framework (Liang et al., 2023). For baseline condition, irrigation thresholds 429 

were set according to Chen et al. (2022). For non-continuous flooding irrigation 430 

scenarios, a range of the lowest irrigation threshold levels were set based on 431 

observations (5, 10, 15, 20, 30, 40 and 50 kpa). The upper irrigation thresholds 432 

were kept the same with baseline for consistency with experiments. NCF effects were 433 

then calculated from model simulations and compared with observed effects. Observed 434 

effects were obtained from two datasets. The first is the one compiled for this study 435 

(Section 2.2) using soil water potential to distinguish irrigation schemes. The second 436 

was obtained from Bo et al. (2022), who used the ratio of days with no surface water to 437 

total growing days (UFR) to differentiate irrigation schemes. To facilitate comparison, 438 

the UFR of each irrigation scenarios was also calculated and output by WHCNS (Fig. 439 

S9).  440 

 441 

To identify the dominant factor driving spatial patterns of NCF effects, correlation 442 

analyses between simulated NCF effects and variables were performed following Cui 443 

et al. (2021). Climatic, soil and management-related factors were selected as 444 

independent variables, including T, P, ET, Clay, BD, SOC and fertilizer rate. The 445 

analyses were conducted respective for Yield, IRR, CH4, and N2O using 3.5-by-446 

3.5 moving windows. The data resolution was 0.5 by 0.5, meaning the surrounding 447 

49 pixels were used for each grid. The correlation coefficient and its significance in 448 

each grid was first calculated, and the dominant driver was then defined as the factor 449 

with the largest absolute correlation coefficient. To assess the robustness of the results, 450 

similar analyses were done with moving windows at higher spatial resolutions (e.g., 451 

2.5 by 2.5).  452 

 453 

2.6 Single-objective and multi-objective optimizations 454 

 455 

Based on scenario simulations, four single-objectives and a multiple-objective were 456 

designed to identify optimal irrigation schemes. The four single-objective targets are (1) 457 

maxYield: maximizing rice yield, (2) minIRR: minimizing irrigation water use, (3) 458 

minCH4: minimizing CH4 emission, and (4) minN2O: minimizing N2O emissions. 459 

Under all targets, yield reduction compared to CF conditions was avoided. With optimal 460 
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solution under the four single-objective scenarios, the largest regulation potentials to 461 

increase yield and reduce IRR, CH4, and N2O emissions were assessed. For comparison, 462 

the scenario simulations and optimization were also conducted using the origin 463 

WHCNS model (Fig. 5). 464 

 465 

The multi-objective optimization was conducted by combining the improved WHCNS 466 

model and the NSGA-II algorithm (Deb et al., 2002). First, a set of 100 parental 467 

populations was initialized with random solutions. Each population includes 1993 468 

individuals, corresponding to 1993 grid cells of irrigated rice areas. Second, the 469 

objective functions were computed with each solution by executing the WHCNS model 470 

(Equation 18). Third, the performance of each population was evaluated by ranking the 471 

fitness of its objective functions. Fitness is a measure of how well a solution performs 472 

and is calculated based on the non-dominated sorting rank. Then, a new generation was 473 

generated through selection, crossover, and mutation based on fitness. Finally, Pareto 474 

fronts were generated after 100 generations had been evaluated (that is 10000 475 

populations).  476 

 477 
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                  (18) 478 

4 2( ) 27.2 ( ) 273 ( )WHCNS GWP WHCNS CH WHCNS N O        (19) 479 

where fobjective(yield, IRR, GWP) denotes the collection of objective functions, fmax 480 

denotes the objective that needs to be maximized (e.g., rice yield), and fmin denotes the 481 

objective that needs to be minimized (e.g., IRR, GWP). GWP is the integrated global 482 

warming potential of combined emissions of CH4 and N2O emissions and is 483 

calculated based on WHCNS simulations (Equation 19) (Forster et al., 2021). It 484 

should be noted that this study set equal weight for each target variable to evaluate the 485 

fitness of each solution. Decision-makers can simply set the weight values of different 486 

objectives according to their preferences, or adopt advanced multi-objective criteria 487 

decision-making methods such as the efficiency coefficient method (Guo et al., 2021). 488 

The regulation potentials of multiple-objective optimization were calculated as the 489 

averaged NCF effects (Yield, IRR, CH4, N2O, GWP) of all non-dominated 490 

solutions. The potentials were further compared with that from single-objective 491 

optimizations to investigate tradeoffs between target variables (Fig. 6). 492 

 493 
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 494 

Figure 1 Research framework of this study. The framework mainly combines data 495 

compilation, model improvement, parameter regionalization, scenario simulations, and 496 

multi-objective optimization. The framework can be flexibly adapted with alternative 497 

irrigation scenarios, optimization objectives, and optimization algorithms in other 498 

modelling studies. LAI, Pn, and HI represent leaf area index, net photosynthetic rate, 499 

and harvest index. AMIN, MPmax, fN2O_d, PLAI, PPn, and PHI are model parameters 500 

calibrated and mapped in this study (Section 2.4). CF and NCF represent continuous 501 

flooding and non-continuous flooding irrigation. SWP and UFR represent soil water 502 

potential and the ratio of unflooded days to total rice growing days, indicating different 503 

irrigation schemes. See the Appendix for detailed descriptions of parameters and 504 

variables. 505 

 506 

3 Results and discussion 507 

3.1 Performance of model improvement 508 

 509 

The origin WHCNS model was first evaluated in reproducing variabilities of rice yield 510 

and irrigation water use under various irrigation schemes. For rice yield, model 511 

performance is satisfying when mixing observations under continuous flooding (CF, 512 

experimental control) and non-continuous flooding (NCF, experimental treatments) 513 

irrigation schemes together (R2 = 0.41, normalized root mean square error nRMSE = 514 

11%) (Fig. S6). In particular, with fine-turned crop genetic parameters (i.e., Cumtemp 515 

and AMIN), the origin model performed well under CF condition (R2 = 0.74, nRMSE = 516 

1 3%), while had worse performance under NCF condition (R2 = 0.22, nRMSE = 13%) 517 
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(Fig. S6). As a consequence, the origin model failed to reproduce variations in observed 518 

yield changes (Yield) (R2 = 0.03, nRMSE = 17%) (Fig. 2b). More importantly, the 519 

simulations could not reproduce Yield sensitivities to soil water potentials presented 520 

in field experiments (Fig. 2d). In contrast to yield, model performance in simulating 521 

irrigation water use responses (IRR) variabilities and its sensitivities to soil water 522 

potentials was acceptable (Fig. 2c and 2e). These results highlight the primary 523 

modelling deficiency in simulating Yield. Given the satisfying model performance in 524 

simulating yield under CF and IRR, the underperformance is likely due to lacking 525 

critical physiological processes responsible for yield responses to NCF rather than 526 

uncertainties of crop parameters.  527 

 528 

After incorporating the three functions of NCF effects and fine calibration of genetic 529 

parameters (Section 2.3, Fig. 2a), the model performance was substantially improved. 530 

The explained variabilities of Yield increased from 3% to 52% and nRMSE decreased 531 

from 17 % to 11% (Fig. 2b). The observed Yield sensitivities to soil water potential 532 

(9% kpa1, P < 0.001) could be reasonably reproduced by the modified model (13% 533 

kpa1, P < 0.001) rather than the origin mdoel (P > 0.05) (Fig. 2d). The cultivar 534 

differences of yield responses could also be simulated (R = 0.67) (Fig. S7). Across the 535 

three processes, leaf area growth (YieldLAI) was primarily responsible for yield losses, 536 

while net photosynthetic rate (YieldPn) and biomass translocation (YieldHI) 537 

contributed to yield increases (Section 2.3.2, Fig. S8). The positive contributions are 538 

larger in warmer and more humid areas, and in acidic soils with larger field water 539 

holding capacity and higher SOC. These findings conform with empirical relationships 540 

between Yield and environmental factors reported by previous meta-analysis (Carrijo 541 

et al., 2017). These results prove efficacy of the modified model to predict and regulate 542 

Yield under diverse irrigation schemes and environmental conditions. 543 

 544 
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 545 

Figure 2 Model improvements by incorporating water effects on physiological 546 

processes. (a) Schematic of critical physiological effects in response to different 547 

irrigation schemes and their representation in the WHCNS model. (b-c) Model 548 

performance for simulating Yield (b) and IRR (c) based on the origin (blue) and 549 

modified (orange) WHCNS model. Darker colored dots indicate lower soil water 550 

potential (unit: kpa). (d-e) Sensitivity of Yield and IRR to lower irrigation threshold 551 

of soil water potential. Black, blue, and orange colors show the results of observations 552 

and simulations based on the origin and modified WHCNS model, respectively. Circles 553 
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are mean values; error bars show the 25–75% interquartile range. The lines are the 554 

linear regression lines with dashed lines indicating non-significant relationships based 555 

on two-sided t-test (P > 0.05). The shaded areas around each line represent the 95% 556 

confidence interval.  557 

 558 

Besides being coupled to WHCNS as an integrated system, the new functions also 559 

contribute to advancing related modelling studies by directly involving positive 560 

physiological effects and considering stage-dependent response sensitivities (Li et al., 561 

2017). By contrast, most prevailing crop models only account for negative effects of 562 

soil drying and reduced transpiration, while does not incorporating direct compensation 563 

effects (such as increased photosynthesis rate upon rewatering) . Moreover, constant 564 

stress sensitivity parameters were generally used for all growth stages (such as ORYZA 565 

and DSSAT) (Bouman et al., 2001; Tsuji et al., 1998). These models could flexibly 566 

incorporate the three new functions and recalibrate the genetic parameters (i.e., PLAI, 567 

PPn, and PHI) following the procedures of this study to improve their performance in 568 

predicting yield responses. 569 

 570 

3.2 Performance of regionalized parameters 571 

 572 

To simulate regional NCF effects, the model was first run respectively for CF (baseline) 573 

and NCF conditions using the parallel computing framework at a spatial resolution of 574 

0.5-deg. NCF effects were then calculated using model simulations following Equation 575 

1 (Fig.1 and Section 2.4). Using the PEST-calibrated gridded model parameters for CF 576 

(Section 2.4.1), the nRMSE between model simulations and their spatial datasets were 577 

20% to 29% for yield, ~7% for IRR, ~4% for CH4, and 4% to 6% for N2O during the 578 

validation period (year 2014 and 2016) (Fig.S2). It was noted that the nRMSE of rice 579 

yield was relatively larger than that of other target variables, despite being within an 580 

acceptable range (<30% for the validation periods). This could be caused by interannual 581 

cultivar changes, which was difficult to consider in large-scale simulations due to the 582 

lack  of spatial distribution of rice cultivars. Overall, these results reveal a satisfying 583 

model calibration to simulate baseline values and spatial variabilities of target variables.  584 

 585 

To reproduce observed variabilities of NCF effects on target variables, NCF effects on 586 

key model parameters (MPmax and fN2O_d) were incorporated for constraining model 587 

simulations. To do so, NCF effects on model parameters were first quantified from site-588 

scale calibrations and extrapolated to regional scale (Section 2.4). Three approaches of 589 

parameter extrapolation were tested and compared, including developing parameter 590 

transfer functions (PTFs), using mean site-calibrated parameters (mean), and using 591 

spatially nearest calibrated parameters (spatial) (Section 2.4.3). Results showed that 592 

developing PTFs performed the best to reproduce observed variabilities of ∆CH4 and 593 

∆N2O (Fig. 3). Model simulations using parameters estimated by PTFs explained 37% 594 

and 94% of variations in ∆CH4 and ∆N2O, with nRMSE being 25% for ∆CH4 and 10% 595 

for ∆N2O (Fig. 3a-b). By contrast, simulations based on the other two approaches could 596 

hardly reproduce observed variabilities of ∆CH4 and ∆N2O, with nRMSE achieving 66% 597 
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to 72% for ∆CH4 and 29% to 73% for ∆N2O (Fig. 3c-f). These results prove the efficacy 598 

of the developed PTFs and suggest soil variables as good predictors for spatial 599 

extrapolation of site-calibrated parameters to simulate CH4 and N2O. The PTFs could 600 

also be referred by other biogeochemical models for regional simulations of CH4 and 601 

N2O (such as the Denitrification-Decomposition model and the Dynamic Land 602 

Ecosystem Model) (Zhang et al., 2016).  603 

 604 

 605 
Figure 3 Comparison of model parameter upscaling approaches. Model 606 

performance in simulating methane and nitrous oxide emissions changes based on 607 

parameters derived from (a-b) parameter transfer functions (PTFs), (c-d) mean site-608 

calibrated parameters, and (e-f) spatially nearest parameters. The color of the dots 609 

indicates lower irrigation thresholds of soil water potential under non-continuous 610 

flooding irrigation (unit: kpa). The solid lines are regression lines with dashed lines 611 

indicating non-significant relationships (P > 0.05). Blue shading around each line 612 

represents the 95% confidence interval.  613 

 614 

Considering scarce observations of NCF effects across space, it was impractical to 615 

directly evaluate the regionalized parameters in reproducing spatial variability of NCF 616 
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effects. Therefore, the proposed framework was evaluated in terms of the response 617 

sensitivity of target variables and their relationships under different irrigation schemes 618 

(Section 2.5). Scenario simulations broadly conformed with observations regarding the 619 

magnitude of NCF effects and response sensitivity across soil water potential gradients 620 

(Fig. S9). With decreased soil water potential threshold, Yield decreased quasi-linearly, 621 

CH4 and IRR decreased at a decelerating rate, while N2O showed slight variabilities 622 

(Fig. S9a). The decelerating decrease in CH4 was also observed in experiments, 623 

suggesting the model ability to simulate maximum potentials of CH4 mitigation 624 

(Balaine et al., 2019). The response sensitivity was further validated using an alternative 625 

observation dataset (Fig. S9b). Besides, the observed synergy or tradeoffs of the yield-626 

IRR-GHGs nexus were broadly covered by scenario simulations using the modified 627 

model rather than using the origin model (Fig. S9c). Such bias could further impact 628 

assessment of regulation potentials of the food-water-climate nexus. 629 

 630 

3.3 Assessment of regional regulation potentials 631 

 632 

Scenario simulations revealed large spatial variabilities of NCF effects on all target 633 

variables (Fig. 4). Applying the same irrigation scheme (e.g., lower irrigation 634 

threshold of 15 or 30 kpa) could induce larger yield increase in the southwest 635 

single-rice region (XNS: 2.4% to 3.4%), while larger yield losses in northern regions 636 

(HHH: 3.2%) (Fig. 4a and b). The HHH region also showed larger yield sensitivity 637 

with decreased lower irrigation threshold (−0.24% kpa−1) (Fig. 4c). For IRR, 638 

relatively larger water saving benefits occurred in south regions, whereas response 639 

sensitivity was larger in northeast regions (−1.7% kpa−1). For CH4, north rice growing 640 

regions showed relatively higher reductions (NES: 64% to 82%, HHH: 77% to 88%) 641 

and higher response sensitivity to decreased soil water potential threshold. The 642 

findings about larger water saving benefits in south China and larger CH4 mitigation 643 

in north China were consistent with previous assessments (Tian et al., 2021). 644 

However, N2O emissions showed widespread increase regardless of lower irrigation 645 

threshold, except for northeast regions, indicating low opportunities to reduce N2O by 646 

only optimizing water management. 647 

 648 

To further understand the drivers shaping the spatial variations in NCF effects, 649 

correlation analyses were conducted for each target variable across varying lower 650 

irrigation threshold. Overall, climatic and edaphic variables were the most important 651 

drivers, while management-related variables were less important (Fig. 5). Exceptions 652 

occurred in the south double rice region (HND) for Yield and the southwest single 653 

rice region (XNS) for N2O, where higher fertilizer application rate was associated 654 

with larger yield increase but decreased N2O reduction potentials (Fig. S10 and S11). 655 

For both Yield and IRR, clay content was the most important driver at higher 656 

irrigation thresholds, while climate factors showed increasing importance with 657 

decreased irrigation thresholds (Fig. 5a and b). By contrast, reduction potentials for 658 

CH4 and N2O emissions were dominated by edaphic factors regardless of irrigation 659 

threshold (i.e., clay for CH4 and bulk density for N2O) (Fig. 5c and d). These findings 660 
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highlight the complex interplay of factors influencing regulation potentials of rice 661 

production, irrigation water use and greenhouse gas emissions through NCF adoption.  662 

 663 

 664 
Figure 4 Spatial pattern of relative changes in target variables under different 665 

irrigation schemes. The four columns correspond to the four target variables Yield, 666 

IRR, CH4, and N2O, respectively. (a) relative changes of target variables under a 667 

lower irrigation potential of 15 kpa, (b) relative changes of target variables under a 668 

lower irrigation potential of 30 kpa, (c) differences between (b) and (a), (d) results for 669 

different rice growing regions. NES, HHH, CJS, CJD, HND, and XNS indicate six rice 670 

growing areas of China, namely, Northeast Single rice, HuangHuaiHai single rice, 671 

Yangtze River single rice, Yangtze River double Rice, South China Double rice, and 672 

Southwest China Single rice, respectively. 673 

 674 
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 675 
Figure 5 Drivers regulating spatial variations in relative changes in yield (a), IRR 676 

(b), CH4 (c) and N2O (d). The numbers and colors indicate correlation coefficients, 677 

with gray indicating non-significant correlations (N.S., P > 0.05). The pie plots 678 

represent the proportion of irrigated rice areas (%) for which relative changes 679 

variation is regulated by the dominant drivers. The dominant driver is defined as the 680 

factor with the largest absolute correlation coefficient in each grid cell, identified from 681 

3.5°-by-3.5° moving windows. The numbers in blue, orange and green around the pie 682 

plots denote the area proportions dominated by climate (i.e., T + P + ET), soil (i.e., 683 

Clay + BD + SOC) and management-related (i.e., Fertilizer rate) factors under 684 

corresponding lower irrigation threshold. Spatial distributions of dominant drivers are 685 

shown in Fig. S10 and S11. 686 

 687 

To identify the largest regulation potentials from NCF adoption, four single objective 688 

targets were designed, including maximizing rice yield, minimizing IRR, CH4 689 

emissions, or N2O emissions (denoted as maxYield, minIRR, minCH4, min N2O, 690 

Section 2.6). Results indicated that the largest regulation potentials of Yield, IRR, 691 

CH4 and N2O were 4.6%, −61.0%, −64.2% and −10.9%, respectively (Fig. 6a). 692 

These potentials could be achieved respectively over 91%, 91%, 88% and 26% of 693 

national rice areas (Fig. 6b). Spatially, larger yield increase potential occurred in south 694 

(HND: 7.7%) and southwest regions (XNS: 6.8%) (Fig. S12A). The reduction 695 
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potential of IRR and CH4 showed relatively slight spatial variabilities. In contrast, 696 

reduction potential of N2O primarily concentrated in northern regions (NES: −30%) 697 

due to increased N2O in southern regions (Fig. 5a and S12A). N2O increase in 698 

southern regions is associated with higher nitrogen application rates, providing 699 

substrate for nitrification and denitrification processes to facilitate N2O emissions 700 

(Jiang et al., 2019). The results conform to previous studies in that irrigation and 701 

nitrogen should be co-regulated for these areas to avoid unintended N2O emissions 702 

from water management (Jiang et al., 2019; Kritee et al., 2018).  703 

 704 

The largest regulation potentials of Yield, IRR, CH4, and N2O are not likely to 705 

be achieved at the same time, as evidenced by different optimized irrigation strategies 706 

between single-objective targets (Fig. 6 and S13). For example, the lower irrigation 707 

threshold should be higher than 20kpa for most areas (84%) under maxYield, while 708 

lower than 20kpa over half areas under minIRR and minCH4. This suggests tradeoffs 709 

between yield increase and IRR/CH4 mitigation (Bo et al., 2021). To compare, using 710 

the origin model could overlook nearly 20% feasible areas for applying optimized 711 

irrigation schemes (Fig. 6). As a consequence, regulation potentials of Yield, IRR, 712 

CH4 and N2O could be underestimated by 4%, 11%, 14%, and 2%, especially for 713 

the southwest regions (XNS) (Fig. 6a). Moreover, optimal NCF strategies also 714 

differed from that identified by the improved model, particular under maxYield targets 715 

(Fig. 6b). These results showed important implications of the improved framework for 716 

prompting sustainable water management. 717 

 718 

 719 
Figure 6 Comparison of the origin and modified model from (a) regulation 720 

potentials and (b) optimized irrigation schemes under single-objective targets. 721 

The four columns show results under four single objective targets: maximizing rice 722 

yield (maxYield), minimizing irrigation water use (minIRR), minimizing CH4 723 

emissions (minCH4), and minimizing N2O emissions (maxN2O). (a) Area-weighted 724 

Yield, IRR, CH4, and N2O for China and six rice growing regions. Blue and 725 

orange indicate results from the origin and modified model, respectively. (b) 726 

Proportions of rice areas with corresponding optimized lower irrigation thresholds 727 

(LIRR) to total irrigated rice areas under the four single objective targets. NES, HHH, 728 
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CJS, CJD, HND, and XNS indicate six rice growing areas of China, namely, 729 

Northeast Single rice, HuangHuaiHai single rice, Yangtze River single rice, Yangtze 730 

River double Rice, South China Double rice, and Southwest China Single rice, 731 

respectively. 732 

 733 

3.4 Tradeoffs between food, water, and greenhouse gas emissions 734 

 735 

The NSGA-II algorithm was conducted to investigate synergies or tradeoffs of the food-736 

water-climate nexus (Fig. 7 and Section 2.6). There were evident tradeoffs between 737 

reducing CH4 (or IRR) and N2O (Fig. 7a). In contrast, synergies were noted between 738 

reducing IRR and CH4, as well as between inhibiting N2O emissions and increasing rice 739 

yield. The relationships between yield increase and CH4 (or IRR) reductions were more 740 

complicated due to the impacts of varying irrigation timing and no-flooded days (Yan 741 

et al., 2024). Adopting non-dominated solutions from multi-objective optimization 742 

could realize over 90% of the largest reduction potentials of IRR and CH4, while at the 743 

cost of 4% less yield increase (4.6% versus 0.5%) and 25% higher nitrous dioxide 744 

emissions (11% versus 14%). The N2O increase is because this study used integrated 745 

warming potentials of CH4 and N2O emissions (GWP) to indicate greenhouse gas 746 

emissions so that CH4 outweighed N2O due to large emission quantities (Section 2.6).  747 

 748 

Spatially, over 90% of the reduction potentials for IRR and CH4 could be achieved 749 

across 53% and 60% of the national rice areas, primarily in southern regions (Fig. 7 and 750 

S14). In these areas, N2O increase was inevitable, but yield increase could be expected. 751 

By contrast, stronger tradeoffs occurred in the northern regions, where the reduction 752 

potentials of IRR and CH4 were limited even with decreased yield and increased N2O 753 

emissions. Therefore, NCF adoption should be prioritized in southern regions (e.g, 754 

XND, CJD, CJS) to achieve a national optimum balance among rice production, water 755 

use, and greenhouse gas emissions mitigation. Noted that other objective functions 756 

could also be designed for multi-objective optimization, such as applying other 757 

indicators (e.g., water productivity, yield-scaled GWP), setting distinguished weights 758 

for each indicator or grid cell. 759 

 760 
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 761 
Figure 7 Regulation potentials of Yield, IRR, CH4, and N2O under single-762 

objective and multi-objective targets. (a) Synergies or tradeoffs between target 763 

variables with different solutions of multi-objective optimization. Dots color indicates 764 

probability density distributions of variable changes from all non-dominated solutions 765 

(N = 10000) of the NSGA II optimization. The vertical and horizontal dashed lines 766 

show national regulation potentials of the target variable under single-objective 767 

targets, with corresponding spatial distributions presented in panel (b). Note that the 768 

results of N2O potentials (11%) were not shown in the third, fifth, and sixth 769 

subplots for a clearer view. (b) Yield, IRR, CH4, and N2O under single-objective 770 

targets of maximizing rice yield (maxYield), minimizing irrigation water use 771 

(minIRR), minimizing CH4 emissions (minCH4), and minimizing N2O emissions 772 

(maxN2O). These results indicate the maximum benefits of each target variable from 773 

adopting non-continuous irrigation, which could not be necessarily realized 774 

simultaneously. (c) Yield, IRR, CH4, and N2O under multi-objective 775 

optimization. These figures show mean benefits from all non-dominated solutions of 776 

the NSGA II optimization (N = 10000). 777 

 778 

3.5 Uncertainties and future direction 779 

 780 

This framework is subject to several uncertainties, mainly sourced from observational 781 

gaps and management-related input data. First, the absence of field observations for 782 

baseline CH4 and N2O emissions across regional scales forced us to use estimates from 783 

inventory or data-driven approaches as a proxy for deriving gridded model parameters 784 
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of this study (Cui et al., 2021; Crippa et al., 2024). Despite uncertainties in predicting 785 

absolute values, these parameters could reasonably reproduce the spatial patterns and 786 

could be further refined given increased field observations. Second, the limited 787 

experimental observations of CH4 (n = 37) and N2O (n = 14) under various irrigation 788 

schemes have contributed to uncertainties in developing and applying parameter 789 

transfer functions (PTFs). The values of PTFs predictors (bulk density and field water 790 

capacity) in the observation dataset (1.34~1.48 g cm−3 and 0.25~0.30 cm3 cm−3) did not 791 

encompass the full range across national rice areas (1.24~1.48 g cm−3and 0.22~0.32 792 

cm3 cm−3), indicating potential extrapolation in parameters regionalization (Fig. S1). 793 

Despite these uncertainties, the PTFs significantly improved over previous approaches 794 

(constant parameters or spatial proximity approach). Lastly, current irrigation practices 795 

across large scales remain largely unknown, so that irrigation thresholds were set 796 

following previous recommendations. However, actual farmer practices are influenced 797 

by various factors and may not align with these recommendations. This discrepancy 798 

could lead to an overestimation or underestimation of target variables and further 799 

introduce uncertainties to the assessment of regulation potentials. 800 

 801 

These uncertainties provide insights to enlighten future research efforts, including 802 

conducting extensive observations and experiments and developing high-resolution 803 

input data. On the one hand, intensive GHGs monitoring networks are essential to 804 

reduce uncertainties associated with parametrization (Arenas-Calle et al., 2024). To 805 

better constrain the PTFs and reduce extrapolation uncertainty, field experiments 806 

combined with incubation experiments across a broader range of climate conditions 807 

(e.g., colder and more humid areas) and soil properties (e.g., areas with higher SOC or 808 

lower bulk density) should be conducted (Fig. S1). In addition, extensive field 809 

experiments with simultaneous measurements of yield, IRR, CH4, and N2O emissions 810 

across diverse environments are required to validate the framework further. On the other 811 

hand, developing a high-resolution dataset of current irrigation schemes is crucial for 812 

more accurate model parameter calibration and realistic assessment of regulation 813 

potentials. This could be achieved by integrating remote sensing technologies with 814 

extensive field investigations (Novick et al., 2022).  815 

 816 

4 Conclusion 817 

 818 

This study introduced an advancing framework for process-based modelling of the 819 

complex food-water-climate nexus in rice fields under various water management 820 

schemes. By integrating the Soil Water Heat Carbon Nitrogen Simulator (WHCNS) 821 

with key physiological effects, a novel model upscaling method, and the NSGA-II 822 

multi-objective optimization algorithm at a parallel computing platform, the framework 823 

provides a comprehensive approach to optimize irrigation strategies. Applying this 824 

framework to China’s rice cropping system, we assessed the largest regulation 825 

potentials of Yield, IRR, CH4, and N2O as 4.6%, −61.0%, −64.2%, and −10.9% 826 

from 91%, 91%, 88%, and 26% of national rice areas. However, these regulation 827 

potentials could not be simultaneously realized due to complicated tradeoffs among 828 
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food-water-GHGs. Based on NSGA II multi-objective optimization targeting food-829 

water-GHGs co-benefits, over 90% of the reduction potentials in water use and methane 830 

emissions could be realized, while at the cost of 4% less yield increase and 25% higher 831 

nitrous dioxide emissions. The proposed framework is a valuable tool for irrigation 832 

optimization in rice cultivation and also offers a transferable paradigm for incorporating 833 

other management effects into process-based models, thus supporting comprehensive 834 

assessments of sustainable management measures. 835 

 836 

Appendix: abbreviation table 837 

 838 

Type Abbreviation Description 

Target 
variables 

Yield Rice yield (kg ha1) 
IRR Irrigation water use (mm) 
CH4 Methane emissions (kg ha1) 
N2O Nitrous oxide emissions (kg ha1) 

GWP 
Integrated global warming potential of CH4 and 
N2O at 100-yearr scale, calculated as 27.2×CH4 
+273×N2O (kg ha1) 

LAI Leaf area index (m2 m2) 
Pn Net photosynthetic rate (kg ha1) 
HI Harvest index (-) 

Effect sizes 
RYield, RIRR, 
RCH4, RN2O, 

RLAI, RPn, RHI 

Effect size of non-continuous flooding irrigation 
(NCF) on target variables, calculated as the ratio 
of observations under NCF to that under 
continuous flooding (CF) (-) 

Relative 
changes 

Yield, IRR, 
CH4, N2O 

Relative changes of target variables under NCF 
compared to CF, calculated as (R-1)×100 (%) 

Model 
parameters 

Cumtemp accumulated temperature for crop maturity (◦C) 
AMIN Minimum assimilation rates (kg hm2 h1) 

PLAI, PPn, PHI 
Genetic parameters accounting for cultivar 
sensitivities to NCF effects on leaf area index, 
net photosynthetic rate, and harvest index 

MPmax 
Maximum CH4 production rate per soil weight 
at 30 C (g C g−1 d−1) 

fN2O_d 
Maximum portion of denitrification to N2O 
production (-) 

Environmental 
variables 

T 
Mean daily air temperature during rice growing 
season (◦C) 

P 
Total precipitation during rice growing season 
(mm) 

PETc 
Total crop evapotranspiration during rice 
growing season (mm) 

CWA Climatological water availability, calculated as 
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the difference between P and PETc (P-PETc, 
mm) 

Soil variables 

BD Bulk density (g cm3) 
Sand Sand content (%) 
Clay Clay content (%) 
SOC Soil organic carbon (%) 
SAT Saturated water content (cm3 cm3) 
FWC Field water capacity (cm3 cm3) 

Management 
variables 

LAWD 
Lower irrigation threshold, indicated by SWP 
(kpa) 

UAWD Upper irrigation threshold (cm) 
SWP Soil water potential (kpa) 

UFR 
Ratio of unflooded days to total growing days 
(%) 

Optimization 
objectives 

maxYield Maximizing rice yield 
minIRR Minimizing irrigation water use 
minCH4 Minimizing CH4 emission 
minN2O Minimizing N2O emissions 

 839 

Code and data availability 840 

The origin code of WHCNS model and required model input files are available at 841 

https://figshare.com/s/139f3ad8a70faa99724d. Spatial dataset of harvested area of 842 

irrigated rice is available from https://doi.org/10.7910/DVN/KAGRFI. Origin climate 843 

data is available from https://cds.climate.copernicus.eu/datasets/reanalysis-era5-844 

single-levels?tab=download. Origin soil data is available from 845 

https://doi.org/10.1002/2013MS000293. Processed climate and soil data for model 846 

running are included in the figshare repository (see Readme for detailed explanations 847 

of each file). Crop calendar data are available from 848 

https://zenodo.org/record/5062513. All other data that support the findings of this 849 

study are available in the main text or the Supplementary Information. 850 
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